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    Classical Fock space for bosons and q-ons

• Heisenberg-Weyl (two-dimensional) algebra is
 defined by two generators (a+, a) which fulfill the 
relation

[a , a+ ]=aa+ -a+a=1 

• Known to have no (faithful) representation by 
bounded operators in a Banach space.

There are many « combinatorial » (faithful) 
representations by operators. The most famous one 
is the Bargmann-Fock representation 

a ---> d/dx ; a+ ---> x
where a has degree -1 and a+ has degree  1.



• These were bosons, there are also fermions. The  
relation for fermions is  

aa+ + a+a=1 

• This provides a framework for the q-analogue 
which is defined by 

[a , a+ ]
q
 =aa+ -qa+a=1

• For which Bargmann-Fock representation reads

a ---> D
q
 ; a+ ---> x

where a has degree -1 and a+ has degree  1 and D
q 

is the (classical) q-derivative.



• For a faithful representation, one needs an 

infinite-dimensional space. The smallest, called 

Fock space, has a countable basis (e
n
)

n≥0  
(the 

actions are described below, each e
n  

 is represented 

by a circled state « n »).
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• Physicists need to know the sum of all weights 

created when one passes from level « n » to level 

« m ». This problem has been called the « transfer 

packet problem » and is at once rephrased by 

combinatorists as the computation of a formal 

power series.
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Change of level

n

n+1

n+2

m

0



• The set of words which allow  to pass from level 

« n » to level « m » in « i » steps is clearly.
 

• The weight associated with this packet and the 
desired generating series are then
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The following selfreproducing formulas can be 
considered as noncommutative continued 
fraction expansions of the involved “D” codes

Using a bit of analysis to extend the right action 
of the words to series of words and the 
representation 

a ---> ?.ta ; a+ ---> ?.ta+ 

We get 
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And, if one allows only the positive loops

Which solves, with two cases, the problem of the 
transfer packet.
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G. H. E. Duchamp, K.A. Penson, A.I. Solomon, A. Horzela and P. Blasiak,  

One-parameter groups and combinatorial physics, 

Third International Workshop on Contemporary Problems in Mathematical 
Physics (COPROMAPH3), Porto-Novo (Benin), November 2003. 

arXiv : quant-ph/0401126.
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(0,0,0)

Planar decorated Trees

Connes-Kreimer 
MQSymLDIAG

FQSymDIAG

LDIAG

Notes : 
i) The arrow Planar Dec. Trees → LDIAG(1,qs,t) is due to L. Foissy
ii) LDIAG, through a noncommutative alphabetic realization shows 
to be a bidendriform algebra (FPSAC07 paper by ParisXIII & Monge).
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Planar decorated Trees

Connes-Kreimer 
MQSymLDIAG
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LDIAG

LDIAG(q
c,
q

s
,t)

(1,1,1)

LDIAG(1
,
q

s
,t)

Sym=D
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(A part of) The legacy of Schützenberger or how to compute 
efficiently in Sweedler's duals using 

Automata Theory

Sweedler's dual of a Hopf algebra
 i) Multiplication

A⊗ A  A→
ii) By dualization one gets an arrow (comultiplication)

∆: A*  (→ A⊗ A)*

but not a “stable calculus” as 

A*⊗ A* ⊂  (A⊗ A)*

(strict in general). We ask for elements x∈ A such that 
their coproduct be in  A*⊗ A*
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These elements are easily characterized as the 
“representative linear forms” (see also the Group-
Theoretical formulation in recent talks by Pierre 
Cartier) . 

Proposition : TFAE (the notations being as above)
i)  ∆(c)∈A*⊗ A*

ii) There are functions f
i 
,g

i 
i=1,2..n such that

c(xy)=∑
i
n
=1 

f
i 
(x) g

i
(y)   

for all x,y in A.
iii) There is a morphism of algebras μ: A  --> kn x n  

(square matrices of size n x n), a row λ in k 1 x n  

and a column ξ in k n x 1  such that, for all z in A,  
c(z)=λμ(z)ξ 
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In many “Combinatorial” cases, we are concerned with 
the case A=k<∑> (non-commutative polynomials 
with coefficients in a field k).

