Piecewise quasipolynomial formulas for Kronecker coefficients indexed by two-row shapes

SLC 61

Curia, september 22, 2008

Emmanuel Briand (U. Sevilla)

(joint work with Mercedes Rosas, U. Sevilla, and Rosa Orellana, Dartmouth College)

The Clebsch-Gordan Problem

Decompose into irreducible the tensor product of two irreducible (polynomial, finite—dimensional) representations of a semi—simple group G:

$$V_{\mu} \otimes V_{\nu} = \bigoplus_{\lambda} m_{\mu,\nu}^{\lambda} V_{\lambda}$$

We consider the two basic families of groups:

- The general linear groups groups $GL_n(\mathbb{C})$: the multiplicities $m_{\mu,\nu}^{\lambda}$ are the Littlewood–Richardson coefficients $c_{\mu,\nu}^{\lambda}$.
- The symmetric groups \mathfrak{S}_n : the multiplicaties $m_{\mu,\nu}^{\lambda}$ are the Kronecker coefficients $g_{\mu,\nu}^{\lambda}$.

Computation problem and decision problem

	Computation	Decision (? $m_{\mu,\nu}^{\lambda}=0$)
LR coeffs $c_{\mu, u}^{\lambda}$	#P-complete	Р
	(Narayanan, 2006)	(Tao+Knutson, 2001;
	\Rightarrow not computable in polynomial time if $P \neq NP$.	Mulmuley+Sohoni, 2005;
		De Loera+McAllister, 2006)
Kronecker coeffs $g_{\mu, u}^{\lambda}$? P
	• ? ∈ #P	Mulmuley's Geometric Complexity Theory
	• GapP (Bürgisser+Ikenmeyer 2008)	(Attack for $?P \neq NP$ over \mathbb{C})

Deciding whether or not $c_{\mu,\nu}^{\lambda} = 0$ is in P because . . .

Deciding whether or not $c_{\mu,\nu}^{\lambda} = 0$ is in P because . . .

• Positive Formulas (PH1): LR coefficients $c_{\mu,\nu}^{\lambda}$ counts the integral points of a polytope $\text{Hive}(\lambda,\mu,\nu)$, described by linear constraints:

$$A \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{pmatrix} \le B \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \nu_n \end{pmatrix}$$

Thus $c_{\mu,\nu}^{\lambda} = 0 \Leftrightarrow \operatorname{Hive}(\lambda,\mu,\nu)$ has no integral point

Deciding whether or not $c_{\mu,\nu}^{\lambda} = 0$ is in P because . . .

• Positive Formulas (PH1): LR coefficients $c_{\mu,\nu}^{\lambda}$ counts the integral points of a polytope $\operatorname{Hive}(\lambda,\mu,\nu)$, described by linear constraints:

$$A \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{pmatrix} \le B \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \nu_n \end{pmatrix}$$

Thus $c_{\mu,\nu}^{\lambda} = 0 \Leftrightarrow \operatorname{Hive}(\lambda,\mu,\nu)$ has no integral points

• Saturation property (SH) (Knutson+Tao, 1999):

$$c_{\mu,\nu}^{\lambda} = 0 \qquad \Leftrightarrow \qquad c_{N\mu,N\nu}^{N\lambda} = 0 \quad \text{for all } N>0$$

$$\text{Hive}(\lambda,\mu,\nu) \text{has no integral point} \quad \Leftrightarrow \quad \text{Hive}(\lambda,\mu,\nu) = \emptyset$$

Deciding whether or not $c_{\mu,\nu}^{\lambda} = 0$ is in P because . . .

• Positive Formulas (PH1): LR coefficients $c_{\mu,\nu}^{\lambda}$ counts the integral points of a polytope $\text{Hive}(\lambda,\mu,\nu)$, described by linear constraints:

$$A \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_k \end{pmatrix} \le B \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \nu_n \end{pmatrix}$$

Thus $c_{\mu,\nu}^{\lambda} = 0 \Leftrightarrow \operatorname{Hive}(\lambda,\mu,\nu)$ has no integral points

- Saturation property (SH) (Knutson+Tao, 1999): $c_{\mu,\nu}^{\lambda} = 0 \quad \Leftrightarrow \quad c_{N\mu,N\nu}^{N\lambda} = 0 \text{ for all } N>0$ Hive (λ,μ,ν) has no integral point \Leftrightarrow Hive $(\lambda,\mu,\nu)=\emptyset$
- Linear programming (deciding nonemptyness of a polytyope defined by linear constraints) $\in P$.

