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COMBINATORIAL SPECIES AND FEYNMAN
DIAGRAMS
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Dedicated to the memory of Pierre Leroux

Abstract. A Feynman diagram is a graphical construction that
describes certain interactions in physics. Most calculations with
such diagrams reduce to consideration of connected Feynman di-
agrams. These in turn may be constructed from line-irreducible
Feynman diagrams, those for which removal of a single line does
not destroy connectivity. The purpose of this article is to exhibit
the combinatorial nature of this construction in the framework of
species of structures. The main result is a dissymmetry theorem
for connected Feynman diagrams. This purely combinatorial the-
orem relates the species of connected diagrams to species with less
symmetry, such as the species of connected diagrams with a des-
ignated line-irreducible subdiagram. There is also a discussion of
the relation of this result to the Legendre transform.

1. Introduction

This article is on the relation between constructions in combina-
torics and corresponding constructions in physics. The framework is
the theory of species of structures in the sense of Joyal [10] (see also the
book [2]). The physics topic is Feynman diagrams. Feynman diagrams
are combinatorial structures involving graphs constructed in a rather
complicated way.

In graph theory there is a fundamental concept of connected graph.
There are also stronger notions of connectivity. A connected graph is
2-connected if it does not have a cut-vertex: a vertex whose removal
disconnects the graph. A connected graph is 2-edge-connected if it
does not have a bridge: an edge whose removal disconnects the graph.
In the Feynman diagram context the notion corresponding to 2-edge-
connected graph is 1-particle-irreducible diagram. For simplicity we
henceforth use the terminology line-irreducible diagram.

There are identities that reduce sums over connected diagrams to
sums over line-irreducible diagrams. They may be formulated in terms
of the Legendre transform. Such results are standard in the physics



2 WILLIAM G. FARIS

literature and may be found in textbooks [13, Chapter 16]. Current
discussions may be found, for instance, in [6] or [9]. The lecture notes
[7] are a particularly good introduction. The goal of the present work is
to formulate and prove these identities in the context of species of struc-
tures. The identities should take the form of bijections between sets of
combinatorial structures. In short, the numerical identities should be
consequences of combinatorial identities.

This species approach depends on a combinatorial fact about trees
known as the dissymmetry theorem. This principle was applied to sta-
tistical mechanics by Leroux [11]. In his treatment the natural setting
is graphs with the concept of 2-connectivity. An article by Brydges and
Leroux [3] explored what happens in the graph case with the 2-edge-
connectivity concept. For the Feynman diagram case considered here
the natural notion is line-irreducibility.

The species identities are relations between finite sets. When infinite
series are encountered, they are interpreted in a formal sense. See [8]
for a survey of species techniques and of their applications to statistical
mechanics. The formal combinatorics of Feynman diagrams (with ori-
ented lines) is systematically explored by Abdesselam in [1]. Another
topic of analysis is concerned with convergence of expansions. See, for
example, Brydges and Martin [4, Section VIII] for the state of the art.

The Feynman diagrams under consideration here are labeled Feyn-
man diagrams. The theory of combinatorial species works particularly
smoothly with labeled structures. In this case the only symmetry con-
sidered is permutation of the labels, and the corresponding generating
series (exponential generating function) is a relatively uncomplicated
construct. That is the reason for concentrating on that case in the
present treatment. By contrast, many expositions deal with isomor-
phism classes of Feynman diagrams. These are abstract graphs with
vertices and edges, allowing multiple edges and loops. The reason
for using isomorphism classes of diagrams is to compress the sums
involved so as to have less terms to compute. This is important in
physics for practitioners of perturbation theory who need to evaluate
some quantity—say a scattering amplitude—up to some order in the
coupling constant. The theory of combinatorial species also describes
isomorphism classes, but this requires a deeper understanding of the
automorphisms that describe the symmetries. The natural tool is then
the cycle index series.

While the isomorphism class description of Feynman diagrams is not
needed for the main body of the present article, it is relevant to un-
derstanding its relation to other approaches to the combinatorics of
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Feynman diagrams. For this reason, an appendix is included that dis-
cusses this topic. In particular, this allows a more detailed comparison
with the contributions [3] and [1].

Feynman diagrams have an important interpretation in quantum
field theory. They describe the perturbation of free quantum particle
propagation by interactions. The vertices represent the interactions,
and the lines represent the free particle propagation. Feynman di-
agrams also have an interpretation in the theory of spatial stochastic
processes. Here they describe the perturbation of a Gaussian process by
nonlinear interactions. The vertices come from the interaction terms,
and the lines represent the Gaussian covariances. In the following we
shall use the language of perturbations of Gaussian processes. This
corresponds to the quantum field case with chargeless bosons. The
lack of charge corresponds to the combinatorial fact that the lines are
unoriented.

2. Feynman diagrams

2.1. Exponential generating functions. For each n consider a finite
set U with cardinality n. A point i in U is called a label. One possible
choice is U = {1, . . . , n}. However, it can be useful to employ a subset
V of U as another label set. In other circumstances one can take a set
partition Γ of U as a label set. So it is best to allow a general finite set
at the outset. Combinatorial objects are often built from such a label
set; the exact nature of this set is usually not important.

Fix a finite set X (possibly very large). This is the color palette.
Each x in X is a color. Consider a function a : U → X . This is called a
colored set. Thus the label i has color ai. The case where we do not care
to use colors is obtained by using a color palette with only one color,
for instance, gray. We may refer to this situation as monochromatic.

In some interpretations the colors may be thought of as the index
set for a stochastic process. Each color is a point in space (or a point
in time). A colored set is a way of describing several points. Thus, for
instance, for a colored set a : {i, j} → X this describes points ai, aj in
space, which may be the same point.

Such an index set may also be thought of as the coordinate index
set for a product space of dimension N , where N is the number of
colors. An element φ of this product space is an N -component vector
that assigns to each index x in X a number φ(x), the x component of
the vector. More generally, a tensor of rank 2 assigns to each ordered
pair of indices x, y a number φ(x, y). A tensor of rank n is defined in
a similar way as a number depending on n indices. In the applications
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considered here the tensors are symmetric tensors. Thus in the rank 2
case we have φ(x, y) = φ(y, x).

The notion of colored set gives a more flexible way of describing
such tensors. Consider a label set Un of cardinality n. Say that for
each colored set a : Un → X there is a corresponding coefficient f(a).
Suppose that f(a) depends only on the number of points in Un of
each color. Then f(a) is a symmetric tensor of rank n in a space of
dimension N . The colors are the tensor indices. For example, if n = 2
the tensor is rank 2. For a colored set a : {i, j} → X there are two
indices ai, aj, which may be the same. Permuting the labels gives the
same value of f(a).

The exponential generating function for this family of tensors is a
formal power series in many variables zx, one for each color x in X . It
is given by the formal sum

(1) F (z) =
∞∑
n=0

1

n!

∑
a:Un→X

f(a)za,

where za =
∏

j∈Un zaj . In the monochromatic case the tensors are scalar
coefficients that depend only on n, and there is only one variable.

Exponential generating functions give a convenient summary of im-
portant tensor operations. The most fundamental operation is com-
binatorial multiplication. Say that G(z) corresponds to the tensors
g(a), and H(z) corresponds to the tensors h(a). Then the product
F (z) = G(z)H(z) corresponds to the tensors

(2) f(a) =
∑
〈V,W 〉

g(aV )h(aW ),

where V,W range over ordered pairs of disjoint sets with union U , and
where aV and aW are the restrictions of a to V and W . Combinatorial
multiplication splits the set in all possible ways, multiplies the weights
of the constituents, and adds the results.

Composition is even more important. It is useful to allow two color
palettes. Say that G(w) is defined with color palette Y . Furthermore,
say that for each y in Y there is an exponential generating function
Hy(z) with color palette X . Suppose for simplicity that eachHy(0) = 0.
Then the composition F (z) = G(H(z)) makes sense as an exponential
generating function with color palette X . The corresponding operation
on tensors a : U → X is

(3) f(a) =
∑

Γ

∑
b:Γ→Y

g(b)
∏
V ∈Γ

hbV (aV ),
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where a : U → X , and where Γ ranges over set partitions of U . Com-
binatorial composition partitions the set in all possible ways, with all
possible colorings of the blocks, multiplies the weight of the partition
with the weights of the blocks of the partition, and adds the results. If
it happens that the set U is empty, then the only set partition is the
empty partition Γ with no blocks. The product over the blocks V in Γ
is the empty product with value one.

An important special case is when G(w) is monochromatic and there
is only one H(z). In particular, if we take the monochromatic G(w) =
exp(w), then the corresponding tensors are simply the scalar 1. So in
that case F (z) = exp(H(z)) is given by

(4) f(a) =
∑

Γ

∏
V ∈Γ

h(aV ),

where a : U → X , and where Γ ranges over set partitions of U . The
combinatorial exponential partitions the set in all possible ways, mul-
tiplies the weights of the blocks of the partition, and adds the results.

2.2. Gaussian expectations. Let X be a palette of colors, and con-
sider Gaussian random variables φx indexed by x in X . This means
that there is a Gaussian measure on the N -dimensional product space
RX . The φx are the coordinate variables with induced one-dimensional
Gaussian measures. The expectation of a function h(φ) with respect to
the Gaussian measure will be denoted 〈h(φ)〉0. A Gaussian measure is
always determined by its mean function and its covariance function. In
the following suppose that the Gaussian random variables have mean
zero and covariance

(5) Cxy = 〈φxφy〉0.
We could also write the covariance as Ca, where a : {i, j} → X is a
colored set with ai = x and aj = y. In other words, it is a rank 2
tensor.

