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SOME COMBINATORIAL ASPECTS OF QUANTUM FIELD
THEORY

ADRIAN TANASA

Abstract. In this survey we present the appearance of some combinatorial notions
in quantum field theory. We first focus on graph polynomials (the Tutte polynomial
and its multivariate version) and their relation with the parametric representation of
the commutative Φ4 field theory. We then generalize this to ribbon graphs and present
the relation of the Bollobás–Riordan polynomial with the parametric representation
of some Φ4 field theory on the non-commutative Moyal space. We also review the
role played by the Connes–Kreimer Hopf algebra as the combinatorial backbone of
the renormalization process in field theories. We then show how this generalizes to
the scalar Φ4 field theory implemented on the non-commutative Moyal space. Finally,
some perspectives for the further generalization of these tools to quantum gravity
tensor models are briefly sketched.

1. Introduction

Within the framework of quantum field theoretical models, it has been shown recently
that the role of various combinatorial notions is a crucial one.

Inside the area of theoretical physics, quantum field theory (QFT) represents an im-
portant part; its mathematical formalism was proven successful not only in elementary
particle physics (the celebrated Standard Model) but also in condensed matter physics.

Like in other domains of theoretical physics (exact solutions of statistical-mechanical
problems, random matrix models, integrable systems and so on), also in QFT a key
role is played by combinatorics. Thus, perturbative QFT relies on graph theory, namely
on (Feynman) graphs which appear in the expansion with their combinatorial weights;
moreover, as we will present in this survey, graph polynomials can be naturally related
to polynomials appearing in some representation of the Feynman amplitudes in QFT.
Furthermore, renormalization, which lies at the heart of QFT, can be described through
some appropriate combinatorial Hopf algebras, as we will see in the sequel.

On the other hand, techniques of analytic combinatorics (such as the Mellin trans-
form or the saddle point method) are also used in QFT for computing and analyzing
quantities like Feynman integrals (which are associated to Feynman graphs).

It is worth emphasizing that, in the last years, both combinatorialists and theoretical
physicist in general (or field theorists in particular) became more and more aware of this
strong relation between their domains. This is a natural tendency, since the unfolding of
new ideas in physics is often tied with the development of new combinatorial methods.
We can thus speak nowadays of an emerging domain of combinatorial physics.

As already announced above, in this survey we focus on the appearance of combi-
natorial notions in QFT, such as graph and map polynomials and combinatorial Hopf
algebras.
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Thus, in graph theory the celebrated Tutte polynomial (see [72, 23]) is known to
characterize in a particularly elegant way a generic graph. On the other hand, the
Feynman integral of such a graph can be represented, through the parametric represen-
tations, using some polynomials in a set of parameters associated to the edges of the
graph. In this survey we present the relation between the Tutte polynomial (or, more
exactly, its multivariate formulation [65]) and the polynomials of this QFT parametric
representation [7, 13, 44].

On the other hand, we also present how the Connes–Kreimer Hopf algebra of Feynman
graphs [21] encodes in a powerful manner the combinatorial structure of perturbative
renormalization in QFT.

We then generalize this framework and lift it to ribbon graphs (also known as maps,
see for example [18] and references therein). At this level, the Tutte polynomial can be
replaced in a natural manner by the Bollobás–Riordan polynomial [9, 10]. From the
QFT point of view, the appropriate models are the non-commutative ones (we present
here the scalar Φ⋆ 4 model implemented on the Moyal space). In this case also, a
parametric representation generalizing in a highly non-trivial manner the commutative
one can be defined [44, 68]. One can then relate the Bollobás–Riordan polynomial to
the polynomials of the parametric representations of these QFT models on the non-
commutative Moyal space [44].

Furthermore, a ribbon graph version of the Connes–Kreimer Hopf algebra of Feynman
graphs can be defined [70, 71]. This algebra is proven to lie behind the renormalization
of QFT models on the non-commutative Moyal space.

2. Some algebra

In this section we briefly recall the definitions of the algebraic notions that will be
used in the sequel.

Definition 2.1 (Algebra). A unital associative algebra A over a field K is a K-linear
space endowed with two algebra homomorphisms:

• a product m : A⊗A → A satisfying the associativity condition

m ◦ (m⊗ id)(Γ) = m ◦ (id⊗m)(Γ), for all Γ ∈ A⊗ 3; (2.1)

• a unit u : K → A satisfying

m ◦ (u⊗ id)(1⊗ Γ) = Γ = m ◦ (id⊗ u)(Γ⊗ 1), for all Γ ∈ A. (2.2)

Definition 2.2. A (coassociative, counital) coalgebra C over a field K is a K-linear
space endowed with two linear homomorphisms:

• a coproduct ∆ : C → C ⊗ C satisfying the coassociativity condition

(∆⊗ id) ◦∆(Γ) = (id⊗∆) ◦∆(Γ), for all Γ ∈ C; (2.3)

