
Forests and Parking Functions

Heesung Shin

Institut Camille Jordan
Université Claude Bernard Lyon-I, France

THE 61ST SÉMINAIRE LOTHARINGIEN DE COMBINATOIRE
CURIA, PORTUGAL, SEP. 24, 2008

Outline

1 Forests

2 Parking Functions

3 Statistics

4 The Map ϕ : Fn → PFn

5 Further Result

Outline

1 Forests

2 Parking Functions

3 Statistics

4 The Map ϕ : Fn → PFn

5 Further Result

(Rooted Labeled) Forests

12

3

4

5

6

78

9

10
11121314

1

Figure: Forest on [1]

1

2

2

1 1 2

Figure: Forests on [2]

1

2

3

1 2

3

1 3

2

2 1

3

2 3

1

3 1

3

3 2

1

3

1

2

3

2

1

1

3

2

2

1

3

2

3

1

1

2 3

2

1 3

3

1 2

1 2 3

Figure: Forests on [3]

of forests on [1] = 1 = 20

of forests on [2] = 3 = 31

of forests on [3] = 16 = 42

of forests on [4] = 125 = 53

...
of forests on [n] = (n + 1)n−1

Actually,

of forests on [n] = # of trees on [n + 1].

of forests on [1] = 1 = 20

of forests on [2] = 3 = 31

of forests on [3] = 16 = 42

of forests on [4] = 125 = 53

...
of forests on [n] = (n + 1)n−1

Actually,

of forests on [n] = # of trees on [n + 1].

Inversion in Forests

inv(F; v) = # {(v, u)| u is descendant of v and u < v}

inv(F) =
∑

v

inv(F; v)

For example,

12

3

4

5

6

78

9

10
11121314

inv(F; 5) = # {(5, 3), (5, 4), (5, 2)} = 3

inv(F) = 7

1

2

3

1 2

3

1 3

2

2 1

3

2 3

1

3 1

3

3 2

1

3

1

2

3

2

1

1

3

2

2

1

3

2

3

1

1

2 3

2

1 3

3

1 2

1 2 3

0 1 1 2

2 3 0 1

2 0 1 0

1 0 1 0

Figure: inv on forests on [3]

Outline

1 Forests

2 Parking Functions

3 Statistics

4 The Map ϕ : Fn → PFn

5 Further Result

Parking Rule

1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11© 12©

one-way road

If you like parking at 7©, then you could park at 10©.
If you like parking at 11©, then you could not park.

Parking Function

Suppose (p1, . . . , pn) is a sequence of favorite parking spaces
for each cars. If no car failed in parking, (p1, . . . , pn) is called
parking function.
For example,

(4, 3, 3, 1, 4)→ 4 ∅ 2 1 3

is not a parking function.

(4, 3, 3, 1, 1)→ 4 5 2 1 3

is a parking function.

Criteria

Criteria of Parking Function

qi 6 i for all i

where (q1, . . . , qn) is rearrangement of (p1, . . . , pn) by order.

For example,
(4, 3, 3, 1, 4)→ (1, 3, 3, 4, 4)

is not a parking function.

(4, 3, 3, 1, 1)→ (1, 1, 3, 3, 4)

is a parking function.

(1)

Figure: Parking Function with length 1

(1, 1) (1, 2) (2, 1)

Figure: Parking Functions with length 2

(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 2, 1)

(1, 2, 2) (1, 2, 3) (1, 3, 1) (1, 3, 2)

(2, 1, 1) (2, 1, 2) (2, 1, 3) (2, 2, 1)

(2, 3, 1) (3, 1, 1) (3, 1, 2) (3, 2, 1)

Figure: Parking Functions with length 3

Jump in Parking Functions

1 PA(p1, . . . , pn) = (q1, . . . , qn)

where qi is the space parked actually by i-th car. here

2 jump(P; i) = qi − pi

3 jump(P) =
∑

i jump(P; i)

Note that,

jump(P) =
∑

i

jump(P; i)

= (q1 + . . . + qn) − (p1 + . . . + pn)

=

(
n + 1

2

)
− (p1 + . . . + pn)

For example,
1 PA(4, 3, 3, 1, 1) = (4, 3, 5, 1, 2)

2 jump(4, 3, 3, 1, 1; 3) = 5 − 3 = 2
3 jump(4, 3, 3, 1, 1) = 0 + 0 + 2 + 0 + 1 = 3