An expectation of a monomial in random variables is called a mo-
ment. In particular, a covariance of mean zero random variables is a
second moment. The higher moments 〈φa〉0 = 〈

∏
j φ

aj〉0 of the family
of Gaussian random variables should be determined by the exponential
generating function

(6) 〈exp(
∑
x

Jxφ
x)〉0 =

∞∑
n=0

1

n!

∑
a:Un→X

〈φa〉0Ja,

where Ja =
∏

j Jaj . Here the Ja are arbitrary complex variables. In the
Gaussian case this expression is well-defined. Furthermore, since the
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variables are Gaussian, the moment generating function has an explicit
expression in terms of the covariance:
(7)

〈exp(
∑
x

Jxφ
x)〉0 = exp(

1

2

∑
x

∑
y

CxyJxJy) = exp(
1

2

∑
a:U2→X

CaJa).

It follows from the combinatorial exponential that the higher moments
are given in terms of covariances for a : U → X by

(8) 〈φa〉0 =
∑

σ∈Mat[U ]

∏
W∈σ

CaW ,

where σ ranges over all set partitions of U into two-point blocks. Such
a partition is called a perfect matching of U . Write the weight of the
perfect matching σ as

(9) C(a, σ) =
∏
W∈σ

CaW .

Then

(10) 〈φa〉0 =
∑

σ∈Mat[U ]

C(a, σ)

is the sum of weights of perfect matchings.

2.3. Vacuum Feynman diagrams. In the theory of random fields
non-Gaussian processes are built from Gaussian processes. Start with
a set X indexing a Gaussian process. Consider variables φx for x ∈ X .
The action written in terms of the fields φ takes the form

(11) S(φ) =
∞∑
n=1

1

n!

∑
a:Un→X

Saφ
a.

The φa is the product
∏

j φ
aj , where the product is over the label

set. The coefficients Sa are symmetric tensors. The action is a given
quantity that defines the process of interest. In some applications it
is restricted to be a polynomial of low degree, such as three or four.
In that case, there are only finitely many parameters that define the
action.

The exponential of the action is

(12) exp(S(φ)) =
∞∑
n=0

1

n!

∑
a:Un→X

[
∑

Γ∈Par[Un]

∏
V ∈Γ

SaV ]φa.

The Γ range over set partitions of the label set. The aV is the restriction
of a to the subset V of the label set. In the future it will be convenient
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to write

(13) S(a,Γ) =
∏
V ∈Γ

SaV .

The partition function is the expectation
(14)

Z = 〈exp(S(φ)〉0 =
∞∑
n=0

1

n!

∑
a:Un→X

∑
Γ∈Par[Un]

∑
σ∈Mat[Un]

S(a,Γ)C(a, σ).

A vacuum Feynman diagram γ for label set U consists of a set par-
tition Γ of U and a perfect matching σ of U . Each block in Γ is a
vertex, and each pair {i, j} in σ is a line. The labels i, j are the ends of
the lines. The weight of the vacuum Feynman diagram is the product
Feyn(a, γ) = S(a,Γ)C(a, σ). The result above says that the partition
function is given by a sum of weights of diagrams.

Each vacuum Feynman diagram defines a graph (with loops and
multiple edges). Each block in the set partition Γ is a vertex, and an
edge from such a vertex to another corresponds to a line with one end
in one vertex and the other end in the other vertex.

The partition function Z may be thought of as a function of the
parameters that define the action. The physics is determined by this
function. The partition function does not have a direct physical in-
terpretation, but ratios such as the logarithmic differential dZ/Z de-
termine relevant expected values. The quantities that vary in such a
differential expression are certain parameters in the action. The par-
ticular parameters that are chosen depend on the physical quantity
that one is trying to compute. In physics it is usual to focus on the
connected function or free energy F defined so that Z = exp(F ). Then
the differential dF = dZ/Z is a quantity of interest. The combinatorial
term “connected function” comes from the fact that its computation
involves connected Feynman diagrams. In physics “free energy” often
refers loosely to a quantity that is a multiple of a thermodynamic free
energy. In any case the quantity F , regarded as a function of action
parameters, is central to the theory.

2.4. Feynman diagrams with legs and with amputated lines.
There are more general kinds of Feynman diagrams. A Feynman dia-
gram with legs for label set U consists of a set partition Γ of a subset
U0 of U together with a perfect matching σ of U . A line that does not
have both ends in U0 is called a leg. A label that is not in the vertex
subset U0 is a leg label. One way to get a Feynman diagram with legs is
to take a vacuum Feynman diagram, remove all the one-point vertices,
and replace them with leg labels.
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Another kind of Feynman diagram has vertices with labels that do
not belong to lines. An amputated Feynman diagram γ on a label set
U is a set partition Γ of U together with a perfect matching σ of a
subset of U . A label that is not matched is an amputated line label. It
may be thought of as one end point of a potential or virtual line, and
may be pictured as a half-line.

The most general form of Feynman diagram γ on label set U would
consist of a set partition Γ of a subset of U and a perfect matching σ of
another subset of U . Then there could be ordinary labels that belong
both to the partition and the perfect matching, leg labels that belong to
the perfect matching but not the partition, amputated line labels that
belong to the partition but not the perfect matching, and amputated
leg labels that belong to neither one. In each case the weight of the
diagram is Feyn(a, γ) = S(a,Γ)C(a, σ).

3. Species of structures

3.1. Species equations. The most basic species notion is that of an
assignment to each finite set U of a finite set F [U ] of combinatorial
objects, with a suitable naturality requirement. Often U is called the
label set, and the elements of F [U ] are constructed from U . An ele-
mentary example is the power set species P that assigns to each set U
with n elements the set P [U ] of all subsets of U , which is a set with 2n

elements. Many other examples appear in [3, Chapter 1].
There is a more general concept of weighted species. A weighted

species is one for which counting of F [U ] is replaced by adding weights
associated to the elements of this set. In the example of the power
set species one could weight each subset of U with k elements by tk.
The total weight of P [U ] would then be

∑n
k=0

(
n
k

)
tk = (1 + t)n. The

weighted species notion is explained in [2, Section 2.3].
A multisort species is one for which the label set U is categorized

into sorts, and such that the combinatorial constructions depend on
this categorization. In the present exposition the sorts are called colors.
This more advanced notion occurs in [2, Section 2.4]. In the following
the species that occur will usually be weighted multisort species. A
species built over a set U with no sort distinction might be called
monochromatic. The case where the focus is on counting the set F [U ]
of combinatorial objects is obtained by setting the weight of each object
equal to one. In the power set example the value of (1 + t)n with t = 1
is the count 2n.

We have seen that in species theory it is useful to have a concept of
weighted set. The notation here is chosen so operations on weighted
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sets appear very similar to operations on sets. Fix a commutative ring
R (perhaps the real numbers or the complex numbers). A weighted set
is a finite set together with a weight function A from the set to R. The
finite set is the domain dom(A), and the function A is from dom(A) to
R.

Suppose that A,B are weighted sets. There are natural concepts of
disjoint union A+B and cartesian product A×B. The disjoint union is
produced in the obvious way. If A : dom(A)→ R is a weighted set, and
B : dom(B)→ R is a weighted set, then A+B : dom(A)+dom(B)→ R
is the weighted set defined on the disjoint union dom(A) + dom(B) of
sets by (A + B)(α) = A(α) for α in dom(A) and (A + B)(β) = B(β)
for β in dom(B). Similarly, the cartesian product A × B : dom(A) ×
dom(B) → R is defined on the cartesian product dom(A) × dom(B)
of sets by the multiplicative property (A× B)(α, β) = A(α)B(β). The
case of sets without any special weighting is obtained by giving each
element weight one. In that case the weighted set may be identified
with the set.

If A : dom(A)→ R is a weighted set, then it has total weight

(15) |A| =
∑

α∈dom(A)

A(α).

This is an obvious generalization of cardinality. It is obvious that |A+
B| = |A|+ |B|. When the multiplicative property holds it is also true
that |A×B| = |A| |B|. This follows from the distributive law. The idea
is that the domain of a weighted set is a set of combinatorial objects.
One wants to manipulate these sets of combinatorial objects, while at
the same time keeping track of their weights. Since the weighted set
operations automatically include the corresponding operations on sets
of combinatorial objects, one can treat the weighted sets as sets, but
with extra structure. It may be convenient to think of the elements α
of the domain of A as being elements of the weighted set A. With this
convention it is possible to write α ∈ A for an element of the domain
of A and to write A(α) for the weight of this α.

In the following it is convenient to consider disjoint sums and carte-
sian products of indexed families of weighted sets. Suppose that for
each p in some index set there is a weighted set Ap. The weighted set∑

pAp has domain set consisting of all pairs (p, α), where α is in the

domain set of Ap. The weight of (p, α) is Ap(α). The weighted set∏
pAp has domain set consisting of all functions p 7→ τp such that each

τp is in the domain set of Ap. The weight of τ is
∏

pAp(τp).
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A species F assigns to each colored set a : U → X a corresponding
set dom(F [a]) of combinatorial objects together with a weight function
F [a] : dom(F [a]) → R. In other words, it takes a colored set a to a
weighted set F [a]. Furthermore, it is assumed that permutations of the
labels that carry along the colors induce corresponding permutations of
the weighted sets that carry along the weights. The total weight of F [a]
is obtained by summing the weights of the individual combinatorial
objects in dom(F [a]). The total weight is denoted

(16) f(a) = |F (a)| =
∑

α∈dom(F [a])

F [a](α).

The end product of species theory is the computation of total weights
of combinatorial objects built from colored sets. This is a natural
generalization of counting.

For each species F there is a corresponding exponential generating
function F (z) with tensor coefficients given by the total weights f(a).
The operations on species are designed to give corresponding operations
on the exponential generating functions.

