Surprising correlations in random orientations of graphs
(or what is special with $n = 27$)

Svante Linusson

KTH, Sweden

SLC’63 Bertinoro, Italy
Sept 29, 2009
Edge percolation

- $G = (V, E)$ a graph
Edge percolation

- $G = (V, E)$ a graph

- $0 \leq p \leq 1$
Edge percolation

- $G = (V, E)$ a graph

- $0 \leq p \leq 1$

 Every edge exist with probability p independently of other edges. This model is called \textbf{Edge percolation E^p}.
Edge percolation

- $G = (V, E)$ a graph

- $0 \leq p \leq 1$
- Every edge exist with probability p independently of other edges. This model is called **Edge percolation E^p**.

- Let $s, a \in V$ be two vertices of G. We define $P_{E^p(G)}(s \leftrightarrow a) :=$ probability that there is a path between s and a.
Bunkbed conjecture (BBC)
Bunkbed conjecture (BBC)

$G \times K_2$ is called a bunkbed graph
Bunkbed conjecture (BBC)

$G \times K_2$ is called a bunkbed graph
Bunkbed conjecture (BBC)

$G \times K_2$ is called a bunkbed graph
Bunkbed conjecture (BBC)

$G \times K_2$ is called a bunkbed graph
Bunkbed conjecture (BBC)

$G \times K_2$ is called a bunkbed graph

Conjecture (Kasteleyn ’85)

For any G and $0 \leq p \leq 1$ and any vertices $s, a \in V$ we have

$$P(s_0 \leftrightarrow a_0) \geq P(s_0 \leftrightarrow a_1) \text{ in } G \times K_2$$
What is known about BBC?
What is known about BBC?

O. Häggström proved the same statement in random cluster model with $q = 2$.
What is known about BBC?

O. Häggström proved the same statement in random cluster model with $q = 2$.

Theorem (L.’08)

*BBC is true for all outerplanar graphs G.***
What is known about BBC?

O. Häggström proved the same statement in random cluster model with $q = 2$.

Theorem (L.’08)

BBC is true for all outerplanar graphs G.

Theorem (Leander ’09)

BBC is true for all wheels and subgraphs of wheels.
Correlations

Given any graph $G = (V, E)$ and three vertices $s, a, b \in V$.

\begin{center}
\includegraphics[width=0.5\textwidth]{diagram.png}
\end{center}
Correlations

Given any graph $G = (V, E)$ and three vertices $s, a, b \in V$.

Classical fact:

Proposition

The events $\{s \leftrightarrow a\}$ and $\{s \leftrightarrow b\}$ are positively correlated in E^p, i.e.

$$P_{E^p(G)}(s \leftrightarrow a | s \leftrightarrow b) \geq P_{E^p(G)}(s \leftrightarrow a)$$
Correlations

Given any graph $G = (V, E)$ and three vertices $s, a, b \in V$.

Classical fact:

Proposition

The events $\{s \leftrightarrow a\}$ and $\{s \leftrightarrow b\}$ are positively correlated in E^p, i.e.

$$P_{E^p(G)}(s \leftrightarrow a | s \leftrightarrow b) \geq P_{E^p(G)}(s \leftrightarrow a)$$

Proof.

Uses Harris’ inequality of increasing events.
Correlations

Given any graph $G = (V, E)$ and three vertices $s, a, b \in V$.

Classical fact:

Proposition

The events $\{ s \leftrightarrow a \}$ and $\{ s \leftrightarrow b \}$ are positively correlated in E^p, i.e.

$$P_{E^p(G)}(s \leftrightarrow a | s \leftrightarrow b) \geq P_{E^p(G)}(s \leftrightarrow a)$$

Proof.

Uses Harris’ inequality of increasing events.

Note:

$$P(s \leftrightarrow a | s \leftrightarrow b) \geq P(s \leftrightarrow a) \iff P(s \leftrightarrow a, s \leftrightarrow b) \geq P(s \leftrightarrow a)P(s \leftrightarrow b)$$
Another correlation result in E^p

Given any graph $G = (V, E)$ and four vertices $s, t, a, b \in V$.
Another correlation result in E^p

Given any graph $G = (V, E)$ and four vertices $s, t, a, b \in V$. Condition on $\{s \leftrightarrow t\}$
Another correlation result in E^p

Given any graph $G = (V, E)$ and four vertices $s, t, a, b \in V$. Condition on $\{s \leftrightarrow t\}$

