Isometry classes of Generalized Associahedra

Nantel Bergeron

Canada Research Chair Mathematics

www.math.yorku.ca/bergeron

E-Mail: bergeron@yorku.ca

(joint work with C. Hohlweg, C. Lange and H. Thomas)

Fields Institute Workshop

Coimbra

September, 2008
Associahedron (Stasheff polytope)
Associahedron (Stasheff polytope)
Associahedron (Stasheff polytope)
Loday’s construction

Permutahedron \rightarrow Associahedron

\{\alpha_1, \alpha_2\} is a basis of the root system of type \textit{A}_2
(\(W, S\)) a finite Coxeter system acting on \((V, \langle \cdot, \cdot \rangle)\).

\(\Phi\) root system with simple roots \(\Delta = \{\alpha_s \mid s \in S\}\).

\(\Delta^* = \{v_s \mid s \in S\}\) be the dual simple roots of \(\Delta\).
Generalized Associahedra
[Fomin, Zelevinski + Chapoton + Reading + HLT]

(W, S) a finite Coxeter system acting on $(V, \langle \cdot, \cdot \rangle)$.

Φ root system with simple roots $\Delta = \{ \alpha_s | s \in S \}$.

$\Delta^* = \{ v_s | s \in S \}$ be the dual simple roots of Δ.

$$v = \sum_{s \in S} v_s$$

The permutahedron: $\text{Perm}(W) = \text{convex hull} \{ w(v) | w \in W \}$.
Generalized Associahedra

[Fomin, Zelevinski + Chapoton + Reading + HLT]

\(\text{Perm}(W) = \text{convex hull} \{ w(v) \mid w \in W \} \) where \(v = \sum_{s \in S} v_s \).
Generalized Associahedra
[Fomin, Zelevinski + Chapoton + Reading + HLT]

\[\text{Perm}(W) = \text{convex hull} \{w(v) \mid w \in W\} \text{ where } v = \sum_{s \in S} v_s. \]

Fix a coxeter element \(c \) of \((W, S)\). \(c = \prod_{s \in S} s \) in some order.

example: for \(W = A_3 \) and \(S = \{s_1, s_2, s_3\} \) we can choose

\[
\begin{align*}
c &= s_1 s_2 s_3 \\
c &= s_1 s_3 s_2 = s_3 s_1 s_2 \\
c &= s_2 s_1 s_3 = s_2 s_3 s_1 \\
c &= s_3 s_2 s_1
\end{align*}
\]
Generalized Associahedra

[Fomin, Zelevinski + Chapoton + Reading + HLT]

\[
\text{Perm}(W) = \text{convex hull} \left\{ w(v) \mid w \in W \right\} \text{ where } v = \sum_{s \in S} v_s.
\]

Fix a coxeter element \(c \) of \((W, S)\). \(c = \prod_{s \in S} s \) in some order.

Let \(w_0 = c_{K_1} c_{K_2} \cdots c_{K_p} \) (unique) reduced factorization such that

\[
K_1 \supseteq K_2 \supseteq \cdots \supseteq K_p \quad \text{and} \quad c_K = \prod_{s \in K} s
\]

example: for \(W = A_3 \) and \(S = \{s_1, s_2, s_3\} \), if we choose

\[
c = s_1 s_2 s_3 \quad \rightarrow \quad w_0 = s_1 s_2 s_3 s_1 s_2 s_1 = c_{\{1,2,3\}} c_{\{1,2\}} c_{\{1\}}
\]

\[
c = s_1 s_3 s_2 \quad \rightarrow \quad w_0 = s_1 s_3 s_2 s_1 s_3 s_2 = c_{\{1,2,3\}} c_{\{1,2,3\}}
\]
Generalized Associahedra
[Fomin, Zelevinski + Chapoton + Reading + HLT]

\[\text{Perm}(W) = \text{convex hull } \{ w(v) \mid w \in W \} \text{ where } v = \sum_{s \in S} v_s. \]

Fix a coxeter element \(c \) of \((W, S)\).

\[c = \prod_{s \in S} s \text{ in some order.} \]

