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A COMPENDIUM ON THE CLUSTER ALGEBRA
AND QUIVER PACKAGE IN Sage

GREGG MUSIKER AND CHRISTIAN STUMP

Abstract. This is the compendium of the cluster algebra and quiver package for
Sage. The purpose of this package is to provide a platform to work with cluster
algebras in graduate courses and to further develop the theory by working on examples,
by gathering data, and by exhibiting and testing conjectures. In this compendium,
we include the relevant theory to introduce the reader to cluster algebras assuming
no prior background. Throughout this compendium, we include examples that the
user can run in the Sage notebook or command line, and then close with a detailed
description of the data structures and methods in this package.
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0. Preface

The idea for a cluster algebra and quiver package in the open-source computer algebra
system Sage was born during the Sage days 20.5 which were held at the Fields Institute
in May 2010. The purpose of this package is to provide a platform to work with cluster
algebras in graduate courses and to further develop the theory by working on examples,
by gathering data, and by exhibiting and testing conjectures. In this compendium,
we include the relevant theory to introduce the reader to cluster algebras assuming no
prior background; this exposition has been written such that most of the examples are
accessible to an interested undergraduate.

The software package and this compendium is the result of many discussions on
mathematical background and on implementation algorithms, and of many, many hours
of coding. It is part of the Sage-Combinat project [SageComb].

For more information on Sage, in particular on a detailed description how to install
the program, we refer the reader to http://www.sagemath.org [Sage]; for more on
the Sage-Combinat project, see http://wiki.sagemath.org/combinat. Throughout
this compendium, we include examples that the user can run in the Sage-Notebook

or on the Sage command line. The package provides as well an interactive mode for
the Sage-Notebook as shown in Figure 1 at the end of Section 3. We will close with a
detailed description of the data structures and methods in this package. We follow the
usual Sage convention of indexing all lists starting at zero.

Currently, installing the Sage-Combinat queue is a necessary requirement
for working with the cluster algebra and quiver package. In order to install the
Sage-Combinat queue, you have to, after installing Sage, run the command

> ./sage -combinat install

on the unix command line. Once the Sage-Combinat branch is created, one can use
the command

> ./sage -combinat update

to update to the latest version of the Sage-Combinat queue, or one can use the command

> ./sage -combinat upgrade

to update to the latest version of the Sage-Combinat queue and to upgrade Sage to its
newest version. For more detailed explanations, please visit the Sage-Combinat wiki
page. Installing the Sage-Combinat queue will eventually become obsolete after the
project has gone through testing and reviewing processes, which might take time due
to the involvedness of the algorithms (especially on mutation type detections).

The Sage-Combinat queue can also be accessed through the Sage-Combinat Note-
book server, available at http://sage.lacim.uqam.ca/. To get started, all examples
described in this compendium are available among the public worksheets on this Note-
book server; the corresponding .sws file is also available at

http://math.umn.edu/∼musiker/CompendiumExamples.sws

and can be uploaded via the Sage-Notebook interface.

http://www.sagemath.org
http://wiki.sagemath.org/combinat
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This current version should not be considered a complete, unchangeable, totally stable
version. We will keep working on this project by fixing bugs, improving algorithms, and
by adding functionalities. So it might be a good idea to update the Sage-Combinat

queue once in a while, especially if you have encountered a problem. We anticipate this
ongoing project being improved with feedback from users. We are very interested in
getting any type of feedback: on ways in which the package has been used, on features
people like or that could be done better, or by requests for new functionalities. If you
are interested in helping us make improvements or further develop this package, we
would be happy to have you involved.

Several other people have also worked on software for computations involving cluster
algebras and quiver representations. Links to these are available at Fomin’s Clus-
ter Algebra Portal http://www.math.lsa.umich.edu/∼fomin/cluster.html. This
software includes work of Chapoton [Cha], Dupont-Pérotin [DP], Keller [Kel], and L.
Williams.

Acknowledgments. We thank Franco Saliola and Sébastien Labbé for help on details
of the Sage development process. We also thank Florian Block, Hugh Thomas, and Le-
andro Vendramin for several contributions in the early stages of this project. We thank
William Stein, Florent Hivert, Nicolas Thiéry, and all of the developers of Sage and
Sage-Combinat for their continued work on this open-source mathematical software.
Finally, we like to thank the Fields Institute for its hospitality during the Sage days
20.5 in May 2010 where this project was initiated. We also thank Bernhard Keller and
the anonymous referees for a careful reading and numerous helpful edits to this guide.

1. Introduction

Cluster algebras, invented by Fomin and Zelevinsky [FZ02a], are certain commutative
algebras which are isomorphic to subalgebras of the fields of rational functions. Each
cluster algebra has a distinguished set of generators called cluster variables; this set is
a union of overlapping algebraically independent finite subsets called clusters, which
together have the structure of a simplicial complex. The clusters are related to each
other by binomial exchange relations. In the past ten years, such algebras have been
found to be related to a number of other topics such as quiver representations, tropical
geometry, canonical bases of semisimple algebraic groups, total positivity, generalized
associahedra, Poisson geometry, and Teichmüller theory. A partial list of such references
includes [CC06, CZ06, DWZ10, DiFK10b, FG07, FG, FH, Fom, FZ99, FZ03a, GSV05,
GSV10, Kel, KW, NZ11, Zel02].

Usually, when one defines an algebra A, one describes it by writing down the gen-
erators and relations of A. Instead, when working with a cluster algebra, only a finite
set of generators are provided at first, along with combinatorial data that allows one to
algebraically construct the rest of the generators by applying a sequence of exchange
rules. With this definition in mind, a seed for a cluster algebra A is a pair (x, B), where
x denotes the initial cluster, and B denotes an exchange matrix (or B-matrix)1. Here,
the (extended) cluster x consists of exchangeable generators, known as cluster variables
and non-exchangeable generators, known as frozen variables.

1Technically, this is the definition for a seed of a cluster algebra of geometric type. We give a more
general definition of cluster algebra seeds in the next section.
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One of the simplest families of cluster algebras are those which are coefficient-free
and of rank two. Such algebras are parametrized by two positive integers (b, c), and
the associated cluster algebra A(b, c) is defined to be the algebra generated by the set
{xn}n∈Z, where for n 6∈ {0, 1},

xn =
xbn−1 + 1

xn−2

if n is even, and
xcn−1 + 1

xn−2

if n is odd.

These are implemented in Sage, for example (letting b = 2, and c = 3) as

sage: S23 = ClusterSeed([’R2’,[2,3],2]); S23

A seed for a cluster algebra of rank 2 of type [’R2’,[2,3],2]

Here, ’R2’ refers to “rank 2”, [2,3] gives the parameters. For an explanation of the
final 2, we refer to Section 6.2. Notice that if instead we let b = 1 and c = 1, we obtain

sage: S11 = ClusterSeed([’R2’,[1,1],2]); S11

A seed for a cluster algebra of rank 2 of type [’A’,2]

We will see more examples of this phenomenon in a moment, but the point is that when
(b, c) = (1, 1), the associated cluster algebra is of “type A2”.

Let us keep working with the cluster seed S11 at the moment. We can see the
B-matrix and initial cluster corresponding to this seed quite easily.

sage: S11.cluster()

[x0, x1]

sage: S11.b matrix() (
0 1
−1 0

)

Using this data, it is possible to construct the other generators of A(1, 1) by applying
a sequence of exchanges. We define mutation in general down below. For now, let us
mention that if we start with the initial cluster [x0, x1], and mutate in the 0th direction,
we replace the x0 with x2, defined as x2 = x1+1

x0
. This gives us a new seed, whose cluster

is [x2, x1].

sage: S11.mutate(0); S11.cluster()[
x1 + 1

x0
, x1

]

The exchange matrix of this mutated seed is simply −B.

sage: S11.b matrix() (
0 −1
1 0

)

We can continue this procedure, and now mutate in the 1st direction, letting x3 =
x2+1
x1

replace x1.
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sage: S11.mutate(1); S11.cluster()[
x1 + 1

x0
,
x0 + x1 + 1

x0x1

]
sage: S11.b matrix() (

0 1
−1 0

)

Notice that after this mutation, the exchange matrix is again B. Consequently, we can
iterate this procedure, applying the mutate command over and over. If we want to do
this more efficiently, we can as well call mutate with a list of indices to apply from left
to right.

sage: S11.mutate([0,1,0,1])

If we are not only interested in the final seed, we can instead use the procedure
mutation sequence. Before doing that, we reset the cluster to the initial sequence
of variables (in the initial seed).

sage: S11.reset cluster();

sage: S11.mutation sequence([0,1,0,1,0],return output=’matrix’)[(
0 1
−1 0

)
,

(
0 −1
1 0

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)
,

(
0 1
−1 0

)
,

(
0 −1
1 0

)]
sage: S11.mutation sequence([0,1,0,1,0],return output=’var’)[

x1 + 1

x0
,
x0 + x1 + 1

x0x1
,
x0 + 1

x1
, x0, x1

]

Here, the first command returns the sequence of exchange matrices obtained from
this sequence of mutations, including the initial one. Notice, the sequence is exactly
[B,−B,B,−B,B,−B]. The second command returns the list of cluster variables en-
countered as these exchanges occur. In the rank two case, this list is equivalent to
[x2, x3, x4, x5, x6] corresponding to the (b, c) = (1, 1)-sequence {xn} referred to above.

Notice, that we have already found an interesting pattern, that is after five exchanges,
we have arrived back essentially2 at the same seed with which we started. This is
therefore known as a cluster algebra of finite type and finite mutation type. Both of
these concepts will be described in more detail below.

For our next example, we look at the (b, c) = (2, 2) case, again a rank two cluster
algebra.

sage: S22 = ClusterSeed([’R2’,[2,2],2]); S22

A seed for a cluster algebra of rank 2 of type [’A’,[1,1],1]

Here again, notice that this specific rank two cluster algebra is recognized. In this case,

this is our notation for a cluster algebra of affine type Ã1,1. We again run the procedure
mutation sequence, and obtain the following:

2To be precise, this seed uses matrix −B (equivalently BT ) instead of B, but these seeds are the
same “up to equivalence”, see Remark 3.4.
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sage: ms = S22.mutation sequence([0,1,0,1,0],return output=’var’); ms[
x21+1
x0

,
x41+x20+2x21+1

x20x1
,
x61+x40+2x20x

2
1+3x41+2x20+3x21+1

x30x
2
1

,

x81+x60+2x40x
2
1+3x20x

4
1+4x61+3x40+6x20x

2
1+6x41+3x20+4x21+1

x40x
3
1

,

x101 +x80+2x60x
2
1+3x40x

4
1+4x20x

6
1+5x81+4x60+9x40x

2
1+12x20x

4
1+10x61+6x40+12x20x

2
1+10x41+4x20+5x21+1

x50x
4
1

]
Unlike the previous case, the cluster variables appear to be getting more and more
complicated, and that pattern continues. To understand these expressions better, we
plug in the value 1 for x0 and x1.

sage: [cv.subs(x0=1,x1=1) for cv in ms]

[2, 5, 13, 34, 89]

From this data, one might conjecture, and it is in fact true, that the sequence

{xn : xnxn−2 = x2
n−1 + 1 and x0 = x1 = 1}

is precisely the sequence of Fibonacci numbers with even index.
It is also clear that the cluster variable xn obtained by an instance of the (b, c)-

sequence are rational functions in the indeterminates x0 and x1. More surprisingly, in
spite of the divisions appearing, all such xn’s are actually Laurent polynomials, i.e. in
the ring Z[x±1

0 , x±1
1 ]. This is actually a special case of one of the first major results in

the theory of cluster algebras.

Theorem 1.1 (Laurent Phenomenon [FZ02a, FZ02b]). Given any cluster algebra
A, which is parameterized by a choice of exchange pattern, a choice of coefficients
(whose group ring is given as ZP) and a choice of initial cluster {x0, x1, x2, . . . , xn−1}
of generators, then all other generators, i.e. cluster variables, are Laurent polynomials
in the ring ZP[x±1

0 , x±1 , . . . , x
±1
n−1].

In the same paper in which Fomin and Zelevinsky prove this Laurent phenomenon, they
made the following positivity conjecture.

Conjecture 1.2 (Positivity Conjecture). Given a cluster algebra A with an
arbitrary exchange pattern, choice of coefficients P, and an arbitrary initial cluster
{x0, x1, . . . ,
xn−1}, then every generator of A can be written in

Z≥0P[x±1
0 , x±1

1 , . . . , x±1
n−1].

In other words, the Laurent expansions for cluster variables can be written using positive
coefficients.

Positivity of the coefficients is significant, as it is conjecturally related to total-
positivity properties of dual canonical bases [FZ99, FZ00, Zel02]. Nonetheless, this
conjecture is still open despite nearly a decade of work by many researchers proving it
for certain families of cluster algebras. Much of this work [CZ06, CK08, CR08, CP03,
CS04, Cer, DiFK10a, Dup09, Mus11, MP07, MS10, MSW11, Nak11, Pro, Qin, Sch10,
ST09, SZ04, Spe07, Zel07] has been accomplished by exploration of examples, either
by hand or by computer. As patterns to the Laurent polynomial expansions of cluster
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variables were noticed, the positivity conjecture and explicit formulas have been proven
for more and more cases. This software provides further tools for such explorations.

2. What is a cluster algebra?

In this section, we give a more general and complete definition of cluster algebras,
and in the next one, we describe the connection between cluster algebras and quivers.
We say that a cluster algebra A is of rank n if A is subalgebra of an ambient field F
isomorphic to a field of rational functions in n variables. Algebras are typically defined
by generators and relations, but in the case of cluster algebras, instead of being handed
all the generators at once, you are instead handed a distinguished set of n of them along
with a constructive algorithm that can be used to obtain a complete set of generators.
Note, that in general, a cluster algebra is infinitely-generated, however, any element of
this distinguished generating set can be reached in finite time.

This distinguished generating set is called the set of cluster variables, the first n of
which are known as the initial cluster variables. These generators are grouped into
overlapping subsets of the same cardinality, namely n, Each of these n-subsets are
algebraically independent, and are known as clusters. Pairs of clusters x, x′ whose
intersection is of size (n−1) are related to one another by a binomial exchange relation
of the form

x′ = (x− {xk}) ∪ x′k where xkx
′
k = p+M+ + p−M−.

A semifield (P,⊕, ·) is an abelian multiplicative group with an additional binary
operation of (auxiliary) addition, denoted as ⊕, which is commutative, associative, and
distributive with respect to the multiplication · in P. In other words, a semifield is a
field that lacks additive inverses. In the second equation above, p+ and p− belong to a
coefficient semifield P, and M+, M− are monomials in the elements of x − {x} which
share no common factor.

Definition 2.1 (Skew-symmetrizable matrices). An n-by-n matrix B is called skew-
symmetrizable if there exists a diagonal integer matrix D with strictly positive entries
on the diagonal such that DB is skew-symmetric.

There is an algorithmic way to determine whether a matrix is skew-symmetrizable,
and to find the diagonal matrix D, see Section 6.1.

Definition 2.2 (Labeled Seed for a cluster algebra). A labeled seed for a
cluster algebra A = A(x,y, B) is a triple (x,y, B) where

• x = {x0, x1, . . . , xn−1} is a cluster of n algebraically independent elements of
ambient field F ,
• y = {y0, y1, . . . , yn−1} is an n-tuple of coefficients, elements of the semifield P,

and
• B is an n-by-n matrix that is skew-symmetrizable.