Theorem (van den Berg & Kahn ’02)

For any G the events $\{s \leftrightarrow a\}$ and $\{s \leftrightarrow b\}$ are positively correlated in E^p, also when we first condition on $\{s \leftrightarrow t\}$, i.e.

$$P_{E^p(G)}(s \leftrightarrow a | s \leftrightarrow b, s \leftrightarrow t) \geq P_{E^p(G)}(s \leftrightarrow a | s \leftrightarrow t)$$
Another correlation result in E^p

Given any graph $G = (V, E)$ and four vertices $s, t, a, b \in V$. Condition on $\{s \leftrightarrow t\}$

Theorem (van den Berg & Kahn ’02)

For any G the events $\{s \leftrightarrow a\}$ and $\{s \leftrightarrow b\}$ are positively correlated in E^p, also when we first condition on $\{s \leftrightarrow t\}$, i.e.

$$P_{E^p(G)}(s \leftrightarrow a | s \leftrightarrow b, s \leftrightarrow t) \geq P_{E^p(G)}(s \leftrightarrow a | s \leftrightarrow t)$$

Proof.

Clever use of Ahlswede-Daykin’s inequality.
Random Orientations (O)

\[G = (V, E) \text{ a graph} \]
Random Orientations (O)

\[G = (V, E) \] a graph

Every edge is independently given one of the two possible directions with equal probability.
Random Orientations (O)

\[G = (V, E) \text{ a graph} \]

Every edge is independently given one of the two possible directions with equal probability.
Random Orientations (O)

\(G = (V, E) \) a graph

Every edge is independently given one of the two possible directions with equal probability.

Let \(s, a \in V \) be two vertices of \(G \). We define

\[PO(G) (s \rightarrow a) := \text{probability that there is a path from } s \text{ to } a. \]
Given any graph $G = (V, E)$ and three vertices $s, a, b \in V$.
Given any graph \(G = (V, E) \) and three vertices \(s, a, b \in V \).

We can extend classical fact:

Proposition

For any graph \(G \) the events \(\{ s \to a \} \) and \(\{ s \to b \} \) are positively correlated in model \(O \), i.e.

\[
P_{O(G)}(s \to a | s \to b) \geq P_{O(G)}(s \to a)
\]
Given any graph $G = (V, E)$ and three vertices $s, a, b \in V$.

We can extend classical fact:

Proposition

For any graph G the events $\{s \rightarrow a\}$ and $\{s \rightarrow b\}$ are positively correlated in model O, i.e.

$$P_{O(G)}(s \rightarrow a|s \rightarrow b) \geq P_{O(G)}(s \rightarrow a)$$

Follows from:

Lemma (Mc Diarmid ’81)

For any graph $G = (V, E)$ and $s, a \in V$ we have

$$P_{E^{1/2}(G)}(s \leftrightarrow a) = P_{O(G)}(s \rightarrow a).$$
Given any graph $G = (V, E)$ and three vertices $s, a, b \in V$.

We can extend classical fact:

Proposition

For any graph G the events $\{s \to a\}$ and $\{s \to b\}$ are positively correlated in model O, i.e.

$$P_{O(G)}(s \to a | s \to b) \geq P_{O(G)}(s \to a)$$

Follows from:

Lemma (Mc Diarmid ’81)

For any graph $G = (V, E)$ and $s, a \in V$ we have

$$P_{E^{1/2}(G)}(s \leftrightarrow a) = P_{O(G)}(s \to a).$$

Surprising?
Proven most easily via a generalization.
Proven most easily via a generalization.
Define in model O the out-cluster $\vec{C}_s(G) \subset V$ as the (random) set of all vertices u for which there is a directed path from s to u.

Proven most easily via a generalization.

Define in model O the \textbf{out-cluster} $\bar{C}_s(G) \subset V$ as the (random) set of all vertices u for which there is a directed path from s to u.

Let also $C_s(G) \subset V$ be the (random) \textbf{cluster} around s in model E^p, i.e. all vertices u for which there exists a path between s and u.
Proven most easily via a generalization.

Define in model O the out-cluster $\overrightarrow{C}_s(G) \subset V$ as the (random) set of all vertices u for which there is a directed path from s to u.

Let also $C_s(G) \subset V$ be the (random) cluster around s in model E^p, i.e. all vertices u for which there exists a path between s and u.