• a counit ε : C → K satisfying

(ε⊗ id) ◦∆(Γ) = Γ = (id⊗ ε) ◦∆(Γ), for all Γ ∈ C. (2.4)

Definition 2.3. A bialgebra B over a field K is a K-linear space endowed with both an
algebra and a coalgebra structure (see Definitions 2.1 and 2.2) such that the coproduct
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and the counit are unital algebra homomorphisms (or, equivalently, the product and
unit are coalgebra homomorphisms):

∆ ◦mB = mB⊗B ◦ (∆⊗∆), ∆(1B) = 1B ⊗ 1B, (2.5a)

ε ◦mB = mK ◦ (ε⊗ ε), ε(1B) = 1. (2.5b)

Definition 2.4. A graded bialgebra is a bialgebra graded as a linear space,

B =
∞
⊕

n=0

B(n), (2.6)

such that the grading is compatible with the algebra and coalgebra structures:

B(n)B(m) ⊆ B(n+m) and ∆B(n) ⊆
n
⊕

k=0

B(k) ⊗ B(n−k). (2.7)

Definition 2.5. A connected bialgebra is a graded bialgebra B for which B(0) = u(K).

Definition 2.6. A Hopf algebra H over a field K is a bialgebra over K equipped with
an antipode map S : H → H obeying

m ◦ (S ⊗ id) ◦∆ = u ◦ ε = m ◦ (id⊗ S) ◦∆. (2.8)

A practical introduction to Hopf algebras for a combinatorial physicist can be found
in [26]. For further details on this topic, the interested reader is referred to [41] or [24],
for example.

3. Graph theory — the Tutte polynomial

3.1. Some notions of graph theory. In graph theory, one has the following definition
(see, for example, [74]).

Definition 3.1. A pseudo-graph Γ is defined as a set of vertices V and a set of edges
E together with an incidence relation between them.

This means that multiple edges (i.e., edges connecting the same two vertices) and
(self-)loops (i.e., edges connecting a vertex to itself) are allowed. Nevertheless, we will
simply refer to these pseudo-graphs as graphs in the rest of this survey.

One can extend the definition above such that a distinct type of edge — the external
edge — is permitted. Such an edge is attached to only one vertex.

In general, the terminologies used by graph theorists or by field theorists are different.
For the sake of completeness, we present in this section both of them. Nevertheless, in
the rest of this survey we use the graph theorists’ language.

Definition 3.2.

(1) The number of edges at a vertex is called the degree of the respective vertex
(field theorists refer to this as the coordination number of the respective vertex).

(2) An edge whose removal increases the number of connected components of the
respective graph is called a bridge (field theorists refer to this as a 1-particle
reducible edge).

(3) A connected subset of edges and vertices, the number of edges being the same
as the number of vertices, which cannot be disconnected by removing any of the
edges is called a cycle (field theorists refer to this as a loop).
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(4) A (self-)loop (see above) is called a tadpole edge in QFT terminology.
(5) An edge which is neither a bridge nor a self-loop is called regular.
(6) An edge which is not a self-loop is called semi-regular.
(7) A graph with no cycles is called a forest.
(8) A connected forest is called a tree. A spanning tree is a tree connecting all the

vertices of the graph.
(9) A spanning forest with two connected components is called (in QFT terminol-

ogy) a two-tree.
(10) The rank of a subgraph A is defined by

r(A) := |V | − k(A), (3.1)

where k(A) is the number of connected components of the subgraph A.
(11) The nullity (or cyclomatic number) of a subgraph A is defined by

n(A) := |A| − r(A). (3.2)

We illustrate this notion by the example of Figure 1.
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Figure 1. An example of a graph (with seven edges and six external
edges). We chose a spanning tree and we label its edges by 1, 2, 3, 4.
The set {1, 2, 4} is a two-tree; one has two connected components (the
first one formed by the edges 1 and 2 and the second one formed by the
edge 4). The external edges are attached to one of these two connected
components.

3.2. Graph polynomials and the (multivariate) Tutte polynomial. One can
define two natural operations for an arbitrary edge e of some graph Γ:

• the deletion, which leads to a graph denoted by Γ− e,
• the contraction, which leads to a graph denoted by Γ/e. This operation identifies
the two vertices v1 and v2 at the ends of e into a new vertex v12, attributing all
the edges attached to v1 and v2 to v12, and then it removes e.

Remark 3.3. If e is a self-loop, then Γ/e is the same as Γ− e.

For an illustration of these two operations, see the example in Figure 2.

Let us now give a first definition of the Tutte polynomial.