A labeled seed can be mutated into another labeled seed (x′,y′, B′) and all other
clusters of A, hence all other cluster variables, can be reached by applying a sequence
of such mutations.
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Definition 2.3 (Mutation of labeled seeds). If A is a cluster algebra of rank
n and (x,y, B) is a labeled seed of A, then for any k ∈ {0, 1, . . . , n − 1}, there ex-
ists another labeled seed µk(x,y, B) = (x′,y′, B′) = (µk(x), µk(y), µk(B)) defined as
follows:

The cluster x′ = {x0, x1, . . . , x̂k, . . . , xn−1} ∪ {x′k} where

x′k =

(
yk
∏
bik>0

xbiki +
∏
bik<0

x−biki

) /
(yk ⊕ 1)xk;

the coefficient tuple y′ = (y′0, y
′
1, . . . , y

′
n−1) is given by

y′j =

{
yj y

max(bkj ,0)

k (yk ⊕ 1)−bkj if j 6= k,

1/yk if j = k
;

and the matrix B′ =
[
b′ij
]

is given by

b′ij =


−bij if i = k or j = k,

bij if bikbkj ≤ 0,

bij + bikbkj if bik, bkj > 0, or

bij − bikbkj if bik, bkj < 0

.

We say that µk(x,y, B) is the mutation in the kth direction.

The following important observation ensures that mutation of a labeled seed is again
a labeled seed.

Proposition 2.4 (Proposition 4.5 of [FZ02a]). If B is a skew-symmetrizable ma-
trix, then so is µk(B) for 0 ≤ k ≤ n− 1.

Another helpful fact about mutation is that it is an involution, i.e. for any 0 ≤ k ≤
n− 1, µk(µk(x,y, B)) = (x,y, B).

Definition 2.5 (Tropical Semifield). We let Trop(u0, u1, . . . , um−1) denote the
semifield that consists of the abelian group (written multiplicatively) freely generated
by u0, u1, . . . , um−1 such that∏

j

u
aj
j ⊕

∏
j

u
bj
j =

∏
j

u
min(aj ,bj)
j .

Definition 2.6 (Cluster Algebras of Geometric Type). A cluster algebra is
of geometric type if its coefficient semifield P is a tropical semifield.

When P is a tropical semifield, the group ring ZP is simply the ring of Laurent
polynomials Z[u±1

0 , u±1
1 , . . . , u±1

m−1]. Consequently, in cluster algebras of geometric type,
the above formulas for seed mutation are greatly simplified.

Remark 2.7. Letting P = Trop(u0, u1, . . . , um−1), a labeled seed for a cluster algebra
of geometric type is simply given as a pair (x, B), as opposed to a triple (x,y, B), where
x = {x0, x1, . . . , xn−1, u0, u1, . . . , um−1} = {x0, x1, . . . , xm+n−1} is an extended cluster,
and B is an (n+m)-by-n matrix whose top n-by-n portion is skew-symmetrizable. This
notation agrees with that of Section 1.
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Since B is not a square matrix, in a cluster algebra of geometric type, only the first
n cluster variables are exchangeable. The last m of them are known as frozen variables
and appear in every single extended cluster. The exchange rules for mutation instead
look like the following:

x′kxk =
∏
bik>0

xbiki +
∏
bik<0

x−biki

and the mutation rule for the B-matrix is unchanged except that we must mutate entries
in the last m rows appropriately as well. This mutation of the last m rows exactly
agrees with the mutation of coefficients y in the general definition. In particular, if we

let yj =
∏

0≤i≤m u
bi+n,j
i for 0 ≤ j ≤ n − 1, then we can recover the coefficient tuple y

from the second halves of x and B.

Remark 2.8. Since cluster algebras of geometric type are sufficient for many applica-
tions and all of the computations currently possible in the cluster algebra package, we
henceforth discuss the theory in terms of cluster algebras only of geometric type. We
shall say that A = A(x, B) is a cluster algebra of rank n (with m frozen variables) if
it is a subalgebra of an ambient field F isomorphic to a field of rational functions in
(n + m) variables, m of which are frozen. This is because the cluster algebra A is a
subalgebra of ZP[x±1

0 , . . . , x±1
n−1], and if ZP = Z[u±1

0 , . . . , u±1
m−1], then A can be thought

of as a subalgebra of Z[x±1
0 , . . . , x±1

n−1, u
±1
0 , . . . , u±1

m−1], where the u±1
i ’s are simply extra

generators of A in addition to the set of exchangeable cluster variables.
Note: We abuse notation and often denote the frozen variables as y0 through ym−1

rather than the xn+i or ui notations used above. We will assume that our cluster
algebras are of geometric type from here on.

We close this section with some examples and more information on some basic com-
mands.

sage: B3 = matrix([[0,1,0],[-1,0,-1],[0,1,0]]);

sage: S3 = ClusterSeed(B3); S3

A seed for a cluster algebra of rank 3

Notice that unlike the earlier examples, the description of the seed does not include
the type. This is because the input was only the matrix, and Sage will not attempt to
recognize the type unless it is asked for by the user or by a method.

sage: S3.cluster()

[x0, x1, x2]

sage: S3.mutate(0)

sage: S3.b matrix()

B′ =

 0 −1 0
1 0 −1
0 1 0


sage: S3.cluster() [

x1 + 1

x0
, x1, x2

]
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We have therefore obtained a new labeled seed (x′, B′) by mutating in the 0th direc-
tion. Note that by default, S3.mutate(0) acted on and changed the object S3 in place.
There is an option to leave S3 alone and just return the new object as a new output.
If this behavior is desired, the command would be

sage: S3new = S3.mutate(0,inplace=False)

Since mutation is an involution, if we mutate again in the 0th direction, we would
recover the original labeled seed. So we instead mutate in a different direction.

sage: S3.mutate(1)

sage: S3.b matrix()

B′′ =

 0 1 −1
−1 0 1

1 −1 0


sage: S3.cluster() [

x1 + 1

x0
,
x0x2 + x1 + 1

x0x1
, x2

]

Let us explain why the second element (the element x′1) of this cluster is now
x0x2+x1+1

x0x1
. This came from the exchange relation

x1x
′
1 = x2 + x′0,

which we read off of the second column of the exchange matrix B′ = µ0(B). Here
x′0 = x1+1

x0
and so we obtain the desired Laurent polynomial in terms of the initial

cluster variables x0, x1, and x2 by plugging in for x′0 and simplifying. We can also use
Sage to output a specific cluster variables rather than the whole cluster

sage: S3.cluster variable(1)

x0x2 + x1 + 1

x0x1

sage: S3.cluster variable(1) == S3.cluster()[1]

True

For one more example of the exchange relation, let us now mutate in the 0th direction
again. This corresponds to reading the first column of B′′ = µ1(µ0(B)) which gives us

the exchange relation x′′0 =
x2+x′1
x′0

. Plugging in the relevant Laurent polynomials for x′0
and x′1, and dividing, we get a surprising cancellation and x′′0 is a Laurent polynomial:

x′′0 =

(
x2 +

x0x2 + x1 + 1

x0x1

)/(
x1 + 1

x0

)
=
x0x1x2 + x0x2 + x1 + 1

x1(x1 + 1)
=
x0x2 + 1

x1

.

Using Sage, we see

sage: S3.mutate(0)

sage: S3.b matrix()
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 0 −1 1
1 0 0
−1 0 0


sage: S3.cluster() [

x0x2 + 1

x1
,
x0x2 + x1 + 1

x0x1
, x2

]

We remind the reader that we can compress the above steps as the command

sage: S3 = ClusterSeed(B3); S3.mutate([0,1,0])

Recall that if a list is used at the input to S3.mutate, then the seed is mutated to a
new seed by applying the sequence of mutations in the same order as given by the list.

At this point, S3 is a labeled seed with matrix B′′ and cluster x′′ as given. However,
since a labeled seed is a choice of both an exchange matrix and a cluster, we also have
methods to change the cluster. The first one is

sage: S3.reset cluster()

This command resets the cluster to the initial cluster [x0, x1, . . . , xn−1] while leaving the
exchange matrix alone. After running S3.reset cluster(), we compute the exchange
matrix and cluster, and obtain:

sage: S3.b matrix()  0 −1 1
1 0 0
−1 0 0


sage: S3.cluster()

[x0, x1, x2]

A related command is S3.set cluster() which lets the user set the initial cluster to be
whatever they like. Note that in Sage, arbitrary expressions in terms of indeterminates
are not defined. However, integers (or even rational numbers) are fair to be plugged in.
Additionally, if a rational function in terms of x0 through xn−1 is desired, this can be
accomplished by the commands S3.x(0) through S3.x(n-1).

sage: S3.set cluster([7,11,13]); S3.b matrix() 0 −1 1
1 0 0
−1 0 0


sage: S3.cluster()

[7, 11, 13]

sage: S3.mutate([0,1,2,0]); S3.cluster()

[8/11, 115/77, 192/1001]
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Note that at first glance, this might seem to falsify the Laurent Phenomenon, but it is
actually allowed because all cluster variables are supposed to be Laurent polynomials in
terms of the initial cluster variables. Since the integers 7, 11, and 13 are initial cluster
variables, they are allowed to appear in the denominator.

sage: S3.b matrix()  0 1 0
−1 0 1

0 −1 0


sage: S3.set cluster([S3.x(0)+S3.x(1),S3.x(1)^2,S3.x(0)/S3.x(2)])

sage: S3.cluster() [
x0 + x1, x

2
1,
x0

x2

]
sage: S3.mutate([0,1,0,2,0])

sage: S3.cluster()[
x2

1 + 1

x0 + x1
,
x0x

2
1 + x0x2 + x1x2 + x0

x0x2
1x2 + x3

1x2
,
x0x

2
1x2 + x3

1x2 + x0x
2
1 + x0x2 + x1x2 + x0

x2
0x

2
1 + x0x3

1

]

Again, these are Laurent polynomials in terms of the initial cluster variables obtained
after setting them in this way. We now turn our attention to cluster algebras of geo-
metric type with non-square exchange matrices.

sage: BB3 = matrix([[0,1,0],[-1,0,-1],[0,1,0],[1,0,-2],[2,-1,3]]);

sage: SS3 = ClusterSeed(BB3); SS3

A seed for a cluster algebra of rank 3 with 2 frozen variables

sage: SS3.cluster();

[x0, x1, x2]

sage: SS3.x(0); SS3.x(1); SS3.x(2); SS3.y(0); SS3.y(1)

x0 x1 x2 y0 y1

Observe that the cluster command does not include the frozen variables since it
would be redundant to print y0 and y1 since these appear in every extended cluster.
However, these expressions can be accessed as in this example. We can also ask for the
coefficients of this cluster algebra, which live in the tropical semifield of frozen variables,
hence appear as Laurent monomials.

sage: SS3.coefficients(); [
y0y

2
1,

1

y1
,
y3

1

y2
0

]
sage: SS3.coefficient(0); SS3.coefficient(2)
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y0y
2
1

y3
1

y2
0

If we mutate a cluster seed, the cluster and coefficients change accordingly, although
the initial cluster and frozen variables are still accessible. Notice that the coefficients
are described by the bottom half of the exchange matrix B. These column vectors can
also be directly accessed as c-vectors and the c-matrix.

sage: SS3.mutate(0); SS3.cluster()[
y0y

2
1 + x1

x0
, x1, x2

]
sage: SS3.coefficients() [

1

y0y2
1

, y0y1,
y3

1

y2
0

]
sage: SS3.b matrix() 

0 1 −1
−1 0 1

1 −1 0
−1 1 −2
−2 1 3


sage: SS3.c vector(0); SS3.c vector(1); SS3.c vector(2)

(−1,−2) (1, 1) (−2, 3)

sage: SS3.c matrix() (
−1 1 −2
−2 1 3

)
sage: SS3.mutate(1); SS3.cluster()[

y0y
2
1 + x1

x0
,
x0x2y0y1 + y0y

2
1 + x1

x0x1
, x2

]
sage: SS3.coefficients() [

1

y1
,

1

y0y1
,
y3

1

y2
0

]
sage: SS3.x(0); SS3.x(1); SS3.x(2); SS3.y(0); SS3.y(1)

x0 x1 x2 y0 y1
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2.1. Cluster algebras with principal coefficients. An important cluster algebra of
geometric type is one with principal coefficients.

Definition 2.9 (Principal coefficients). A cluster algebra is said to have principal
coefficients if its initial exchange matrix B is 2n-by-n, and the last n rows of this matrix
form a rank n identity matrix.

Cluster algebras with principal coefficients are fundamental, because as explained in
[FZ07] by Fomin and Zelevinsky, the formula for cluster variables in a cluster algebra
with general coefficients (including those not of geometric type) can be described as
a simple algebraic transformation of the formulas obtained for cluster variables with
principal coefficients. See Theorem 3.7 of [FZ07] for more details. In particular, such
formulas depend on expressions known as F-polynomials and g-vectors, which are de-
scribed below.

A cluster algebra with principal coefficients can be constructed rather simply by the
command S3.principal extension(). Before demonstration, let us reset the cluster:

sage: S3.b matrix()  0 1 0
−1 0 1

0 −1 0


sage: S3.reset cluster(); S3.cluster(); S3.coefficients()

[x0, x1, x2] [1, 1, 1]

Now, we demonstrate working with principal coefficients.

sage: SP3 = S3.principal extension(); SP3

A seed for a cluster algebra of rank 3 with 3 frozen variables

sage: SP3.b matrix() 
0 1 0
−1 0 1

0 −1 0
1 0 0
0 1 0
0 0 1


sage: SP3.cluster()

[x0, x1, x2]

Recall that the frozen variables are not considered to be part of the cluster. We can
however, obtain the initial coefficients, which agree with the frozen variables in the
principal coefficient case.

sage: SP3.coefficients()

[y0, y1, y2]
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Unlike the mutate command, which is a verb, S3 is unaffected by the operation SP3

= S3.principal extension().

sage: S3.b matrix()  0 1 0
−1 0 1

0 −1 0


Let us try an example of mutating in this cluster algebra with principal coefficients.
Here we use the command SP3.mutation sequence() with the optional argument
return output which we set to be ’matrix’ or ’var’.

sage: SP3.mutation sequence([0,1,0,2],return output=’matrix’)


0 1 0
−1 0 1

0 −1 0
1 0 0
0 1 0
0 0 1

 ,


0 −1 0
1 0 1
0 −1 0
−1 1 0

0 1 0
0 0 1

 ,


0 1 0
−1 0 −1

0 1 0
0 −1 1
1 −1 1
0 0 1

 ,


0 −1 0
1 0 −1
0 1 0
0 −1 1
−1 0 1

0 0 1

 ,


0 −1 0
1 0 1
0 −1 0
0 0 −1
−1 1 −1

0 1 −1




sage: SP3.mutation sequence([0,1,0,2],return output=’var’)

[
x1 + y0

x0
,
x0y0y1 + x1x2 + x2y0

x0x1
,
x0y1 + x2

x1
,
x0x1y0y1y2 + x0y0y1 + x1x2 + x2y0

x0x1x2

]

A few words about this procedure.

(1) The command SP3.mutation sequence() does not affect the object SP3, only
returns the results of mutating in this order. If one wants actual seeds to work
with rather than simply an output of matrices or cluster variables, one should
use the option return output=’seed’ (or omit this optional parameter since
this is the default setting).

sage: seeds3 = SP3.mutation sequence([0,1,0,2]); seeds3

[A seed for a cluster algebra of rank 3 with 3 frozen variables,

A seed for a cluster algebra of rank 3 with 3 frozen variables,

A seed for a cluster algebra of rank 3 with 3 frozen variables,

A seed for a cluster algebra of rank 3 with 3 frozen variables,

A seed for a cluster algebra of rank 3 with 3 frozen variables]
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(2) With the optional parameters for returning output, the other options are
’matrix’ or ’var’. The option matrix is self-explanatory. The option var

outputs the new cluster variable at each step. The rest of the cluster variables
in the associated clusters are suppressed, since otherwise a lot of redundant
information would be printed or saved.