Lemma

For any graph $G = (V, E)$, $s \in U \subseteq V$ we have

$$P_{E^{1/2}}(C_s = U) = P_{O}(\overrightarrow{C}_s = U)$$
Proven most easily via a generalization.

Define in model O the out-cluster $\overrightarrow{C}_s(G) \subset V$ as the (random) set of all vertices u for which there is a directed path from s to u.

Let also $C_s(G) \subset V$ be the (random) cluster around s in model E^p, i.e. all vertices u for which there exists a path between s and u.

Lemma

For any graph $G = (V, E)$, $s \in U \subseteq V$ we have

$$P_{E^{1/2}}(C_s = U) = P_O(\overrightarrow{C}_s = U)$$

Proof.

We have the recursion

$$P_{E^p}(C_s(G) = U) = \sum_{W: s \in W \subseteq U \setminus v} P_{E^p}(C_s(G \setminus v) = W)(1 - q^r)P_{E^p}(C_v(G \setminus W) = U \setminus W).$$
Question:

Are the events \(\{s \to a\} \) and \(\{b \to s\} \) negatively correlated in any graph \(G \)?
Question:

Are the events \(\{ s \rightarrow a \} \) and \(\{ b \rightarrow s \} \) negatively correlated in any graph \(G \)?

Answer (Sven Erick Alm): No, counterexample on 4 nodes.
Question:
Are the events \{s \to a\} and \{b \to s\} negatively correlated in any graph \(G\)?

Answer (Sven Erick Alm): No, counterexample on 4 nodes. From now on everything is joint work with Alm.
Question:

Are the events \(\{ s \to a \} \) and \(\{ b \to s \} \) negatively correlated in any graph \(G \)?

Answer (Sven Erick Alm): No, counterexample on 4 nodes. From now on everything is joint work with Alm.

Theorem (Alm & L. ’09)

In model O the events \(\{ s \to a \} \) and \(\{ b \to s \} \):

- are negatively correlated in \(K_3 \),
- are independent in \(K_4 \),
- are positively correlated in \(K_n \), \(n \geq 5 \),
- are negatively correlated in trees and cycles.
Random Orientation on $G(n, p)$

The previous theorem seems to suggest that the events are positively correlated in dense graphs.
Random Orientation on $G(n, p)$

The previous theorem seems to suggest that the events are positively correlated in dense graphs.
Let $G(n, p)$ be the random graph obtained by edge percolation with probability p on K_n. Then we give this random graph random orientation on the edges as in model O.
Random Orientation on $G(n, p)$

The previous theorem seems to suggest that the events are positively correlated in dense graphs.
Let $G(n, p)$ be the random graph obtained by edge percolation with probability p on K_n. Then we give this random graph random orientation on the edges as in model O.

Theorem (Alm & L.’09)

For fixed p, as $n \to \infty$ we have:

- the events $\{s \to a\}$ and $\{b \to s\}$ are negatively correlated if $p < 1/2$,
- the events $\{s \to a\}$ and $\{b \to s\}$ are positively correlated if $p > 1/2$.

Random Orientation on $G(n, p)$

The previous theorem seems to suggest that the events are postively correlated in dense graphs.
Let $G(n, p)$ be the random graph obtained by edge percolation with probability p on K_n. Then we give this random graph random orientation on the edges as in model O.

Theorem (Alm & L.’09)

For fixed p, as $n \to \infty$ we have:

-the events $\{s \to a\}$ and $\{b \to s\}$ are negatively correlated if $p < 1/2$,
-the events $\{s \to a\}$ and $\{b \to s\}$ are positively correlated if $p > 1/2$.

Proof.

Identify main cases and then long tricky computations.
We also fixed n and computed $P(s \rightarrow a)$ and $P(s \rightarrow a, b \rightarrow s)$ using exact recursions. With this we computed the value of critical p as in the following table:

<table>
<thead>
<tr>
<th>n</th>
<th>critical p</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0.729</td>
</tr>
<tr>
<td>6</td>
<td>0.276</td>
</tr>
<tr>
<td>7</td>
<td>0.152</td>
</tr>
<tr>
<td>8</td>
<td>0.107</td>
</tr>
<tr>
<td>9</td>
<td>0.082</td>
</tr>
<tr>
<td>10</td>
<td>0.067</td>
</tr>
<tr>
<td>11</td>
<td>0.056</td>
</tr>
<tr>
<td>12</td>
<td>0.049</td>
</tr>
<tr>
<td>13</td>
<td>0.043</td>
</tr>
<tr>
<td>14</td>
<td>0.038</td>
</tr>
<tr>
<td>15</td>
<td>0.035</td>
</tr>
<tr>
<td>16</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Converges to $1/2$???
Recall:

Theorem (Alm & L.’09)

For fixed p, as $n \to \infty$ we have in model O of $G(n, p)$:

- the events \{s \to a\} and \{b \to s\} are negatively correlated if $p < 1/2$,
- the events \{s \to a\} and \{b \to s\} are positively correlated if $p > 1/2$.