(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 2, 1)

(1, 2, 2) (1, 2, 3) (1, 3, 1) (1, 3, 2)

(2, 1, 1) (2, 1, 2) (2, 1, 3) (2, 2, 1)

(2, 3, 1) (3, 1, 1) (3, 1, 2) (3, 2, 1)

3 2 1 2

0101

1012

0010

Figure: jump on Parking Functions with length 3

Outline

1 Forests

2 Parking Functions

3 Statistics

4 The Map ϕ : Fn → PFn

5 Further Result

Generating Function
GF for inv on forests∑

F∈F1

qinv(F) = 1

∑
F∈F2

qinv(F) = 2 + q

∑
F∈F3

qinv(F) = 6 + 6q + 3q2 + q3

GF for jump on parking function∑
P∈PF1

qjump(P) = 1

∑
P∈PF2

qjump(P) = 2 + q

∑
P∈PF3

qjump(P) = 6 + 6q + 3q2 + q3

One Map

19

14

6

5

4

7 8

2

10
11 13123

⇓

(_, _, _, _, _, _, _, _, _, _, _, _, _, _)

One Map

19

14

6

5

4

7 8

2

10
11 13123

0

⇓

(_, _, _, _, _, _, _, _, _, _, _, _, _, _)

One Map

19

14

6

5

4

7 8

2

10
11 13123

0

⇓

(_, _, _, _, 1, _, 1, 1, _, _, _, _, _, _)

One Map

19

14

6

5

4

7 8

2

10
11 13123

0

⇓

(_, _, 2, _, 1, _, 1, 1, _, 2, _, _, _, 2)

One Map

19

14

6

5

4

7 8

2

10
11 13123

0

⇓

(_, 3, 2, _, 1, _, 1, 1, 3, 2, _, _, _, 2)

One Map

19

14

6

5

4

7 8

2

10
11 13123

0

⇓

(_, 3, 2, _, 1, _, 1, 1, 3, 2, _, _, _, 2)

One Map

19

14

6

5

4

7 8

2

10
11 13123

⇓

(14, 3, 2, 7, 1, 7, 1, 1, 3, 2, 10, 12, 12, 2)

Theorem (G.Kreweras 1980)∑
F∈Fn

qinv(F) =
∑

P∈PFn

q(n+1
2)−|P| (1)

NOTE. In 2004, R. Stanley notices that a nonrecursive bijection
between forests and parking functions would be greatly
preferred, which yields (1)

Leader in Forests

Definition (Leader in Forests)
1 v = leader in F ⇔ inv(F; v) = 0.

2 lead(F) = the # of leaders in F

1

2

3

1 2

3

1 3

2

2 1

3

2 3

1

3 1

3

3 2

1

3

1

2

3

2

1

1

3

2

2

1

3

2

3

1

1

2 3

2

1 3

3

1 2

1 2 3

3 2 2 1

2 1 3 2

2 3 2 3

2 3 2 3

Figure: lead on forests on [3]

Lucky in PFs

Definition (Lucky in Parking Functions)
1 c = lucky in P⇔ jump(P; c) = 0.

2 lucky(P) = the # of luckys in P

(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 2, 1)

(1, 2, 2) (1, 2, 3) (1, 3, 1) (1, 3, 2)

(2, 1, 1) (2, 1, 2) (2, 1, 3) (2, 2, 1)

(2, 3, 1) (3, 1, 1) (3, 1, 2) (3, 2, 1)

1 1 2 2

3232

2322

3323

Figure: lucky on Parking Functions with length 3

Theorem (Gessel-Seo 2004)∑
F∈Fn

ulead F =
∑

P∈PFn

ulucky P (2)

NOTE. They do not have a direct proof of (2). They found each
of two GFs for lead and lucky, that are neither bijective.

∑
F∈Fn

ulead F
∑

P∈PFn

ulucky P

u
n−1∏
i=1

(i + (n − i + 1)u)

GS 2004 GS 2004
SS 2007

?

Objective

We’ll construct the nonrecursive bijection between forests and
parking functions such that

ϕ : Fn → PFn

F ↪→ P = ϕ(F)

inv(F) = jump(P)

lead(F) = lucky(P)

Theorem (S. 2008)
We have ∑

F∈Fn

qinv(F)ulead(F) =
∑

P∈PFn

qjump(P)ulucky(P).