To return the rank (i.e. the number of exchangeable variables or columns in the
exchange matrix B), one can simply use the command SP3.n(). To return the number
of frozen variables (also equal to the number of rows minus the number of columns in
B), we use the command SP3.m().

Not surprisingly, if we mutate SP3 in place with the same sequence, it equals the last
seed returned in the sequence.

sage: SP3.mutate([0,1,0,2]); SP3.cluster()[
x0y1 + x2

x1
,
x0y0y1 + x1x2 + x2y0

x0x1
,
x0x1y0y1y2 + x0y0y1 + x1x2 + x2y0

x0x1x2

]
sage: SP3 == seeds3[len(seeds3)-1]

True

Notice that it is because of Sage’s indexing starting at zero that the last seed is indexed
by len(seeds3)-1, where len stands for “length”. One can also access the last entry
by seeds3[-1].

We now describe two other quantities that can be obtained from a cluster algebra
with principal coefficients: F -polynomials and g-vectors 3. Our procedures are designed
to be applied to cluster algebras of geometric type where the initial cluster has principal
coefficients, In this context, apply some sequence of mutations, and let χk denote the
kth cluster variable in this new cluster. Then the kth F-polynomial is defined to be
χk, where the initial cluster variables xi have been set to be one. The kth g-vector
is the multidegree (or exponent vector) of the unique term in the Laurent expansion
of χk that contains no yi’s. See Sections 5 and 6 of [FZ07] for more details. We now
re-initialize the same cluster seed and mutation sequence as above, and compute the
F -polynomials and g-vectors instead of the cluster variables.

sage: B3 = matrix([[0,1,0],[-1,0,1],[0,-1,0]]);

sage: S3 = ClusterSeed(B3); SP3 = S3.principal extension(); SP3

A seed for a cluster algebra of rank 3 with 3 frozen variables

sage: SP3.f polynomials()

[1, 1, 1]

sage: SP3.g vector(0); SP3.g vector(1); SP3.g vector(2)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

sage: SP3.g matrix()

3Technically, our program will allow these quantities to be computed whenever m, the number of
frozen variables, equals n, the number of exchangeable variables.



A COMPENDIUM ON THE CLUSTER ALGEBRA AND QUIVER PACKAGE IN SAGE 17

 1 0 0
0 1 0
0 0 1


sage: SP3.mutate([0,1,0,2]); SP3.f polynomials()

[y1 + 1, y0y1 + y0 + 1, y0y1y2 + y0y1 + y0 + 1]

sage: SP3.f polynomial(2)

y0y1y2 + y0y1 + y0 + 1

sage: SP3.g matrix()  0 −1 −1
−1 0 0

1 1 0


sage: SP3.g vector(0)

(0,−1, 1)

sage: SP3.cluster()[
x0y1 + x2

x1
,
x0y0y1 + x1x2 + x2y0

x0x1
,
x0x1y0y1y2 + x0y0y1 + x1x2 + x2y0

x0x1x2

]
We can also illustrate the Tropical Duality conjecture in the skew-symmetric case (this
case and others proven by Nakanishi-Zelevinsky [NZ11]). In the skew-symmetric case,
the statement is that the G-matrix is the inverse transpose of the C-matrix.

sage: SP3.c matrix()  0 0 −1
−1 1 −1

0 1 −1


sage: SP3.c matrix().inverse().transpose() 0 −1 −1

−1 0 0
1 1 0


sage: SP3.c matrix().inverse().transpose() == SP3.g matrix()

True

It is also rather simple to strip off the frozen variables and obtain the coefficient-
free cluster algebra by the command SP3.principal restriction(). This command
also sets to one all frozen variables appearing in the Laurent expansions of exchangeable
cluster variables. Like the command S3.principal extension(), this does not change
the object in place, and only returns a new object where only the top half of the matrix
and the first n cluster variables are kept.

A related command is SP3.reset principal coefficients(), which resets the bot-
tom half of the 2n-by-n exchange matrix to be the identity. This command does not
affect the cluster.
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3. Using quivers as cluster algebra seeds

In this section, we introduce a second way to input a cluster algebra seed. This uses
the language of quivers, which is a fancy way of saying a directed (or oriented) graph.
The term quiver originates in representation theory, where it was introduced by P.
Gabriel at the beginning of the seventies. Gabriel wanted to emphasize the difference
between the representation-theoretic and the graph-theoretic aspects of one and the
same notion. For a quick introduction to quiver representations, please see references
such as Section 5 of [Kel10]. An in-depth treatment is given, for example in the book
by Assem, Simson, and Skowronski [ASS06]. The theory of quivers is an important one
in representation theory, where fundamental questions come from studying the path
algebra associated to such a directed graph.

For our purposes, we mostly use the quivers for bookkeeping purposes and thinking
of them simply as directed graphs will be sufficient for most of our applications. In this
package, a class of objects has been included as a placeholder for future development.
For example, it is planned that in future versions of this package, some of the methods
for quiver representations, as in preparation by Franco Saliola, will be available from
this class as well. In the meantime, we will define what we need from quiver theory
and describe the methods available in the current package as relevant to cluster algebra
theory.

Definition 3.1. A quiver Q is a directed graph. We will only work with quivers on a
finite number of vertices and which contains no loops (1-cycles) or 2-cycles. However, we
do allow our quivers to have multiple edges between a pair of vertices, but since there
are no 2-cycles, this means that all edges between two vertices must have the same
direction. In general there is no restriction against oriented cycles on ≥ 3 vertices.

Definition 3.2 (Constructing an exchange matrix from a quiver). Given
a quiver Q on vertices v0, v1, through vn−1, we let ±bij denote the number of edges
between vi and vj. We let this number be positive if the edges are oriented from vi to
vj and negative otherwise. We construct BQ = [bij] as the associated n-by-n matrix.

Definition 3.3 (Constructing a pair-weighted quiver from an exchange ma-
trix). To get a quiver QB from an (m + n)-by-n exchange matrix B is the reverse of
the above construction, however, there are two nuances to emphasize.

(1) For a cluster algebra seed to correspond to a quiver, the corresponding matrix
B must satisfy bij = −bji for all pairs 0 ≤ i, j ≤ n − 1. In other words, the
top n-by-n portion of B must be skew-symmetric, not just skew-symmetrizable.
Since cluster algebras for non-skew-symmetric seeds are also quite prevalent in
the literature, our package works with a slight generalization of quivers, which
we call pair-weighted quivers.

We do not allow parallel edges in such quivers, and instead, we label each
directed edge as an ordered pair [bij, bji] such that the associated edge is oriented
from vi to vj. Consequently, the first entry of each such pair is necessarily
positive and the second is negative, but the direction of the edge must also be
recorded. In the case that bji = −bij, i.e. the case of parallel edges, this label is
simplified to be simply the positive number bij. We also omit the label bij = 1
when displaying graphics to make pictures easier to view.
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Note, that this notation differs from that in places such as [FZ03b] or [FST2],
but is necessary for precise computations. Our notation is inspired by Dlab-
Ringel [DR76] and Dupont-Pérotin [DP10].

(2) If m > 0, i.e. the matrix has more rows than columns, and for any bij where
i ≥ n, there is no bji in the matrix and so we do not have to worry about checking
skew-symmetry for such entries. However, such vertices vi correspond to frozen
variables and so we designate these vertices accordingly as “frozen vertices” to
remind the user not to mutate or apply exchanges at such vertices.

Remark 3.4. This immediate connection between quivers and exchange matrices ex-
plains why we often consider exchange matrices up to simultaneous row and column
permutations: two quivers are considered to be isomorphic if they are isomorphic as
unlabeled digraphs, and this corresponds to considering exchange matrices up to si-
multaneous row and column permutations. The isomorphism reflects the fact that, as
the cluster of an initial cluster seed ({x1, . . . , xn}, B) is invariant under permuting the
variable indices, the cluster algebra does not depend on the ordering of the vertices in
the corresponding quiver.

Definition 3.5 (Quiver Mutation). While a quiver Q can be mutated in any of the
n directions by constructing the associated exchange matrix BQ, applying µk and then
pulling back to the quiver Qµk(B) = µk(Q), there is also a three step process that allows
for a a nice visual description of quiver mutation (in the case of skew-symmetric B’s).

(1) Reverse the direction of every oriented edge incident to vertex vk. Call the
resulting quiver Q′.

(2) For any 2-path vi → vk → vj that went through vk in the original quiver Q, add
a directed edge vi → vj in Q′. In other words, for any pair of vertices, {vi, vj},
if there are bik parallel edges from vi to vk and bkj parallel edges from vk to vj,
then in Q′, we add bikbkj directed edges between vi and vj.

(3) In step 2, a 2-cycle may have been created, so the last step is to pair off and
erase any such anti-parallel edges.

It is an easy exercise to see that the definition of matrix mutation µk(B) given in the
previous section agrees with mutation of the quiver QB at vertex vk. In the case of a
pair-weighted quiver, it is easiest to mutate the associated matrix and then pull-back
to a pair-weighted quiver.

Definition 3.6 (Mutation-equivalence). Two quivers Q1, Q2 are said to be mutation-
equivalent if one can be obtained from the other by a finite sequence of mutations, i.e., if
there exists a finite sequence i1, . . . , ik such that µik ◦ · · · ◦µi1(Q1) = Q2. The collection
of all quivers mutation-equivalent to a given quiver Q is called mutation class of Q.

We now describe the numerous ways that a quiver can be constructed in our package.
Firstly, a quiver can be constructed directly from an exchange matrix, or from a cluster
seed in multiple ways.

sage: B3 = matrix([[0,1,0],[-1,0,-1],[0,1,0]])

sage: S3 = ClusterSeed(B3)

sage: Q1 = Quiver(B3)

sage: Q2 = Quiver(S3)

sage: Q3 = S3.quiver()
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sage: Q1 == Q2; Q2 == Q3; Q1

True True Quiver on 3 vertices

There are other possible constructors, such as from a directed graph:

sage: dg = DiGraph()

sage: dg.add edges([[0,1],[2,1]])

sage: Q4 = Quiver(dg)

sage: Q1 == Q4

True

Warning: If one uses the digraph constructor, one must follow the conventions for
that constructor as a Sage object, in particular, digraphs do not allow multiple edges
by default. For example, to get a quiver with parallel edges, one might be tempted to
type

sage: dg = DiGraph()

sage: dg.allows multiple edges()

False

sage: dg.add edges([[0,1],[2,1],[2,1]])

sage: dg.edges(labels=False)

[(0, 1), (2, 1)]

sage: Q5 = Quiver(dg)

However, if one then asks

sage: Q1 == Q5

True

as the multiple copies of edge v2 → v1 are ignored. Instead, one should use the con-
struction

sage: dg = DiGraph()

sage: dg.add edges([[0,1,2],[2,1,1]])

sage: Q6 = Quiver(dg)

sage: Q1 == Q6; Q6.digraph().edges()

False [(0,1,(2,-2)), (2,1,(1,-1))]

sage: dg = DiGraph()

sage: dg.add edges([[0,1,1],[2,1,1]])

sage: Q7 = Quiver(dg)

sage: Q1 == Q7

True

Note that all quivers are actually implemented as pair-weighted quivers, i.e. as a labeled
digraph where multiple edges correspond to a pair (b,−b) where b ≥ 2. The program
automatically converts the user’s input with a single number indicating the edge label
to a pair. A user can even label some edges as a single number, leave some edges
unlabeled (as a single edge with pair-weight (1,−1)), and other edges as pairs; and the
program will interpret this correctly. As mentioned above, multiple copies of an edge
are ignored. More precisely, if they are given as labeled edges, then the label assigned
is the one given to the last copy of the edge included.
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sage: dg = DiGraph()

sage: dg.add edges([[0,1,2], [2,1,(1,-1)]])

sage: Q8 = Quiver(dg)

sage: Q6 == Q8

True

A quiver can also be constructed more quickly by having Sage do the intermediate work
of constructing the digraph for you. Just simply type

sage: Q9 = Quiver([[0,1,2],[2,1,1]])

or any of the analogous constructions described above for encoding the edges of a
digraph (although again one should include edge labels instead of multiple copies of
edges).

sage: Q6 == Q9

True

You can also get a copy of a quiver already defined by a command such as

sage: Q10 = Quiver(Q9)

sage: Q10 == Q9

True

sage: Q10.mutate(0)

sage: Q10 == Q9

False

We did not emphasize it above, but a similar technique allows one to get a copy of a
cluster seed. There is one other technique that can be used to construct a quiver, or
for that matter a cluster seed, but it requires knowledge of quiver mutation types, and
we leave the description of this construction to the next section.

We now introduce some of the possible methods our package contains for working
with quivers along with associated examples. Most importantly, to get a picture of a
quiver, we use the show command.

sage: Q1.show()

sage: Q1.mutate(1); Q1.show()
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One quirk about the method show is that the graphic obtained can be a little random.
If the placement of the vertices or the drawing of the graph is not optimal, it is rec-
ommended the user try running the show command again until the quiver renders in a
more visually pleasing way. Using the command

sage: Q1.save image("filename.ext")

one can also save the image of a Quiver or ClusterSeed. The available formats are

• .eps
• .pdf
• .png
• .ps
• .svg

Note that just as before, the command Q1.mutate() changes the object in place.

sage: Q1.b matrix()  0 −1 0
1 0 1
0 −1 0


sage: Q1.mutate(1); Q1.b matrix() 0 1 0

−1 0 −1
0 1 0


A nice way to visualize a sequence of quiver mutations is the use of the command
mutation sequence with the optional parameter show sequence=True. Unlike the
show command, the quivers always render in the same circular way using this procedure
so it is easier to compare vertices to one another.

sage: Q1.mutation sequence([0,1,2,0,1,0],show sequence=True)

[Quiver on 3 vertices,

Quiver on 3 vertices,

Quiver on 3 vertices,

Quiver on 3 vertices,

Quiver on 3 vertices,

Quiver on 3 vertices,

Quiver on 3 vertices]
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Note that, here we are using the mutation sequence on the quivers (rather than seeds),
so the optional argument of return output is not allowed. However, we can construct
the associated cluster seed quite easily and then methods for viewing the associated
quiver are still accessible, along with the other commands for cluster seeds.

sage: NewS = ClusterSeed(Q1); Q2 = NewS.quiver()

sage: Q2 == Q1; NewS.show()

True

sage: NewS.mutation sequence([0,1,2,0,1,0],

show sequence=True,return output=’matrix’) 0 1 0

−1 0 −1
0 1 0

 ,

 0 −1 0

1 0 −1
0 1 0

 ,

 0 1 −1

−1 0 1
1 −1 0

 ,

 0 0 1

0 0 −1
−1 1 0

 ,

 0 0 −1

0 0 −1

1 1 0

 ,

 0 0 −1

0 0 1

1 −1 0

 ,

 0 0 1

0 0 1

−1 −1 0



Another instructive command is .digraph() which lets the user construct the asso-
ciated labeled directed graph encoding the quiver. Since DiGraph is already a class
of objects, this allows the user access to a variety of other methods. One can then
reconstruct a quiver with the altered directed graph, dg whenever desired, using the
techniques described above, i.e. Quiver(dg).

sage: Quivs = Q1.mutation sequence([0,1,2,0,1,0])

sage: [Q.digraph().edges() for Q in Quivs]

[[(0, 1, (1, -1)), (2, 1, (1, -1))],

[(1, 0, (1, -1)), (2, 1, (1, -1))],

[(0, 1, (1, -1)), (1, 2, (1, -1)), (2, 0, (1, -1))],

[(0, 2, (1, -1)), (2, 1, (1, -1))],

[(2, 0, (1, -1)), (2, 1, (1, -1))],

[(1, 2, (1, -1)), (2, 0, (1, -1))],

[(0, 2, (1, -1)), (1, 2, (1, -1))]]

Thus far, the examples included have been skew-symmetric and coefficient-free. We
close this section with some examples which require pair-weighted quivers and frozen
vertices.
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sage: B = matrix([

(0, 1, 0, 0, 0, 1),

(-1, 0, -1, 0, 0, 0),

(0, 1, 0, 1, 0, 0),

(0, 0, -1, 0, -2, 0),

(0, 0, 0, 1, 0, 0),

(-2, 0, 0, 0, 0, 0)])

sage: S = ClusterSeed(B); S.show()

sage: S.mutation sequence([1,2,0], show sequence=True,

return output=’matrix’)



0 1 0 0 0 1

−1 0 −1 0 0 0

0 1 0 1 0 0
0 0 −1 0 −2 0

0 0 0 1 0 0

−2 0 0 0 0 0

 ,



0 −1 0 0 0 1

1 0 1 0 0 0

0 −1 0 1 0 0
0 0 −1 0 −2 0

0 0 0 1 0 0

−2 0 0 0 0 0

 ,



0 −1 0 0 0 1

1 0 −1 1 0 0

0 1 0 −1 0 0
0 −1 1 0 −2 0

0 0 0 1 0 0
−2 0 0 0 0 0

 ,



0 1 0 0 0 −1

−1 0 −1 1 0 1
0 1 0 −1 0 0

0 −1 1 0 −2 0

0 0 0 1 0 0
2 −2 0 0 0 0





sage: Q = Quiver(S)

sage: Q2 = Q.principal extension(); Q2; Q2.show()

Quiver on 12 vertices with 6 frozen vertices

sage: Q2.mutation sequence([1,2,0],show sequence=True)
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If we instead produce a quiver by first producing the principal extension of the
cluster seed, and then constructing a quiver from it, we obtain an equal quiver as a
result.

sage: S2 = S.principal extension()

sage: Q3 = Quiver(S2); Q2 == Q3

True

Another way to work with quivers and cluster seeds is through the interactive mode
available through the Sage-Notebook. This involves a command such as S.interact()
or Q.interact(), as shown in Figure 1.

