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Abstract. We use a classical correspondence between set partitions and rook place-
ments on the triangular board to give a quick picture understanding of the “reduction
identity”

|P(d)(n, k)| = |P(d−j)(n − j, k − j)|,

where P(d)(n, k) is the collection of all set partitions of [n] := {1, 2, . . . , n} into k blocks
such that for any two distinct elements x, y in the same block, we have |y − x| ≥ d. We
also generalize an identity of Klazar on d-regular noncrossing partitions. Namely, we
show that the number of d-regular ℓ-noncrossing partitions of [n] is equal to the number
of (d − 1)-regular enhanced ℓ-noncrossing partitions of [n − 1].

1. Introduction

A partition of [n]:={1, 2, . . . , n} is a collection of disjoint and nonempty subsets of [n],
called blocks, whose union is [n]. We will denote by P(n, k) the set of partitions of [n]
into k blocks and by Pn the set of all partitions of [n]. It is well-known that |Pn| = Bn and
|P(n, k)| = S(n, k) where, as usual, |. | denotes cardinality, Bn is the n-th Bell number,
and S(n, k) is the (n, k)-th Stirling number of the second kind [4].

Given a positive integer d, a partition of [n] is said to be d-regular, if for any two distinct

elements x, y in the same block, we have |y − x| ≥ d. We will denote by P(d)
n the set of

d-regular partitions of [n] and by P(d)(n, k) the set of d-regular partitions of [n] into k

blocks. Note that Pn = P(1)
n and P(n, k) = P(1)(n, k). It seems that d-regular partitions

were first considered by Prodinger [11] who called them d-Fibonacci partitions. A natural
question that arises is: how many d-regular partitions of [n] are there? Prodinger [11]
solved this question by showing that the number of d-regular partitions of [n] equals the
number of partitions of [n − d + 1], that is

|P(d)
n | = |Pn−d+1| = Bn−d+1. (1.1)

Later, Yang [14] obtained a refinement of Prodinger’s result by showing (see the proof of
[14, Theorem 2]) that the number of d-regular partitions in P(n, k) is equal to the number
of partitions in P(n − d + 1, k − d + 1), i.e.,

|P(d)(n, k)| = |P(n − d + 1, k − d + 1)| = S(n − d + 1, k − d + 1). (1.2)
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Note that Prodinger’s “algebraic proof” [11] of (1.1) can be extended to prove (1.2), and
that Chu and Wei [3] have recently rediscovered (1.2) with a generating function proof.
Zeng [15] also provided a recursive proof of (1.2). At this point, it is legitimate to ask of

a bijection between P(d)
n and Pn−d+1. In the case d = 2, Prodinger [11] has given such a

bijection that he attributed to F. J. Urbanek. He also said that Urbanek’s bijection can
be extended to arbitrary d, but he adds that “this is more complicated to describe and

therefore is omitted.” Yang [14] also gave another bijection in the case d = 2. The unique
explicit bijective explanation of (1.2) that we have found in the literature is due to Chen
et al. [1] by means of a simple reduction algorithm which transforms d-regular partitions
of [n] into k blocks to (d − 1)-regular partitions of [n − 1] into k − 1 blocks.

The main purpose of this short note is to give a quick “picture understanding” of (1.2).
More precisely, we will show in Section 2 that the model of rook placements on the
triangular board for set partitions provides an elegant and quick explanation of (1.2).
It must be noted that, although it appears that our picture proof is equivalent to the
reduction algorithm of Chen et al. [1], the “picture approach” has its own merit. In
particular, we hope that this approach lets the reader never forget why these identities
hold. We will also generalize an identity of Klazar on the enumeration of noncrossing
d-regular partitions in Section 3. Finally, we will conclude the paper by studying the
“behavior of nestings under reduction.”

2. Picture proof of (1.2)

The n-th triangular board ∆n is the board consisting of n−1 columns with n−1 cells in
the first (leftmost) column, n − 2 in the second, . . . , and 1 in the rightmost column. For
convenience, we also join pending edges at the right and at the top of ∆n. See Figure 1
for an illustration of ∆9 (the rooks should be ignored at this point). A rook placement is
a way of placing non-attacking rooks on such a board, i.e., putting no two rooks in the
same row or column. Let RR(n, k) be the set of all rook placements of n − k rooks on
the triangular shape ∆n. Figure 1 gives an example of an element of RR(9, 4), where a
rook is indicated by an R.