Outline

1 Forests

2 Parking Functions

3 Statistics

4 The Map ϕ : Fn → PFn

5 Further Result

Diagram of ϕ

ϕ : F // T
θF //

��????????

��

D // P

I // C − I

<<yyyyyyyy

C

DD

12

3

4

5

6

78

9

10
11121314

F

We consider F ∈ F14 for example. Of course, F is drawn in the
method we decide.

12

3

4

5

6

78

9

10
11121314

15T Add 15-th vertex.

Add the vertex 15 at the top and change the forest F to the tree
T.

12

3

4

5

6

78

9

10
11121314

15T

v

m

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do

12

3

4

5

6

713

9

10
1181214

15T

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do

12

3

4

5

6

713

9

10
1181214

15T

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do

12

6

3

5

4

713

9

10
1181214

15T

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do

12

6

3

5

4

713

9

10
1181214

15T

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do

12

6

3

5

4

7

9

10
1181214

15T

13

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do

126 3

5

4

7

10 11812

14

15T

13

9

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do

126 3

5

4

7

10 11812

14

15T

13

9

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do

126 3

5

4

11

10 7812

14

15T

13

9

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do

126 3

5

4

10 812

14

15D θF(v)

9

13

7

11

The decreasing tree is made after the process for every vertex.
But we cannot remake the original tree T from only tree D. So,
we need another tree induced from the unused information of T.

00

0

0

3

0

01

0

0 0102

14I inv(T : v)

Label inv(T : v) on vertex v. In order to distinguish it from other
labels, we use the box (or blue color). And then, the trees D
and I can produce the original tree T.

10©2©

7©

6©

8©

5©

14©12©

1©

4©
13©11©9©3©

15©C indexed by post-order

Label the vertices indexed by post-order which is indicated by
circle (or brown color). The tree C is determined by only the
underlying graph, that is, its tree structure. This is the reason
why we define the method we draw the tree.

12 34

5

6

78910

11

12

1314

15 1©

5©

1©

1© 2© 5© 6©

9©

10©

10© 13©

14©11©

7©4©

D× (C − I)

The plain labels are induced by D.
The circled labels are induced by C subtracted by I.

And then, we delete the tree structure and sort by plain #.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5© 1©

Below the plain label 15, there is always circle label 1©. So, we
can omit it, and then second row (circle label) becomes a
parking function P of length 14.

P = 10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5©

Because all labels of C are distinct in worst case which means
every labels of I is all zero. Note that every permutation is a
parking function.

Summary of the map ϕ

12

3

4

5

6

78

9

10
11121314

F

12

3

4

5

6

78

9

10
11121314

15T Add 15-th vertex.

12

5

3

14

4

1113

6

9
781210

15D θF (v)

00

0

0

3

0

01

0

0 0102

14I inv(T : v)

10©2©

7©

6©

8©

5©

14©12©

1©
4©

13©11©9©3©

15©C indexed by post-order

12 34

5

6

78910

11

12

1314

15 1©

5©

1©

1© 2© 5© 6©

9©

10©

10© 13©

14©11©

7©4©

D× (C − I)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P= 10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5© 1©

Diagram of ϕ−1

ϕ−1 : P
PA // PA(P) //

""EEEEEEEEE

��

D // T // F

I

@@��������

C

Inverse Map of ϕ

Let P = 10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5©
After adding the 1© at the end, 15 cars is parked as following by
the parking algorithm.

Parking Space 1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11© 12© 13© 14© 15©
Cars’ Number c 6 2 10 9 4 3 5 14 12 1 8 13 7 11 15
jump(P : c) 0 0 2 0 0 0 0 3 0 0 1 1 0 0 14

We draw a edge between car c and the closest car on its right
which is larger than c. If we consider 15 as a root, we can
rebuild the tree structure and find trees C, D and I.

Inverse Map of ϕ

Let P = 10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5©
After adding the 1© at the end, 15 cars is parked as following by
the parking algorithm.

Parking Space 1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11© 12© 13© 14© 15©
Cars’ Number c 6 2 10 9 4 3 5 14 12 1 8 13 7 11 15
jump(P : c) 0 0 2 0 0 0 0 3 0 0 1 1 0 0 14

We draw a edge between car c and the closest car on its right
which is larger than c. If we consider 15 as a root, we can
rebuild the tree structure and find trees C, D and I.

