Forests and Parking Functions

Heesung Shin

Institut Camille Jordan
Université Claude Bernard Lyon-I, France

THE 61ST SEMINAIRE LOTHARINGIEN DE COMBINATOIRE
CURIA, PORTUGAL, SEP. 24, 2008




Outline

ﬂ Forests

e Parking Functions
e Statistics
° The Map ¢ : F, — PF,

e Further Result




!u“lne

ﬂ Forests

© O O




(Rooted Labeled) Forests

@}ynn 1




Figure: Forest on [1]
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Figure: Forests on [2]
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Figure: Forests on [3]
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# of forests on [1] 1
# of forestson 2] = 3
# of forestson [3] = 16
# of forestson [4] = 125




# of forests on [1
# of forests on [2
# of forests on [3

[ i e WA

# of forests on [4

# of forests on [n]

Actually,

# of forests on [n] = # of trees on [n + 1].

1=2°
3=3!
16 = 42
125 =5°

(n+1)"!
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Inversion in Forests

inv(F;v) = +#{(v,u)| uis descendant of vand u < v}

inv(F) = Zinv(F;v)




For example,

inv(F;5) = #{(5,3),(54),(52)}=3
inv(F) = 17
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Figure: inv on forests on [3]
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S
Parking Rule

ONONONOCNORORGRONONTURDNE)

—=> one-way road —=

If you like parking at (7), then you could park at (o).
If you like parking at (1), then you could not park.




Parking Function

Suppose (p1, ..., pn) is @ sequence of favorite parking spaces
for each cars. If no car failed in parking, (p1,...,p.) is called
parking function.

For example,
(4,3,3,1,4) — [4]0[2][1]3]
is not a parking function.

(4,3,3,1,1) —[4][5]2][1]3]

is a parking function.
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Criteria

Criteria of Parking Function

q; < iforalli

where (q1, ..., g,) is rearrangement of (py, ..., p,) by order.

For example,
(4,3,3,1,4) — (1,3,3,4,4)

is not a parking function.
(4,3,3,1,1) — (1,1,3,3,4)

is a parking function.
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Figure: Parking Function with length 1
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Figure: Parking Functions with length 2
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(1,1,1) (1,1,2) (1,1,3) (1,2,1)
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Figure: Parking Functions with length 3
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Jump in Parking Functions

0 PA(pl 1111 pn) — (QI 1111 Qn)
where ¢; is the space parked actually by i-th car.

@ jump(P;i) =q; —p;
Q jump(P) = }_, jump(P; i)
Note that,

jump(P) = ) jump(P;i)

= (qi+...+q.)—(p1+...+py)

= <n;1>—(p1+...+pn)

=
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For example,

Q PA4,3,3,1,1) = (4,3,5,1,2)

Q jump(4,3,3,1,1;3)=5-3=2

Q jump(4,3,3,1,1)=0+0+2+0+1=3




(1,1,1) (1,1,2) (1,1,3) (1,2,1)

3 2 1 2
(1,2,2) (1,2,3) (1,3,1) (1,3,2)

1 0 1 0
(2,1,1) (2,1,2) (2,1,3) (2,2,1)

2 1 0 1
(2,3, 1) (3,1,1) (3,1,2) (3,2,1)

0 1 0 |_o
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Figure: jump on Parking Functions with length 3
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Generating Function
@ GF for inv on forests

Zqinv(F) - 1

FeF,

2 4™ = 24g

FeF,

Zqi“V(F) = 64+6g+347+¢
FeEF;

@ GF for jump on parking function

I e LR

PEPF,
Z qiumP(P) = 2+4¢

PEPF,

Z qjump(P) _ 6+6q+3q2—|—q3 on
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One Map
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One Map

(14,3,2,7,1,7,1,1,3,2,10,12,12,2)
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Theorem (G.Kreweras 1980)

Y gmr=} g (1)

FeF, PEPF,

NOTE. In 2004, R. Stanley notices that a nonrecursive bijection
between forests and parking functions would be greatly
preferred, which yields (1)
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Leader in Forests

Definition (Leader in Forests)

@ v=leaderin F & inv(F;v) = 0.
Q@ lead(F) =the # of leaders in F
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Figure: lead on forests on [3]
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Lucky in PFs

Definition (Lucky in Parking Functions)

@ ¢ =luckyin P < jump(P;c) =0.
@ lucky(P) = the # of luckys in P
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(1,1,1) (1,1,2) (1,1,3) (1,2,1)

1 1 2 2
(1,2,2) (1,2,3) (1,3,1) (1,3,2)

2 3 2 3
(2,1,1) (2,1,2) (2,1,3) (2,2,1)

2 2 3 2
(2,3, 1) (3,1,1) (3,1,2) (3,2,1)

3 2 3 |_3
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Figure: lucky on Parking Functions with length 3



Theorem (Gessel-Seo 2004)

Z uleadF _ Z uluckyP (2)

FeF, PEPF,

NOTE. They do not have a direct proof of (2). They found each
of two GFs for lead and lucky, that are neither bijective.
n—1
ul Jli+ (n—i+ D)

i=1

GS 2007 Vs 2004
SS 2007
2
E uleadF ! E ulucky P

FEF, PEPF,

=
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Objective

We'll construct the nonrecursive bijection between forests and
parking functions such that

® F, — PF,
F — P=¢(F)
inv(F) = jump(P)
lead(F) = lucky(P)

Theorem (S. 2008)

We have

inv ( lead um luck
D 4 = D gt

FeF, PEPF,
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We consider F € Fy4 for example. Of course, F is drawn in the
method we decide.
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Add 15-th vertex.

