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Figure: Forest on [1]
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Figure: Forests on [3]



# of forests on [1] = 1 = 20

# of forests on [2] = 3 = 31

# of forests on [3] = 16 = 42

# of forests on [4] = 125 = 53

...
# of forests on [n] = (n + 1)n−1

Actually,

# of forests on [n] = # of trees on [n + 1].
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# of forests on [n] = # of trees on [n + 1].



Inversion in Forests

inv(F; v) = # {(v, u)| u is descendant of v and u < v}

inv(F) =
∑

v

inv(F; v)



For example,
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inv(F; 5) = # {(5, 3), (5, 4), (5, 2)} = 3

inv(F) = 7
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Figure: inv on forests on [3]
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Parking Rule

1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11© 12©

one-way road

If you like parking at 7©, then you could park at 10©.
If you like parking at 11©, then you could not park.



Parking Function

Suppose (p1, . . . , pn) is a sequence of favorite parking spaces
for each cars. If no car failed in parking, (p1, . . . , pn) is called
parking function.
For example,

(4, 3, 3, 1, 4)→ 4 ∅ 2 1 3

is not a parking function.

(4, 3, 3, 1, 1)→ 4 5 2 1 3

is a parking function.



Criteria

Criteria of Parking Function

qi 6 i for all i

where (q1, . . . , qn) is rearrangement of (p1, . . . , pn) by order.

For example,
(4, 3, 3, 1, 4)→ (1, 3, 3, 4, 4)

is not a parking function.

(4, 3, 3, 1, 1)→ (1, 1, 3, 3, 4)

is a parking function.



(1)

Figure: Parking Function with length 1

(1, 1) (1, 2) (2, 1)

Figure: Parking Functions with length 2



(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 2, 1)

(1, 2, 2) (1, 2, 3) (1, 3, 1) (1, 3, 2)

(2, 1, 1) (2, 1, 2) (2, 1, 3) (2, 2, 1)

(2, 3, 1) (3, 1, 1) (3, 1, 2) (3, 2, 1)

Figure: Parking Functions with length 3



Jump in Parking Functions

1 PA(p1, . . . , pn) = (q1, . . . , qn)

where qi is the space parked actually by i-th car. here

2 jump(P; i) = qi − pi

3 jump(P) =
∑

i jump(P; i)

Note that,

jump(P) =
∑

i

jump(P; i)

= (q1 + . . . + qn) − (p1 + . . . + pn)

=

(
n + 1

2

)
− (p1 + . . . + pn)



For example,
1 PA(4, 3, 3, 1, 1) = (4, 3, 5, 1, 2)

2 jump(4, 3, 3, 1, 1; 3) = 5 − 3 = 2
3 jump(4, 3, 3, 1, 1) = 0 + 0 + 2 + 0 + 1 = 3



(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 2, 1)

(1, 2, 2) (1, 2, 3) (1, 3, 1) (1, 3, 2)

(2, 1, 1) (2, 1, 2) (2, 1, 3) (2, 2, 1)

(2, 3, 1) (3, 1, 1) (3, 1, 2) (3, 2, 1)

3 2 1 2
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Figure: jump on Parking Functions with length 3
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Generating Function
GF for inv on forests∑

F∈F1

qinv(F) = 1

∑
F∈F2

qinv(F) = 2 + q

∑
F∈F3

qinv(F) = 6 + 6q + 3q2 + q3

GF for jump on parking function∑
P∈PF1

qjump(P) = 1

∑
P∈PF2

qjump(P) = 2 + q

∑
P∈PF3

qjump(P) = 6 + 6q + 3q2 + q3
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One Map
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⇓

(14, 3, 2, 7, 1, 7, 1, 1, 3, 2, 10, 12, 12, 2)



Theorem (G.Kreweras 1980)∑
F∈Fn

qinv(F) =
∑

P∈PFn

q(n+1
2 )−|P| (1)

NOTE. In 2004, R. Stanley notices that a nonrecursive bijection
between forests and parking functions would be greatly
preferred, which yields (1)



Leader in Forests

Definition (Leader in Forests)
1 v = leader in F ⇔ inv(F; v) = 0.

2 lead(F) = the # of leaders in F
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Figure: lead on forests on [3]



Lucky in PFs

Definition (Lucky in Parking Functions)
1 c = lucky in P⇔ jump(P; c) = 0.

2 lucky(P) = the # of luckys in P



(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 2, 1)

(1, 2, 2) (1, 2, 3) (1, 3, 1) (1, 3, 2)

(2, 1, 1) (2, 1, 2) (2, 1, 3) (2, 2, 1)

(2, 3, 1) (3, 1, 1) (3, 1, 2) (3, 2, 1)

1 1 2 2

3232

2322

3323

Figure: lucky on Parking Functions with length 3



Theorem (Gessel-Seo 2004)∑
F∈Fn

ulead F =
∑

P∈PFn

ulucky P (2)

NOTE. They do not have a direct proof of (2). They found each
of two GFs for lead and lucky, that are neither bijective.

∑
F∈Fn

ulead F
∑

P∈PFn

ulucky P

u
n−1∏
i=1

(i + (n − i + 1)u)

GS 2004 GS 2004
SS 2007

?