R

R

R

R
R

Figure 1. A rook placement

It is well-known that |RR(n, k)| = S(n, k). We will show this with a classical bijection
(see e.g. [13, p.75]). Define

∆ : P(n, k) 7→ RR(n, k)
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as follows. First, label the rows (including the pending edge) of ∆n from bottom to top
in decreasing order by n, n− 1, . . . , 1 and columns (including the pending edge) from left
to right in increasing order by 1, 2, . . . , n. Then, if π ∈ P(n, k), we construct ∆(π) by
placing a rook in the cell on the column labeled by i and the row labeled by j if and only
if (i, j) is an arc of π, that is i < j, i and j belong to the same block B of π, and there
are no element in B between i and j. An illustration is given in Figure 2.
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Figure 2. The rook placement ∆(1 9/2 6 10/3/4 8/5/7 11).

It is easy to show that the map ∆ is well defined and bijective. Moreover, this map
“transforms” the d-regularity into a nice property of rook placements. Let RR(d)(n, k) be
the set of rook placements in RR(n, k) such that there are no rooks in the (d−1) highest

cells of each column. Note that RR(n, k) = RR(1)(n, k). Then it is immediate to check
the following result.

Proposition 2.1. The map ∆ establishes a bijection between P(d)(n, k) and RR(d)(n, k).
In particular, we have |RR(d)(n, k)| = |P(d)(n, k)|.

As an illustration, a partition π of [9] is 3-regular if and only if its corresponding
placement ∆(π) contains no rook in the colored zone of ∆9 drawn in the following picture.

For instance, the partition π1 = 1 9/2 6 10/3/4 8/5/7 11 belongs to P(4)(11, 6), and

the corresponding rook placement ∆(π1) (drawn in Figure 2) belongs to RR(4)(11, 6).
Similarly, the partition π2 = 1 7 9/2 4 6 8/3/5 belongs to P(2)(9, 4) and the corresponding

rook placement ∆(π) (drawn in Figure 1) belongs to RR(2)(9, 4).
It is now immediate to recover (1.2). Indeed, invoking Proposition 2.1, it suffices to

show that |RR(d)(n, k)| = |RR(n − d + 1, k − d + 1)|, which is obvious. For d ≥ 2 and
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1 ≤ j ≤ d − 1, let
Ψj : RR(d)(n, k) 7→ RR(d−j)(n − j, k − j)

the map which associates to a placement ρ ∈ RR(n, k) the rook placement Ψj(ρ) obtained
from ρ by deleting the j highest cells on each column of ρ. An illustration is given in
Figure 3.
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-

Ψ2
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Figure 3. The mapping Ψ2.

It is immediate to check that the map Ψj is well defined and establishes a bijection

between RR(d)(n, k) and RR(d−j)(n − j, k − j), and thus |RR(d)(n, k)| = |RR(d−j)(n −
j, k − j)|, i.e., by Proposition 2.1,

|P(d)(n, k)| = |P(d−j)(n − j, k − j)|, (2.1)

which yields (in fact is equivalent) to (1.2) (set j = d − 1).

In the paper [1], Chen et al. have introduced a “reduction algorithm” (described in the
next section), Φ, which transforms bijectively d-regular partitions in P(n, k) to (d − 1)-
regular partitions in P(n−1, k−1). It is worth noting that the map Ψ1 is in fact equivalent
to the reduction algorithm Φ, since it can be factorized as

Ψ1 = ∆ ◦ Φ ◦ ∆−1. (2.2)

However, as explained in the introduction, the “picture approach” leads to a quick and
obvious explanation of (1.2) and (1.1).

3. Reduction of ℓ-noncrossing d-regular partitions

A partition of [n] is said to be noncrossing (or abab-free) if whenever four elements
1 ≤ a < b < c < d ≤ n are such that a, c are in the same block and b, d are in the
same block, then the two blocks coincide. The terminology corresponds to the fact that
a noncrossing partition admits a linear representation in which the arcs intersect only at
elements of [n]. Recall that the linear representation, sometimes called standard repre-

sentation, of a partition of [n] is the graph obtained by arranging the integers 1, 2, . . . , n
on a line in increasing order from left to right and then joining two integers i and j by an
arc drawn above the line if and only if i and j belong to the same block B and there are
no elements in B between i and j (see Figure 4).