4. Finite type and finite mutation type classifications

So far we have described how a cluster algebra seed can be constructed from a skew-
symmetrizable matrix or from a quiver. The last construction that we wish to discuss
utilizes the notion of quiver mutation types. Before we delve more into the specifics of
this discussion, we begin with a few theoretical preliminaries.

Two natural questions that one can ask about a cluster algebra (or its seed) once the
initial definitions have been given are the following:

Given a cluster algebra A = A(x0, B0), with initial seed (x0, B0),
• are there a finite number of generators (cluster variables) x for A as we take the

union of all clusters x as we mutate?
• are there a finite number of exchange matrices B for A as we mutate into

different seeds?

Definition 4.1. If there are a finite number of cluster variables for A, we say that A
is of finite type.

Definition 4.2. If there are a finite number of exchange matrices for A, we say that
A is of finite mutation type.

An important theorem that greatly simplifies our notation for geometric type is the
following theorem by Gekhtman, Shapiro, and Vainshtein:

Theorem 4.3 (Theorem 7.4 of [GSV10]). If A is a cluster algebra (i) of geometric
type, or (ii) has nondegenerate exchange matrix, and (x, B), (x′, B′) are two seeds for
A, such that cluster x′ is simply the permutation σ of cluster x, then the exchange
matrices B′ and B must also be the same, up to simultaneous permutation of its rows
and columns by the same σ. In particular, the cluster determines the seed in the above
cases.

From this theorem, it is clear that any cluster algebra of finite type must have a finite
number of seeds and exchange matrices.
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Figure 1. The interactive mode of the cluster package in the Sage-Notebook.

Corollary 4.4 (Finite type implies finite mutation type). A cluster algebra of finite
type is also of finite mutation type.

However, the converse is false, the simplest counter-example being the rank two
example A(2, 2) discussed in the Introduction.

Classifying cluster algebras of finite type was one of the first natural questions about
cluster algebras, and led Fomin and Zelevinsky to the following beautiful theorem.
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Theorem 4.5 (Theorem 1.5 of [FZ03b]). The following three conditions about a
cluster algebra A = A(x0, B0) are equivalent:

• Cluster algebra A is of finite type.
• In every seed (x, B) that is mutation-equivalent to (x0, B0), the exchange matrix
B satisfies |bijbji| ≤ 3 for all pairs 1 ≤ i, j ≤ n.
• There exists a mutation-equivalent seed (x1, B1) such that the exchange matrix
B1 is a skew-symmetrizable version of a Cartan matrix of a finite-dimensional
Lie algebra4.

In particular, cluster algebras of finite type are given by the same Cartan-Killing clas-
sification as that describing Lie algebras via Dynkin diagrams:

An, Bn, Cn, Dn, E6, E7, E8, F4, and G2.

Given a cluster algebra seed S for A, it therefore makes sense to ask whether or
not S is mutation-equivalent to a seed (x, B) where the exchange matrix B is a skew-
symmetrizable version of the Cartan matrix of type An (respectively Bn, Cn, Dn, E6,
E7, E8, F4, or G2). If so, we call A a cluster algebra of mutation type An (respectively
Bn, Cn, Dn, E6, E7, E8, F4, or G2). We also call all exchange matrices and the
corresponding quivers of such a cluster algebra of mutation type An (respectively Bn,
Cn, Dn, E6, E7, E8, F4, or G2).

Our program has subtle algorithms for identifying mutation types of exchange ma-
trices and quivers. In the cases of the exceptional types, E6, E7, E8, F4 and G2, it
is sufficient to hard-code a catalog of the mutation classes. This is done to avoid re-
computing the mutation class whenever checking a mutation type. In classical types
however, the parameter n can be any positive integer, and we instead utilize theoretical
results of [CCS06] (type An), [Stu] (types Bn and Cn), and [Vat10] (type Dn) to identify
them for any rank n.

Recall that a quiver (respectively pair-weighted quiver) encodes the same information
as a skew-symmetric (respectively skew-symmetrizable) matrix. To avoid duplication
of data types, we have introduced a new class of objects known as quiver mutation
types. Note that these can be implemented with or without brackets.

sage: QM1 = QuiverMutationType([’A’,5])

sage: QM2 = QuiverMutationType(’A’,5); QM1 == QM2

True

sage: QM1

[’A’, 5]

sage: type(QM1)

〈class ’sage.combinat.cluster algebra quiver.quiver mutation type.
QuiverMutationType Irreducible’〉

sage: QM1.b matrix()

4 Given a Cartan matrix A, we make a skew-symmetrizable BA by replacing the 2’s on the diagonal
with 0’s, and picking a bipartite coloring of the Dynkin diagram associated to A so that bij = |aij | if
directed edge vi → vj would go from white to black, and bij = −|aij | otherwise, see Section 5.
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0 1 0 0 0
−1 0 −1 0 0

0 1 0 1 0
0 0 −1 0 −1
0 0 0 1 0


sage: Quiv = QM1.standard quiver(); Quiv

Quiver on 5 vertices of type [’A’, 5]

sage: Quiv.show()

sage: QM2 = QuiverMutationType(’BC’,6,1); QM2

[’BC’,5,1]

sage: QM2.b matrix() 

0 1 0 0 0 0 1
−1 0 −1 0 0 0 0

0 1 0 1 0 0 0
0 0 −1 0 −1 0 0
0 0 0 1 0 2 0
0 0 0 0 −1 0 0
−2 0 0 0 0 0 0


sage: QM2.standard quiver().show()

Each quiver mutation type has a number of attributes and methods associated to it.
We already saw an example of two key methods: b matrix and standard quiver, i.e.
each quiver mutation type object encodes a specific canonical exchange matrix and the
associated pair-weighted quiver. This characterizes only one representative out of the
relevant possible mutation-class, but it is enough data to determine the appropriate
cluster algebra seed up to mutation-equivalence. We hard-coded these representatives
so that the associated quiver is an oriented Dynkin diagram such that each vertex is a
sink or source. For future reference, such a quiver and seed is known as bipartite.

More generally, each of these representative quivers are trees and acyclic. Because
of results from representation theory and otherwise, there are a number of results in
cluster algebra theory that hold when the associated quiver is bipartite (respectively a
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tree or acyclic), but the result is incorrect, or a proof is unknown when the quiver lacks
the relevant property. Here are some examples:

Theorem 4.6. [Nak11] If a cluster algebra A is given by a seed that is mutation-
equivalent to one which is skew-symmetric and bipartite, then all cluster variables of A
have positive expansions as Laurent polynomials 5.

Theorem 4.7 (Proposition 9.2 in [FZ03b]). If Q is a quiver that is a tree as an
undirected graph then Q is mutation-equivalent to any Q′ where Q′ has the same un-
derlying undirected graph as Q but the edges of Q′ are oriented arbitrarily6.

Theorem 4.8 (Corollary 1.21 in [BFZ05]). Let A = A(x, B) be a cluster algebra
where B corresponds to an acyclic seed. Let x′i denote the unique element in cluster
µi(x) which is not contained in x. Then we have the following:

• A is finitely generated by the set χ = {x1, x
′
1, . . . , xn, x

′
n},

• The standard monomials (those not containing the factor xix
′
i for any i ∈

{0, 1, . . . , n− 1}) in χ form a ZP-basis of A, and
• The binomial exchange relations involving xix

′
i on the left-hand-sides generate

the ideal of relations among the generators χ.

Because of the importance of these properties, and other related ones, there are
methods to check whether a given cluster seed, quiver, or quiver mutation type satisfies
them:

is finite(), is mutation finite(), is bipartite(), is acyclic(),...

There are a few other checks that we have not explained yet, but we will provide an
annotated list of all of the checkable properties in Section 6.

sage: QM1.properties()

[’A’, 5] has rank 5 and the following properties:

- irreducible: True

- mutation finite: True

- simply-laced: True

- skew-symmetric: True

- finite: True

- affine: False

- elliptic: False

sage: QM2.properties()

[’BC’, 6, 1] has rank 7 and the following properties:

- irreducible: True

- mutation finite: True

- simply-laced: False

- skew-symmetric: False

- finite: False

- affine: True

- elliptic: False

5By theorems of Fan Qin [Qin] and an updated version of [Nak11], positivity has been proven for
all skew-symmetric acyclic seeds.

6Note: this list of mutation-equivalent quivers is not exhaustive, for example a quiver of type A3 is
both mutation-equivalent to any orientation of a path on three vertices; or to an oriented triangle.
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Most importantly, our program allows the user to construct a cluster seed or quiver
by using a quiver mutation type. The associated quiver is the standard quiver that is
hard-coded as a representative for each type; and the associated cluster seed is obtained
from this choice of quiver.

sage: ClusterSeed([’A’,5])

A seed for a cluster algebra of rank 5 of type [’A’, 5]

sage: ClusterSeed([’BC’,6,1])

A seed for a cluster algebra of rank 7 of type [’BC’, 6, 1]

sage: Quiver([’A’,5])

Quiver on 5 vertices of type [’A’, 5]

sage: Quiver([’BC’,6,1])

Quiver on 7 vertices of type [’BC’, 6, 1]

4.1. Finite mutation type classification. We now describe theoretical results re-
garding the classification of cluster algebras of finite mutation type. Again, we use the
notation of pair-weighted quivers so our descriptions of some of the results will differ
slightly from the work of Felikson-Shapiro-Tumarkin [FST2]. Our story begins however
with Felikson-Shapiro-Tumarkin’s first paper [FST] which classified skew-symmetric
cluster algebras of finite mutation type.

Theorem 4.9 (Theorem 6.1 of [FST]). The following two conditions about a cluster
algebra A = A(x0, B0) with skew-symmetric B0 are equivalent:

• A is of finite mutation type,
• A has one of the following properties:

(1) A is of rank 2,
(2) A is associated to a cluster algebra corresponding to a surface, or
(3) A is one of 11 exceptional types E6, E7, E8, affine Ẽ6, Ẽ7, Ẽ8, elliptic

Ẽ
(1)
6 , Ẽ

(1)
7 , Ẽ

(1)
8 , or one of two other types X6 and X7, which were found by

Derksen and Owen [DO08].

Rank two cluster algebras were already described in the introduction, and are clearly
mutation-finite since mutation of such an exchange matrix B simply leads to −B.

Describing cluster algebras of surfaces is beyond the scope of this compendium, how-
ever it is planned that future installments of this software will handle such cluster
algebras and their description will be spelled out at that time7. Please see Fomin,
Shapiro, and D. Thurston’s papers [FST08, FT] for a description or [MSW11] where
Schiffler, Williams, and the first author prove positivity of Laurent expansions for such
cluster algebras. Nonetheless, we mention here that cluster algebras corresponding to
polygons with 0, 1, or 2 punctures, or to an annulus, can also be described as the skew-
symmetric types An, Dn, D̃n, or Ãr,s, respectively. The first two cases are of finite type
and the second two are of affine type. Any other finite or affine type is of exceptional
type or is not skew-symmetric. We illustrate corresponding representative quivers in
the next section.

7Recently we learned from Michael Shapiro of Weiwen Gu’s work [Gu] describing an algorithm for
recognizing cluster algebras from surfaces. We hope to implement these procedures in a future version
of this software.
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We have met some of the eleven exceptional types before, the types E6, E7, and E8

are of finite type and thus of finite mutation type. We give representative quivers for
the remaining eight in the next section. The affine types Ẽ6, Ẽ7, and Ẽ8 each have a
bipartite oriented tree as a quiver representative; however the other five have no acyclic
representatives.

4.2. Skew-symmetrizable cluster algebra seeds of finite mutation type. In
cutting edge work this past summer [FST2], Felikson-Shapiro-Tumarkin generalized
their previous work to a classification including mutation-finite weighted quivers that
are not skew-symmetric.

Theorem 4.10 (Theorems 2.8 and 5.13 of [FST2]). The following three conditions
about a cluster algebra A = A(x0, B0) with skew-symmetrizable B0 and rank ≥ 3 are
equivalent:

• A is of finite mutation type,
• In every seed (x, B) that is mutation-equivalent to (x0, B0), the exchange matrix
B satisfies |bijbji| ≤ 4 for all pairs 1 ≤ i, j ≤ n.
• A has one of the following properties:

(1) A is decomposable into blocks, as described in [FST2], or
(2) A is one of the 11 exceptional types in Theorem 4.9 or one of the 7 excep-

tional types G̃2, F4, F̃4, V4,W4, Y4, and Z6.

Note that even in the non-skew-symmetric case, rank 2 cluster algebras are still of finite
mutation type, regardless of |b12b21|.

Remark 4.11. One can get from our notation of pair-weighted quivers to the notion of
weighted quivers in [FST2] by the following: if an edge of our quiver has the pair-weight
[b,−c], then the corresponding weight in their notation is bc. While their notation has
several advantages and simplifies the statements of certain theorems, for computations
it obscures the differences between different mutation classes. For example, cluster
algebras of types Bn and Cn would have the same weighted quivers. Even though these
cluster algebras give rise to the same cluster complexes (i.e. the clique complex whose
facets are seeds), the Laurent expansions of cluster variables are quite different in these
two cases.

To illustrate this example we introduce two new commands. See Section 4.4 for details
on the associated algorithms:

1) Given a cluster algebra of finite mutation type, we can use the command
b matrix class to obtain a list of all the exchange matrices that are mutation-equiva-
lent to a given initial seed. To avoid extraneous duplication, we only output one matrix
up to simultaneous permutation of rows and columns.

For example, in the B3 versus C3 cases, notice that the list of exchange matrices in
the respective mutation classes are negative transposes of one another8.

