Forests and Parking Functions

Heesung Shin

Institut Camille Jordan
Université Claude Bernard Lyon-I, France

THE 61ST SEMINAIRE LOTHARINGIEN DE COMBINATOIRE
CURIA, PORTUGAL, SEP. 24, 2008

Outline

ﬂ Forests

e Parking Functions
e Statistics
° The Map ¢ : F, — PF,

e Further Result

!u“lne

ﬂ Forests

© O O

(Rooted Labeled) Forests

@}ynn 1

Figure: Forest on [1]

I1 I2 ®; ©2
2 1

Figure: Forests on [2]

@
\\m/ /-,_Lyun 1

./.\3. o1 IZ o1 IS ®2 I1

1 2 3 2 3

®?2 3| @3 1| @3 o 00
1 3 1 2 3

Figure: Forests on [3]

Lyon
*«‘@ Lyon 1

of forests on [1] 1
of forestson 2] = 3
of forestson [3] = 16
of forestson [4] = 125

of forests on [1
of forests on [2
of forests on [3

[i e WA

of forests on [4

of forests on [n]

Actually,

of forests on [n] = # of trees on [n + 1].

1=2°
3=3!
16 = 42
125 =5°

(n+1)"!

= Lyon
(@) Lyon 1

Inversion in Forests

inv(F;v) = +#{(v,u)| uis descendant of vand u < v}

inv(F) = Zinv(F;v)

For example,

inv(F;5) = #{(5,3),(54),(52)}=3
inv(F) = 17

= Lyon
"‘ﬁi*,‘ Lyon 1

1 2 2
2 1 3
310 1 3 2
X /.\1. f\ZO
1 2 3 1 3
2rz 3 0 1

./0\3. o1 Iz ®1 Is Y I1

1 2 3 2 3
2 0 1 0
Y Is ®3 I1 ®3 Iz o0 o0
1 3 if 123
1 0 1 |_o

Figure: inv on forests on [3]

Lyon
*«‘@ Lyon 1

!u“lne

o

@ Parking Functions

o
o

\\
‘Lyon 1
e g

S
Parking Rule

ONONONOCNORORGRONONTURDNE)

—=> one-way road —=

If you like parking at (7), then you could park at (o).
If you like parking at (1), then you could not park.

Parking Function

Suppose (p1, ..., pn) is @ sequence of favorite parking spaces
for each cars. If no car failed in parking, (p1,...,p.) is called
parking function.

For example,
(4,3,3,1,4) — [4]0[2][1]3]
is not a parking function.

(4,3,3,1,1) —[4][5]2][1]3]

is a parking function.

= Lyon
(@) Lyon 1
&)

Criteria

Criteria of Parking Function

q; < iforalli

where (q1, ..., g,) is rearrangement of (py, ..., p,) by order.

For example,
(4,3,3,1,4) — (1,3,3,4,4)

is not a parking function.
(4,3,3,1,1) — (1,1,3,3,4)

is a parking function.

7

=
@/ Lyon 1

Lyon

Figure: Parking Function with length 1

(1, 1)

(1,2)

(2,1

Figure: Parking Functions with length 2

e

N Lyon
J)) Lyon 1

(1,1,1) (1,1,2) (1,1,3) (1,2,1)
(1,2,2) (1,2,3) (1,3,1) (1,3,2)
(2,1,1) (2,1,2) (2,1,3) (2,2,1)
(2,3, 1) (3,1,1) (3,1,2) (3,2,1)

Figure: Parking Functions with length 3

= Lyon
t&' Lyon 1

Jump in Parking Functions

0 PA(pl 1111 pn) — (QI 1111 Qn)
where ¢; is the space parked actually by i-th car.

@ jump(P;i) =q; —p;
Q jump(P) = }_, jump(P; i)
Note that,

jump(P) =) jump(P;i)

= (qi+...+q.)—(p1+...+py)

= <n;1>—(p1+...+pn)

=
'\':\@: Lyon 1

Lyon

For example,

Q PA4,3,3,1,1) = (4,3,5,1,2)