Indeed, one has the following theorem (the beginning 
can be found in [ABE : Hopf algebras]) and the end is 
one of the starting points of Schützenberger's school of 
automata and language theory.
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Theorem A: TFAE (the notations being as above)
i)  ∆(c)∈A*⊗ A* 

ii) There are functions f
i 
,g

i 
i=1,2..n such that

c(uv)=∑
i
n
=1 

f
i 
(u) g

i
(v)   

u,v words in ∑* (the free monoid of alphabet ∑).
iii) There is a morphism of monoids μ: ∑* --> kn x n  

(square matrices of size n x n), a row λ in k 1 x n  

and a column ξ in k n x 1  such that, for all word w in 
A* 

c(w)=λμ(w)ξ 

iv) (Schützenberger) (If ∑ is finite) c lies in the 
rational closure of ∑ within the algebra k<<A>>.
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We can safely apply the first three conditions of 
Theorem A to Ldiag. The monoid of labelled diagrams is 
free, but with an infinite alphabet, so we cannot keep  
Schützenberger's equivalence at its full strength and 
have to take more “basic” functions. The modification 
reads

 iv) (∑ is infinite) c is in the rational closure of the 
weighted sums of letters 

∑
a ∈∑  

p(a) a
within the algebra k<<A>>.

(Joint work with C. Tollu).
arXiv:0802.0249v1 [quant-ph]
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In this case, Schützenberger's theorem (known as the 
theorem of Kleene-Schützenberger) could be rephrased 
in saying that functions in a Sweedler's dual are 
behaviours of finite (state and alphabet) automata.  

In our case, we are obliged to 
allow infinitely many edges. 
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Computations in Krat<<A>>, Sweedler's dual 
of K<A> 

Summability : We say that a family (f
i
)

i∈I 
(I finite or not, f

i 

in K<<A>>) is summable if, for each w∈A*, the family 
(<f

i
|w>)

i∈I 
is finitely supported and we set 

(∑
i∈I 

f
i
)

 
: w →  (∑

i∈I 
<f

i
|w>)

Identifying each word with the Dirac linear form located at the 
word, one has then, for each f∈K<<A>>

f=
 
∑

w∈A*  
f(w)w



24

If f∈Κrat<<Α>> , i. e. if it fulfills the conditions of Theorem A it 
exists a morphism of monoids 

μ: A* --> Kn x n  (square matrices of size n x n), a row λ in 
k 1 x n  and a column ξ in k n x 1  such that, for all word w in 
A*, f(w)=λμ(w)ξ. Then

f=
 
∑

w∈A*  
f(w)w=∑

w∈A*  
λμ(w)ξ w=λ(∑

w∈A*  
μ(w)w)ξ=

 λ(∑
w∈A*  

μ(w)w)ξ=λ(∑
m≥0  

∑
|w|=m  

μ(w)w)ξ
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But, as words and scalars commute (it is so by 
construction of the convolution algebra Kn x n <<A>>), one 
has 

∑
m≥0  

∑
|w|=m  

μ(w)w=∑ 
m≥0  

(∑
a∈A  

μ(a)a)m=(∑
a∈A  

μ(a)a)*
hence

f=λ(∑
a∈A  

μ(a)a)*ξ
where the “star” stands for the sum of the geometric 
series.
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A (short) word on automata theory.

 The formulas (for the star* of a matrix) above are sufficiently 
“expressive” to be the crucial fact in the resolution of a 
conjecture in Noncommutative Geometry. 

 For applications, automata theory had to cope with 
spaces of coefficients much more general than that of a 
field ... even the “minus” operation of the rings had to 
disappear in order to allow to cope with problems like 
shortest path or the Noncommutative problem or the 
shortest path with list of minimal arcs .
 
 The emerging structure is that of a semiring. Think of a 
ring without the “minus” operation, nevertheless 
“transfer” matrix computations can be performed.  
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As (useful) examples, one 
has ([0,+∞], min, +), 
([0,+∞[, max, +) or its 
(commutative or not) 
variants. 
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What remains for K<A> ? (free algebra)

  K semiring : 

- Universal properties (comprising – little known - tensor 
products)

- Complete semiring K<<A>>, summability is defined by 
pointwise convergence (see e. g. computation above).

- Rational closures and Kleene-Schützenberger Thm

- Rational expressions, Brzozowski theorem

- Automata theory, theory of codes

- Lazard's monoidal elimination  
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Concluding remarks and future
i) We can solve the problem of packet of monoidal 

actions on a “level” space by means of the theory 

of codes and a bit of operator analysis.

ii) In general, Hopf algebras of physics which are non-

commutative are free on some alphabet (often, of 

diagrams) and computation on its Sweedler's dual 

(which is the biggest available for finite 

comultiplications) and we have seen that they can 

be performed via rational expressions. 
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Concluding remarks and future (cont'd)

iii) Kleene-Schützenberger's theorem still works in the 

general case (infinite alphabet) up to a slight 

modification. This will allow the development of a 

calculus in the general (i. e. out of the free) case.
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Thank You
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