Given two species G and H, there is another species G + H that is
the combinatorial sum. It is defined by (G+H)[a] = G[a]+H[a], where
the sum on the right is weighted set disjoint sum. The corresponding
exponential generating functions satisfy (G+H)(z) = G(z) +H(z).

Given two species G and H, there is a species G ∗ H that is the
combinatorial product. It is defined by

(17) (G ∗H)[a] =
∑
〈V,W 〉

G[aV ]×H[aW ].

This is a disjoint sum of cartesian products of weighted sets. The
〈V,W 〉 that index the disjoint sum range over ordered pairs of subsets
with V ∩W = ∅ and V +W = U . Also aV denotes the restriction of a
to V . It follows that the exponential generating functions satisfy

(18) (G ∗H)(z) = G(z)H(z).

Consider two color palettes Y and X . Say that G is a species on Y
colored sets, and Hy for y in Y are species on X colored sets. Suppose
that for each y that Hy(∅) = ∅. The combinatorial composition G ◦H
as a species on X colored sets is defined by

(19) (G ◦H)[a] =
∑

Γ

∑
b:Γ→Y

G[b]×
∏
V ∈Γ

Hb(V )[aV ].

This is a disjoint sum of cartesian products of weighted sets. The sum
is indexed by set partitions Γ of U and colorings b : Γ → Y of these
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partitions. Each cartesian product is indexed by the blocks of the
partition. The corresponding exponential generating functions satisfy

(20) (G ◦H)(z) = G(H(z)).

The combinatorial composition is complicated enough to make it
worth looking at the construction in more detail. Consider a colored
set a : U → X . An element α of the underlying domain set of the
weighted set (G◦H)[a] is of the form α = (Γ, b, λ, τ). Here the element
of the index set for the disjoint sum is given by specifying a set partition
Γ of U and a coloring b : Γ→ Y . The λ is a structure in the underlying
domain set of G[b]. For each block V in Γ the value τV is in the
underlying domain set of Hb(V )[aV ]. The weight of α is the product
G[b](λ)

∏
V ∈ΓHb(V )[aV ](τV ).

An important special case is when G is monochromatic and there is
only one H species. In particular, we may take for G the species E
that assigns to each set a single point with weight one. Then E ◦H is
the combinatorial exponential given by

(21) (E ◦H)[a] =
∑

Γ

∏
V ∈Γ

H[aV ].

The corresponding exponential generating functions satisfy

(22) (E ◦H)(z) = exp(H(z)).

There are other useful operations on species. If F is a species, then
there is a species F ′x given by combinatorial derivative. It is defined by

(23) F ′x[a] = F [ax],

where ax : U + {∗} → X is equal to a on U and has value x on ∗. Here
∗ is a label point that is not in U . Then the exponential generating
function satisfies

(24) F ′x(z) =
∂F (z)

∂zx
.

The combinatorial derivative is perhaps best regarded as a partial de-
rivative, where the coordinate index is the color x. In the following the
index may be used either as a subscript or as a superscript, depending
on the context. This represents an attempt to follow tensor calculus
conventions.

3.2. Feynman diagram species. A first notion of Feynman diagram
species is the following. Fix a color palette X . For each colored set
a : U → X there is a set Z[U ] of vacuum Feynman diagrams with
label set U . Each diagram γ consists of a set partition Γ of U and
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a perfect matching σ of U . The weight of a diagram is Feyn(a, γ) =
S(a,Γ)C(a, σ). The weighted set of all such diagrams is Z[a].

A vacuum Feynman diagram is connected if the label set cannot be
partitioned into blocks that are not coupled by the diagram. Let Z be
the species of vacuum Feynman diagrams, and let F be the species of
connected vacuum Feynman diagrams. By the general theory,

(25) Z = E ◦ F.

This says that every vacuum Feynman diagram gives rise to a set
partition on each block of which there is a connected vacuum Feyn-
man diagram. The exponential generating function identity is Z(z) =
exp(F (z)).

The simplest connected vacuum Feynman diagrams are for n = 2.
There is a diagram with one vertex and a single loop; there is also
a diagram with two vertices and a line that forms a bridge between
them. The next simplest case is with n = 4. There is a diagram with
one vertex and a double loop; there is a diagram with two vertices and
two lines joining them; there is a diagram with two vertices, one loop,
and a line that forms a bridge between the vertices; there is a diagram
with three vertices and two bridge lines.

The weight of each diagram is given by the Feynman rules. For
instance, consider the n = 4 vacuum diagram with two vertices and
two lines joining them. Say more specifically that the underlying set
is U = {i, j, k, `} and the partition has blocks {i, j} and {k, `}. The
lines are {i, k} and {j, `}. The weight is then Sai ajC

ai akCaj a`Sak al For
another example, consider the n = 4 diagram with two vertices, one
loop, and a bridge. Say that the partition has blocks {i} and {j, k, `}
and the lines are the bridge {i, j} and the loop {k, `}. The weight for
this diagram is SaiC

ai ajSaj ak a`C
ak a` .

3.3. Indicator species. Indicator species are combinatorial construc-
tions that return at most one object. They are not particularly inter-
esting in themselves, but they are excellent building blocks for more
complicated species. The simplest example is the monochromatic set
indicator species E. Given a label set U , the value of E[U ] is a sin-
gle point of weight one. The corresponding exponential generating
function is a function of a single variable w; it is just the exponential
function E(w) = exp(w).

There are also indicator species that act on colored sets. We shall
need the one point of color x indicator species Xx that returns a single
point of weight one, but only provided that the input is a colored set
with one element of color x. For every other input the return is the
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empty set. The exponential generating function of Xx is the coordinate
function Xx(z) = zx.

A more interesting example is the line indicator species L. For a
colored label set a : {i, j} → X with two points it gives a single
point with weight Caiaj . Otherwise it returns the empty set. The
line indicator species has quadratic exponential generating function
L(z) = 1

2

∑
x

∑
y C

xyzxzy. The perfect matching species Mat satisfies

(26) Mat = E ◦ L.

This already shows the power of the indicator species concept.
It will be useful to have the combinatorial partial derivative L′x of

the line indicator species. The value of this on a one-point colored set
a : {j} → X is a single point with weight Cxaj . In all other cases it
returns the empty set. This is a species that recognizes a single point,
but regards it as having a line from an external point of color x. The
exponential generating function of this species is L′x(z) =

∑
y C

xyzy.

3.4. Connected Feynman diagrams with a leg or amputated
line. Here are two useful species. The first is the species F ↑x of con-
nected Feynman diagrams with an external leg of color x. Given a
colored set a : U → X , this species consists of all connected Feynman
diagrams τ on the disjoint union U + {∗}, where ∗ is an external point
that is a leg label of color x. Each connected diagram τ has a set
partition Γ of U and a perfect matching σ of U + {∗}. The weight of
a diagram is Feyn(ax, τ) = S(ax,Γ)C(ax, σ). These weighted diagrams
define the weighted set F ↑x[a]. The total weight of this weighted set
contributes to the coefficient of the za term in the exponential gener-
ating function. The external point ∗ plays a role similar to that of the
external point in the definition of the derivative species, except that
only the perfect matching part of the diagram extends to this point.

The second is the species of F�y of connected Feynman diagrams
with a amputated line of color y. This assigns to each colored set
a : U → X a set partition Γ of U , an amputated line label j in U with
aj = y, and a perfect matching σj of the difference set U − {j}, and
this is done in such a way as to produce a connected diagram γj. The
weight of a diagram is Feyn(a, γj) = S(a,Γ)C(a, σj). These weighted
diagrams define the weighted set F�y [a]. Again the total weight of
this weighted set contributes to the coefficient of the za term in the
exponential generating function. This construction is somewhat like
the combinatorial product construction in the special case when the
disjoint union U = {j} + (U − {j}) involves one-point subsets. Again
only the perfect matching part of the diagram is restricted.
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Lemma 3.1. There is a species isomorphism

(27) F ↑x = L′x ◦ F�.
The proof is to note that the weighted set (L′x ◦F�)[a] is computed

with a trivial partition with only one block U . An object in the under-
lying set is given by U , a color b(U), and a connected Feynman diagram
γj with some specified amputated line label j in U with aj = b(U). The
weight is Cxb(U)Feyn(a, γj) = CxajFeyn(a, γj). Map this to a connected
diagram τ by adding a line from j to an external leg label ∗ of color
x. This map may be reversed by defining j to be the vertex adjacent
to ∗. The weight Feyn(ax, τ) is the same. This gives an object in the
weighted set F ↑x[a].

The lemma says that a connected Feynman diagram with a leg to an
external point is obtained by adjoining a line to a connected Feynman
diagram with an amputated line. The exponential generating function
identity is F ↑x(z) =

∑
y C

xyF�y (z).
It is easy to generate examples of connected diagrams with single

amputated lines. For n = 1 there is a single vertex with an amputated
line. For n = 3 there is the one vertex diagram with loop and ampu-
tated line; also there is the two vertex line with bridge line and one
amputated line. For n = 5 there is a diagram with one vertex and a
double loop and one amputated line, and there is a diagram with two
vertices and two lines joining them and one amputated line. However
now there are two kinds of diagrams with two vertices, one loop, and a
line that forms a bridge between the vertices, since one can place the
amputated line in the vertex with the loop or the vertex without the
loop. Also, there are two kinds of diagrams with three vertices and
two bridge lines, since one can place the amputated line in the center
vertex or in an end vertex.

Adding a line and an external point to an amputated diagram gives
the corresponding diagram with a leg line to an external point. The
simplest such diagram has a one point vertex with a line to an exter-
nal point. The next simplest such diagram has a loop and a line to
an external point; in the physics literature this is sometimes called a
“tadpole” diagram.