Q jump(4,3,3,1,1;3)=5-3=2

Q jump(4,3,3,1,1)=0+0+2+0+1=3

(1,1,1) (1,1,2) (1,1,3) (1,2,1)

3 2 1 2
(1,2,2) (1,2,3) (1,3,1) (1,3,2)

1 0 1 0
(2,1,1) (2,1,2) (2,1,3) (2,2,1)

2 1 0 1
(2,3, 1) (3,1,1) (3,1,2) (3,2,1)

0 1 0 |_o

Lyon
“\&' Lyon 1 d
Figure: jump on Parking Functions with length 3

!u“lne

Q
o

e Statistics

Q
Q

\\
‘Lyon 1
e g

Generating Function
@ GF for inv on forests

Zqinv(F) - 1

FeF,

2 4™ = 24g

FeF,

Zqi“V(F) = 64+6g+347+¢
FeEF;

@ GF for jump on parking function

I e LR

PEPF,
Z qiumP(P) = 2+4¢

PEPF,

Z qjump(P) _ 6+6q+3q2—|—q3 on

=\
=N
PePF3) Lyon 1

One Map

@}ynn 1

One Map

(14,3,2,7,1,7,1,1,3,2,10,12,12,2)

=N
@’_Lynn 1

Theorem (G.Kreweras 1980)

Y gmr=} g (1)

FeF, PEPF,

NOTE. In 2004, R. Stanley notices that a nonrecursive bijection
between forests and parking functions would be greatly
preferred, which yields (1)

Lyon

7

=
@/ Lyon 1

Leader in Forests

Definition (Leader in Forests)

@ v=leaderin F & inv(F;v) = 0.
Q@ lead(F) =the # of leaders in F

= Lyon
@ Lyon 1 d

2 1 3 2
./0\3. o1 Iz ®1 Is Y I1
1 2 3 2 3
2 3 2 3
Y Is ®3 I1 ®3 Iz o0 o0
1 3 if 123
2 3 2 |_3

Figure: lead on forests on [3]

Lyon
*«‘@ Lyon 1

Lucky in PFs

Definition (Lucky in Parking Functions)

@ ¢ =luckyin P < jump(P;c) =0.
@ lucky(P) = the # of luckys in P

= Lyon
@\‘ Lyon 1 d

(1,1,1) (1,1,2) (1,1,3) (1,2,1)

1 1 2 2
(1,2,2) (1,2,3) (1,3,1) (1,3,2)

2 3 2 3
(2,1,1) (2,1,2) (2,1,3) (2,2,1)

2 2 3 2
(2,3, 1) (3,1,1) (3,1,2) (3,2,1)

3 2 3 |_3

Lyon
“\&' Lyon 1 d
Figure: lucky on Parking Functions with length 3

Theorem (Gessel-Seo 2004)

Z uleadF _ Z uluckyP (2)

FeF, PEPF,

NOTE. They do not have a direct proof of (2). They found each
of two GFs for lead and lucky, that are neither bijective.
n—1
ul Jli+ (n—i+ D)

i=1

GS 2007 Vs 2004
SS 2007
2
E uleadF ! E ulucky P

FEF, PEPF,

=
(i

=\
@/ Lyon 1

Lyon

Objective

We'll construct the nonrecursive bijection between forests and
parking functions such that

® F, — PF,
F — P=¢(F)
inv(F) = jump(P)
lead(F) = lucky(P)

Theorem (S. 2008)

We have

inv (lead um luck
D 4 = D gt

FeF, PEPF,

!u“lne

o
o
o

° The Map ¢ : F, — PF,

A
‘Lyon 1
e g

!llagram o' ®

We consider F € Fy4 for example. Of course, F is drawn in the
method we decide.

N Lyon
t&' Lyon 1

Add 15-th vertex.

Add the vertex 15 at the top and change the forest F to the tree

T.

= Lyon
t&' Lyon 1

forallv e Vdo
@ find the maximum label m on descendants of v.
Q label m on v.

© rearrange the other labels in descendants of v by
order-preserving.

end do

= Lyon
(=) Lyon 1

forallv e Vdo
@ find the maximum label m on descendants of v.
Q label m on v.