Mulmuley's Positivity and Saturation hypotheses

PH1 (Positivity): The Kronecker coefficients $g_{\mu,\nu}^{\lambda}$ count the integral points of a polytope $\mathsf{Kron}(\lambda,\mu,\nu)$ defined by linear constraints.

Fix λ , μ , ν . The "stretching function" $N \mapsto g_{(N\mu)(N\nu)}^{(N\lambda)}$ is a (univariate) quasi-polynomial (Mulmuley, 2007)

i.e. there exist k > 0 and polynomials F_i such that

$$g_{(N\mu)(N\nu)}^{(N\lambda)} = \begin{cases} F_1(N) \text{ if } N \equiv 1 \mod k \\ F_2(N) \text{ if } N \equiv 2 \mod k \\ \vdots \\ F_k(N) \text{ if } N \equiv k \mod k \end{cases}$$

SH (Saturation): $g_{\mu,\nu}^{\lambda}=0 \Leftrightarrow g_{N\mu,N\nu}^{N\lambda}=0$ for all $N\equiv 1 \mod k$.

? Check SH for Kron in simple cases.

Check SH for $g^{(\lambda_1,\lambda_2,\lambda_3)}_{(\mu_1,\mu_2)(\nu_1,\nu_2)}$

Simplest non-trivial case: coefficients $g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)}$.

Find explicit formulas for them to check SH.

Explicit formulas?

Check SH for $g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)}$

Simplest non-trivial case: coefficients $g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)}$.

Find explicit formulas for them to check SH.

Explicit formulas?

Assume PH1 holds: then $(\lambda_1, \ldots, \nu_2) \mapsto$ $g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)}$ is piecewise quasi–polynomial: there exists

- \bullet a convex rational polyhedral cone $K \subset$ \mathbb{R}^7 , such that outside K there is
 $$\begin{split} g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)} &= 0 \\ \bullet \text{ a fan } \mathcal{F} \text{ subdividing } K \end{split}$$
- ullet on each of its maximal cells σ a (multivariate) quasi-polynomial q_{σ} such that on σ $g_{(u_1,u_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)} = q_{\sigma}(\lambda_1,\ldots,\nu_2)$

Computing Kronecker coeffs through reduced Kronecker coeffs

The Reduced Kronecker coefficients $\overline{g}_{\alpha\beta}^{\gamma}$: limits of certain stationary sequences of Kronecker coefficients (Murnaghan, 1938)

- LR coeffs are particular Reduced Kronecker coeffs
- Reduced Kronecker coeffs are particular Kronecker coeffs

We established a formula to recover the Kronecker coeffs $g_{\mu,\nu}^{\lambda}$ from the reduced Kronecker coeffs $\overline{g}_{\alpha,\beta}^{\gamma}$.

$$g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)} = \overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_2,\lambda_3)} - \overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_3)} + \overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_2+1)}$$

Computing Kronecker coeffs through reduced Kronecker coeffs

$$g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)} = \overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_2,\lambda_3)} - \overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_3)} + \overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_2+1)}$$

From results by M.R., 2002, we showed that $\overline{g}_{(r)(s)}^{(\gamma_1\gamma_2)}$ counts the integral point of a polygon:

$$\begin{cases} X \ge \max(r, s) \\ Y \ge 0 \\ r + s - \gamma_2 \ge X + Y \ge r + s - \gamma_1 \\ \gamma_1 + \gamma_2 \ge X - Y \ge \gamma_1 \end{cases}$$

and from this we obtained a description for $\overline{g}_{(r)(s)}^{(\gamma_1\gamma_2)}$ as a piecewise quasi-polynomial supported by a fan \mathcal{F}_0 .