In the paper [7], Klazar has investigated noncrossing d-regular partitions, more precisely

their behavior “under reduction.” Denote by NC(d)(n, k) the set of noncrossing partitions
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1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Figure 4. Two partitions in linear representation. Left : 1 6 7/2 3 5 8/4 is
crossing, Right : 1/2 5 6/3 4/7 8 is noncrossing.

in P(d)(n, k), and set NC(n, k) := NC(1)(n, k), so that NC(n, k) is the collection of non-
crossing partitions of [n] into k blocks. It is well known that the number of noncrossing
partitions of [n] is given by the n-th Catalan number Cn := 1

n+1

(

2n

n

)

and that

|NC(n, k)| = N(n, k),

where N(n, k) is the (n, k)-th Narayana number

N(n, k) =
1

k

(

n

k − 1

)(

n − 1

k − 1

)

.

A set partition is said to be poor if each part has at most two elements. Let NC(d)
≤2(n, k)

be the set of all poor partitions in NC(d)(n, k). Then Klazar proved, first with a generating
function proof [7], later bijectively [8], that

|NC(d)(n, k)| = |NC(d−1)
≤2 (n − 1, k − 1)|. (3.1)

An interesting aspect of (3.1) is that the enumeration of NC(d)(n, k) reduces to the

enumeration of NC(d−1)
≤2 (n − 1, k − 1), the latter being easier than the first. It is worth

noting that Klazar [7, Theorem 2.6] uses it to write |NC(d)(n, k)| as a sum of binomial
coefficients. Note that the specialization d = 2 of (3.1) was first obtained by Simion
and Ullman [12]. By using terminology introduced recently by Chen et al. [2], we now
establish a generalization of (3.1).

Let π be a partition of [n]. A sequence (i1, j1), (i2, j2), . . . , (ir, jr) of arcs of π is said to
be an enhanced r-crossing if i1 < i2 < · · · < ir ≤ j1 < j2 < · · · < jr; if in addition ir < j1,
it is an r-crossing. Illustrations are given in Figure 5. Note that an r-crossing is just a
particular enhanced r-crossing but the reverse is not true in general.

i1 i2 ir−1 ir = j1 j2 jr−1jr

....... .......

i2

(a)

i1 i2 ir−1ir j1 j2 jr−1jr

....... .......

i2

(b)

Figure 5. (a)(b): enhanced r-crossing, (b): r-crossing.

A set partition with no r-crossing (respectively, enhanced r-crossing) is called r-non-

crossing (respectively, enhanced r-noncrossing). With this terminology, a set partition
is noncrossing if and only if it is 2-noncrossing; it is poor and noncrossing if and only if
it is enhanced 2-noncrossing. In particular, Klazar’s result can be rewritten as follows:
The number of 2-noncrossing partitions in P(d)(n, k) is equal to the number of enhanced
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2-noncrossing partitions in P(d−1)(n− 1, k − 1). Therefore, it is the particular case r = 2
of the following result.

Theorem 3.1. Let r, d be two integers ≥ 2. The following quantities are equal:

• the number of r-noncrossing partitions in P(d)(n, k),
• the number of enhanced r-noncrossing partitions in P(d−1)(n − 1, k − 1).

The reduction algorithm of Chen et al., Φ, provides a simple bijective proof of Klazar’s
result (3.1), and this is the main result of the paper [1]. This proof can be easily generalized
to prove Theorem 3.1.

First, recall the original description of the reduction algorithm of Chen et al. [1],

Φ : P(d)(n, k) 7→ P(d−1)(n − 1, k − 1), d ≥ 2.

If π ∈ P(d)(n, k), then construct the linear representation of τ = Φ(π) from the linear
representation of π by:

• Replacing each arc (i, j) of the linear representation of π by the arc (i, j − 1).
• Deleting the vertex n.

An example is given in Figure 6. Identifying a set partition with its linear representa-
tion, it is not difficult to see that Φ : P(d)(n, k) 7→ P(d−1)(n− 1, k − 1) is well defined and
bijective, and that Φ and Ψ1 are related by the identity (2.2).