© rearrange the other labels in descendants of v by
order-preserving.

end do

e

N Lyon
J)) Lyon 1

forallv e Vdo
@ find the maximum label m on descendants of v.
Q label m on v.

© rearrange the other labels in descendants of v by
order-preserving.

end do

e

N Lyon
J)) Lyon 1

forallv e Vdo
@ find the maximum label m on descendants of v.
Q label m on v.

© rearrange the other labels in descendants of v by
order-preserving.

end do

e

N Lyon
J)) Lyon 1

forallv e Vdo
@ find the maximum label m on descendants of v.
Q label m on v.

© rearrange the other labels in descendants of v by
order-preserving.

end do

e

N Lyon
J)) Lyon 1

forallv e Vdo
@ find the maximum label m on descendants of v.
Q label m on v.

© rearrange the other labels in descendants of v by
order-preserving.

end do

= Lyon
(=) Lyon 1

forallv e Vdo
@ find the maximum label m on descendants of v.
Q label m on v.

© rearrange the other labels in descendants of v by
order-preserving.

end do

= Lyon
(=) Lyon 1

forallv e Vdo
@ find the maximum label m on descendants of v.
Q label m on v.

© rearrange the other labels in descendants of v by
order-preserving.

end do

e

N Lyon
J)) Lyon 1

forallv e Vdo
@ find the maximum label m on descendants of v.
Q label m on v.

© rearrange the other labels in descendants of v by
order-preserving.

end do

e

N Lyon
J)) Lyon 1

The decreasing tree is made after the process for every vertex.
But we cannot remake the original tree T from only tree D. So,
we need another tree induced from the unused information of T.

N Lyon
"\&' Lyon 1

I inv(T :v)

o]® [o]® [o]® @] e[

Label inv(T : v) on vertex v. In order to distinguish it from other
labels, we use the box (or blue color). And then, the trees D
and I can produce the original tree T.

N Lyon
“\&' Lyon 1

indexed by post-order

Label the vertices indexed by post-order which is indicated by
circle (or brown color). The tree C is determined by only the
underlying graph, that is, its tree structure. This is the reason
why we define the method we draw the tree.

N Lyon
"‘ﬁi*,‘ Lyon 1

Dx (C—-1) 15 @

The plain labels are induced by D.
The circled labels are induced by C subtracted by 1.

= Lyon
"‘ﬁi*,‘ Lyon 1

And then, we delete the tree structure and sort by plain #.

12345672891011121314/15
WOOOOOOWOOVOVWO|O

Below the plain label 15, there is always circle label (). So, we
can omit it, and then second row (circle label) becomes a
parking function P of length 14.

P=0o0O0O000WOOWOVLE

Because all labels of C are distinct in worst case which means
every labels of I is all zero. Note that every permutation is a
parking function.

= Lyon
(@) Lyon 1

Summary of the map ¢

1234567891011121314]15
P= WOOOOOOWOOWOOLEO|O

= Lyon
(@) Lyon 1

!!agram o' (p_l

1. p -~ PA(P) D T F
Ly
-
c

\\
‘Lyon 1
e g

Inverse Map of ¢

Let P = WOOOOO@OWOO®OWLE

After adding the () at the end, 15 cars is parked as following by
the parking algorithm.

ParkingSpace OO O OO OO E® O® WO ® O G | ®
Cars’' Numberc 6 2109 4 3 514121 8 13 7 11| 15

jump(P:¢) [o][o][2][o]|o]|0]|0][3][0] o] [1][1][0][0]

We draw a edge between car ¢ and the closest car on its right
which is larger than c. If we consider 15 as a root, we can
rebuild the tree structure and find trees C, D and I.

= Lyon
(@) Lyon 1
&)

Inverse Map of ¢

Let P = WOOOOO@OWOO®OWLE

After adding the () at the end, 15 cars is parked as following by
the parking algorithm.

ParkingSpace OO O ®H OO ® ©® WO ® O @ | ©

Cars’ Numberc 6 2109 4 3 514121 8 13 7 11| 15
jump(P: ¢) [0][o][2]]o][o][o][0][3][0][o][1][1][o][0]

We draw a edge between car ¢ and the closest car on its right
which is larger than c. If we consider 15 as a root, we can
rebuild the tree structure and find trees C, D and I.