8This would be clearer if we included all mutation-equivalent matrices rather than just those up
to permutation, which could be accomplished by S3.b matrix class(up to equivalence=False). In
particular the last matrices in both of these lists are negative transposes of each other if we also swap
the first and second rows/columns.
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sage: S3 = ClusterSeed([’B’,3]); S3.b matrix class() 0 0 1
0 0 2
−1 −1 0

 ,

 0 0 1
0 0 −2
−1 1 0

 ,

 0 1 1
−2 0 0
−1 0 0

 ,

 0 2 0
−1 0 1

0 −1 0

 ,

 0 −1 1
2 0 −2
−1 1 0


sage: S4 = ClusterSeed([’C’,3]); S4.b matrix class() 0 0 1

0 0 1
−1 −2 0

 ,

 0 0 1
0 0 −1
−1 2 0

 ,

 0 2 1
−1 0 0
−1 0 0

 ,

 0 1 0
−2 0 1

0 −1 0

 ,

 0 1 −1
−2 0 1

2 −1 0


sage: S3.show(); S4.show()

sage: S3.quiver().digraph().edges()

[(0, 1, (1, -1)), (2, 1, (2, -1))]

sage: S4.quiver().digraph().edges()

[(0, 1, (1, -1)), (2, 1, (1, -2))]

There is an analogous command that works for cluster algebras of finite type:
2) The command variable class will output the list of all cluster variables obtained

as one mutates through all mutation-equivalent seeds.

sage: S3.variable class()[
x0, x1, x2,

x1 + 1

x0
,
x0x

2
2 + 1

x1
,
x1 + 1

x2
,
x0x

2
2 + x1 + 1

x0x1
,
x0x

2
2 + x1 + 1

x1x2
,

x0x
2
2 + x2

1 + 2x1 + 1

x0x1x2
,
x0x

2
2 + x2

1 + 2x1 + 1

x1x2
2

,
x3

1 + x0x
2
2 + 3x2

1 + 3x1 + 1

x0x1x2
2

,

x2
0x

4
2 + 3x0x1x

2
2 + x3

1 + 2x0x
2
2 + 3x2

1 + 3x1 + 1

x0x2
1x

2
2

]
sage: S4.variable class()[

x0, x1, x2,
x1 + 1

x0
,
x0x2 + 1

x1
,
x2

1 + 1

x2
,
x0x2 + x1 + 1

x0x1
,
x2

1 + x0x2 + 1

x1x2
,

x3
1 + x2

1 + x0x2 + x1 + 1

x0x1x2
,
x2

0x
2
2 + x2

1 + 2x0x2 + 1

x2
1x2

,
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x2
0x

2
2 + x3

1 + x0x1x2 + x2
1 + 2x0x2 + x1 + 1

x0x2
1x2

,

x4
1 + x2

0x
2
2 + 2x3

1 + 2x0x1x2 + 2x2
1 + 2x0x2 + 2x1 + 1

x2
0x

2
1x2

]

In conclusion, even though the quivers of type B3 and C3 look quite similar and they
have the same cluster complex, the Laurent polynomials are quite different. For exam-
ple, the bipartite seed for a cluster algebra of type B3 leads to cluster variables whose
numerators have degree 6, while the numerators are only of degree at most 4 in the
case of C3. Similar phenomena happen for other dual cluster algebras, e.g. types Bn

versus Cn for n ≥ 3, or pairs of seeds: (x, B) and (x, BT ). Here and below, we adapt
the term “dual” from the notion for Kac-Moody algebras.

Nuances like these make the non-skew-symmetric cases more difficult to analyze.
Nonetheless, using the classification (via folding of skew-symmetric quivers) appearing
in [FST2], it has been possible to include descriptions of mutation classes for those
classes that correspond to a non-simply laced Dynkin diagram of finite or affine type, as
well as the weighted quivers listed as exceptional cases in [FST2]. For the classification
of non-simply laced affine Dynkin diagrams, we use the tables of Kac [Kac94, pgs. 53-
55]. However, the notation here is not explicit enough either as a number of cluster
algebra mutation classes are again collapsed together. We therefore follow notation
of Dupont-Pérotin [DP10] instead. The Dupont-Pérotin notation specifies a quiver by
indicating what the two ends look like, where the choices are that of a Dynkin diagram
of type B, C or D. We say more about this notation in the next section. Since many
users might be more familiar with the Kac-Moody notation, through careful coercing,
if a user inputs a typical Kac-Moody type, it is recognized and translated into the
appropriate notation that our software uses.

sage: QuiverMutationType(’C’,2)

[’B’,2]

sage: QuiverMutationType(’B’,4,1)

[’BD’,4,1]

sage: QuiverMutationType(’C’,4,1)

[’BC’,4,1]

sage: QuiverMutationType(’A’,2,2)

[’BC’,1,1]

sage: QuiverMutationType(’A’,4,2)

[’BC’, 2, 1]

sage: QuiverMutationType(’A’,5,2)

[’CD’, 3, 1]

sage: QuiverMutationType(’A’,6,2)

[’BC’, 3, 1]

sage: QuiverMutationType(’A’,7,2)

[’CD’, 4, 1]

sage: QuiverMutationType(’D’,5,1)

[’D’,5,1]
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sage: QuiverMutationType(’D’,5,2)

[’CC’,5,1]

sage: QuiverMutationType(’D’,4,3)

[’G’,2,-1]

sage: QuiverMutationType(’E’,6,1)

[’E’,6,1]

sage: QuiverMutationType(’E’,6,2)

[’F’,4,-1]

sage: QuiverMutationType(’F’,4,1)

[’F’,4,1]

As for the finite types, our program has algorithms for identifying exchange matrices
of affine types. In affine type Ãn, we have a similar coercion issue in the case of simply-
laced affine Ãr,s types where two parameters (rather than one parameter) is required to
specify a mutation-equivalence type. This example is special because it is the only finite
or affine type with a Dynkin diagram which is not a tree. Instead its Dynkin diagram
is a cycle on n vertices, and here quivers Q1 and Q2 are only mutation-equivalent if
they have the same number of edges oriented clockwise and the same number of edges
oriented counter-clockwise. Actually, if all arrows are reversed, it is also the same type.
The mutation classes of types Ãr,s can be classified using theoretical results in [Bas].

sage: Qu = Quiver([’A’,[2,3],1]); Qu

Quiver on 5 vertices of type [’A’, [2, 3], 1]

sage: Qu.show()

sage: Quiver([’A’,[4,1],1]).show()

sage: Quiver([’A’,[3,3],1]).show()

Notice also that the representative quiver for an affine Ãr,s-type is made as bipartite as
possible and that mutation type [’A’,[r,s],1] is coerced into type [’A’,[s,r],1]

when s < r.
The remaining affine types can be found in Section 6.2 and are classified using results

in [Hen11] and [Stu].
Beside the described coercions, we also include some basic coercions such as let-

ting type D2 coerce into type A1 × A1, D3 coerce into A3, C2 coerce into B2, small
rank two examples A(b, c) coerce into A2, B2, G2, and Ã1,1, and B̃C1 for (b, c) =

(1, 1), (1, 2), (1, 3), (2, 2), and (1, 4), respectively. Here, B̃C1 simply means the type
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[’BC’,1,1] which is a degenerate version of the [’BC’,n,1] family of Dynkin dia-
grams used above. More technical details can be found in Section 6.2, including other
families of types and more coercions.

4.3. Class sizes of finite and affine quiver mutation types. In this section, we
discuss the sizes of mutation classes of finite and affine types. Those results and conjec-
tures are used to compute the size of mutation classes without explicitly computing the
class. The class size of a cluster seed or quiver is defined to be the number of exchange
matrices or quivers which are mutation-equivalent to the given cluster seed or quiver,
respectively. Here, we consider seeds and quivers up to isomorphism.

Theorem 4.12 (Class sizes of finite types). The number of exchange matrices or quivers
of finite

• type An [Tor08] is given by

1

n+ 3

[
1

n+ 1

(
2n

n

)
+

(
n+ 1

(n+ 1)/2

)
+

(
2n/3

n/3

)]
,

where the second term is omitted if (n+ 1)/2 is not integral and the third term
if n/3 is not integral.
• type Bn or of type Cn [Stu] is given by

1

n+ 1

(
2n

n

)
.

• type Dn [BT09] is for n = 4 given by 6, and for n ≥ 5, it is given by∑
d|n

φ(n/d)

2n

(
2d

d

)
.

• types E6, E7, E8, F4, and G2 are given by 67, 416, 1574, 15, and 2.

Theorem 4.13 ([BPRS11]). The number of exchange matrices or quivers of affine type
Ãr,s is given by 

1
2

∑
k|r,k|s

φ(k)
r+s

(
2r/k
r/k

)(
2s/k
s/k

)
if r 6= s,

1
2

(
1
2

(
2r
r

)
+
∑
k|r

φ(k)
4r

(
2r/k
r/k

)2

)
if r = s.

where φ(k) is Euler’s totient function, i.e., the number of 1 ≤ d ≤ k coprime to k.

Conjecture 4.14 ([Stu]). The number of exchange matrices or quivers of affine

• type B̃Bn or of type C̃Cn is given by(
2n− 1

n− 1

)
+

(
n− 1

n/2− 1

)
where the second term is omitted if n is odd.
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• type D̃n is for n = 4 given by 9, and for n ≥ 5, it is given by

2

(
2n

n

)
+

(
n

n/2

)
,

where the second term is omitted if n is odd.

• type B̃Cn is given by (
2n

n

)
.

• type B̃Dn or of type C̃Dn is given by

2

(
2(n− 1)

n− 1

)
.

Theorem 4.15. The number of exchange matrices or quivers of

• affine types Ẽ6, Ẽ7, Ẽ8, F̃4, and G̃2 are given by 132, 1080, 7560, 60, and 6.

• elliptic types Ẽ
(1)
6 , Ẽ

(1)
7 , and Ẽ

(1)
8 are given by 49, 506, and 5739.

• the other exceptional mutation-finite types V4,W4, X6, X7, Y6, and Z6 are given
by 7, 2, 5, 2, 90, and 35.

In the case of type An (respectively Dn, Ãr,s, D̃n), enumerating mutation-classes of
quivers is related to counting the number of possible triangulations in a polygon (respec-
tively once-punctured polygon, annulus, twice-punctured polygon). Such enumeration
is interesting in the case of other surfaces as well, but few results regarding counting
such quivers up to equivalence are known in these cases. We thus have procedures for
constructing the entire mutation-class for other cluster algebras that are finite mutation
type.

4.4. Algorithms for computing mutation classes. The four commands

mutation class, b matrix class, cluster class, variable class

each utilize the auxiliary command obtained by adding iter, which constructs an
iterator that will run through all the objects in the corresponding mutation class. For
quivers, there is only the method mutation class. The first three methods are directly
derived from mutation class iter, we therefore begin by describing how this method
works.

Note first that mutation class iter is, as the name already indicates, an iterator.
This means that the next element is only computed if the iterator is asked to do so.
Here is an example. One might be interested if there exists a seed or quiver in a given
infinite mutation class having a certain property. Of course, we cannot test all elements,
but we can construct the iterator and then let the computer run through the elements,
constructing one after the other, and checking this property. If the program finds an
element having the property, one could halt the process and return the element, together
with all mutations applied to the initial element. If the computer keeps running, you
might (or might not) get convinced that such an element does not exist.

The command mutation class iter has five (respectively six) optional arguments
if it is acting on a cluster seed (respectively quiver). The additional optional argument
for quivers is data type which is initially set to ‘quiver’ but can also be allowed to



A COMPENDIUM ON THE CLUSTER ALGEBRA AND QUIVER PACKAGE IN SAGE 37

be matrix, digraph, dig6, or path. This argument does not appear in the cluster seed
since the data type is assumed to be a cluster seed here.

The second optional argument is depth, which is set to be ‘infinity‘ by default and
determines the length of the mutation sequences that the program should apply to the
initial seed. If the cluster algebra is of finite type (respectively finite mutation type)
however then a depth of infinity will eventually construct the entire mutation class,
when the original input is a cluster seed (respectively quiver).

Another optional argument is show depth, which allows the user to print extra infor-
mation of the actual depth, the number of constructed seeds or quivers, and the elapsed
time. It is set to be False by default. The argument up to equivalence works differ-
ently depending on whether the input is a cluster seed or a quiver. In the default case
True, cluster seeds are considered up to simultaneous row and column permutations
and quivers are considered unlabeled; see Remark 3.4. Otherwise, equivalence of seeds
and quivers are not considered.

sage: S = ClusterSeed([’A’,2]);

sage: S.cluster class()

[
[x0, x1] ,

[
x0,

x0 + 1

x1

]
,

[
x1 + 1

x0
, x1

]
,

[
x0 + x1 + 1

x0x1
,
x0 + 1

x1

]
,

[
x1 + 1

x0
,
x0 + x1 + 1

x0x1

]]
sage: S.cluster class(up to equivalence=False)

[
[x0, x1] ,

[
x0,

x0 + 1

x1

]
,

[
x1 + 1

x0
, x1

]
,

[
x1 + 1

x0
,
x0 + x1 + 1

x0x1

]
,

[
x0 + x1 + 1

x0x1
,
x0 + 1

x1

]
,

[
x0 + x1 + 1

x0x1
,
x1 + 1

x0

]
,

[
x0 + 1

x1
,
x0 + x1 + 1

x0x1

]
,

[
x1,

x1 + 1

x0

]
,

[
x0 + 1

x1
, x0

]
, [x1, x0]

]

The argument sink source is set to be False by default, but if set to True, then only
mutations at sinks and sources are performed. This option is helpful for working with
bipartite seeds or studying the BGP reflection functors on quiver representations.

Finally, the last argument return paths, again False by default, will keep track of
the shortest mutation sequence that can be used to produce a given seed (or quiver)
from the initial one. This data can be accessed by other commands and then utilized
for future work. Note that such a sequence is not unique so accessing this shortest
sequence during different computational sessions might not give the same result but for
most purposes a single example of the mutation sequence between two seeds is sufficient
data.

With this iterator, one can then call mutation class which will output the associated
list of seeds or quivers in the mutation class. However, since this output cannot be infi-
nite, the argument depth cannot be infinity unless the input is of finite (respectively
finite mutation) type. The data associated to the optional arguments is also returned
at this time. The commands b matrix class and cluster class, which each can only
be performed on a cluster seed, work analogously. The algorithm for variable class,
which again only works on a cluster seed, requires a little more explanation.

The procedure for variable class iter starts by running through an iterator for
the mutation class and by yielding all found cluster variables. However, since the set
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of cluster variables is dwarfed by the number of clusters, this search-based algorithm is
quite slow.

On the other hand, if we are in the lucky situation that the initial cluster is bipartite,
then we can use [FZ07, Theorem 8.8] to efficiently compute the variable class.

Theorem 4.16 (Theorem 8.8 of [FZ07]). Suppose that an exchange matrix B is
bipartite, and its Cartan counterpart A = A(B) is indecomposable.

1) If A is of finite type, then the corresponding bipartite belt (see Definition 4.17) has
the following periodicity property: the labeled seeds Σm and Σm+2(h+2) are equal to each
other for all m ∈ Z. Here, h is the Coxeter number of the corresponding Cartan matrix
A.

2) If A is of infinite type, then all of the elements xi;2m, denoting the n cluster vari-
ables of Σ2m = ({x1;2m, x2;2m, . . . , xn;2m}, B) as m ranges over the integers are distinct
Laurent polynomials in the initial data.

Note that in this theorem, the Cartan counterpart of B (see Section 5) is the (gen-
eralized) Cartan matrix A = A(B) = (aij) defined by

aij =

{
2 if i = j

−|bij| if i 6= j
.

