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The Clebsch—Gordan Problem

Decompose into irreducible the tensor product of two irreducible
(polynomial, finite—dimensional) representations of a semi—simple
group G-

Vi ® Vi = @) ml)),VV)\

We consider the two basic families of groups:

e The general linear groups groups GL,(C): the multiplicities

mj, , are the Littlewood—Richardson coefficients cj .

e The symmetric groups SG,: the multiplicities mﬁ)u are the
Kronecker coefficients g}, .



Computation problem and decision problem

Computation

Decision ( ? m? , = 0)

#P-complete
(Narayanan, 2006)

v
P

L R (Tao+Knutson, 2001;
coeffs oA = not computable in polyno- Mulmuley--Sohoni, 2005:
//L, . . .
mial time if P = NP. De Loera+McAllister, 2006)
7T P
Kronecker

coeffs g3,

o 7 c #P
o GapP (Birgisser+Ikenmeyer 2008)

Mulmuley's Geometric Complexity Theory

(Attack for 7P = NP over C)



Decision problem for LR coefficients

Deciding whether or not ¢; , =0 is in P because . ..



Decision problem for LR coefficients

Deciding whether or not ¢; , = 0 is in P because . ..

e Positive Formulas (PH1): LR coefficients ¢} , counts the integral

points of a polytope Hive(\, u,v), describedujl;y linear constraints:
X1 A1

a|*2l<B |
X, v

Thus ¢}, = 0 < Hive(\, u, v)has no integral point

[TRY



Decision problem for LR coefficients

Deciding whether or not ¢; , = 0 is in P because . ..

e Positive Formulas (PH1): LR coefficients ¢} , counts the integral

points of a polytope Hive(\, u,v), describedujl;y linear constraints:
X1 A1

a|*2l<B |
X, n

Thus ¢} , = 0 < Hive(\, u, v)has no integral points

[TRY

e Saturation property (SH) (knutson+Tao, 1999):
cpy =0 & chpvy, =0 for all N >0
Hive(\, i, v)has no integral point < Hive(\, u,v) =0



Decision problem for LR coefficients

Deciding whether or not ¢; , = 0 is in P because . ..

e Positive Formulas (PH1): LR coefficients ¢} , counts the integral

points of a polytope Hive(\, u,v), describedugy linear constraints:
X1 A1

a| 2l <B |
X, vn

Thus ¢} , = 0 < Hive(\, i, v)has no integral points

[T8%

e Saturation property (SH) (Knutson+Tao, 1999):

cpy =0 o cnpvy, =0 for all N >0

Hive(\, u,v)has no integral point < Hive(\ u,v) =0

e Linear programming (deciding nonemptyness of a polytyope
defined by linear constraints) € P.



Mulmuley’s Positivity and Saturation hypotheses

PH1 (Positivity): The Kronecker coefficients
gﬁ‘),/ count the integral points of a polytope
Kron(\, u,v) defined by linear constraints.

(NA)

Fix A\, p, v. The “stretching function” N — I(Nu)(Nv)

quasi—polynomial (Muimuley, 2007)

is a (univariate)

i.e. there exist k£ > 0 and polynomials F; such that

( Fl(N) if N=1 modk
(N)) F>(N) if N=2 modk

I(Np)(Nv) =

| F(N) if N=k mod k

SH (Saturation): g3, = 0 < g%{) ~, = 0 for all
N =1 mod k.

? Check SH for Kron in simple cases.



(A1,A2,A3)
Check SH for I(p1,p2) (v1,02)

Simplest non—trivial case: coefficients 98125)’}2 Vo)

Find explicit formulas for them to check SH.

Explicit formulas 7



(A1,A2,A3)
Check SH for I (p1,12) (v1,v2)

(A1,A2,A3)

Simplest non—trivial case: coefficients Iy 1) (1.0)"

Find explicit formulas for them to check SH.

Explicit formulas 7

Assume PH1 holds: then (Aq,...,vp) —
g(/\1’>‘2’>‘3) is piecewise quasi—polynomial:

(H1,p12)(v1,02)
there exists

e a convex rational polyhedral cone K C

R’ such that outside K there is
(A1,22,A3) _

(h1,p2)(v1,v2) 7
e a fan F subdividing K

e on each of its maximal cells o a (multi-
variate) quasi—polynomial ¢, such that

. (A1,A2,A3) _
U N (A el L CS RERRRL )




Computing Kronecker coeffs through reduced Kronecker coeffs

The Reduced Kronecker coefficients gzﬁ: limits of certain stationary
sequences of Kronecker coefficients (Murnaghan, 1938)

e LR coeffs are particular Reduced Kronecker coeffs
e Reduced Kronecker coeffs are particular Kronecker coeffs

We established a formula to recover the Kronecker coeffs gﬁ‘)u from
the reduced Kronecker coeffs gzéﬁ.