= Lyon
(@) Lyon 1
&)

Further Result

\\
‘Lyon 1
e g

i-Leader in Forests, i-Lucky in PFs

Definition (i-Leader in Forests)

@ v=ileaderin F & inv(F;v) =i
@ lead;(F) = the # of i-leaders in F

Definition (i-Lucky in Parking Functions)

@ c=i-luckyin P < jump(P;c) =i
@ lucky,(P) =the # of i-luckys in P

=
(

@ Lyon 1

Lyon

We define

inv(F) = (leady(F),lead;(F),..., lead,(F))
= type of inversions of F

jump(P) = (luckyy(P),lucky,(P), ..., lucky, (P))
= type of jumps of P

@}ynn 1

inv(F) = (10,2,1,1,0,0,0,0,0,0,0,0,0,0)
J o

(10,2,6,5,7,1,13,10,4,1,14,9, 11, 5)
jump(P) = (10,2, 1,1,0,0,0,0,0,0,0,0,0,0)

= Lyon
"‘ﬁi*,‘ Lyon 1

Theorem (S. 2008)

We have

Z qinv(F) _ Z qjump(P)

FeF, PEPF,

where q" = q)'q}' - - q).

Lyon

=/

%
@JLyon‘l

(1,1,1) (1,1,2) (1,1,3) (1,2,1)
3 2 1 3
1|(1,1,1) 1|(1,2,0) 2|21o 2[(2,0,1)
(1,2,2) (1,2,3) (1,3,1) (1,3,2)
2 1 3 @2 0?2
51 E ¢ 3
3 [2,1,0) 3 [(3,0,0) [21,0) (3,0,0)
(2,1,1) (2,1,2) (2,1,3) (2,2,1)
3 2 1 e3 @2
06.\01 oé.\ﬂ 06.\02 o1
| (2,0,1) | (2,1,0) | (3,0,0) (2,1,0)
(2,3,1) (3,1,1) (3,1,2) (3,2,1)
3 o1 :3 o 2 @1 L 3)
e>2 3 3 2 1
| (3,0,0) | (2,1,0) | (3,0,0) (3,0,0)

N Lyon
"\&' Lyon 1

How many forests with a given type of inversions are there?

There are n! forests with type (n,0, ..., 0).
There is only one forest with (1,...,1).
But | know nothing about general cases yet.

Lyon

7

@J Lyon 1

A3

O
References

[@ Ira M. Gessel and Seunghyun Seo, A refinement of Cayley’s
formula for trees, Electron. J. Combin. 11 (2004/06), no. 2,
Research Paper 27, 23 pp. (electronic). MR MR2224940
(2006m:05010)

ﬁ G. Kreweras, Une famille de polynémes ayant plusieurs
propriétés énumeratives, Period. Math. Hungar. 11 (1980), no. 4,
309-320. MR MR603398 (82f:05007)

@ Seunghyun Seo and Heesung Shin, A generalized enumeration
of labeled trees and reverse Priifer algorithm, J. Combin. Theory
Ser. A 114 (2007), no. 7, 1357-1361. MR MR2353128

[@ Richard P. Stanley, An introduction to hyperplane arrangements,
Geometric combinatorics, IAS/Park City Math. Ser., vol. 13,
Amer. Math. Soc., Providence, RI, 2007, pp. 389—-496. MR
MR2383131

_’ Lyon 1 .

Thank you for listening!

Parking Algorithm

PA(p1, ..., Pn)
@ E = {1 n}
@ fori=1,..., n do

° Ei 1 =E\{qi}
end do
@ return (¢, ..., qn)

(10,2,6,5,7,1,13,10,4,1,14,9,11,5)
ParkingSpace OOOOOOOOOLOL OO ®
2109 435 1 8137

Cars’ Numberc 6

critical(P) = 3

=\
(@) Lyon 1

Lyon

Theorem (S. 2008)

	Forests
	Parking Functions
	Statistics
	The Map :Fn PFn
	Further Result
	Appendix