4. Line-irreducible diagrams

4.1. Lumps and bridges. A line in a connected Feynman diagram is
a bridge if removing it produces a diagram that is not connected. When
all bridges are removed the resulting diagram will have amputated lines.
The label set may then be partitioned into connected components on
each one of which is a connected diagram with amputated lines.
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A connected diagram with amputated lines is a line-irreducible di-
agram if it has no bridge. This notion is closely related to the graph
theory notion of 2-edge-connected graph. It is also a possible formula-
tion of the physics concept of 1-particle-irreducible diagram.

Some obvious examples of line-irreducible diagrams are the line-
irreducible vacuum diagrams. For instance, there is the n = 2 vertex
diagram with one vertex and a loop. Also, there is the n = 4 vacuum
diagram with one vertex and a double loop, as well as the n = 4 vacuum
diagram with two vertices and two lines connecting them. There are
also non-vacuum diagrams with a single truncated line. The simplest
one is the n = 1 diagram with one vertex and a truncated line. There
are also n = 3 and n = 5 diagrams obtained by adding a truncated
line to the above vacuum diagrams. One can go on and construct di-
agrams with two truncated lines; the same procedure gives examples
with n = 2, 4, 6.

Every connected vacuum Feynman diagram may be decomposed as
a tree, where the vertices of the tree are line-irreducible diagrams with
amputated lines, and the edges of the tree are the bridges. Each con-
stituent line-irreducible diagram is called a lump. A lump can consist
of a single point.

Write M� for the species of line-irreducible diagrams. The line-
irreducible diagrams on label set U consist of a set partition of U (the
vertices) and a perfect matching of a subset of U (the lines) with the
condition that there is no bridge.

The species M� decomposes into two parts M� = M�
0 + M�

1 . The
part M�

0 gives line-irreducible diagrams with no one-point vertices. If
a line-irreducible diagram has one-point vertices, then it consists of
a single one-point vertex. Thus the other part M�

1 consists of line-
irreducible diagrams consisting of a single label point belonging to a
one-point vertex.

There is another species M related to the physics concept of 1-
particle-irreducible diagram. The diagrams are obtained from line-
irreducible Feynman diagrams by replacing each amputated line label
with an ordinary label together with a line to a leg label. In the fol-
lowing construction these legs are used to construct bridges. For that
reason, the species M will be called the species of line-irreducible Feyn-
man diagrams with bridge legs. A leg label that is adjoined by a line
to the original line-irreducible diagram is called a bridge leg label. The
label set U = U0 + Uβ, where the labels in U0 belong to vertices, while
each bridge leg label in Uβ is attached to a label in U0 by a line.

The species M = M0 +M1 also decomposes into two parts. The part
M0 gives diagrams with no one-point vertices. The part M1 consists of
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diagrams with a line from a label belonging to a one-point vertex to a
bridge leg label.

4.2. Bridge identities. The context for the following results is the
species F of connected Feynman diagrams and variations on this
species. One variation is the species of connected Feynman diagrams
with a designated bridge. This produces ordered pairs consisting of a
Feynman diagram and a bridge of the diagram. Another variation is the
species of connected Feynman diagram with a designated lump. This
produces ordered pairs consisting of a Feynman diagram and a lump
of the diagram. These species are less symmetrical than the species F ;
in compensation they enter in recursive structures.

Lemma 4.1. Let F↔ be the species of connected Feynman diagrams
with a designated bridge. Let L be the line indicator species. For each
y let F�y be the species of connected diagrams with an amputated line
of color y. Then

(28) F↔ = L ◦ F�.

To prove this lemma, start with (L ◦ F�)[a]. The elements of this
weighted set are indexed by two-element partitions ∆ = {V,W} of U
together with colorings b : ∆→ X . Consider a partition ∆. A typical
element is a diagram γ on V with some amputated line label j of color
aj = b(V ) and a diagram δ on W with some amputated line label k
of color ak = b(W ). The weight is Cb(V )b(W )Feyn(aV , γ)Feyn(aW , δ).
The values b(V ) and b(W ) are arbitrary, so one may think of a typical
element as a diagram γ on V with some amputated line label j and
a diagram δ on W with some amputated line label k. The weight
is CajakFeyn(aV , γ)Feyn(aW , δ). Map this pair of diagrams γ, δ to a
combined diagram σ on U with an additional line from j to k. Its
weight Feyn(a, σ) is the same. The designated bridge is the unique
line that connected the partition. The conclusion is that one gets the
weighted set F↔[a]. The map is reversible; given σ and a bridge, there
is a partition ∆ = {V,W} determined by the connected diagrams γ, δ
on each side of the bridge. The exponential generating function identity
is F↔(z) = 1

2

∑
x

∑
y F
�
x (z)CxyF�y (z).

Lemma 4.2. Let F©↔ be the species of connected vacuum Feynman
diagrams with a designated incident lump-bridge pair. Then

(29) F©↔ = F� ∗ F ↑ = F� ∗ (L′ ◦ F�).

In the statement of the lemma the right hand side should be in-
terpreted as

∑
x F
�
x ∗ F ↑x =

∑
x F
�
x ∗ (L′x ◦ F�). On a colored set
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a : U → X . this gives an ordered pair of subsets V,W that are disjoint
and exhaust U . Furthermore, a typical object is given by a connected
diagram γ on V with amputated line label i and a connected diagram
δ on W with external leg label. This external leg label may be iden-
tified with i. The only x that contributes is x = ai. The weight of
this pair of diagrams is Feyn(aV , γ)Feyn(aW , δ). The two diagrams
are mapped to a combined diagram σ on all of U . The weight of this
diagram is Feyn(a, σ), which is the same. The V subset is the one
that has the lump as part of it; the bridge connects V with W . The
mapping may be reversed, given σ and the lump-bridge pair, let the
connected diagram on the lump side of the bridge define V and let W
be the complement. The exponential generating function identity is
F©↔(z) =

∑
x F
�
x (z)F ↑x(z) =

∑
x

∑
y F
�
x (z)CxyF�y (z).

4.3. Lump identities. Let M be the species of line-irreducible Feyn-
man diagrams with bridge legs. Regard M as a species with color
palette X × {0, β} with another dimension. The 0 and β are used
to denote ordinary labels and bridge leg labels. A coloring is a pair
a : U → X and c : U → {0, β}. Specifying c is the same as specifying
a disjoint union decomposition U = U0 + Uβ. Then M [a, c] consists of
all line-irreducible Feynman diagrams with bridge legs such that the
ordinary labels are in U0 and the bridge leg labels are in Uβ. Since
there are two kinds of labels, there are two kinds of variables. Write
them as zx0 = zx and zxβ = Kx. The exponential generating function
M(z,K) depends on both kinds of variables.

As before, let F�y denote the species of connected Feynman diagrams
with an amputated line of color y. Define a family of species F ∗ indexed
by X × {0, β} by F ∗yβ = F�y and F ∗y0 = Xy.

Lemma 4.3. Let F© be the species of connected vacuum Feynman
diagrams with a designated lump. Let F ∗ be the two-sort family that
consists either of the species of connected Feynman diagrams with one
amputated line or of the one-point indicator species. Then

(30) F© = M ◦ F ∗.

The idea of the proof is that a connected vacuum Feynman diagram
together with a specified lump gives a set partition of the underlying
set. The lump defines a collection of bridges to connected diagrams
supported on a corresponding collection of disjoint subsets. The par-
tition consists of one-point blocks that correspond to the labels in the
lump and of other blocks that correspond to the subsets that support
connected diagrams.
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The proof begins by fixing a colored set a : U → X . Consider (M ◦
F ∗)[a]. Each partition ∆ of U and each coloring b : ∆→ X and c : ∆→
{0, β} gives a product space M [b, c]×

∏
V ∈∆ F

∗
b(V )c(V )[aV ]. This product

space may be written as M [b, c]×
∏

V ∈∆0
Xb(V )[aV ]×

∏
V ∈∆β

F�b(V )[aV ].

This product space is empty unless the blocks V ∈ ∆0 are one point sets
V = {i} with b(V ) = ai. It is also empty unless the blocks V ∈ ∆β each
give a collection of connected diagrams with corresponding amputated
line labels j in V of color aj = b(V ). Identify the blocks V = {i} ∈ ∆0

with the corresponding i, and identify the blocks V ∈ ∆β with the
corresponding j. An element of M [b, c], originally a line-irreducible
diagram on ∆0 with bridge leg labels V ∈ ∆β, is identified with a line-
irreducible diagram γ with ordinary labels consisting of the points i
with {i} in ∆0 and with bridge leg labels j ∈ V ∈ ∆β. An element of
the product space also has a diagram δV for each V in ∆β. Putting all
these diagrams together gives a connected vacuum Feynman diagram
τ on U with the correct weight. The colored partition also singles out
a lump of this diagram. The result is that these objects build the
weighted set F©[a]. On the level of exponential generating functions
the lemma says that F©(z) = M(z, F�(z)).

4.4. The dissymmetry theorem for connected Feynman dia-
grams. The next topic is symmetry about the center of a tree. A tree
is a connected graph without cycles. A leaf of a tree is a vertex of de-
gree zero. The center of a tree is defined recursively by pruning leaves.
Remove each leaf along with its incident edges to produce a smaller
tree. This process terminates when all the vertices are leaves. There
remains a center vertex or two vertices with a center edge. There is
always a center element, either a vertex or an edge.

There are combinatorial objects that violate this symmetry. Speci-
fying a distinguished vertex or a distinguished edge in a tree introduces
a lack of symmetry, since this distinguished object may not be at the
center. The following results are based on a general dissymmetry the-
orem for trees [2]. This theorem relates the tree to these other less
symmetric objects.