Definition 3.4. If Γ is a graph, then its Tutte polynomial TΓ(x, y) is defined by

TΓ(x, y) :=
∑

A⊂E

(x− 1)r(E)−r(A)(y − 1)n(A). (3.3)
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Figure 2. The deletion/contraction of some graph. One is left with
various possibilities (here five) of terminal forms (that is, graphs with
only bridges or self-loops).

A fundamental property of the Tutte polynomial is the deletion/contraction relation.

Theorem 3.5. If Γ is a graph, and e is a regular edge, then

TΓ(x, y) = TΓ/e(x, y) + TΓ−e(x, y). (3.4)

Let us remark that this property of the Tutte polynomial is often used as its definition.
However, for this property to become a mathematical definition, one needs to complete
it by giving the form of the Tutte polynomial on terminal forms. Namely, for graphs
with only irregular edges, m bridges and n self-loops, the Tutte polynomial is given by

TΓ(x, y) := xmyn. (3.5)

A multivariate version of the Tutte polynomial exists in the literature [65] (see also
[28, 29]). The main idea is that, instead of having a single variable, y, for the number
of edges, one introduces a set of variables β1, β2, . . . , β|E|, one for each edge. This leads
to the following definition.

Definition 3.6. If Γ is a graph, then its multivariate Tutte polynomial is defined by

ZΓ(q, {β}) :=
∑

A⊂E

qk(A)
∏

e∈A

βe . (3.6)

Similarly, one can prove that the multivariate Tutte polynomial (3.6) satisfies a dele-
tion/contraction relation, for any edge e. The definition of the polynomial on terminal
forms (graphs with v isolated vertices) is:

ZΓ(q, {β}) := qv. (3.7)
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Through direct inspection, one can prove the following relation between the Tutte
polynomial (3.3) and its multivariate counterpart (3.6):

[

q−VZΓ(q, β)
]

∣

∣

∣

βe=y−1,q=(x−1)(y−1)
= (x− 1)k(E)−|V |TΓ(x, y). (3.8)

Leaving aside the Tutte polynomial, several graph polynomials have been defined
and intensively studied in the literature. The Tutte polynomial is a two-variable poly-
nomial with one-variable specializations such as the chromatic polynomial or the flow
polynomial.

The chromatic polynomial is a graph polynomial PΓ(k) (k ∈ N⋆) which counts the
number of distinct ways to color the graph Γ with k or fewer colors, where colorings are
considered as distinct even if they differ only by permutation of colors. For a connected
graph, this polynomial is related to the Tutte polynomial (3.3) by the relation

PΓ(k) = (−1)|V |−1kTΓ(1− k, 0). (3.9)

In order to define the flow polynomial, we need a finite Abelian group G. One can
choose arbitrarily an orientation for each edge of the graph Γ, the result being inde-
pendent of this choice. (The same type of situation appears when computing Feynman
integrals, see the next section.) A G-flow on Γ is a mapping

ψ : E → G (3.10)

that satisfies current conservation at each vertex. A G-flow on Γ is said to be nowhere-
zero if ψ(e) 6= 0 for all e. Let FΓ(G) be the number of nowhere-zero G-flows on Γ. One
can prove that that this number depends only on the order k of the group G; it can
thus be written FΓ(k) — it is the restriction to non-negative integers of a polynomial
in k, the flow polynomial. One can show that

FΓ(k) = (−1)|E|−|V |+1TΓ(0, 1− k). (3.11)

4. QFT, Feynman integrals and their parametric representation

In this section we introduce a few notions of QFT, the latter being a general frame-
work lying at the very heart of fundamental physics. QFTs give a quantum description
of particles and interactions, which is naturally compatible with Einstein’s theory of
special relativity. As already mentioned in the Introduction, QFTs led to the Standard
Model of elementary particle physics, which is one of the best experimentally tested
theories (for example in huge particle accelerators like the CERN’s LEP). QFT’s math-
ematical formalism also successfully applies to other branches of theoretical physics,
like condensed matter or statistical physics.

The interested reader may consult any of the very good textbooks on QFTs, such as
[40] or [59].

The simplest field theoretical model is the Φ4 scalar model; it consists of a single type
of field Φ(x), a scalar field,

Φ : R
4 → K, (4.1)

where the target space K is either R or C.
Note that we use here R

4, which corresponds to a Euclidean metric. If one needs to
work with a Minkowskian metric, then R4 needs to be replaced by R1,3 (the time being
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singled out from the three spatial dimensions). The number 4 = 1 + 3 corresponds to
the fact that we work on a four-dimensional space-time.