Definition 4.17. We use Σ0 = (x0, B) to denote an initial bipartite seed and let µ+

(respectively µ−) denote the concatenation of all mutations at sources (sinks) of the
quiver Q(B)9. Observe that µ+(B) = µ−(B) = −B.

Define the associated bipartite belt to consist of the seeds Σm = (xm, (−1)mB) for
m ∈ Z, defined recursively by

Σr =

{
µ+(Σr−1) if r is odd

µ−(Σr−1) if r is even.

As a consequence, given an initial bipartite seed (x, B), it is sufficient to mutate
all vertices labeling sinks in Q(B) followed by mutating all vertices labeling sources in
Q(B), and iterate. We will get no repeats in this list and thus the most efficient way
to obtain all cluster variables in the case of a finite type cluster algebra10.

Our algorithm thus first checks if the initial seed is bipartite for this reason. If not,
it proceeds as above trying to mutate in all directions.

It is a difficult computational problem to find a mutation sequence, if one exists, from
an initial non-bipartite seed to a bipartite one, so it is not computationally feasible to use
the shortcut if we do not have a bipartite seed at hand. However, since our proceeding
is doing a search through all seeds mutation-equivalent to the initial one anyway as its
default behavior if we get lucky and find a bipartite seed, the program can record this
path and take advantage of this find.

In the case that the search algorithm finds a bipartite seed, the algorithm then does
the following procedure instead:

1) Starts over at the initial seed.

9Since sources and sinks are not adjacent, the factors of µ+ (respectively µ−) commute with one
another, hence why µ+ and µ− are well-defined.

10 If the cluster algebra is of infinite type, one can also mutate along the bipartite belt to efficiently
generate a large list of cluster variables but not all cluster variables are reachable in this way.
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2) Mutates along the recorded path to get to the bipartite seed Σ0.
3) Mutate along the bipartite belt the appropriate distance from there in both direc-

tions (i.e. applying µ+ first or µ− first).
In step (3) the appropriate distance is either the period 2(h + 2) in the case of a

cluster algebra of finite type or the depth chosen beforehand by the user. Note well
that the meaning of depth is actually different here, as the algorithm will no longer
spread out in all directions. Instead, the argument depth now instructs the computer
how many iterations of the bipartite belt to use. The program will actually output
the cluster variables found on the way to the bipartite seed Σ0, as well as all cluster
variables in the seeds {Σm : m ∈ Z, |m| ≤ depth}.

Since in the case of infinite type, not all cluster variables can be reached by using the
bipartite belt, for example even cluster variables lying in clusters two mutations away
from the bipartite seed might not be reachable (see the bipartite Ã2,2 example below),
the optional argument ignore bipartite belt=False is included. If set to be True,
the original (albeit slower) algorithm of mutating in all directions out to a certain depth
is utilized even if a bipartite seed is found.

sage: S = ClusterSeed([’A’,[2,2],1]); S.b matrix(); S.is bipartite()
0 −1 0 −1
1 0 1 0
0 −1 0 −1
1 0 1 0

 True

sage: S.variable class(depth=1)

Found a bipartite seed -

restarting the depth counter at zero and constructing the variable

class using its bipartite belt.[
x0, x1, x2, x3,

x1x3 + 1

x0
,
x0x2 + 1

x1
,
x1x3 + 1

x2
,
x0x2 + 1

x3
,

x2
1x

2
3 + x0x2 + 2x1x3 + 1

x0x1x2
,
x2

0x
2
2 + 2x0x2 + x1x3 + 1

x0x1x3
,

x2
1x

2
3 + x0x2 + 2x1x3 + 1

x0x2x3
,
x2

0x
2
2 + 2x0x2 + x1x3 + 1

x1x2x3

]
If we look at the output from S.variable class(depth=2) or higher depth, we will
see that the denominators grow larger and larger but no denominator of x0x1 appears.
Compare this output with the examples below.

sage: S.mutate([0,1]); S.cluster()[
x1x3 + 1

x0
,
x0x2 + x1x3 + 1

x0x1
, x2, x3

]
sage: S.variable class(depth=2, ignore bipartite belt=True)[

x0, x1, x2, x3,
x1x3 + 1

x0
,
x0x2 + 1

x1
,
x1x3 + 1

x2
,

x0x2 + x1x3 + 1

x0x1
,
x0x2 + x1x3 + 1

x0x3
,
x0x2 + x1x3 + 1

x1x2
,
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x2
1x

2
3 + x0x2 + 2x1x3 + 1

x0x1x2
,
x2

0x
2
2 + 2x0x2 + x1x3 + 1

x0x1x3
,

x3
1x

3
3 + x2

0x
2
2 + 2x0x1x2x3 + 3x2

1x
2
3 + 2x0x2 + 3x1x3 + 1

x2
0x1x2x3

]

5. Associahedra and the cluster complex

Before looking at associahedra, the cluster complex and their implementations, we
need to start with some basic background on root systems for (generalized) Cartan
matrices. For further details, we refer to [Hum72, Kac94].

Definition 5.1 (Generalized Cartan matrix). An n× n-matrix A = (aij) with integer
entries is called a generalized Cartan matrix if

• aii = 2,
• aij < 0 for i 6= j,
• A is symmetrizable, i.e., there exists a diagonal matrix D with positive entries

such that DA is symmetric.

A generalized Cartan matrix is called of finite type if DA is positive definite, and of
affine type if DA is positive semi-definite.

Recalling the definition of B-matrices, we see that we can associate a generalized
Cartan matrix to every B-matrix (see [FZ03b, (1.6)]). The terms finite and affine come
from their connections to finite and affine Lie algebras. Indecomposable generalized
Cartan matrices of finite type (respectively of affine type) classify Lie algebras of finite
type (respectively of affine type).

A realization of a Cartan matrix A (of finite type) is a (rational, real, or complex)
vector space V with distinguished basis ∆ = {αi : 0 ≤ i < n}, and with dual space V ∗

with distinguished basis ∆∨ = {α∨i : 0 ≤ i < n}, together with the pairing 〈α∨i , αj〉 =
aij. For β ∈ V (respectively β∨ ∈ V ∨), we write [β, αi] (respectively [β∨, α∨i ]) for the
coefficient of αi in β (respectively α∨i in β∨).

Define a reflection on V by

si(αj) = αj − aijαi,

and define moreover, the Weyl group by W = 〈si : 0 ≤ i < n〉 ≤ Aut(V ) and the root
system by

Φ =
{
ω(α) : ω ∈ W,α ∈ ∆

}
.

It can be shown that Φ can be written as Φ+ ∪ Φ− where

Φ+ = {β ∈ Φ : [β, α] > 0 for all α ∈ ∆},

and Φ− = {−β : β ∈ Φ+}. The elements in Φ are called roots, the elements in Φ+ are
called positive roots, and the elements in ∆ are called simple roots.

Theorem 5.2 (Theorem 1.9 of [FZ03b]). Let A be a Cluster algebra of finite type
with an acyclic initial seed, and let Φ≥−1 = Φ+∪−∆ be the set of almost positive roots
of the root system of the associated Cartan type given by the positive roots together with
the simple negative roots. There exists a unique bijection between almost positive roots
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and the cluster variables for A for which the simple negative root −α is mapped to xα
and, for positive roots, ∑

α∈∆

nαα 7→
Pα∏
xnαα

,

with Pα having nonzero constant term. Here, xαi stands for xi for an appropriate
ordering ∆ = {α0, . . . , αn−1}.

This connection in the finite types can be used in the cluster algebra package as
follows:

sage: for f in ClusterSeed([’A’,2]).variable class():

....: print f, f.almost positive root()

x0 − α1

x1 − α2

(x1 + 1)/x0 α1

(x0 + 1)/x1 α2

(x0 + x1 + 1)/(x0x1) α1 + α2

sage: f

(x0 + x1 + 1)/(x0x1)

sage: root = f.almost positive root(); root

α1 + α2

sage: root.parent()

Root lattice of the Root system of type [’A’, 2]

5.1. Generalized associahedra. In this section, we will define generalized associa-
hedra and describe how they can be realized as polytopal complexes in finite types.
We will see then how these polytopal complexes are implemented in Sage. General-
ized associahedra beyond finite type are not yet feasible as the needed tools to deal
with infinite types are not yet developed. We start with the definition of generalized
associahedra (not necessarily of finite type).

We use the results from [FZ03a] that under the above bijection, every cluster vari-
able corresponds to an almost positive root, and for every cluster {x′1, . . . , x′n}, the
corresponding set of roots form a Z-basis for the root lattice. The cones corresponding
to each cluster together form a fan that is normal to a simple n-dimensional convex
polytope. The generalized associahedron associated to a cluster algebra A of finite type
is defined to be the polytope constructed in this way. Note that the generalized asso-
ciahedron is also the clique complex of the exchange graph, whose vertices are clusters
and whose edges corresponding to mutations.

Generalized associahedra reduce in classical types to known constructions, see e.g.
[FZ03b, Section 12]. By [FZ03b, Theorem 1.12], a cluster seed of finite type is uniquely
determined by its cluster, and two seeds are obtained from each other by a mutation if
and only their clusters differ by exactly one cluster variable, see Theorem 4.8. In finite
types, there exist realizations as polytopal complexes, see [CFZ02]. Let S+, S− be the
bipartition of the simple reflections S = {sα : α ∈ ∆} corresponding to the simple roots
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in ∆. This means that S+ and S− are chosen in such a way that the reflections in each
pairwise commute. Observe that the fact that all quivers of finite type are bipartite
ensures that such bipartitions always exist. Define two piecewise linear operators τ+

and τ− on V by

τε(β) =

{
β if β = −α for sα ∈ S−ε∏

s∈Sε s(β) otherwise,

and let

ρ∨ =
1

2

∑
β∈Φ+

β∨ ∈ V ∗.

In [CFZ02, Theorem 1.1], it is shown that every 〈τ+, τ−〉-orbit in Φ≥−1 intersects −∆.
Moreover, αi, αj ∈ −∆ lie in the same orbit if and only if αi = −ω0(αj) where ω0 is
the (unique) longest element in W . Thus, the coefficients [ρ∨, α∨i ] and [ρ∨, α∨j ] coin-
cide; for β ∈ Φ≥−1, set cβ to be this coefficient. After identifying ϕ with the n-tuple
(〈ϕ, αi〉)0≤i<n, define the half-space

H+(β) := {ϕ ∈ Rn : 〈ϕ, β〉 ≤ cβ}

to obtain the polytopal realization of the generalized associahedron by

Ass(Φ) =
⋂
β∈Φ+

H+(β) ⊆ Rn.

The operators τ+ and τ− are implemented in Sage as operators for the root space.

sage: S = RootSystem([’A’,2]).root space()

sage: tau plus, tau minus = S.tau plus minus()

sage: for beta in S.almost positive roots():

....: print beta, tau plus(beta), tau minus(beta)

....: print

−α1, α1, −α1

α1, −α1, α1 + α2

α1 + α2, α2, α1

−α2, −α2, α2

α2, α1 + α2, −α2

sage: AssoA2 = Associahedron([’A’,2]); AssoA2

Generalized associahedron of type [’A’, 2] with 5 vertices

sage: AssoB2 = Associahedron([’B’,2]); AssoB2

Generalized associahedron of type [’B’, 2] with 6 vertices

sage: AssoC2 = Associahedron([’C’,2]); AssoC2

Generalized associahedron of type [’C’, 2] with 6 vertices

sage: AssoG2 = Associahedron([’G’,2]); AssoG2

Generalized associahedron of type [’G’, 2] with 8 vertices

sage: AssoA2.show(); AssoB2.show(); AssoC2.show(); AssoG2.show()
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sage: AssoA3 = Associahedron([’A’,3]); AssoA3

Generalized associahedron of type [’A’, 3] with 14 vertices

sage: AssoB3 = Associahedron([’B’,3]); AssoB3

Generalized associahedron of type [’B’, 3] with 20 vertices

sage: AssoB3 = Associahedron([’C’,3]); AssoC3

Generalized associahedron of type [’C’, 3] with 20 vertices

sage: AssoA3.show(); AssoB3.show(); AssoC3.show()

The associahedron of type A3 has 14 vertices (13 of which are visible, the 14th is
the origin, which corresponds to the cluster {−α1,−α2,−α3}). As well, the 9 facets
corresponds to the almost positive roots, where the hyperplane xi = c−αi corresponds
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to the simple negative root −αi. Every vertex corresponds to exactly 3 hyperplanes,
and in types B3 and C3, we have 20 vertices and 12 facets, as desired. Note that even
though the combinatorics of the Bn and Cn associahedra are the same, the polytopal
realizations are not. In particular, the almost positive roots which comprise the normal
fan are different.

5.2. The cluster complex. As with associahedra, we will define the cluster complex
in general and then discuss the implementation for finite types.

Definition 5.3 (Cluster complex). The cluster complex associated to a cluster algebra
A can be defined to be the simplicial complex with vertices being the cluster variables
for A and with facets being the clusters.

The cluster complex is dual to the generalized associahedron of the same type, for the
usual notion of duality of polytopes. As we have seen, cluster variables in finite types are
in bijection with almost positive roots. We use this description in the implementation
of the cluster complex.

sage: ClusterComplex([’A’,2])

Cluster complex of type [’A’, 2] with 5 vertices and 5 facets

sage: ClusterComplex([’A’,3])

Cluster complex of type [’A’, 3] with 9 vertices and 14 facets

sage: Delta = ClusterComplex([’B’,3]); Delta

Cluster complex of type [’B’, 3] with 12 vertices and 20 facets

In the following example, we see how we can use other Sage packages to further study
objects we work with. As the cluster complex is a simplicial complex, there now exist
various possible methods. For example, we can compute its homology,

sage: Delta.homology()

{0 : 0, 1 : 0, 2 : Z}

This is as expected, as this simplicial complex is the boundary complex of a triangu-
lated polytope, and thus shellable and Cohen-Macaulay.

6. Methods and attributes

In this section, we describe the different classes defined in this package, and list
their attributes and methods. For the “key” methods, we also give descriptions of the
algorithms.

In general, attribute names start with an underscore to emphasize that they should
not be used directly but only through appropriate methods. As an example, a cluster
seed has an attribute M in which its exchange matrix is stored and a method b matrix

which is used to get the exchange matrix. The difference is that the method returns
a copy of its exchange matrix, so it is safe to work with this matrix and to modify it
without accidentally modifying the seed itself.

sage: S = ClusterSeed([’A’,3]);

sage: M1 = S. M; M2 = S.b matrix();

sage: M1 == M2

True
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sage: M1 is M2

False

6.1. Skew-symmetrizable matrices. We briefly want to describe the algorithm used
to determine whether a square matrix B is skew-symmetrizable, which also determines
the associated diagonal matrix D in the affirmative case. It was written by F. Block,
F. Saliola, and C. Stump during the Sage days 20.5 at the Fields Institute, Toronto,
Canada, in May 2010.

Algorithm 6.1. Let B = (bij)1≤i,j≤n be the input square matrix of dimension n, and
let D = (di)1≤i≤n be the diagonal matrix with positive coefficients we want to construct.
We use the equivalent description of skew-symmetrizability given by the property

dibij = −djbji for all i, j.

(1) Check if bii = 0 for all i. If this is not the case, return False,
(2) let k be the smallest integer such that dk is not yet determined,
(3) set dk = 1,
(4) for i ∈ {1, . . . , n} such that bik 6= 0 and di is not yet determined, do

(a) set di = −dkbki/bik,
(b) if di ≤ 0 return False.
(c) if any

(
dibij 6= −djbji

)
for j such that dj is already determined, return

False.
(5) repeat step (4) with k given by all integers for which di was set since we passed

step (3) the last time,
(6) if D is not yet completely determined, goto step (2),
(7) return D.