Let \(w_0 = c_{K_1}c_{K_2} \cdots c_{K_p} \) (unique) reduced factorization
\[T_c = \{ u \in W : u \text{ is a prefix of } c_{K_1}c_{K_2} \cdots c_{K_p} \text{ up to commutations} \} \]

Using only the allowed commutation \(s_is_j = s_js_i \).

example: for \(W = A_3 \) and \(S = \{ s_1, s_2, s_3 \} \), with \(c = s_1s_3s_2 \) we have
\(w_0 = s_1s_3s_2 \cdot s_1s_3s_2 \) and
\[T_c = \{ e, s_1, s_1s_3, s_1s_3s_2, s_1s_3s_2s_1, s_1s_3s_2s_3, w_0, s_3, s_1s_3s_2s_3 \} \]
Generalized Associahedra

[Fomin, Zelevinski + Chapoton + Reading + HLT]

\[\text{Perm}(W) = \text{convex hull} \{ w(v) \mid w \in W \} \text{ where } v = \sum_{s \in S} v_s. \]

Fix a coxeter element \(c \) of \((W, S)\). \(c = \prod_{s \in S} s \) in some order.

Let \(w_0 = c_{K_1} c_{K_2} \cdots c_{K_p} \) (unique) reduced factorization

\[T_c = \{ u \in W : u \text{ is a prefix of } c_{K_1} c_{K_2} \cdots c_{K_p} \text{ up to commutations} \} \]

\[\text{Ass}_c(W) \]

is the polytope defined by the hyperplanes of \(\text{Perm}(W) \) that contains elements \(u(v) \) for \(u \in T_c \).
Generalized Associahedra: A_2 and $c = s_2s_1$

\[w_0 = s_2s_1 \cdot s_2 \text{ and } T_c = \{ e, s_2, s_2s_1, w_0 \} \]
Generalized Associahedra: A_3 and $c = s_1 s_2 s_3$

$w_0 = s_1 s_2 s_3 \cdot s_1 s_2 \cdot s_1$ and $T_c = \{ e, s_1, s_1 s_2, c, s_1 s_2 s_1, c s_1, c s_1 s_2, w_0 \}$
Generalized Associahedra: A_3 and $c = s_1s_3s_2$

$$w_0 = s_1s_3s_2 \cdot s_1s_3s_2$$ and $$T_c = \{ e, s_1, s_3, s_1s_3, c, cs_1, cs_3, cs_1s_3, w_0, \}$$
Some questions

T_c is known to be a lattice, but what is $|T_c|$ (even for type A)?
Some questions

T_c is known to be a lattice, but what is $|T_c|$ (even for type A)?

How many distinct polytope do we get (up to isometry)?
Some questions

T_c is known to be a lattice, but what is $|T_c|$ (even for type A)?
How many distinct polytope do we get (up to isometry)?

Theorem [BHLT] For (W, S) irreducible finite Coxeter system and c, c' Coxeter elements:

$$\text{Ass}_c(W) \cong \text{Ass}_{c'}(W) \iff c' = \mu(c)^{\pm 1}$$

where μ is an automorphism of the Coxeter graph of W.

The Main Theorem

Theorem [BHLT] For \((W, S')\) irreducible finite Coxeter system and \(c, c'\) Coxeter elements:

\[
\text{Ass}_c(W) \cong \text{Ass}_{c'}(W) \iff c' = \mu(c)^{\pm 1}
\]

where \(\mu\) is an automorphism of the Coxeter graph of \(W\).

In type \(A\), an isometry class contains 1, 2 or 4 Coxeter elements.

In type \(D\), an isometry class contains 1, 2 or 4 Coxeter elements (except for \(D_4\) which has a class of 12 elements).
Idea of proof

1. An isometry $\text{Ass}_c(W) \rightarrow \text{Ass}_{c'}(W)$ must fix the set $\{e, w_0\}$ and $\text{Perm}(W)$.

2. Such isometry send coxeter elements c to $c' = \mu(c)^{\pm 1}$.

3. Conversely, there is such an isometry for any μ and the map $w \mapsto ww_0$ induces an isometry $\text{Ass}_c(W) \rightarrow \text{Ass}_{c^{-1}}(W)$.

For more details, see paper...[ArXive]