For a field theoretical model to be defined, one needs to write down an action, which
is, from a mathematical point of view, a functional of the fields of the model. For the
real Φ4 model, the action reads

S[Φ(x)] =

∫

R4

d4x

[

1

2

4
∑

µ=1

∂µΦ(x)∂µΦ(x) +
1

2
m2Φ(x)2 + Vint[Φ(x)]

]

, (4.2)

where the real parameter m represents the mass. Furthermore, we have ∂µ = ∂
∂xµ

, and

Vint[Φ(x)] stands for the interacting potential, namely λ
4!
Φ(x)4 (λ being a real parameter,

called the coupling constant).
The formula (4.2) is written in configuration space (or direct space). By applying the

Fourier transform, one can write it in momentum space (which is actually the space
where the elementary particle physics computations are usually performed):

S̃[Φ̃] =

∫

R4

d4p

[

1

2

4
∑

µ=1

pµpµΦ̃
2 +

1

2
mΦ̃2 + Ṽint[Φ̃]

]

. (4.3)

Let us now further analyze this action. One has a quadratic part in Φ and a non-
quadratic one. The quadratic part corresponds to the propagation (the free theory),
while the non-quadratic part corresponds to the interaction.

The functional integration is introduced as the product of integrals at each space point
x (multiplied by some irrelevant normalization factor), Dφ(x) := N

∏

x

∫

dΦ(x). Nev-
ertheless, such an infinite product of Lebesgue measures is mathematically ill-defined.
For a well-defined QFT measure, the interested reader may consult, for example, the
review article [62].

The definition of the partition function is

Z :=

∫

DΦ(x)e−S[Φ(x)]. (4.4)

The physical information of a theory is encoded in n-point functions (or correlation
functions) which are defined by

S(N)(x1, x2, . . . , xN) :=
1

Z

∫

Dφ(x)Φ(x1)Φ(x2) · · ·Φ(xN )e
−S[Φ]

= 〈Φ(x1)Φ(x2) . . .Φ(xN )〉. (4.5)

In general, one is unable to find exact expressions for these correlation functions.
In such cases, the tool used in theoretical physics is the perturbative expansion, i.e., an
expansion of the exponential above in powers of λ. The coefficients of such an expansion
are sums of multiple integrals (see (4.2) and (4.5)); the number of these integrals grows
rapidly with increasing order in perturbation theory (i.e., power of the coupling constant
λ).

To these multiple integrals, called Feynman integrals, one associates Feynman graphs,
which are very useful in the organization of the expansion coefficients. For the Φ4 model
exhibited here, the graphs have degree four at each vertex; moreover one has internal
and external edges (see, for example, Figure 3).
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Figure 3. A Φ4 Feynman graph, with four internal edges (e1, e2, e3, e4)
and four external edges (f1, f2, f3, f4). It is a graph at the third order in
perturbation theory (it has three vertices).

Each of these graphs comes with its combinatorial weight (which is highly non-trivial
because of the non-labeling of the edges). Furthermore, the Feynman integrals can
then be manipulated using various techniques of analytic combinatorics (the Mellin
transform or the saddle-point approximation).

In momentum space, one orients each edge e (internal or external) and associates
to it some momentum pe. The contribution from any internal edge comes from the
quadratic part of the action (4.3) and reads

C(pe) =
1

p2e +m2
. (4.6)

This contribution is called the propagator.
The contribution of some vertex is given by the coupling constant λ times a δ-

function of conservation of the incoming/outgoing momenta at the respective vertex.
If the momenta of the external edges are fixed (they correspond to physical states), the
momenta of the internal edges are free and one has to integrate over them, leading to
the respective Feynman integral.

For the example of Figure 3, all this reads

λ3
∫

(

4
∏

i=1

d4pei

)(

4
∏

i=1

1

p2ei +m2

)

· δ(pf1 + pf2 − pe1 − pe2)δ(pe1 + pe3 − pe4 − pf4)δ(pe2 − pe3 + pe4 − pf3). (4.7)

We leave it as an exercise to the interested reader to find out the orientation of the
edges which was chosen for such a Feynman integral to occur.

Because of the presence of the three δ-functions in (4.7), the number of remaining
integrals is equal to two, which is actually the number of independent cycles of the
Feynman graph (this being a general result in QFT).

At the end of the story, for the Feynman integral (4.7) all this leads to a logarithmic
divergence in the high energy (|p| → ∞) regime of the internal momenta (the so-
called ultraviolet regime). The appearance of such divergences is in fact a very frequent
phenomenon in QFT; it is the renormalization process which, when possible, takes care
of these infinities in a highly non-trivial way (see, for example, the book [61]).