Objective

We’ll construct the nonrecursive bijection between forests and
parking functions such that

ϕ : Fn → PFn

F ↪→ P = ϕ(F)

inv(F) = jump(P)

lead(F) = lucky(P)

Theorem (S. 2008)
We have ∑

F∈Fn

qinv(F)ulead(F) =
∑

P∈PFn

qjump(P)ulucky(P).
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Diagram of ϕ

ϕ : F // T
θF //

��????????

��

D // P

I // C − I

<<yyyyyyyy

C

DD
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F

We consider F ∈ F14 for example. Of course, F is drawn in the
method we decide.
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15T Add 15-th vertex.

Add the vertex 15 at the top and change the forest F to the tree
T.
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15T

v

m

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do
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15T

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do
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15T

13

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do
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for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do
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for all v ∈ V do
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2 label m on v.
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order-preserving.
end do
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for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do
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5
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10 812

14

15D θF(v)

9

13

7

11

The decreasing tree is made after the process for every vertex.
But we cannot remake the original tree T from only tree D. So,
we need another tree induced from the unused information of T.



00

0
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3

0

01

0

0 0102

14I inv(T : v)

Label inv(T : v) on vertex v. In order to distinguish it from other
labels, we use the box (or blue color). And then, the trees D
and I can produce the original tree T.



10©2©

7©

6©

8©

5©

14©12©

1©

4©
13©11©9©3©

15©C indexed by post-order

Label the vertices indexed by post-order which is indicated by
circle (or brown color). The tree C is determined by only the
underlying graph, that is, its tree structure. This is the reason
why we define the method we draw the tree.
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D× (C − I)

The plain labels are induced by D.
The circled labels are induced by C subtracted by I.



And then, we delete the tree structure and sort by plain #.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5© 1©

Below the plain label 15, there is always circle label 1©. So, we
can omit it, and then second row (circle label) becomes a
parking function P of length 14.

P = 10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5©

Because all labels of C are distinct in worst case which means
every labels of I is all zero. Note that every permutation is a
parking function.



Summary of the map ϕ
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15T Add 15-th vertex.
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15D θF (v)
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15©C indexed by post-order
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D× (C − I)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P= 10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5© 1©



Diagram of ϕ−1

ϕ−1 : P
PA // PA(P) //

""EEEEEEEEE

��

D // T // F

I

@@��������

C



Inverse Map of ϕ

Let P = 10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5©
After adding the 1© at the end, 15 cars is parked as following by
the parking algorithm.

Parking Space 1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11© 12© 13© 14© 15©
Cars’ Number c 6 2 10 9 4 3 5 14 12 1 8 13 7 11 15
jump(P : c) 0 0 2 0 0 0 0 3 0 0 1 1 0 0 14

We draw a edge between car c and the closest car on its right
which is larger than c. If we consider 15 as a root, we can
rebuild the tree structure and find trees C, D and I.
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i-Leader in Forests, i-Lucky in PFs

Definition (i-Leader in Forests)
1 v = i-leader in F ⇔ inv(F; v) = i
2 leadi(F) = the # of i-leaders in F

Definition (i-Lucky in Parking Functions)
1 c = i-lucky in P⇔ jump(P; c) = i
2 luckyi(P) = the # of i-luckys in P



We define

inv(F) = (lead0(F), lead1(F), . . . , leadn(F))

= type of inversions of F

jump(P) = (lucky0(P), lucky1(P), . . . , luckyn(P))

= type of jumps of P
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inv(F) = (10, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

⇓ ϕ

(10, 2, 6, 5, 7, 1, 13, 10, 4, 1, 14, 9, 11, 5)

jump(P) = (10, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)



Theorem (S. 2008)
We have ∑

F∈Fn

qinv(F) =
∑

P∈PFn

qjump(P)

where qv = qv0
0 qv1

1 · · · qvn
n .

here



(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 2, 1)
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(1,1,1) (1,2,0) (2,1,0) (2,0,1)

(2,1,0) (3,0,0) (2,1,0) (3,0,0)
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Question
How many forests with a given type of inversions are there?

There are n! forests with type (n, 0, . . . , 0).
There is only one forest with (1, . . . , 1).
But I know nothing about general cases yet.
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Thank you for listening!
hshin@math.univ-lyon1.fr



Parking Algorithm

PA(p1, . . . , pn)

E1 = {1, . . . , n}

for i = 1, . . . , n do
qi = min(E1 \ {pi, . . . , n})
Ei+1 = Ei \ {qi}

end do
return (q1, . . . , qn)

here
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tree(F) = 3

⇓ ϕ

(10, 2, 6, 5, 7, 1, 13, 10, 4, 1, 14, 9, 11, 5)

Parking Space 1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11© 12© 13© 14©
Cars’ Number c 6 2 10 9 4 3 5 14 12 1 8 13 7 11

critical(P) = 3



Theorem (S. 2008)
Moreover, we have∑

F∈Fn

qinv(F)ctree(F) =
∑

P∈PFn

qjump(P)ccritical(P)

where qv = qv0
0 qv1

1 · · · qvn
n .

here
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