Let T be the species of trees; for each set U there is an associated
set T [U ] of trees with vertex set U . Let T • be the species of trees
with distinguished vertex; in this case for each U there is set T •[U ]
consisting of ordered pairs: a point in U and a tree on U . Similarly, let
T− be the species of trees with a distinguished edge. Finally, let T •−

be the species of trees with a distinguished incident vertex-edge pair.
The dissymmetry theorem for trees states that T + T •− = T • + T−.
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Here is the proof. For the moment refer to an edge or a vertex of the
tree as an element. Let T ? be the species of trees with a distinguished
element. It is clear that T ? = T • + T−. Let T ?6=c be the species
of trees with a distinguished element other than the center. Then
T ?6=c = T •−. The map between these species maps each element other
than the center to the pair consisting of the element and the incident
element that is closer to the center. To reverse the correspondence,
map each pair of incident elements to the element in the pair farthest
from the center. On the other hand, T + T ?6=c = T ?, since specifying
a tree automatically specifies its center. These equations combine to
give the desired result T + T •− = T + T ? 6=c = T ? = T • + T−.

The dissymmetry theorem for connected Feynman diagrams is a vari-
ation on the dissymmetry theorem for trees. In this case the vertices of
the trees are the lumps, and the edges of the tree are the bridges. Since
a connected Feynman diagram determines its center lump or edge, this
gives a relation for the species of connected Feynman diagrams.

Proposition 4.1. Let F be the species of connected vacuum Feynman
diagrams. There is a species isomorphism

(31) F + F©↔ = F© + F↔.

In a previous section it was shown that these species with designated
structures were equivalent to certain species defined as compositions.
This leads to the following statement of the dissymmetry theorem.

Theorem 4.1 (Dissymmetry theorem). The species F of connected
vacuum Feynman diagrams satisfies the identity

(32) F + F� ∗ (L′ ◦ F�) = M ◦ F ∗ + L ◦ F�.

In terms of exponential generating functions this says that

(33) F (z) +
∑
x

∑
y

F�x (z)CxyF�y (z) = M(z, F�(z))

+
1

2

∑
x

∑
y

F�x (z)CxyF�y (z).

The dissymmetry theorem may be expressed in a more detailed form.
Recall that M = M0 + M1, where M1 has a special form. Namely,
M1[a, c] is empty unless U = {i, j} with ci = 0 and cj = β. In that
case it consists of diagrams with a one-point vertex at i and a bridge leg
label at j. The weight of this diagram is SaiC

aiaj . The exponential gen-
erating function of the species M1 is M1(z,K) =

∑
x

∑
y zxSxC

xyKy.
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Corollary 4.1. The species of connected vacuum Feynman diagrams
satisfies

(34) F + F� ∗ (L′ ◦ F�) = M0 ◦ F ∗ +M1 ◦ F ∗ + L ◦ F�.

Proposition 4.2. The composition M1 ◦F ∗ acting on a colored set a :
U → X gives all connected diagrams for which there is a distinguished
point i that belongs to a one-point vertex.

The corollary thus leads to the exponential generating function iden-
tity

(35) F (z) +
∑
x

∑
y

F�x (z)CxyF�y (z) = M0(z, F�(z))

+
∑
x

zxSxC
xyF�y (z) +

1

2

∑
x

∑
y

F�x (z)CxyF�y (z).

4.5. The fixed point equation for connected Feynman dia-
grams. Recall that F ↑x is the species of connected Feynman diagrams
with an external leg label of color x. Similarly, M↑x is defined as the
species of line-irreducible diagrams with bridge legs and also with a leg
to an external leg label of color x. Let a : U → X and c : U → {0, β}.
A diagram γ contributing to M↑x[a, c] consists of a partition Γ of the
set U0 where c = 0 and a perfect matching σ of U + {∗}. The bridge
points in the set Uβ where c = β are matched to points in U0, and
the extra point ∗ is also matched with a point in U0. The amputated
diagram with the bridge points and the extra point removed is required
to be line irreducible. The weight of the diagram is Feyn(ax, γ). The
following theorem is based on the observation that a connected dia-
gram with a leg to an external point singles out a lump with a leg to
an external point and with bridge legs each of which is attached to a
connected diagram with amputated line.

Theorem 4.2 (Fixed point equation). The species of connected
Feynman diagrams with an external leg satisfies the fixed point equation

(36) F ↑x = L′x ◦ F� = M↑x ◦ F ∗.

Here is a proof sketch. To analyze the composition, begin as usual
with a : U → X . The weighted set (M↑x ◦F ∗)[a] is then a disjoint sum
over set partitions ∆ of U and colorings b : ∆→ X and c : ∆→ {0, β}
of products M↑x[b, c] ×

∏
V ∈∆0

Xb(V )[aV ] ×
∏

V ∈∆β
F�b(V )[aV ]. Identify

each block V = {i} ∈ ∆0 with the corresponding i, and identify each
block V ∈ ∆β with the corresponding amputated line label j in V . An
element of M↑x[b, c] is identified with a line-irreducible diagram γ with
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ordinary labels consisting of the points i with {i} in ∆0, with bridge leg
labels j ∈ V ∈ ∆β, and with one more leg label ∗. There is a line from
some k to ∗. An element of the product space also has a diagram δV for
each V in ∆β. Putting all these diagrams together gives a connected
vacuum Feynman diagram τ on U + {∗} with weight that includes a
factor Cxak . Such diagrams build the weighted set F ↑x[a]. In terms of
exponential generating functions the theorem says that

(37) F ↑x(z) =
∑
x

CxyF�y (z) = M↑x(z, F�(z)).

The decomposition M = M0 + M1 gives a corresponding decompo-
sition M↑x = M↑x

0 + M↑x
1 . Here M↑x

0 is the species of line-irreducible
diagrams with bridge legs that include a leg to an external point of
color x and that have no one-point vertices. The other species M↑x

1 is
the species that only gives a single line from a point i belonging to a
one-point vertex to an external point ∗ of color x. Namely, M↑x

1 [a, c]
is empty unless U = {i} with ci = 0. In that case it consists of a line
with a one-point vertex at i and an external leg label at ∗ of color x.
The weight of this diagram is SaiC

aix. There are no bridge leg labels,
and so composition with this species is trivial.

Proposition 4.3. The composition M↑x
1 ◦ F ∗ acting on a colored set

a : U → X returns the empty set, unless U = {i} is a one-point vertex.
It that case it give a diagram on U + {∗} with a line from i to *. The
weight of the diagram is SaiC

aix.

With a slight abuse of notation one may denote M↑x
1 ◦ F ∗ by M↑x

1 .

The exponential generating function is just M↑x
1 (z) =

∑
y C

xySyzy.

Corollary 4.2. The species of connected Feynman diagrams with an
external leg satisfies the fixed point equation

(38) F ↑x = L′x ◦ F� = M↑x
0 ◦ F ∗ +M↑x

1 .

In terms of exponential generating functions this says that

(39) F ↑x(z) =
∑
x

CxyF�y (z) = M↑x
0 (z, F�(z)) +

∑
y

CxySyzy.

5. The Legendre transform

5.1. The Legendre transform for connected Feynman dia-
grams. The results above give combinatorial identities for connected
vacuum Feynman diagrams. In order to make the connection with
the Legendre transform, it is useful to replace one-point vertices by
leg labels, so there is no longer a factor Sx attached to such a vertex.
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Furthermore, the leg labels are specified as part of the color struc-
ture. The resulting species provides a more detailed combinatorial
description. Henceforth F denotes this species of connected Feynman
diagrams with legs.

Given a : U → X and c : U → {0, λ}, the corresponding weighted
set F [a, c] consists of all connected Feynman diagrams with ordinary
labels on the subset U0 where c = 0 and with leg labels on the subset
Uλ where c = λ. A diagram γ consists of a set partition Γ of U0 into
blocks of size two or more and a perfect matching σ of U , with the
constraint that these structures connect the label set U . The weight of
such a diagram is Feyn(a, γ) = S(a,Γ)C(a, σ). The reason this works
is that a partition of U is equivalent to a subset of U together with a
partition of the complement into blocks of size two or more. The sum
over subsets arising from the various colorings c together with the sum
over the partitions of the complement into blocks of size two or more
give the sum over all partitions.

Denote the variables for the colors by zx0 = zx and by zxλ = Jx. The
Jx variables that occur in the exponential generating function compen-
sate the missing Sx parameters in the action, so the effect is to replace
every Sxzx by Jx. The derivative species of F with respect to a leg label
of color x will be denoted F ′x. This replaces the species F ↑x considered
before. The value of F ′x on a colored set is a connected Feynman dia-
gram on the set U augmented by an external point ∗ of color x that is
a leg label. That is, F ′x[a, c] = F [ax, cλ], where ax takes value x and cλ

takes value λ on ∗. It follows that the exponential generating functions
are F (z, J) and F ′x(z, J) = ∂F (z, J)/∂Jx.

The species F�y of connected Feynman diagrams with a single am-
putated leg label of color y is defined similarly. Give a and c the
corresponding diagrams are given by a choice of j in U with aj = y, a
partition Γ of U0, and a perfect matching of U − {j}.