1 2 3 4 5 6 7 8 9 10 11

-
Φ

1 2 3 4 5 6 7 8 9 10

Figure 6. The map Φ sends 1 9/2 6 10/3/4 8/5/7 11 to 1 8/2 5 /3/4 7 10/6 9.

Proof of Theorem 3.1. It suffices to show that the reduction algorithm Φ establishes
a bijection between r-noncrossing partitions of P(d)(n, k) and enhanced r-noncrossing
partitions of P(d−1)(n−1, k−1). Since Φ is a bijection between P(d)(n, k) and P(d−1)(n−
1, k − 1), it suffices to show that a partition π is r-noncrossing if and only if Φ(π) is
enhanced r-noncrossing.

Let π be a set partition of [n] and set τ = Φ(π). Suppose τ has an enhanced r-crossing,
that is, there exists a sequence (i1, j1), . . . , (ir, jr) of arcs of τ such that i1 < i2 < · · · < ir ≤
j1 < j2 < · · · < jr. By definition of Φ, the pairs (i1, j1+1), . . . , (ir, jr+1) are arcs of π, and
they thus form an r-crossing of π (since i1 < i2 < · · · < ir < j1+1 < j2 +1 < · · · < jr +1).
We thus have proved that Φ(π) has an enhanced r-crossing implies that π has an r-
crossing, or, equivalently, π is r-noncrossing implies that Φ(π) is enhanced r-noncrossing.
The converse can be justified in the same manner.

�

4. Concluding remarks

A natural partner of the notion of crossing is, by several aspects (see e.g. [2, 6, 9]), the
notion of nesting. It is thus natural to study the “behavior of nestings under reduction.”
Let π be a partition of [n]. A sequence (i1, j1), (i2, j2), . . . , (ir, jr) of arcs of π is said to be
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an r-nesting if i1 < i2 < · · · < ir < jr < · · · < j2 < j1. This means a subgraph as drawn
in Figure 7.

i1 i2 ir−1ir jr jr−1 j2 j1

....... .......

Figure 7. An r-nesting

A set partition with no r-nesting is called r-nonnesting. We will denote by NN (d)(n, k)

the set of 2-nonnesting partitions in P(d)(n, k). Set NN (n, k) := NN (1)(n, k), so that
NN (n, k) is just the set of 2-nonnesting partitions, also called nonnesting partitions,
of [n] into k blocks. It is well known that

|NN (n, k)| = |NC(n, k)| = N(n, k),

where N(n, k) is the (n, k)-th Narayana number.

Theorem 4.1. Let r, d be two integers ≥ 2. Then, for any nonnegative integer j ≤ d−1,
the following quantities are equal:

• the number of r-nonnesting partitions in P(d)(n, k),
• the number of r-nonnesting partitions in P(d−j)(n − j, k − j).

Consequently, setting j = d−1 in Theorem 4.1, we get that the number of r-nonnesting
partitions in P(d)(n, k) equals the number of r-nonnesting partitions in P(n − d + 1, k −
d+1). In particular, setting r = 2, we obtain that the cardinality of NN (d)(n, k) is given
by

|NN (d)(n, k)| = N(n − d + 1, k − d + 1) =
1

k − d + 1

(

n − d + 1

k − d

)(

n − d

k − d

)

,

and, thus, the number of d-regular 2-nonnesting partitions of [n] is the Catalan number
Cn−d+1.

Theorem 4.1 can be proved easily by using the reduction algorithm (similarly to the
proof of Theorem 3.1), but we will use here the model of rook placement, which leads to
a quick picture proof. Indeed, it is easy to see that the correspondence ∆ : P(n, k) 7→
RR(n, k) sends any r-nesting of a set partition π to a NE-chain of length r in the rook
placement ∆(π), that is, a sequence of r rooks in ∆(π) such that any rook in the sequence
is strictly above and to the right of the preceding rook in the sequence (see e.g. [5, 10]).
It follows that the number of r-nonnesting partitions in P(d)(n, k) is equal to the number

of rook placements in RR(d)(n, k) whose length of longest NE-chain is ≤ r− 1. Applying
Ψj : RR(d)(n, k) 7→ RR(d−j)(n− j, k− j), which obviously preserves the length of longest
NE-chain, leads to the desired result. Note that the model of rook placement can be used
to prove Theorem 3.1, but the proof would be heavier than the proof given in this paper.
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