6.2. QuiverMutationType. For coding reasons, we distinguish between the classes
QuiverMutationType Irreducible and QuiverMutationType Reducible, but we re-
fer here to both as QuiverMutationType. Objects of those types are unique, i.e., there
exists only one object of a given quiver mutation type.

sage: mut type1 = QuiverMutationType(’A’,3)

sage: mut type2 = QuiverMutationType(’A’,3)

sage: mut type1 is mut type2

True

All the data for quiver mutation types is hard-coded. In particular, this concerns the
graphs and digraphs, and the class size.

To construct a quiver mutation type, the function QuiverMutationType is called. An
irreducible quiver mutation type takes 3 parameters, the letter, the rank or bi rank,
and the twist, see the description below. Those calls are best explained in examples.
Observe that the call arguments can be also wrapped into a list or tuple. We suppress
the output whenever the output coincides with the input.

• finite types

sage: QuiverMutationType(’A’,1);

sage: QuiverMutationType(’A’,5);

sage: QuiverMutationType(’B’,2);
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sage: QuiverMutationType(’B’,5);

sage: QuiverMutationType(’C’,2)

[’B’, 2]

sage: QuiverMutationType(’C’,5);

sage: QuiverMutationType(’D’,2)

[ [’A’, 1], [’A’, 1] ]

sage: QuiverMutationType(’D’,3)

[’A’, 3]

sage: QuiverMutationType(’D’,4);

sage: QuiverMutationType(’E’,6);

sage: QuiverMutationType(’E’,7);

sage: QuiverMutationType(’E’,8);

sage: QuiverMutationType(’F’,4);

sage: QuiverMutationType(’G’,2);

• affine types

sage: QuiverMutationType(’A’,(1,1),1);

sage: QuiverMutationType(’A’,(2,4),1);

sage: QuiverMutationType(’BB’,1,1)

[’A’, [1, 1], 1]

sage: QuiverMutationType(’BB’,2,1);

sage: QuiverMutationType(’BB’,4,1);

sage: QuiverMutationType(’CC’,1,1)

[’A’, [1, 1], 1]

sage: QuiverMutationType(’CC’,2,1);

sage: QuiverMutationType(’CC’,4,1);

sage: QuiverMutationType(’BC’,1,1);

sage: QuiverMutationType(’BC’,5,1);

sage: QuiverMutationType(’BD’,3,1);

sage: QuiverMutationType(’BD’,5,1);

sage: QuiverMutationType(’CD’,3,1);

sage: QuiverMutationType(’CD’,5,1);

sage: QuiverMutationType(’D’,4,1);

sage: QuiverMutationType(’D’,6,1);

sage: QuiverMutationType(’E’,6,1);

sage: QuiverMutationType(’E’,7,1);

sage: QuiverMutationType(’E’,8,1);

sage: QuiverMutationType(’F’,4,1);

sage: QuiverMutationType(’F’,4,-1);

sage: QuiverMutationType(’G’,2,1);

sage: QuiverMutationType(’G’,2,-1);

• elliptic types

sage: QuiverMutationType(’E’,6,[1,1]);

sage: QuiverMutationType(’E’,7,[1,1]);

sage: QuiverMutationType(’E’,8,[1,1]);

• mutation-finite types
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– rank 2

sage: QuiverMutationType(’R2’,(1,1),2)

[’A’, 2]

sage: QuiverMutationType(’R2’,(1,2),2)

[’B’, 2]

sage: QuiverMutationType(’R2’,(1,3),2)

[’G’, 2]

sage: QuiverMutationType(’R2’,(1,4),2)

[’BC’, 1, 1]

sage: QuiverMutationType(’R2’,(1,5),2);

sage: QuiverMutationType(’R2’,(2,2),2)

[’A’, [1, 1], 1]

sage: QuiverMutationType(’R2’,(3,5),2);

– exceptional types

sage: QuiverMutationType(’V’,4,2);

sage: QuiverMutationType(’W’,4,2);

sage: QuiverMutationType(’W’,4,-2);

sage: QuiverMutationType(’X’,6,2);

sage: QuiverMutationType(’X’,7,2):

sage: QuiverMutationType(’Y’,6,2);

sage: QuiverMutationType(’Z’,6,2);

sage: QuiverMutationType(’Z’,6,-2);

• mutation-infinite types
– infinite type E

sage: QuiverMutationType(’E’,9,3)

[’E’, 8, 1]

sage: QuiverMutationType(’E’,10,3);

sage: QuiverMutationType(’E’,12,3);

sage: QuiverMutationType(’AE’,(1,1),3);

sage: QuiverMutationType(’AE’,(1,4),3);

sage: QuiverMutationType(’BE’,5,3);

sage: QuiverMutationType(’CE’,5,3);

sage: QuiverMutationType(’DE’,6,3);

– Grassmannian types – the second parameter (a, b) must satisfy 1 ≤ a < b
and one obtains a grid graph of width a− 1 and height b− a− 1

sage: QuiverMutationType(’GR’,(2,4),3)

[’A’, 1]

sage: QuiverMutationType(’GR’,(2,6),3)

[’A’, 3]

sage: QuiverMutationType(’GR’,(3,6),3)

[’D’, 4]

sage: QuiverMutationType(’GR’,(3,7),3)

[’E’, 6]

sage: QuiverMutationType(’GR’,(3,8),3)

[’E’, 8]

sage: QuiverMutationType(’GR’,(3,9),3)
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[’E’, 8, [1,1]]

sage: QuiverMutationType(’GR’,(3,10),3);

– triangular types – the second parameter gives the size of the graph

sage: QuiverMutationType(’TR’,2,3)

[’A’, 3]

sage: QuiverMutationType(’TR’,3,3)

[’D’, 6]

sage: QuiverMutationType(’TR’,4,3)

[’E’, 8, [1, 1]]

sage: QuiverMutationType(’TR’,5,3);

– type T – the second parameter gives the lengths of the three legs

sage: QuiverMutationType(’T’,(1,1,1),3)

[’A’, 1]

sage: QuiverMutationType(’T’,(1,1,4),3)

[’A’, 4]

sage: QuiverMutationType(’T’,(1,4,4),3)

[’A’, 7]

sage: QuiverMutationType(’T’,(2,2,2),3)

[’D’, 4]

sage: QuiverMutationType(’T’,(2,2,4),3)

[’D’, 6]

sage: QuiverMutationType(’T’,(2,3,3),3)

[’E’, 6]

sage: QuiverMutationType(’T’,(2,3,4),3)

[’E’, 7]

sage: QuiverMutationType(’T’,(2,3,5),3)

[’E’, 8]

sage: QuiverMutationType(’T’,(2,3,6),3)

[’E’, 8, 1]

sage: QuiverMutationType(’T’,(2,3,7),3)

[’E’, 10, 3]

sage: QuiverMutationType(’T’,(3,3,3),3)

[’E’, 6, 1]

sage: QuiverMutationType(’T’,(3,3,4),3);

• reducible types

sage: QuiverMutationType([’A’,3],[’B’,4])

[ [’A’, 3], [’B’, 4] ]

As described in Section 4.2, one can use also Kac’s classification types [Kac94].

Remark 6.2. Most of the above types have already been explained as Dynkin diagrams,
appear in Kac’s list, or in the classification work of Derksen-Owen [DO08], and Felikson-
Shapiro-Tumarkin [FST, FST2]. The exceptions to these are the triangular seeds,
Grassmannian seeds, and the “T” seeds. The first two of these describe a certain
family of quivers that have certain shapes (as triangles and grids, respectively) and
correspond to certain coordinate rings of geometric objects. (See Examples 4.4 and 4.6
of [Kel10] or the source papers [BFZ05] and [Sco06].) The “T” family consists of those
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which correspond to “Dynkin diagrams” of the shape of a T with a certain number of
vertices on each arm and one central vertex.

sage: ClusterSeed([’TR’,5,3]).show()

sage: ClusterSeed([’GR’,[5,11],3]).show()

sage: ClusterSeed([’T’,[4,4,5],3]).show()

We also illustrate a self-dual and two dual non-simply laced exceptional mutation-
finite cases here too.

sage: ClusterSeed([’X’,6,2]).show()

sage: S = ClusterSeed([’W’,4,2]); S.show()

sage: S = ClusterSeed([’W’,4,-2]); S.show()

The attributes of QuiverMutationType are given by

• letter

The string containing the letter(s) of the classification type.

• rank

The number of vertices in the standard quiver.

• bi rank

Is None except for affine type A, where it denotes [a, b] with a+b being the rank
and a ≤ b are the number of edges in the acyclic orientation of the standard
quiver.

• twist

Depends on the type of the classification type, and can be one of the following:
– None for finite types,
– 1 for affine types,
– [1,1] for elliptic types,
– 2 for finite mutation types which are not finite or elliptic,
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– 3 for infinite mutation types.

• graph

Graph representing the underlying graph of the standard quiver.

• digraph

Digraph representing the underlying graph of the standard quiver.

• description

The string representation of the mutation class.

• info

Dictionary containing the keys
– irreducible,
– finite,
– affine,
– elliptic,
– simply laced,
– mutation finite, and
– irreducible components.

The values are True or False, except for irreducible components which is a
list containing the irreducible components.

The methods of QuiverMutationType are given by

• eq (self,other)

Returns True, if and only if self and other represent the same quiver mutation
type. As quiver mutation types are unique (i.e., there exists at most one object
representing a given quiver mutation type), this method simply returns self

is other.

• repr (self)

Returns the string representation of self.

• plot(self, circular=False, directed=True)

Returns a random or circular, directed or undirected plot of self.

• show(self, circular=False, directed=True)

Shows the plot of self.

• rank(self)

Returns the rank (i.e., the number of vertices) of self.

• coxeter diagram(self)
Returns the Coxeter diagram of self

sage: QuiverMutationType([’A’,5]).coxeter diagram()

Coxeter diagram of rank 5

sage: QuiverMutationType([’A’,3],[’B’,3]).coxeter diagram()

Coxeter diagram of rank 6
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• b matrix(self)
Returns the exchange matrix of self

sage: QuiverMutationType([’A’,5]).b matrix()
0 1 0 0 0
−1 0 −1 0 0

0 1 0 1 0
0 0 −1 0 −1
0 0 0 1 0


sage: QuiverMutationType([’A’,3],[’B’,3]).b matrix()

0 1 0 0 0 0
−1 0 −1 0 0 0

0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 −1
0 0 0 0 2 0


• standard quiver(self)

Returns the standard quiver of self.

• cartan matrix(self)
Returns the Cartan matrix of self which is obtained from its exchange matrix
by replacing the positive entries by negative, and replace the 0’s on the main
diagonal by 2’s.

sage: QuiverMutationType(’A’,5).cartan matrix()
2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 2


sage: QuiverMutationType([’A’,3],[’B’,3]).cartan matrix()

2 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 0 0 0
0 0 0 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −2 2


• class size(self)

Returns the number of quivers which are mutation-equivalent to self, up to iso-
morphism (Warning: several class sizes are only conjectured, see Section 4.3).

sage: QuiverMutationType([’A’,22],[’BD’,16,1]).class size()

4257164518523691840

sage: QuiverMutationType([’GR’,[4,9],3]).class size()

∞
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• dual(self)
Returns the dual quiver mutation type of self.

sage: QuiverMutationType(’A’,4).dual()

[’A’, 4]

sage: QuiverMutationType(’B’,4).dual()

[’C’, 4]

• is irreducible(self)
Returns True, if and only if self is irreducible.

sage: QuiverMutationType(’A’,4).is irreducible()

True

sage: QuiverMutationType([’A’,3],[’B’,3]).is irreducible()

False

• is mutation finite(self)
Returns True, if and only if self is of finite mutation type.

sage: QuiverMutationType([’GR’,[4,8],3]).is mutation finite()

True

sage: QuiverMutationType([’GR’,[4,9],3]).is mutation finite()

False

• is simply laced(self)

Returns True, if and only if self is simply-laced.

• is skew symmetric(self)

Returns True, if and only if self is skew-symmetric.

• is finite(self)

Returns True, if and only if self is of finite type.

• is affine(self)

Returns True, if and only if self is of affine type.

• is elliptic(self)

Returns True, if and only if self is of elliptic type.

• irreducible components(self)
Returns a tuple containing the irreducible components of self.

sage: QuiverMutationType(’A’,5).irreducible components()

([’A’, 5],)

sage: QuiverMutationType([’A’,3],[’B’,3]).irreducible components()

([’A’, 3], [’B’, 3])

• properties(self)

Prints all properties of self. See Section 4 for examples.
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6.3. Quiver. The next class we want to describe it the class Quiver. It allows numerous
ways to construct a quiver, several examples were described in Section 3.

• QuiverMutationType

• list or tuple representing a quiver mutation type
• ClusterSeed

• matrix: a skew-symmetrizable matrix which represents the exchange matrix
• Quiver

• DiGraph: the digraph must represent a quiver
• list of tuples representing the edge list of a digraph for a quiver

The attributes of Quiver are given by

• M

The exchange matrix of self.

• n

The number of cluster variables (which is the number of columns in the exchange
matrix).

• m

The number of frozen variables (which is the number of rows minus the number
of columns in the exchange matrix).

• description

The string representation of self.

• mutation type

The mutation type of self, if known, None otherwise.

The methods of Quiver are given by

• init (self, data, frozen=0)
Frozen sets the later vertices to be frozen

sage: Q1 = Quiver([(0,1),(1,2),(2,3)]); Q1

Quiver on 4 vertices

sage: Q2 = Quiver([(0,1),(1,2),(2,3)],frozen=1); Q2

Quiver on 4 vertices with 1 frozen vertex

sage: Q1.show()

sage: Q2.show()
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• eq (self, other)
Returns True, if and only if the b-matrices of self and other coincide

sage: Q = Quiver([’A’,5])

sage: T = Q.mutate( 2, inplace=False )

sage: Q. eq ( T )

False

sage: T.mutate( 2 )

sage: Q. eq ( T )

True

• repr (self)
Returns the string representation of self

sage: Q = Quiver([’A’,5])

sage: Q. repr ()

"Quiver on 5 vertices of type [’A’, 5]"

• plot(self, circular=False, directed=True, mark=None)

Returns a random/circular and directed/undirected plot of self with a given
vertex marked.

• show(self, fig size=1, circular=False, directed=True, mark=None)

Shows the plot of self.

• interact(self, fig size=1, circular=True)

Starts an interactive mode, as shown in Figure 1 at the end of Section 3.

• save image(self, filename, circular=False)

Saves the plot of self to filename. The available formats are
– .eps
– .pdf
– .png
– .ps
– .svg

• b matrix(self)
Returns the exchange matrix of self

sage: Quiver([’A’,4]).b matrix()
0 1 0 0
−1 0 −1 0

0 1 0 1
0 0 −1 0


sage: Quiver([’B’,4]).b matrix()

0 1 0 0
−1 0 −1 0

0 1 0 1
0 0 −2 0
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sage: Quiver([’D’,4]).b matrix()
0 1 0 0
−1 0 −1 −1

0 1 0 0
0 1 0 0


sage: Quiver(QuiverMutationType([[’A’,2],[’B’,2]])).b matrix()

0 1 0 0
−1 0 0 0

0 0 0 1
0 0 −2 0


• digraph(self)

Returns the underlying digraph of self

sage: Quiver([’A’,4]).digraph()

Digraph on 4 vertices

• n(self)
Returns the number of free vertices of self

sage: Q = Quiver([(0,1),(1,2),(2,3)],frozen=1)

sage: Q.n()

3

• m(self)
Returns the number of frozen vertices of self

sage: Q = Quiver([(0,1),(1,2),(2,3)],frozen=1)

sage: Q.m()

1

• canonical label(self, certify=False)
Returns an isomorphic quiver with canonical vertex labeling. This is based on
the canonical labeling of digraphs using the corresponding method for digraphs
by R.L. Miller based on [McK81]. If certify is True, a dictionary of the relabeling
is also returned

sage: Quiver([’A’,4]).canonical label(certify=True)

(Quiver on 4 vertices of type [’A’, 4], {0 : 0, 1 : 3, 2 : 1, 3 : 2})

• is acyclic(self)

Returns True, if and only if self is acyclic.