In the dissymmetry theorem there are now two kinds of leg labels,
and in the appropriate places it is natural to employ a color palette
X × {0, λ, β}. The leg labels corresponding to λ come from the one-
point vertices, while the leg labels corresponding to β are the bridge leg
labels that come from the decomposition into line-irreducible diagrams.
The relevant species is M , the species of line-irreducible diagrams with
bridge legs. This is defined for a colored set with colorings a : U → X
and c : U → {0, λ, β}. The coloring c defines a decomposition U =
U0 + Uλ + Uβ. The resulting diagrams each consist of a partition Γ of
U0 and a perfect matching of U . Each bridge label in Uβ is connected
by a line to U0 + Uλ. Each diagram is line-irreducible on U0 + Uλ.
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The remarkable fact is that M = M0+M1, where the two component
species have entirely different characters. The species M0 gives line-
irreducible diagrams with bridge legs for which Uλ is empty, while the
species M1 gives line-irreducible diagrams with bridge legs for which
Uλ is non-empty. However the only M1 diagrams are those that involve
a line from a λ leg label to a β bridge label. The weight of such a
diagram with ci = λ, cj = β is Cai aj .

Set Ky = F�y . Then K∗ is a family of species such that K∗y0 = Xy0,
K∗yλ = Xyλ, and K∗yβ = Ky. The following result is a restatement of
the previous dissymmetry theorem, except that Feynman diagrams are
on a label set including λ leg labels.

Theorem 5.1 (Dissymmetry theorem). The species F of connected
Feynman diagrams with legs satisfies

(40) F +K ∗ (L′ ◦K) = M0 ◦K∗ +M1 ◦K∗ + L ◦K,

where K = F�.

In terms of exponential generating functions this says that

(41) F (z, J) +
∑
x

∑
y

KxC
xyKy = M0(z,K)

+
∑
x

JxC
xyKy +

1

2

∑
x

∑
y

KxC
xyKy,

where Ky = F�y (z, J). This equation exhibits the duality that under-
lies the Legendre transform. The Jx parameters play the role of the
one-point vertices. The Ky represent the contribution of connected
graphs with an amputated line. The JCK term in the formula is the
dual pairing of these quantities. The duality is mediated by the line
corresponding to covariance Cxy.

If F is the species of connected Feynman diagrams with legs, then
F ′x is the species of connected Feynman diagrams with legs and with
an additional line to an external leg label of color x. Similarly, F�y
is the species of connected Feynman diagrams with legs and with one
amputated line label of color y. The species M of line-irreducible di-
agrams with legs and bridge legs has a derivative species M ′x whose
value on a, c is the value of M on the ax, cβ that color the extra point
* with colors x, β. This in turn has a decomposition M ′x = M ′x

0 +M ′x
1 .

The species M ′x
0 is the species of line-irreducible diagrams with bridge

legs (but no other legs) that include a line to an external bridge leg
label of color x. Similarly, M ′x

1 is the species of lines from a leg label
to an external bridge leg label of color x. The weight of such a single
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line diagram with ci = λ is Cai x. The relation between these species is
given by the following result.

Theorem 5.2. The species of connected Feynman diagrams with legs
satisfies the fixed point equation

(42) F ′x = L′x ◦K = M ′x
0 ◦K∗ +M ′x

1 ,

where K = F�.

In terms of exponential generating functions this says that

(43)
∂F (z, J)

∂Jx
=
∑
x

CxyKy(z, J) =
∂M0(z,K(z, J))

∂Kx

+
∑
y

CxyJy,

where Ky = F�y (z, J).

5.2. The Legendre transform for exponential generating func-
tions. The formulas in the physics literature are obtained from the
exponential generating function identities by setting each zx = 1 and
then suppressing these variables from the notation. The dissymmetry
theorem then takes the form

(44) F (J) = M0(K) + JCK − 1

2
KCK.

The fixed point theorem is

(45)
∂F (J)

∂Jx
=
∑
y

CxyKy =
∂M0(K)

∂Kx

+
∑
y

CxyJy.

Define

(46) W (K) =
1

2
KCK −M0(K).

The Legendre transformation in terms of covariant variables is

(47) F (J) +W (K) = JCK.

where

(48)
∂F (J)

∂Jx
=
∑
y

CxyKy.

and

(49)
∂W (K)

∂Kx

=
∑
y

CxyJy.

To go from F (J) to W (K) one needs to solve for J in terms of K by
inverting the first equation. To go from W (K) to F (J) one needs to
solve for K in terms of J by inverting the second equation.
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It is common to use variables φ = CK. Define the effective potential
S(φ) = W (K). If we write I(φ) = M0(K), then this gives

(50) S(φ) =
1

2
φC−1φ− I(φ).

One possible reason for hesitating to use these variables is to avoid
the awkward inverse covariance C−1. The Legendre transformation in
terms of these variables is

(51) F (J) + S(φ) = Jφ.

where

(52)
∂F (J)

∂Jx
= φx.

and

(53)
∂S(φ)

∂φx
= Jx.

To go from F (J) to S(φ) one needs to solve for J in terms of φ by
inverting the first equation. To go from S(φ) to F (J) one needs to
solve for φ in terms of J by inverting the second equation.

6. Appendix: Abstract Feynman diagrams

6.1. Set partitions and integer partitions. The kind of Feynman
diagram considered in the main text of this article is what might be
called a labeled Feynman diagram. This appendix is a brief description
of the passage from labeled Feynman diagrams to abstract Feynman
diagrams, that is, to isomorphism classes of Feynman diagrams. This
will help make a comparison with other approaches, such as that of
[1] and [7]. For the sake of exposition, the basic definitions will be
repeated, so this appendix will be largely self-contained. It starts with
some combinatorial background.

Let U be a set with n elements. A set partition Γ of U is a collection
of non-empty subsets with no overlaps and whose union is U . Each
subset V in Γ is called a block. The number of partitions of U with v
blocks is the Stirling set partition number S(n, v) (also known as the
Stirling number of the second kind). The total number of partitions of
U is the Bell number B(n).

Let n ≥ 0 be a natural number. An integer partition of n is a multiset
of natural numbers k ≥ 1 with sum n. Each such number k is called
a part of n. An integer partition is naturally specified by its type: a
sequence of numbers pk for k = 1, 2, 3, . . . such that

(54) 1p1 + 2p2 + 3p3 + · · ·+ kpk + · · · = n.
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Thus pk represents the number of times the number k ≥ 1 is used in
the sum that gives n. If the integer partition has v parts, then

(55) p1 + p2 + p3 + · · ·+ pk + · · · = v.

The number of integer partitions of n into v parts is denoted P (n, v).
The total number of integer partitions of n is denoted P (n).

For each set partition Γ there is corresponding integer partition type
p. As we shall see, the number of set partitions with type p is

(56) O(p) =
n!∏

k pk!(k!)pk
.

It follows that the Stirling set partition number S(n, v) is given by

(57) S(n, v) =
∑
p

O(p),

where the sum is over types p with 1p1 + 2p2 + 3p3 + · · ·+kpk + · · · = n
and p1 + p2 + p3 + · · ·+ pk + · · · = v. The number of terms in this sum
is P (n, v).

In the following sections these ideas are illustrated in detail for n = 4
and n = 6. Here is a summary for quick reference. For n = 4 the num-
bers P (4, v) for v = 1, 2, 3, 4 are 1, 2, 1, 1 with sum P (4) = 5. The corre-
sponding numbers S(4, v) are 1, 7, 6, 1 with sum B(4) = 15. For n = 6
the numbers P (6, v) for v = 1, 2, 3, 4, 5, 6 are 1, 3, 3, 2, 1, 1 with sum
P (4) = 11. The corresponding numbers S(6, v) are 1, 31, 90, 65, 15, 1
with sum B(6) = 203.

6.2. Feynman diagrams. For simplicity the discussion will concen-
trate on vacuum Feynman diagrams; the term Feynman diagram with
no modifier will mean vacuum Feynman diagram. However, at the end
there will be a brief reference to the more general concept of truncated
Feynman diagram.

Fix a set U with n elements. A Feynman diagram with label set U
has vertices and lines. The vertex part consists of a set partition Γ of
U . The line part consists of a perfect matching σ of U . (A perfect
matching is a set partition into two-element subsets.) Thus n must
be even, and U consists of all possible end points of lines. The case
n = 0 is allowed; in that case both Γ and σ are empty, and there is
only one diagram. A Feynman diagram built over U may be pictured
as a set U of points collected into bags that correspond to the blocks
of the partition, together with lines between pairs of points given by
the perfect matching.

Let F be the set of Feynman diagrams built over U . The number of
Feynman diagrams is the number of set partitions times the number
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of perfect matchings. The number of set partitions is B(n), the nth
Bell number. Perfect matchings are set partitions corresponding to the
integer partition with type given by p2 = n/2 and all other pk = 0.
The general formula for O(p) gives the number of perfect matchings as

(58) mn =
n!(

n
2

)
! 2

n
2

.

A Feynman diagram defines a graph, where the blocks of the set par-
tition are the vertices of the graph, and the lines of the perfect matching
are the edges of the graph. In other words, each block is shrunk to a
single vertex. If a block has k points, then the corresponding vertex
has degree k, that is, it can have k edges attached. The graph may
have multiple edges joining a pair of vertices. Also, the graph may have
loops, that is, edges from a vertex to itself.

The contribution of a Feynman graph is calculated from data asso-
ciated with a modification of a Gaussian process. The set X is the
index set for a Gaussian process. For a finite set W consider a func-
tion a : W → X ; this is an assignment of indices. For each such
index assignment there is a corresponding set of occupation numbers
Na(x) = #{j | aj = x}. The process is determined by interaction
vertex coefficients Sa and line covariance coefficients Ca. These only
depend on a through the occupation number coefficients Na. In the
case of a line covariance coefficient Ca the set W has exactly two
points. Thus when Na(x) = 2 this is the variance Cxx, while when
Na(x) = Na(y) = 1 this is the covariance Cxy.