$$g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)} =$$

$$\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_2,\lambda_3)}$$

$$\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_2,\lambda_3)} \qquad -\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_3)} \qquad +\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_2+1)}$$

$$g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)} =$$

$$\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_2,\lambda_3)}$$

$$\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_2,\lambda_3)} -\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_3)} +\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_2+1)}$$

$$+\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_2+1)}$$

Pieces of quasipolynomiality for $g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)}$: polyhedral cells, but not cones.

$$g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)} =$$

$$\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_2,\lambda_3)}$$

$$-\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_3)}$$

$$\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_2,\lambda_3)} - \overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_3)} + \overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_2+1)}$$

The quasi–polynomial formulas for $\overline{g}_{(r)(s)}^{(\gamma_1\gamma_2)}$ are still valid on some shifts of the cells of the fan \mathcal{F}_0 ,

so that the pieces for $g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)}$ are cones.

$$g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)} =$$

$$\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_2,\lambda_3)}$$

$$-\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_3)}$$

$$\overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_2,\lambda_3)} - \overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_3)} + \overline{g}_{(\mu_2)(\nu_2)}^{(\lambda_1+1,\lambda_2+1)}$$

The quasi-polynomial formulas for $\overline{g}_{(r)(s)}^{(\gamma_1\gamma_2)}$ are still valid on some shifts of the cells of the fan \mathcal{F}_0 ,

so that the pieces for $g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)}$ are cones.

Explicit formulas

With the help of the Maple Package <u>convex</u> (Matthias Franz) we obtain the description of the fan $\mathcal F$ associated to the coefficients $g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)}$:

it has 74 maximal cells which are the domains of quasi-polynomiality for $g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)}$.

Checking SH

$$g_{(N\mu)(N\nu)}^{(N\lambda)} = \begin{cases} F_1(N) \text{ if } N \equiv 1 \mod k \\ F_2(N) \text{ if } N \equiv 2 \mod k \\ \vdots \\ F_k(N) \text{ if } N \equiv k \mod k \end{cases}$$

```
SH (Saturation): g_{\mu,\nu}^{\lambda}=0 \Leftrightarrow g_{N\mu,N\nu}^{N\lambda}=0 for all N\equiv 1 \mod k.
```

Wanted:

Mulmuley's Hypothesis SH holds for the Kronecker coefficients $g^{(\lambda_1,\lambda_2,\lambda_3)}_{(\mu_1,\mu_2)(\nu_1,\nu_2)}$.

Checking SH

$$g_{(N\mu)(N\nu)}^{(N\lambda)} = \begin{cases} F_1(N) \text{ if } N \equiv 1 \mod k \\ F_2(N) \text{ if } N \equiv 2 \mod k \\ \vdots \\ F_k(N) \text{ if } N \equiv k \mod k \end{cases}$$

SH (Saturation): $g_{\mu,\nu}^{\lambda}=0 \Leftrightarrow g_{N\mu,N\nu}^{N\lambda}=0$ for all $N\equiv 1 \mod k$.

Obtained:

Mulmuley's Hypothesis SH does not hold for the Kronecker coefficients $g_{(\mu_1,\mu_2)(\nu_1,\nu_2)}^{(\lambda_1,\lambda_2,\lambda_3)}$.

Indeed, if SH holds then

$$g_{\mu,\nu}^{\lambda}=0 \Rightarrow g_{N\mu,N\nu}^{N\lambda}=0 \qquad {\rm for~infinitely~many}~N>0$$

but !!!

$$g_{(6N,6N)(7N,5N)}^{(6N,4N,2N)}$$
 $\begin{cases} = 0 \text{ for } N = 1 \\ > 0 \text{ for } N > 1 \end{cases}$

Conclusion

This is part of a more general work about Reduced Kronecker Coefficients.

Other results:

- we gave simpler proofs of some properties of the reduced Kronecker coefficients using vertex operators acting on symmetric functions.
- we obtained new bounds for the so—called *stability of the Kronecker product* considered earlier by Ernesto Vallejo.