Let us now give some insight in this process of renormalization in QFT. If the con-
sidered QFT model is renormalizable, the graphs which lead to divergences should
correspond to terms present in the action. In order to illustrate what we mean by
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this, let us go back to the example of the Φ4 model. The graphs which lead to the
various divergences of the model need to have two or four external edges. Thus, these
divergences can be “cured” by an appropriate renormalization of the parameters of the
action (4.2) (for example, the mass m and the coupling constant λ). For instance, a
graph with four external edges (each of these four external edges being associated to
a field Φ) corresponds to the renormalization of the coupling constant λ. This comes
from the fact that the coupling constant λ is indeed the parameter by which the Φ4

term in the action (4.2) is multiplied.
Let us take as an example the graph Γ with four external edges in Figure 4. In

x                        y

Figure 4. A four-point Feynman graph. It has two vertices, localized,
in configuration space, in x and y.

configuration space, the Feynman integral to renormalize reads (up to irrelevant nor-
malization factors)

φ(Γ) =

∫

dxdy(C(x, y))2C(x, ȳ1)C(x, ȳ2)C(y, ȳ3)C(y, ȳ4), (4.8)

where we have denoted the four external points that the external edges hook to by
ȳ1, ȳ2, ȳ3, ȳ4. Note that the propagators C(x, y) are given by the inverse Fourier trans-
forms of the momentum space propagators (4.6) — they are associated to the quadratic
part of the configuration space action (4.2), i.e., they are integral representations of heat
kernel functions (by a slight abuse of notation we have denoted propagators in both
configuration and momentum space by C).

We now subtract a term corresponding to the configuration space region

x ∼ y. (4.9)

The integral (4.8) is divergent and can be rewritten, using an appropriate Taylor ex-
pansion, as
∫

dxdy(C(x, y))2C(x, ȳ1)C(x, ȳ2)

·

(

C(x, ȳ3)C(x, ȳ4) +

∫ 1

0

dt(y − x)∇ (C(x+ t(y − x), ȳ3)C(x+ t(y − x), ȳ4))

)

.

(4.10)

One can prove that the second term in the sum above — the renormalized Feynman
integral — is finite (see, for example, the book [61] for details), while the first is the one
containing the divergence — it will be subtracted. This term is called local counterterm:

τΓφ(Γ) =

∫

dx(Φ(x))4
∫

dy(C(x, y))2. (4.11)

The adjective “local” comes from the fact that this expression is associated, as shown
above, to the configuration space region (4.9). The operator τ represents the first term
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in the Taylor expansion (4.10). Note also that in (4.11) we have explicitly considered the
multiplication with the four fields Φ(x) — this divergent term can thus be reabsorbed,
as already mentioned above, in a redefinition of the coupling constant λ. Since the
model (4.2) is translation-invariant, the second integral in (4.11) is independent of x,
and thus the counterterm (4.11) is of the same form as the interaction term in the
action. We have thus shown that the subtraction of a local counterterm makes the
renormalized Feynman integral finite.

The locality of the counterterms can be seen as sending all of the external edges to
the same point (here x), again, in configuration space. The phenomenon described here
can also be exhibited in momentum space (see, for example, the review paper [62] for
the same example treated in momentum space).

Nevertheless, subtraction of the divergences can be more involved. One can have
graphs with subdivergences. In order to introduce the general (Bogoliubov) subtraction
operator for a Feynman graph, we first need the following definition.

Definition 4.1. A Zimmermann forest F of a Feynman graph Γ is a set of subgraphs
of Γ such that

γ ∩ γ′ = ∅ or (γ ⊂ γ′ or γ′ ⊂ γ), for all γ, γ′ ∈ F . (4.12)

Remark 4.2. The Zimmermann forest defined above is a notion distinct from that of a
forest in graph theory (see Definition 3.2(7)).

The (Bogoliubov) subtraction operator reads

R̄ :=
∑

F

∏

γ∈F

(−τγ), (4.13)

where the sum is over all Zimmermann forests F of superficially divergent subgraphs
γ (including the empty forest). The superficially divergent graphs are, in the case of
the Φ4 model, the graphs with two or four external edges (this result comes from the
so-called power counting theorem).

Applying this subtraction operator to a Feynman integral φ(Γ) extracts the diver-
gences. The remaining part, the renormalized Feynman integral

φ+(Γ) = R̄(φ(Γ)), (4.14)

is finite.
An example of a Feynman graph with subdivergences is given in Figure 5, where the

Feynman graph of Figure 4 is a subgraph. Renormalizing this subdivergence leads to
the renormalization of the whole graph. This can be explicitly seen from the following
facts. The Zimmermann forests of this graph are

∅, {γ}. (4.15)

The renormalized Feynman integral thus reads

φ+(Γ) = R̄(φ(Γ)) = φ(Γ)− (τγ(φ(γ)))φ(Γ/γ), (4.16)

where we have used the general property τγφ(Γ) = φ(Γ/γ)τφ(γ), γ being a subdiver-
gence of the Feynman graph Γ. Note that we wrote γ/γ′ for the cograph obtained by
shrinking the subgraph γ′ inside γ — shrinking a subgraph means to replace its internal
structure by a point.
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Figure 5. A Feynman graph, with six internal edges and with a subdi-
vergence given by the subgraph made of the internal edges 1 and 2.