If γ = (Γ, σ) is a Feynman diagram in F , and a : U → X is given,
the contribution has two main factors. The factor S(a,Γ) =

∏
V ∈Γ SaV

is the product of interaction factors associated with the vertices. Here
aV : V → X denotes the restriction of a to V ⊆ U . If a vertex V is
of large enough degree, then such a factor is supposed to be zero (or
at least small). This means that the contribution (or the main contri-
bution) is from graphs with limited degree of the vertices. The factor
C(a, σ) =

∏
W∈σ C

aW is the product of the covariances of the Gaussian
process over the pairs in the perfect matching. In other words, it is
a product of factors associated with the lines. The total contribution
is obtained by taking product of these two factors and then summing
over the index assignments, giving

(59) t(γ) =
∑

a:U→X

S(a,Γ)C(a, σ).
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The contribution to the partition function of the Feynman diagrams
with given U (representing n endpoints of lines) is

(60) Zn =
1

n!

∑
γ∈F

t(γ).

The purpose of the discussion in the following sections is to relate this
quantity to abstract Feynman diagrams, defined as equivalence classes
of Feynman diagrams that capture the graphical structure.

Before turning to examples, it may help to recall graphical ideas as-
sociated with Feynman diagrams on a set U . First, it makes sense to
say that a diagram is connected. This holds if U is non-empty and
cannot be partitioned in a way that decomposes the diagram into a
pair of diagrams. A stronger condition is to say that the diagram is
line-irreducible. This says that the diagram is connected and further-
more there is no bridge in the diagram, that is no line whose removal
disconnects the diagram.

Here are the two one-line (n = 2) abstract Feynman diagrams.

• One vertex. Loop.
• Two vertices. Bridge.

These are both connected, but the only line-irreducible diagram is the
loop.

Here are the four connected two-line (n = 4) abstract Feynman
diagrams g and the corresponding number O(g) of labeled diagrams.

• One vertex. Double loop. O(g) = 3
• Two vertices. Bridge-loop. O(g) = 12
• Two vertices. Double parallel lines. O(g) = 6
• Three vertices. Bridge-bridge. O(g) = 12

The only ones that are line-irreducible are the double loop and the
double parallel lines. Each abstract Feynman diagram comes from a
number of different labeled Feynman diagrams. To see how this works,
start with a label set with four elements. First pick the set partitions
that define a suitable vertex set. Then find the perfect matchings that
create the lines of the appropriate diagram. The results for the four
diagrams are 1 · 3 = 3, 4 · 3 = 12, 3 · 2 = 6 and 6 · 2 = 12. This gives
the statistics in the above list.

6.3. Vertex sets. As a preliminary step, examine the vertex structure
alone. Let P be the collection of set partitions of U . The permutation
group G of U is a group of order n!. It acts in a natural way on P .
Let P = P/G be the collection of orbits of this action. Each orbit
p is characterized by numbers pk, where a set partition Γ in p has pk
blocks of cardinality k. These numbers specify an integer partition of
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the integer n ≥ 0 into parts, where there are pk ≥ 0 parts of size k ≥ 1.
Furthermore, if Γ has v blocks, then the integer partition is into v parts.
In the Feynman diagram context an integer partition is considered as
a vertex set, where the number of vertices that accommodate k lines is
pk. Each vertex in the vertex set is pictured as a point with k half-lines
emerging from it. The vertex set itself is a collection of such vertices. A
vertex set also could be called an abstract pre-Feynman diagram, since
it is related to a similar concept introduced in [1]. When the half-lines
are paired up and joined to create a graph, the result is an abstract
Feynman diagram. The total number of vertices in a vertex set is v.
The number of half-lines emerging from the vertices is the number n
of potential end points of lines.

Consider a vertex set p in P and set partition Γ in p. Let GΓ be the
subgroup of G that leaves Γ invariant. This is the stabilizer (isotropy
subgroup) of Γ. If Γ has pk blocks of size k, then the order of this group
is

(61) A(p) = |GΓ| =
∏
k

pk! (k!)pk .

This is because for each fixed k one can permute the pk vertices, and
within each vertex one can permute the k lines that emanate from this
vertex.

If Γ belongs to p in P , then p = GΓ is the orbit of Γ under the group
G. There is a natural map from G/GΓ to GΓ. In particular, the size of
the orbit O(p) = |GΓ| is the number of cosets in G/GΓ, which in turn
is

(62) O(p) = |GΓ| = |G|
|GΓ|

=
n!

A(p)
.

In other words, there are O(p) set partitions for each integer partition
p.

Consider the case n = 4. There are five vertex sets (integer partitions
of 4). The total number of set partitions is B4 = 1+(4+3)+6+1 = 15.
If we group according to the number of blocks in the set partition, this
is the expression for the Bell number B4 = 1 + 7 + 6 + 1 = 15 as a sum
of Stirling set partition numbers. The statistics of the corresponding
five vertex sets are shown in Figure 1. The sum in the O(p) column is
of course 15.

For the case n = 6 there are 11 different vertex sets (integer partitions
of 6). The total number of set partitions is B6 = 1 + (6 + 15 + 10) +
(15 + 60 + 15) + (45 + 20) + 15 + 1 = 203. If we group according to
the number of blocks in the set partition, this is the expression for the
Bell number B6 = 1 + 31 + 90 + 65 + 15 + 1 = 203 as a sum of Stirling
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v p1 p2 p3 p4 A(p) O(p)
1 0 0 0 1 24 1
2 1 0 1 0 6 4
2 0 2 0 0 8 3
3 2 1 0 0 4 6
4 4 0 0 0 24 1

Table 1. Statistics of two-line vertex sets

v p1 p2 p3 p4 p5 p6 A(p) O(p)
1 0 0 0 0 0 1 720 1
2 1 0 0 0 1 0 120 6
2 0 1 0 1 0 0 48 15
2 0 0 2 0 0 0 72 10
3 2 0 0 1 0 0 48 15
3 1 1 1 0 0 0 12 60
3 0 3 0 0 0 0 48 15
4 2 2 0 0 0 0 16 45
4 3 0 1 0 0 0 36 20
5 4 1 0 0 0 0 48 15
6 6 0 0 0 0 0 720 1

Table 2. Statistics of three-line vertex sets

set partition numbers. The statistics are given in Figure 2. The sum
in the O(p) column is 203.

6.4. Abstract Feynman diagrams. A Feynman diagram γ on the
label set U (endpoints of lines) consists of a set partition Γ of U (a
collection of vertices) and a perfect matching σ of U (a collection of
lines). The permutation group G of U acts in a natural way on the
set F of Feynman diagrams on U . Let F = F/G be the collection of
orbits of this action. An element of F is called an abstract Feynman
diagram.

The values of t(γ) are constant for γ belonging to a particular orbit
g in F . It is thus consistent to denote the contribution of a diagram in
the orbit g by t(g). Let O(g) be the number of points in the orbit of the
abstract Feynman diagram g, that is, the number of labeled Feynman
diagrams with the same graphical structure. In this notation we have

(63) Zn =
1

n!

∑
g∈F

O(g)t(g).
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This expresses Zn as a sum over abstract Feynman diagrams of corre-
sponding contributions.

Consider an abstract Feynman diagram g in F and diagram γ in
g. Let Gγ be the subgroup of the permutation group G on U that
leaves γ invariant. This is the stabilizer (isotropy subgroup) of the
diagram γ. If γ, γ′ belong to the same orbit g, then Gγ and Gγ′ are
conjugate. The isomorphism class of such stabilizers constitutes the
abstract automorphism group of the abstract Feynman diagram g. Let
A(g) = |Gγ| for γ ∈ g be the order of this group.

If γ belongs to g in F , then g = Gγ is the orbit of γ under the group
G. There is a natural map from G/Gγ to Gγ. In particular, the size
of the orbit

(64) O(g) = |Gγ|

is the number of cosets in G/Gγ, which in turn is |G|/|Gγ| = n!/A(g).
This gives the result

(65) A(g) = |Gγ| =
n!

|Gγ|
=

n!

O(g)
.

This leads to the remarkable identity

(66) Zn =
∑
g∈F

1

A(g)
t(g).

This identity says that Zn is the sum of the weights of the abstract
Feynman graphs divided by their symmetry factors.

It is easy to pass from an abstract Feynman diagram to a Feynman
diagram; all that is required is to label the end points of the lines.
Then an automorphism of this labeled diagram is a map from the label
set to itself such that lines are taken to lines and vertices are taken to
vertices. A more abstract point of view is to think of a map from end
points of lines to end points of lines such that lines are taken to lines
and vertices are taken to vertices.

Example: Consider the abstract Feynman diagram g with two ver-
tices and two parallel lines. The two vertices may be labeled with 1,2
and with 3,4 in such a way that one line runs from 1 to 3 and the other
from 2 to 4. The stabilizer group of the diagram is of order A(g) = 4.
There is the identity automorphism, the automorphism (12)(34), the
automorphism (13)(24), and the automorphism (14)(23). From the ab-
stract point of view these do nothing, interchange the lines, interchange
the vertices, and interchange the vertices and lines.

In this same example, one can compute the orbit of this diagram.
These are the other diagrams with the same abstract structure that
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are obtained by permuting the end points of lines. The number of such
diagrams is O(g) = 6. There are three possibilities for grouping the
end points into vertices: 12 and 34, 13 and 24, 14 and 23. For each of
these vertices one can join the vertices with lines in two different ways.
So the number of such diagrams is O(g) = 3 · 2 = 6.

Example: The automorphism group acts on vertices, and it also
acts on lines. However behind it all the automorphism group acts on
the end points of the lines. An extreme example is the loop on one
vertex. The automorphism group swaps the end points, so it has order
A(g) = 2. The same thing happens for the double loop on one vertex.
The automorphism group includes the operation of interchanging the
loops, but it also includes swapping the end points of the individual
loops. Thus for this example A(g) = 8.