(A1,A2,A3) (A2 A3) (A +1A3) | (A1+10+1)
I 1) 1) — I(u2)(2) ~ I(u2) () T I(un)(vn)



Computing Kronecker coeffs through reduced Kronecker coeffs

(A1,A2,A3) _ (A2 A3) (A H+1A3) | (Ai+10+1)
I 1) 1) = I(u2)2) ~ I(u2)(vn) T I(un)(vn)

From results by M.R., 2002, we showed that 58)1(752)) counts the
integral point of a polygon:

(X > max(r,s)

Y >0
r+s—y>2Xt+Y>2r+s—m
(M1 +1r2>2X-Y>m

and from this we obtained a description for ggz)lzf)) as a piecewise
quasi—polynomial supported by a fan Fj.




From reduced to non—reduced Kronecker coefficients

(A1,A2,A3) _ _(A2,A3) _(M1+1,23) _(M4+1,241)
I(u1,p2) (v1,02) — I (u2)(v2) “9012) () TI(u2) ()



From reduced to non—reduced Kronecker coefficients

()\1 A2,A3) _ —(>\2,>\3) —(>\1-|-1 A3) 1g (A1+1,22+1)
I(u1,p2) (v1,v2) I (u2)(v2) I () (v2) I(u2) (v2)

% o —

Pieces of quasipolynomiality for 98125)’}2 ). polyhedral cells, but not
cones.



From reduced to non—reduced Kronecker coefficients

(A1,A2,A3) _ _(A2,A3)  _(M1+1,23) _(A1+1,2041)
I(u1,p2) (v1,02) — I (uz)(v2) 9(12) () T9(uo) ()

% =

The quasi—polynomial formulas for gg%(%) are still valid on some shifts
of the cells of the fan F,

so that the pieces for 9&122))&13;)1 ,,) are cones.



From reduced to non—reduced Kronecker coefficients

(A1,A2,A3) _ _(A2,A3)  _(M+1,23) _(A1+1,2041)
I(u1,p2) (v1,02) — I (u2)(v2) 9(12) () T9(uo) ()

N W
AN
The quasi—polynomial formulas for 58%92)) are still valid on some shifts

of the cells of the fan Fq,

so that the pieces for 98122))&?;)1 ,,) are cones.



Explicit formulas

With the help of the Maple Package convex (Matthias Franz) we

obtain the description of the fan F associated to the coefficients
(A1,A2,A3) .
(p1,p2)(v1,v2)°

it has 74 maximal cells which are the domains of quasi—polynomiality
for g

(A1,A2,A3)
(p1,p2)(v1,v2)°




Checking SH

( FB(N)ifN=1 modk
(v F(N)if N=2 modk
I(Np)(Nv) :

| Fu(N) if N=k mod k

SH (Saturation): g;, =0 gy, 5, =0 forall N =1 mod k.

Wanted:

Mulmuley's Hypothesis SH holds for the Kronecker

. A1,A2,A
coefficients ggui,ui)(?/)l,vz)'




Checking SH

( B(N)IfN=1 modk
(N)) . F>(N) if N=2 modk
INwWNv) =Y

\ F (N) if N=k modk

SH (Saturation): g;, =0 gy, v, =0 forall N =1 mod k.

Obtained:

Mulmuley’'s Hypothesis SH does not hold for the

Kronecker coefficients 98123)’%2 vo):

Indeed, if SH holds then

gﬁ‘, =0= QNM,NV = 0 for infinitely many N > 0O

but !

(6N4N2N) =0 for N=1
J(6N,6N)(TN5N) | >0 for N > 1



Conclusion

This is part of a more general work about Reduced Kronecker
Coefficients.

Other results:

e we gave simpler proofs of some properties of the reduced
Kronecker coefficients using vertex operators acting on symmetric
functions.

e we obtained new bounds for the so—called stability of the
Kronecker product considered earlier by Ernesto Vallejo.