This graph-by-graph renormalization method is known under the name of the Bogo-
liubov–Parasiuk–Hepp–Zimmermann (BPHZ) renormalization scheme, and it is one of
the most frequently used in QFT.

For a general Feynman graph, it is also possible to have overlapping divergences,
i.e., divergent subgraphs with a non-empty intersection. In this case, one can use a
classification theorem of Zimmermann forests in order to prove finiteness of renormal-
ized Feynman amplitudes. In this case, one needs a scale decomposition of the graph’s
propagators. This means that each propagator C is written as a sum of distinct contri-
butions, each such contribution corresponding to a distinct energy scale (see the book
[61] for a detailed presentation of these issues).

Let us also mention that, once the renormalization techniques are performed, the
renormalized (and hence finite) integral leads to physical quantities which are measured
in elementary particle collider experiments with an extremely high accuracy.

In the case presented here, the Φ4 model, the mass m prevents the integral to be
divergent also in the infrared regime (that is, for |p| → 0; see, for example equation (4.7),
which is convergent in this regime).

For the sake of completeness, let us also mention that, when computing Feynman
integrals, mathematical physicists are interested in graphs with no bridges (called 1-
particle irreducible (1PI) graphs). This comes from the fact that the momentum of the
bridge cannot flow towards its high energy regime, because it is directly related to the
external (and thus always finite) momenta. These graphs are thus of no interest for a
renormalization analysis.

Let us now proceed further and introduce the parametric representation of a Feynman
integral. The main idea is to write each of the internal propagators (4.6) of the integral
as an integral over some parameter α:

C(pe) =

∫ ∞

0

dαee
−αe(p2e+m

2), e = 1, 2, . . . , E. (4.17)

Inserting these formulas in the general expression of a Feynman amplitude allows to
integrate out (through Gaussian integrations) the internal momenta pe.
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The Feynman integral then becomes

φ(Γ) =

∫ ∞

0

e−VΓ(pext,α)/UΓ(α)

UΓ(α)2

|E|
∏

ℓ=1

(e−m
2αℓdαℓ), (4.18)

where UΓ(α) is a polynomial in the set of parameters α and VΓ(pext, α) is a polynomial
in the set of external momenta pext and the set of parameters α. It can be shown that
these polynomials depend only on the underlying graph. More specifically, one has

UΓ(α) =
∑

T

∏

ℓ 6∈T

αℓ (4.19)

and

VΓ(pext, α) =
∑

T2

∏

ℓ 6∈T2

αℓ

(

∑

i∈E(T2)

pi

)2

, (4.20)

where the first sum is over all trees T of the graph Γ, while the second sum is over
two-trees T2, which, as already stated in the previous section (see Definition 3.2(9))
separates the graph in two connected components and one can identify the external
edges which connect to one or the other of these connected components. The symbol
E(T2) denotes one of the connected components thus obtained.

Remark 4.3. By momentum conservation, the total momentum of one of these connected
components (for example E(T2)) is equal to the total momentum of the other connected
component.

For the example of Figure 3, one has

UΓ(α) = α3α4 + α2α4 + α2α3 + α1α3 + α1α4,

VΓ(pext, α) = (pf1 + pf2)
2α1α2(α3 + α4) + p2f4α1α3α4 + p2f3α2α3α4.

5. Relation between the multivariate Tutte polynomial and the
polynomials of the parametric representation

Let us now exhibit the relation between the notions presented in the two previous
sections, the multivariate Tutte polynomial on the one hand, and the polynomials of
the parametric representation of Feynman integrals on the other hand.

We start with a deletion/contraction relation for the polynomials UΓ(α).

Theorem 5.1. For any semi-regular edge e, we have

UΓ(α) = αe UΓ−e(α) + UΓ/e(α). (5.1)

Moreover, the terminal form evaluation is

UΓ(α) =
∏

e

αe, (5.2)

for G consisting only of self-loops attached to isolated vertices.

In order to prove this result, we shall use the Grassmann representation (see Appen-
dix A) of the polynomial UΓ.

A key ingredient for this representation is the incidence matrix (ǫe,v) of the graph.
In this matrix, the rows are indexed by the edges e of the graph, e = 1, 2, . . . E, and
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the columns are indexed by the vertices v of the graph, v = 1, 2, . . . , V . By definition,
the entry ǫe,v is equal to 1 if the edge e is outgoing from the vertex v, −1 if the edge e
is incoming at the vertex v, and it is 0 if the edge e is not incident to the vertex v. Let
us point out that this matrix encodes the complete information of a Feynman graph
without self-loops. In order to encode the information from self-loops also (if they are
present), one needs to define an additional matrix (ηe,v), with non-vanishing entries ηe,v
if e is a self-loop incident to the vertex v and ηe,v = 0 otherwise (note that ǫe,v = 0 if e
is a self-loop incident to the vertex v, see [44] for details).