Outline

1 Forests

2 Parking Functions

3 Statistics

4 The Map ϕ : Fn → PFn

5 Further Result

i-Leader in Forests, i-Lucky in PFs

Definition (i-Leader in Forests)
1 v = i-leader in F ⇔ inv(F; v) = i
2 leadi(F) = the # of i-leaders in F

Definition (i-Lucky in Parking Functions)
1 c = i-lucky in P⇔ jump(P; c) = i
2 luckyi(P) = the # of i-luckys in P

We define

inv(F) = (lead0(F), lead1(F), . . . , leadn(F))

= type of inversions of F

jump(P) = (lucky0(P), lucky1(P), . . . , luckyn(P))

= type of jumps of P

12

3

4

5

6

78

9

10
11121314

inv(F) = (10, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

⇓ ϕ

(10, 2, 6, 5, 7, 1, 13, 10, 4, 1, 14, 9, 11, 5)

jump(P) = (10, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Theorem (S. 2008)
We have ∑

F∈Fn

qinv(F) =
∑

P∈PFn

qjump(P)

where qv = qv0
0 qv1

1 · · · qvn
n .

here

(1, 1, 1) (1, 1, 2) (1, 1, 3) (1, 2, 1)

(1, 2, 2) (1, 2, 3) (1, 3, 1) (1, 3, 2)

(2, 1, 1) (2, 1, 2) (2, 1, 3) (2, 2, 1)

(2, 3, 1) (3, 1, 1) (3, 1, 2) (3, 2, 1)

(1,1,1) (1,2,0) (2,1,0) (2,0,1)

(2,1,0) (3,0,0) (2,1,0) (3,0,0)

(2,0,1) (2,1,0) (3,0,0) (2,1,0)

(3,0,0) (2,1,0) (3,0,0) (3,0,0)

3
2
1

2
3
1

1
3
2

3
1
2

2
1
3

2
3

1 3
1

2 1
3

2

3
2 1

2
3 1

1
3 2

3
1
2

3
2
1 2

3
13

2
1

3 2 1

Question
How many forests with a given type of inversions are there?

There are n! forests with type (n, 0, . . . , 0).
There is only one forest with (1, . . . , 1).
But I know nothing about general cases yet.

References

Ira M. Gessel and Seunghyun Seo, A refinement of Cayley’s
formula for trees, Electron. J. Combin. 11 (2004/06), no. 2,
Research Paper 27, 23 pp. (electronic). MR MR2224940
(2006m:05010)

G. Kreweras, Une famille de polynômes ayant plusieurs
propriétés énumeratives, Period. Math. Hungar. 11 (1980), no. 4,
309–320. MR MR603398 (82f:05007)

Seunghyun Seo and Heesung Shin, A generalized enumeration
of labeled trees and reverse Prüfer algorithm, J. Combin. Theory
Ser. A 114 (2007), no. 7, 1357–1361. MR MR2353128

Richard P. Stanley, An introduction to hyperplane arrangements,
Geometric combinatorics, IAS/Park City Math. Ser., vol. 13,
Amer. Math. Soc., Providence, RI, 2007, pp. 389–496. MR
MR2383131

Thank you for listening!
hshin@math.univ-lyon1.fr

Parking Algorithm

PA(p1, . . . , pn)

E1 = {1, . . . , n}

for i = 1, . . . , n do
qi = min(E1 \ {pi, . . . , n})
Ei+1 = Ei \ {qi}

end do
return (q1, . . . , qn)

here

12

3

4

5

6

78

9

10
11121314

tree(F) = 3

⇓ ϕ

(10, 2, 6, 5, 7, 1, 13, 10, 4, 1, 14, 9, 11, 5)

Parking Space 1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11© 12© 13© 14©
Cars’ Number c 6 2 10 9 4 3 5 14 12 1 8 13 7 11

critical(P) = 3

Theorem (S. 2008)
Moreover, we have∑

F∈Fn

qinv(F)ctree(F) =
∑

P∈PFn

qjump(P)ccritical(P)

where qv = qv0
0 qv1

1 · · · qvn
n .

here

	Forests
	Parking Functions
	Statistics
	The Map :Fn PFn
	Further Result
	Appendix