Another way of approaching the classification of abstract Feynman
diagrams is to fix the partition Γ belonging to the vertex set p. The
stabilizer group GΓ of Γ is a group of order A(p) =

∏
k pk!(k!)pk . The

stabilizer group of a Feynman diagram γ is a subgroup of this group.
The quotient GΓ/Gγ is the orbit GΓγ of the perfect matchings under
this smaller group. These orbits are smaller and relatively easy to
compute. They are just all the ways of attaching lines to a given
vertex set to make the desired diagram. Define

(67) O(g|p) = |GΓγ|.

So this gives another way of computing A(g) = |Gγ|, namely,

(68) A(g) =
|GΓ|
|GΓγ|

=
A(p)

O(g|p)
.

In particular, A(g) must divide A(p), which in turn divides n!. An
alternative way of doing the computation of A(g) = n!/O(g) is to use

(69) O(g) = O(p)O(g|p).

Example: It is illuminating to look at the example of the diagram
with two vertices and two parallel lines. The vertex set p consists of the
two vertices, each of degree 2. Say that these vertices are labeled 12
and 34. The vertex set stabilizer group is of order A(p) = 8. It switches
the end points within each vertex and also switches the vertices. These
permutations also act on the Feynman diagrams. Consider the Feyn-
man diagram g with a 13 and a 24 line. The stabilizer of g has order
A(g) = 4. The orbit of this diagram under the vertex set stabilizer
group has only two diagrams: the original diagram and the one with
lines switched, that is, with the same vertices but with a 14 and a 23
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v p1 p2 p3 p4 A(p) O(p) O(g|p) O(g) A(g)
1 0 0 0 1 24 1 3 3 8
2 1 0 1 0 6 4 3 12 2
2 0 2 0 0 8 3 2 6 4
2 0 2 0 0 8 3 1 3 8
3 2 1 0 0 4 6 2 12 2
3 2 1 0 0 4 6 1 6 4
4 4 0 0 0 24 1 3 3 8

Table 3. Statistics of two-line abstract Feynman diagrams

line. This shows that O(g|p) = 2. Since O(p) = 3, the product is
O(g) = 3 · 2 = 6, as it should be.

6.5. Two-line diagrams. It helps to look at examples more systemat-
ically. Here are the seven two-line (n = 4) abstract Feynman diagrams,
together with their decompositions into connected components.

• One vertex. Double loop.
• Two vertices. Bridge-loop.
• Two vertices. Double parallel lines.
• Two vertices. Loop + loop.
• Three vertices. Bridge-bridge.
• Three vertices. Bridge + loop.
• Four vertices. Bridge + bridge.

Four of these are connected. Of these, the double loop and the double
parallel line diagrams are the only line-irreducible diagrams.

Since there are B4 = 15 set partitions and m4 = 3 perfect match-
ings, there are 45 Feynman diagrams. There are 7 abstract Feynman
diagrams. The total number of diagrams grouped by vertex type is
3 + 12 + (6 + 3) + (12 + 6) + 3 = 45. For each of the five vertex sets,
the sum of the sizes of the corresponding orbits is 3. The statistics for
these abstract Feynman diagrams are displayed in Figure 3. The sum
in the O(g|p) column is the number of vertex sets times the number
of perfect matchings, that is, 5 · 3 = 15. The sum in the O(g) column
is the number of set partitions times the number of perfect matchings,
which is 15 · 3 = 45.

6.6. Three-line diagrams. A nice test of the theory is to classify
all three-line (n = 6) Feynman diagrams. The number of perfect
matchings is m6 = 15, so the total number of Feynman diagrams is
203 · 15 = 3045. However they only lead to 23 three-line abstract
Feynman diagrams. Here is the list.
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• One vertex. Triple loop.
• Two vertices. Bridge-double loop.
• Two vertices. Double parallel lines with loop.
• Two vertices. Loop + double loop.
• Two vertices. Triple parallel lines.
• Two vertices. Loop-bridge-loop.
• Three vertices. Bridge-loop-bridge.
• Three vertices. Bridge + double loop.
• Three vertices. Bridge-double parallel lines.
• Three vertices. Bridge-bridge-loop.
• Three vertices. Loop + bridge-loop.
• Three vertices. Triple line triangle.
• Three vertices. Loop + Double parallel lines.
• Three vertices. Loop + loop + loop.
• Four vertices. Bridge-bridge-bridge.
• Four vertices. Bridge-bridge + loop.
• Four vertices. Bridge + double parallel lines.
• Four vertices. Bridge + loop + loop.
• Four vertices. Triple bridge star.
• Four vertices. Bridge + bridge-loop.
• Five vertices. Bridge + bridge-bridge.
• Five vertices. Bridge + bridge + loop.
• Six vertices. Bridge + bridge + bridge.

The statistics of these 23 diagrams are summarized in Figure 4. The
sum in the O(g|p) column is the number of vertex sets times the number
of perfect matchings: 11 · 15 = 165, and the sum in the O(g) column
is the number of set partitions times the number of perfect matchings:
203 · 15 = 3045.

6.7. Line-irreducible graphs. Here are remarks on the further de-
composition of Feynman diagrams. For this purpose a more general
concept is needed. An amputated Feynman diagram on U consists of a
set partition Γ of U and a perfect matching σ of a subset of U . Again
the blocks of the set partition are regarded as vertices, and the matching
pairs are regarded as lines that run between vertices. The unmatched
points in U are each regarded as a potential end point of a line—an
amputated line. A connected Feynman diagram is line-irreducible if
it has no bridge, that is, it has no line whose removal disconnects the
diagram. When there are bridges, their removal produces components
that are line-irreducible amputated diagrams.

There are only two one-line abstract Feynman diagrams with n =
2. The one-vertex loop is line-irreducible, while the two-vertex bridge
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v p1 p2 p3 p4 p5 p6 A(p) O(p) O(g|p) O(g) A(g)
1 0 0 0 0 0 1 720 1 15 15 48
2 1 0 0 0 1 0 120 6 15 90 8
2 0 1 0 1 0 0 48 15 12 180 4
2 0 1 0 1 0 0 48 15 3 45 16
2 0 0 2 0 0 0 72 10 6 60 12
2 0 0 2 0 0 0 72 10 9 90 8
3 2 0 0 1 0 0 48 15 12 180 4
3 2 0 0 1 0 0 48 15 3 45 16
3 1 1 1 0 0 0 12 60 6 360 2
3 1 1 1 0 0 0 12 60 6 360 2
3 1 1 1 0 0 0 12 60 3 180 4
3 0 3 0 0 0 0 48 15 8 120 6
3 0 3 0 0 0 0 48 15 6 90 8
3 0 3 0 0 0 0 48 15 1 15 48
4 2 2 0 0 0 0 16 45 8 360 2
4 2 2 0 0 0 0 16 45 4 180 4
4 2 2 0 0 0 0 16 45 2 90 8
4 2 2 0 0 0 0 16 45 1 45 16
4 3 0 1 0 0 0 36 20 6 120 6
4 3 0 1 0 0 0 36 20 9 180 4
5 4 1 0 0 0 0 48 15 12 180 4
5 4 1 0 0 0 0 48 15 3 45 16
6 6 0 0 0 0 0 720 1 15 15 48

Table 4. Statistics of three-line abstract Feynman diagrams

decomposes into two n = 1 diagrams each consisting of a vertex with
an amputated line. The four connected two-line abstract Feynman
diagrams with n = 4 provide a richer variety of examples. The one-
vertex double loop diagram is line-irreducible. The two-vertex bridge-
loop diagram decomposes into a n = 1 vertex with amputated line
diagram plus a n = 3 vertex with loop and amputated line diagram.
The two-vertex double parallel line diagram is line-irreducible. The
three-vertex bridge-bridge diagram decomposes into three parts: two
n = 1 vertex with amputated line diagrams and one n = 2 vertex with
double amputated lines diagram.

6.8. Related work. The article of Abdesselam [1] is in a somewhat
different setting. His Feynman diagrams have oriented lines, which
corresponds in physics to bosons with charge. He uses the Feynman
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diagram formulation to represent various kinds of functional composi-
tion, and this is directional by nature. Nevertheless, there are elements
in common with the present treatment. The principal difference is that
in the main part of the present treatment the species of Feynman dia-
grams is formulated as a functor on colored sets. This means that the
weight of a Feynman diagram does not have a sum over colors; that
sum arises only when the exponential generating function is computed.
By contrast, in the treatment by Abdesselam the species consists of
abstract Feynman diagrams. These are regarded as functors on sets,
and the weight of an abstract Feynman diagram involves a sum. The
transition from one point of view to the other was presented earlier in
this appendix. The article [1] has a rich variety of other combinatorial
ideas, including a symbolic calculus of functional integration.

The Brydges–Leroux article [3] does not consider Feynman diagrams;
the subject is ordinary graphs. In the statistical mechanics of particles
these would be called Mayer graphs. As is well-known [11], there is a
decomposition of connected graphs into 2-vertex-connected subgraphs
that is important for statistical mechanics. In their article the graphs
are defined over sets, so color does not play a role. The interesting
feature is that the authors study the decomposition of connected graphs
into 2-edge-connected subgraphs. This is a close analog to what is done
in the decomposition of Feynman diagrams into line-irreducible graphs.
It is not clear to the present author whether this decomposition could
also play a role in statistical mechanics.

Another fascinating direction is higher Legendre transforms. This
subject is treated in the articles of Cooper, Feldman, and Rosen (see
for instance [5]) and in the references they cite. There is also a book
by Vasiliev [12] that gives a systematic account.
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