The proof of Theorem 5.1 is then based on the following auxiliary result.

Lemma 5.2. The polynomial UΓ(α) is given by

detQΓ, (5.3)

where the graph matrix QΓ is the square matrix

QΓ =

(

αe (−ǫe,v)
t(−ǫe,v) 0

)

. (5.4)

(Here, t( · ) denotes the transpose of a matrix).

Proof. One can prove this by performing the Gaussian integrations obtained from in-
serting the propagator form (4.17) in the general form of a Feynman integral (see again
[44] for details). �

Proof of Theorem 5.1. As a direct consequence of Lemmas 5.2 and A.2, we have

UG(αe) =

∫

∏

v,e

dχvdωvdχedωee
−αeχeωee−χeǫe,vχv+ωeǫe,vωv . (5.5)

Note that we have split each of the two sets of Grassmann variables (χ and ω) required
for the representation of such a determinant (see Lemma A.2) in two subsets, one of
cardinality E (indexed by e) and one of cardinality V (indexed by v); this corresponds
to the block form of the complete matrix QΓ.

Let now e be a semi-regular edge connecting vertices v1 and v2. We have (see the
definition (A.4) for a single Grassmann variable)

e−αeχeωe = 1 + αeωeχe. (5.6)

We denote the two terms of this sum by detQΓ,e,1 and by detQΓ,e,2, respectively. Let
us first closely investigate the term detQΓ,e,1. By direct inspection of the various terms
coming from similar expansions of the other Grassmann exponentials in (5.5), one can
prove (using the Grassmann integration rules (A.5)) that (see again [44] for details)

detQΓ,e,1 =

∫

∏

e′ 6=e,v

dχe′dωe′dχvdωv(χv1 − χv2)(ωv1 − ωv2)

· e−
∑

e′ 6=e α
′
eχe′ωe′e−

∑
e′ 6=e,v χe′ ǫe′,vχv+

∑
e′ 6=e,v ωe′ ǫe′,vωv . (5.7)

Let us now perform the following (triangular) change of variables (with unit Jacobian)

χ̂v1 = χv1 − χv2 ,

χ̂v = χv, for all v 6= v1,
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and the same for the set of ω Grassmann variables. This leads to the identification (see
again [44] for details)

detQΓ,e,1 = detQΓ/e. (5.8)

The second term of the expression (5.6) similarly leads to

detQΓ,e,2 = αe detQΓ−e. (5.9)

We refer the interested reader again to [44] for obtaining the terminal form evaluation.
�

Remark 5.3. The Grassmann calculus method presented here for the proof of Theo-
rem 5.1 is not the simplest method to obtain this result (which can be obtained for
example using the explicit form (4.19) of the polynomial UΓ(α)). Nevertheless, the
Grassmann calculus method is particularly useful to get, for example, formula (4.19)
(or formula (4.20) for the polynomial VΓ(pext, α)) directly from the respective Feynman
integral. Moreover, such a method can be used to obtain the parametric representation
of more complicated QFT models, like for example the non-commutative scalar Φ⋆ 4

model (see Subsection 7.2).

The situation is similar for the second polynomial V (pext, α) (see [44] for details). Let
us now show how the polynomial UΓ(α) can be obtained as a limit of the multivariate
Tutte polynomial ZG(q, β). One needs to consider

q−k(Γ)ZΓ(q, β). (5.10)

Taking the limit q → 0 one obtains a sum over maximally spanning subgraphs A, that
is, subgraphs with k(A) = k(Γ):

SΓ(β) = lim
q→0

q−k(G)ZΓ(q, β) =
∑

A maximally spanning E

∏

e∈A

βe. (5.11)

If one now retains only the terms of lowest degree of homogeneity in β, one obtains
a sum over maximally spanning graphs with lowest number of edges, i.e., maximally
spanning acyclic graphs (or spanning forests, see Definition 3.2(7)) of Γ. We denote
this lowest number of edges by p (note that p = |V (Γ)| − k(Γ)). We have

FΓ(β) =
∑

F maximally spanning forest of G

∏

e∈F

βe. (5.12)

Finally, if one divides FΓ(β) by
∏

e∈E βe and makes the change of variables αe = β−1
e ,

the polynomial UΓ(α) is obtained.
All this is summarized by the formula

UΓ(α) =

[(

∏

e∈E

βe

)

lim
q′→0

1

(q′)p(Γ)
lim
q→0

q−k(Γ)ZΓ(q, q
′β)

]

β−1
e =αe

. (5.13)

Note that the variable q′ was introduced to take the limit retaining only the lowest
degree of homogeneity in β from SΓ(q

′β) (see above).