Add the vertex 15 at the top and change the forest F to the tree

T.
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forallv e Vdo
@ find the maximum label m on descendants of v.
Q label m on v.

© rearrange the other labels in descendants of v by
order-preserving.

end do
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forallv e Vdo
@ find the maximum label m on descendants of v.
Q label m on v.

© rearrange the other labels in descendants of v by
order-preserving.
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The decreasing tree is made after the process for every vertex.
But we cannot remake the original tree T from only tree D. So,
we need another tree induced from the unused information of T.
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I inv(T :v)

o]® [o]® [o]® @] e[

Label inv(T : v) on vertex v. In order to distinguish it from other
labels, we use the box (or blue color). And then, the trees D
and I can produce the original tree T.
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indexed by post-order

Label the vertices indexed by post-order which is indicated by
circle (or brown color). The tree C is determined by only the
underlying graph, that is, its tree structure. This is the reason
why we define the method we draw the tree.
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Dx (C—-1) 15 @

The plain labels are induced by D.
The circled labels are induced by C subtracted by 1.
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And then, we delete the tree structure and sort by plain #.

12345672891011121314/15
WOOOOOOWOOVOVWO|O

Below the plain label 15, there is always circle label (). So, we
can omit it, and then second row (circle label) becomes a
parking function P of length 14.

P=0o0O0O000WOOWOVLE

Because all labels of C are distinct in worst case which means
every labels of I is all zero. Note that every permutation is a
parking function.
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Summary of the map ¢

1234567891011121314]15
P= WOOOOOOWOOWOOLEO|O
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Inverse Map of ¢

Let P = WOOOOO@OWOO®OWLE

After adding the () at the end, 15 cars is parked as following by
the parking algorithm.

ParkingSpace OO O OO OO E® O® WO ® O G | ®
Cars’' Numberc 6 2109 4 3 514121 8 13 7 11| 15

jump(P:¢) [o][o][2][o]|o]|0]|0][3][0] o] [1][1][0][0]

We draw a edge between car ¢ and the closest car on its right
which is larger than c. If we consider 15 as a root, we can
rebuild the tree structure and find trees C, D and I.
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Inverse Map of ¢

Let P = WOOOOO@OWOO®OWLE

After adding the () at the end, 15 cars is parked as following by
the parking algorithm.

ParkingSpace OO O ®H OO ® ©® WO ® O @ | ©

Cars’ Numberc 6 2109 4 3 514121 8 13 7 11| 15
jump(P: ¢) [0][o][2]]o][o][o][0][3][0][o][1][1][o][0]

We draw a edge between car ¢ and the closest car on its right
which is larger than c. If we consider 15 as a root, we can
rebuild the tree structure and find trees C, D and I.
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Further Result
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i-Leader in Forests, i-Lucky in PFs

Definition (i-Leader in Forests)

@ v=ileaderin F & inv(F;v) =i
@ lead;(F) = the # of i-leaders in F

Definition (i-Lucky in Parking Functions)

@ c=i-luckyin P < jump(P;c) =i
@ lucky,(P) =the # of i-luckys in P

=
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We define

inv(F) = (leady(F),lead;(F),..., lead,(F))
= type of inversions of F

jump(P) = (luckyy(P),lucky,(P), ..., lucky, (P))
= type of jumps of P

@}ynn 1




inv(F) = (10,2,1,1,0,0,0,0,0,0,0,0,0,0)
J o

(10,2,6,5,7,1,13,10,4,1,14,9, 11, 5)
jump(P) = (10,2, 1,1,0,0,0,0,0,0,0,0,0,0)
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Theorem (S. 2008)

We have

Z qinv(F) _ Z qjump(P)

FeF, PEPF,

where q" = q)'q}' - - q).
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(1,1,1) (1,1,2) (1,1,3) (1,2,1)
3 2 1 3
1|(1,1,1) 1|(1,2,0) 2|21o 2[(2,0,1)
(1,2,2) (1,2,3) (1,3,1) (1,3,2)
2 1 3 @2 0?2
51 E ¢ 3
3 [2,1,0) 3 [(3,0,0) [21,0) (3,0,0)
(2,1,1) (2,1,2) (2,1,3) (2,2,1)
3 2 1 e3 @2
06.\01 oé.\ﬂ 06.\02 o1
| (2,0,1) | (2,1,0) | (3,0,0) (2,1,0)
(2,3,1) (3,1,1) (3,1,2) (3,2,1)
3 o1 :3 o 2 @1 L 3 )
e>2 3 3 2 1
| (3,0,0) | (2,1,0) | (3,0,0) (3,0,0)
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How many forests with a given type of inversions are there?

There are n! forests with type (n,0, ..., 0).
There is only one forest with (1,...,1).
But | know nothing about general cases yet.
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Thank you for listening!




Parking Algorithm

PA(p1, ..., Pn)
@ E = {1 ..... n}
@ fori=1,..., n do

° Ei 1 =E\{qi}
end do
@ return (¢, ..., qn)




(10,2,6,5,7,1,13,10,4,1,14,9,11,5)
ParkingSpace OOOOOOOOOLOL OO ®
2109 435 1 8137

Cars’ Numberc 6

critical(P) = 3
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Theorem (S. 2008)
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