• is bipartite(self, return bipartition=False)
Returns True, if and only if self is bipartite, if return bipartition is True, the
bipartition is returned

sage: Quiver([’A’,4]).is bipartite(return bipartition=True)

(set([0, 2]), set([1, 3]))
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• principal restriction(self)

Returns the principal restriction of self. This is obtained from self by deleting
all frozen variables.

• principal extension(self)

Returns the principal extension of self. This can be used only for seeds without
frozen variables. Returns a new seed with exchange matrix of size 2n× n given
by the exchange matrix of self of size n× n with an additional identity matrix
added below.

• mutate(self, data, inplace=True)

Mutates at a vertex or at a list of vertices, if inplace is True, self is modified,
otherwise a new quiver is returned.

• mutation sequence(self, sequence, show sequence=False,

fig size=1.2)

Returns a list of quivers obtained from a sequence of mutations. If the parameter
show sequence is True, the sequence is shown with a given fig size.

• reorient(self,data)

Reorients self with respect to the given total order, or with respect to an iterator
of edges in self to be reverted.

Warning: This often will change the mutation class of the quiver except if
the quiver is a tree (see Theorem 4.7).

• mutation class iter(self, depth=infinity,

show depth=False, return paths=False,

data type=’quiver’, up to equivalence=True,

only sink source=False)

Returns an iterator which goes through the mutation class of self depending on
several parameters

– depth: integer, only quivers with distance at most depth from self are
returned

– show depth: if True, the actual depth of the mutation is shown
– return paths: if True, a shortest path of mutation sequences from self to

the given quiver is returned as well
– data type: can be one of the following:

quiver, matrix, digraph, dig6, path

– up to equivalence: if True, only quivers up to equivalence are considered
– sink source: if True, only mutations at sinks and sources are applied

• mutation class(self, depth=infinity,

show depth=False, return paths=False,

data type=’quiver’, up to equivalence=True,

only sink source=False)

Returns a list of all quivers in the corresponding iterator.
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• group of mutations(self)

Returns the group of mutations of self. Warning: The permutation group is
very big! This group differs for quivers and for cluster seeds, as different cluster
seeds may have the same exchange matrix and thus the same quiver. This group
is defined to be the group of permutations given as follows. The ground set is
the mutation class of self without taking equivalence of quivers into account,
and the group is generated by the n involutions on this set given by mutation at
the n different vertices. Observe that the analogous operation on the mutation
class up to equivalence does not give a group (this can be easily checked in type
A3). Basically nothing is known about this group.

sage: Q = Quiver([’A’,2])

sage: Q.group of mutations()

Permutation Group with generators [(1,2)]

sage: Q = Quiver([’A’,3])

sage: Q.group of mutations()

Permutation Group with generators

[(1,2)(3,4)(5,9)(6,7)(8,12)(10,11)(13,14),

(1,3)(2,5)(4,6)(7,14)(8,11)(9,13)(10,12),

(1,4)(2,3)(5,10)(6,8)(7,13)(9,14)(11,12)]

sage: Q = Quiver([’B’,2])

sage: Q.group of mutations()

Permutation Group with generators [(1,2)]

sage: Q = Quiver([’B’,3])

sage: Q.group of mutations()

Permutation Group with generators [(1,2)(3,4)(5,6)(7,10)(8,9),

(1,3)(2,6)(4,5)(7,9)(8,10), (1,4)(2,3)(5,7)(6,8)(9,10)]

sage: Q = Quiver([’A’,1])

sage: Q.group of mutations().cardinality()

1

sage: Q = Quiver([’A’,2])

sage: Q.group of mutations().cardinality()

2

sage: Q = Quiver([’A’,3])

sage: Q.group of mutations().cardinality()

322560

• is finite(self)

Returns True, if and only if self is of finite type. This is done by checking if it
is mutation-equivalent to a quiver of finite type.

• is mutation finite(self, nr of checks=None, return path=False)

Returns True, if and only if self is of finite mutation type. Warning: The
algorithm is non-deterministic and uses random mutations in various directions.
Might theoretically result in a wrong True return. The number of checks can
be set, the default is 1000 times the number of vertices of self. If return path

is True, then a path to a non-mutation-finite quiver is returned, if found.
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• mutation type(self)

Returns the mutation type of self if it can be determined.
– First, it is checked if self is mutation-equivalent to a quiver of a classical

type using the descriptions of the classification types,
– then, it is checked if self is contained in an exceptional mutation class which

are hard-coded,
– if it was not possible to determine the mutation type, it is checked if self is

mutation-finite or infinite
Warning: The algorithm to determine quivers of mutation type D̃n (which is
[’D’,n,1]) is not yet implemented!

6.4. ClusterSeed. The constructor of the class ClusterSeed allows the same input as
the class Quiver to construct a cluster seed. Moreover, many attributes and methods
for cluster seeds and for quivers coincide. Often, the cluster seed simply calls the quiver
method.

• QuiverMutationType

• list or tuple representing a quiver mutation type
• ClusterSeed

• matrix: a skew-symmetrizable matrix which represents the exchange matrix
• Quiver

• DiGraph: the digraph must represent a quiver
• list of tuples representing the edge list of a digraph for a quiver

The attributes of ClusterSeed are given by

• M

The exchange matrix of self.

• cluster

The cluster as a list of cluster variables.

• n

The number of cluster variables (which is the number of columns in the exchange
matrix).

• m

The number of frozen variables (which is the number of rows − the number of
columns in the exchange matrix).

• R

The base ring in which the cluster variables live.

• quiver

The quiver attached to self.

• description

The string representation of self.

• mutation type

The mutation type of self, if known, None otherwise
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The methods of ClusterSeed are given by

• init (self, data, frozen=0)
Frozen sets the later vertices to be frozen

sage: S1 = ClusterSeed([(0,1),(1,2),(2,3)]); S1

A seed for a cluster algebra of rank 4

sage: Q2 = Quiver([(0,1),(1,2),(2,3)],frozen=1); ClusterSeed(Q2)

A seed for a cluster algebra of rank 3 with 1 frozen variable

sage: Q1.b matrix(); Q2.b matrix()
0 1 0 0
−1 0 1 0

0 −1 0 1
0 0 −1 0




0 1 0
−1 0 1

0 −1 0
0 0 −1


• eq (self, other)

Returns True, if and only if self and other have the same exchange matrix and
the same cluster.

• repr (self)
Returns the string representation of self

sage: S = ClusterSeed([’A’,3]); S. repr ()

"A seed for a cluster algebra of rank 3 of type [’A’, 3]"

• plot(self, circular=False, mark=None)

Returns a random/circular plot of self with a given marked vertex. Calls the
method for quivers.

• show(self, fig size=1, circular=False, mark=None)

Shows the plot of self.

• interact(self, fig size=1, circular=True)

Starts an interactive mode, as shown in Figure 1 at the end of Section 3.

• save image(self, filename, circular=False)

Saves a plot of self to filename.

• b matrix(self)

Returns the exchange matrix of self.

• cluster(self)

Returns the cluster of self.

• cluster variable(self,k)

Returns the kth cluster variable of self.

sage: S = ClusterSeed([’A’,3]); S.cluster()

[x0, x1, x2]

sage: S.cluster variable(1)
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x1

sage: S.mutate(0); S.cluster()[
x1 + 1

x0
, x1, x2

]
sage: S.mutate(1); S.cluster()[

x1 + 1

x0
,
x0x2 + x1 + 1

x0x1
, x2

]
sage: S.cluster variable(1)

x0x2 + x1 + 1

x0x1

• ground field(self)
Returns the ground field in which the cluster variables of self live

sage: S.ground field()

Fraction Field of Multivariate Polynomial Ring

in x0, x1, x2 over Rational Field

• x(self,k)

Returns the kth initial cluster variable of self.

• y(self,k)

Returns the kth frozen variable of self.

• n(self)

Returns the number of cluster variables of self.

• m(self)

Returns the number of frozen variables of self.

• quiver(self)

Returns the Quiver associated to self.

• is acyclic(self)

Returns True, if and only if self is acyclic.

• is bipartite(self, return bipartition=False)
Returns True, if and only if self is bipartite, if return bipartition is True, the
bipartition is returned

sage: ClusterSeed([’A’,4]).is bipartite(return bipartition=True)

(set([0, 2]), set([1, 3]))

• mutate(self, sequence, inplace=True)

Mutates at an index or at a list of indices, if inplace is True, self is modified,
otherwise a new cluster seed is returned.
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• mutation sequence(self, sequence, show sequence=False,

fig size=1.2,return output=’seed’)

Returns a list depending on return output obtained from a sequence of mu-
tations. If show sequence is True, the sequence is shown with a given fig size.
The possible outputs are

– ’seed’: a list of cluster seeds is returned
– ’matrix’: a list of exchange matrices is returned
– ’var’: a list of cluster variables is returned

• principal restriction(self)

Returns the principal restriction of self. This is obtained from self by deleting
all frozen variables.

• principal extension(self)

Returns the principal extension of self. This can be used only for seeds without
frozen variables. Returns a new seed with exchange matrix of size 2n× n given
by the exchange matrix of self of size n× n with an additional identity matrix
added below.

• reorient(self,data)

Reorients self by reorienting the corresponding quiver. Calls the method for
quivers.

• set cluster(self, cluster)

Sets the set of clusters of self to cluster.

• reset cluster(self)

Sets the set of clusters of self back to the initial cluster.

• reset principal coefficients(self)

Sets the set of coefficients of self back to the frozen variables if self.m = self.n.

• mutation class iter(self, depth=infinity,

show depth=False, return paths=False,

up to equivalence=True, only sink source=False)

Returns an iterator which goes through the mutation class of self depending on
several parameters

– depth: integer, only quivers with distance at most depth from self are
returned

– show depth: if True, the actual depth of the mutation is shown
– return paths: if True, a shortest path of mutation sequences from self to

the given quiver is returned as well
– up to equivalence: if True, only quivers up to equivalence are considered
– only sink source: if True, only mutations at sinks and sources are applied
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• mutation class(self, depth=infinity,

show depth=False, return paths=False,

up to equivalence=True, only sink source=False)

Returns a list of all quivers in the corresponding iterator

• cluster class iter(self, depth=infinity, show depth=False,

up to equivalence=True)

Returns an iterator through all clusters mutation-equivalent to self up to a given
depth. Moreover, it is possible to show the actual depth together with several
parameters, or to output clusters as labeled seeds.

• cluster class(self, depth=infinity, show depth=False,

up to equivalence=True)

Returns a list of all clusters mutation-equivalent to self up to a given depth.
Moreover, it is possible to show the actual depth together with several parame-
ters, or to output clusters as labeled seeds.

• b matrix class iter(self, depth=infinity,

up to equivalence=True)

Returns an iterator through all matrices mutation-equivalent to self up to a given
depth, and up to permutation of rows and columns unless specified otherwise.

• b matrix class(self, depth=infinity, up to equivalence=True)

Returns a list of all matrices mutation-equivalent to self up to a given depth,
and up to permutation of rows and columns unless specified otherwise.

• variable class iter(self, depth=infinity,

ignore bipartite belt=False)

Returns an iterator through all variables obtained from self by mutations up to
a given depth. Warning: If at some point a bipartite seed is reached, another
algorithm is used unless the parameter ignore bipartite belt is set to be
True. See the description in Section 4.4.

• variable class(self, depth=infinity,

ignore bipartite belt=False)

Returns a list of all variables obtained from self by mutations up to a given
depth. Warning: If at some point a bipartite seed is reached, another algorithm
is used unless the parameter ignore bipartite belt is set to be True. See the
description in Section 4.4.

• group of mutations(self)
Returns the group of mutations of self. Warning: The permutation group is
very big! This group differs for quivers and for cluster seeds, as different cluster
seeds may have the same exchange matrix and thus the same quiver. This group
is defined to be the group of permutation given as follows. The ground set is the
mutation class of self without taking equivalence of seeds into account, and the
group is generated by the n involutions on this set given by mutation at the n
different vertices. Observe that the analogous operation on the mutation class
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up to equivalence does not give a group (this can be easily checked in type A3).
Basically nothing is known about this group.

sage: S = ClusterSeed([’A’,2])

sage: S.group of mutations()

Permutation Group with generators [(1,2)(3,4)(5,6)(7,9)(8,10),

(1,3)(2,5)(4,7)(6,8)(9,10)]

sage: S = ClusterSeed([’B’,2])

sage: S.group of mutations()

Permutation Group with generators

[(1,2)(3,4)(5,6), (1,3)(2,5)(4,6)]

sage: Q = ClusterSeed([’A’,1])

sage: Q.group of mutations().cardinality()

2

sage: Q = ClusterSeed([’A’,2])

sage: Q.group of mutations().cardinality()

10

sage: Q = ClusterSeed([’A’,3])

sage: Q.group of mutations().cardinality()

705438720

• is finite(self)

Returns True, if and only if self is of finite type. Calls the method for the quiver
of self.

• is mutation finite(self, nr of checks=None, return path=False)

Returns True, if and only if self is of finite mutation type. Calls the method for
the quiver of self.

• mutation type(self)

Returns the mutation type of self, if possible. Calls the method for the quiver
of self.

• c vector(self, k)

Returns the bottom-half (corresponding to coefficients) of column k in the B-
matrix associated to self.

• c matrix(self)

Returns the n-by-n matrix corresponding to all n c vectors of self.

• coefficient(self, k)

Returns the kth coefficient of the associated labeled seed of self, thought of as
an element of the tropical semifield generated by the frozen variables.

• coefficients(self)

Returns a list of all n coefficients of self.
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• f polynomial(self,k)

Returns the kth F -polynomial of self as long as m, the number of frozen vari-
ables, equals n, the rank of the matrix.

• f polynomials(self)

Returns a list of all n F -polynomials of self as long as m, the number of frozen
variables, equals n, the rank of the matrix.

• g vector(self,k)

Returns the kth g-vector of self as long as m, the number of frozen variables,
equals n, the rank of the matrix.

• g matrix(self)

Returns an n-by-n matrix corresponding to all n g-vectors of self as long as m,
the number of frozen variables, equals n, the rank of the matrix.

6.5. ClusterVariable. By definition, a cluster variable is an element in the field of ra-
tional function in n variables11. The class ClusterVariable provides two extra features
for cluster variables:

(1) The connection to almost positive roots in finite types (positive roots are not
yet provided in Sage for affine types).

(2) An ordering for cluster variables which is inspired by its connection to almost
positive roots:
• They are ordered first by total degree of the denominator (in particular,

the variables in the initial seed come first in natural order),
• If the degree is equal and positive, they are ordered lexicographically with
x0 > x1 > . . . > xn−1.

sage: for f in ClusterSeed([’A’,2]).variable class():

....: print f, f.almost positive root()

x0 − α1

x1 − α2

(x1 + 1)/x0 α1

(x0 + 1)/x1 α2

(x0 + x1 + 1)/(x0x1) α1 + α2

Two further examples of the ordering can be found in Section 4.2. It is planned to
include more functionalities for the cluster variable class in the future.

11Moreover, by Theorem 1.1, they are actually multivariate Laurent polynomials in n variables,
although for the moment we do not use this functionality.
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