Recall:

Theorem (Alm & L.’09)

For fixed p, as $n \to \infty$ we have in model O of $G(n, p)$:

- the events $\{s \to a\}$ and $\{b \to s\}$ are negatively correlated if $p < 1/2$,
- the events $\{s \to a\}$ and $\{b \to s\}$ are positively correlated if $p > 1/2$.

In fact we proved

$$1 - \frac{P(b \not\to s)}{P(b \not\to s \mid s \not\to a)} \to \frac{2p - 1}{3}, \quad \text{as } n \to \infty$$
This is a plot of \(1 - \frac{P(b \rightarrow s)}{P(b \rightarrow s | s \rightarrow a)}\) for \(n = 10..24\).

What was wrong? We spent many days looking for an error.
Then I plotted $1 - \frac{P(b \rightarrow s)}{P(b \rightarrow s|s \rightarrow a)}$ for $n = 8..20$ and all p:

What would happen for larger n?
Plot of $1 - \frac{P(b\rightarrow s)}{P(b\rightarrow s | s\rightarrow a)}$ for $n = 12..30$ as a function of p:

Starting from $n = 27$ we get 3 critical values of p.
Some open problems

Can one characterize in which graphs \(\{ s \to a \} \) and \(\{ b \to s \} \) are negatively (positively) correlated for all choices of \(a, b, s \in V \). Is this a monotone graph property?
Some open problems

- Can one characterize in which graphs $\{s \rightarrow a\}$ and $\{b \rightarrow s\}$ are negatively (positively) correlated for all choices of $a, b, s \in V$. Is this a monotone graph property?
- Conjecture: For most graphs it will depend on the choice of $a, b, s \in V$.
- Conjecture: If the degree of s is 2, then we will have negative correlation.

Understand the three critical values of p for fixed n as $n \rightarrow \infty$.

Correlations of other paths?

Prove the Bunkbed Conjecture for all graphs!
Some open problems

- Can one characterize in which graphs \(\{s \to a\} \) and \(\{b \to s\} \) are negatively (positively) correlated for all choices of \(a, b, s \in V \). Is this a monotone graph property?

- Conjecture: For most graphs it will depend on the choice of \(a, b, s \in V \).

- Conjecture: If the degree of \(s \) is 2, then we will have negative correlation.
Some open problems

- Can one characterize in which graphs \(\{s \to a\} \) and \(\{b \to s\} \) are negatively (positively) correlated for all choices of \(a, b, s \in V \). Is this a monotone graph property?

- Conjecture: For most graphs it will depend on the choice of \(a, b, s \in V \).

- Conjecture: If the degree of \(s \) is 2, then we will have negative correlation.

- Understand the three critical values of \(p \) for fixed \(n \) as \(n \to \infty \).
Some open problems

- Can one characterize in which graphs \(\{s \to a\} \) and \(\{b \to s\} \) are negatively (positively) correlated for all choices of \(a, b, s \in V \). Is this a monotone graph property?
- Conjecture: For most graphs it will depend on the choice of \(a, b, s \in V \).
- Conjecture: If the degree of \(s \) is 2, then we will have negative correlation.
- Understand the three critical values of \(p \) for fixed \(n \) as \(n \to \infty \).
- Correlations of other paths?

Linusson (KTH)
Some open problems

- Can one characterize in which graphs \(\{s \rightarrow a\} \) and \(\{b \rightarrow s\} \) are negatively (positively) correlated for all choices of \(a, b, s \in V \). Is this a monotone graph property?
- Conjecture: For most graphs it will depend on the choice of \(a, b, s \in V \).
- Conjecture: If the degree of \(s \) is 2, then we will have negative correlation.
- Understand the three critical values of \(p \) for fixed \(n \) as \(n \rightarrow \infty \).
- Correlations of other paths?
- Prove the Bunkbed Conjecture for all graphs!