Let us also mention here the universality of the Tutte polynomial. This, also known
as the “recipe theorem”, means that any Tutte–Grothendieck invariant must be an
evaluation of the Tutte polynomial, with the necessary substitutions given by the recipe
(see, for example, the survey papers [28, 29]). The relation between the Symanzik
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polynomial UΓ and the multivariate Tutte polynomial ZΓ can thus be deduced from
this result and Theorem 5.1.

6. Combinatorial Connes–Kreimer Hopf algebra of Feynman graphs

Consider now the unital associative algebra H freely generated by 1PI Feynman
graphs of the Φ4 model (including the empty set, which we denote by 1). The product
m is bilinear, commutative, and given by the operation of disjoint union.

Let us give a formal definition of the Feynman rules, already introduced in the pre-
vious section.

Definition 6.1. The Feynman rules are a homomorphism φ from H to some target
space A.

For the sake of completeness, let us also remark that this target algebra is naturally
equipped with some Rota–Baxter algebraic structure. Recently, the algebraic implica-
tions one has when relaxing this particular condition were studied in [27].

In a generic QFT model, a special role in the process of renormalization is played by
the primitively divergent graphs.

Definition 6.2. A primitively divergent graph of a QFT model is a graph whose Feyn-
man integral is divergent but which does not contain any subgraph for which the Feyn-
man integral is also divergent.

In the particular case of the commutative Φ4 model, this class of graphs is formed
by the graphs with two or four external edges that do not contain any graph of two or
four external edges as subgraph. Let us also remark that the parametric representation
presented in Section 4 is one of the elegant ways to prove this type of result.

Definition 6.3. The projection T is a map from A to A which satisfies the following
property: For all Γ ∈ H, Γ primitively divergent,

(idA − T ) ◦ φ(Γ) <∞. (6.1)

This means that if φ(Γ) is divergent then its overall divergence is completely included
in T ◦ φ(Γ).

From now on we denote the set of two- and four-external edges subgraphs of a generic
graph Γ by Γ. This is also referred to as the set of superficially divergent subgraphs of
Γ.

Lemma 6.4 ([71, Lemma 3.2]). Let Γ ∈ H. Provided

(1) for all γ ∈ Γ and γ′ ∈ γ, the graph γ/γ′ is superficially divergent,
(2) for all γ1 ∈ H and γ2 ∈ H such that γ1 and γ2 are superficially divergent, there

exists gluing data G such that (γ1 ◦G γ2) is superficially divergent,

the following coproduct is coassociative:

∆Γ = Γ⊗ 1 + 1⊗ Γ +∆′Γ, (6.2a)

∆′Γ =
∑

γ∈Γ

γ ⊗ Γ/γ. (6.2b)
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By gluing data we understand a bijection between the external edges of the graph to
be inserted and the edges of the propagator (or vertex) where the insertion is done.

Let us now illustrate how this result fits the commutative Φ4 model. The first condi-
tion of the lemma is trivial, since when one shrinks a subgraph, the number of external
edges is conserved. Moreover, since γ′ has two or four external edges, the cograph is
also a Φ4 graph. Let us now check condition 2 of Lemma 6.4. We consider two graphs
γ1 and γ2 with two or four external edges. We consider γ0 = γ1 ◦G γ2 for any gluing
data G. Let Vi, Ii and Ei be the numbers of vertices, internal, and external edges of
γi, i ∈ {0, 1, 2}, respectively. For all i ∈ {0, 1, 2}, we have

4Vi = 2Ii + Ei, (6.3a)

V0 =

{

V1 + V2, if E2 = 2,

V1 + V2 − 1, if E2 = 4,
(6.3b)

I0 =

{

I1 + I2 + 1, if E2 = 2,

I1 + I2, if E2 = 4,
(6.3c)

which proves that E = E1. Then, as soon as γ1 is primitively divergent, so is γ0.
Concerning condition 1, note that γ′′ = γ/γ′ if and only if there exists G such that
γ = γ′′ ◦G γ′, which allows to prove that condition 1 also holds and that the coproduct
(6.2) is coassociative.

Let the coproduct ∆ : H → H⊗H be defined by

∆Γ = Γ⊗ 1 + 1⊗ Γ +
∑

γ∈Γ

γ ⊗ Γ/γ, ∀Γ ∈ H. (6.4)

Furthermore, let us define the counit ε : H → K by

ε(1) = 1, ε(Γ) = 0, for all Γ 6= 1. (6.5)

This means that, for any non-trivial element of H, the counit returns a trivial answer
and, equivalently, only for the trivial element of H (the empty graph 1), the result
returned by the counit is non-trivial. Finally the antipode is given recursively by

S : H → H

S(1) = 1,

Γ 7→ −Γ−
∑

γ∈Γ

S(γ)Γ/γ. (6.6)

Then the following result holds.

Theorem 6.5 ([21, Theorem 1]). The quadruple (H,∆, ε, S) is a Hopf algebra.

Let us also notice that H is graded by the loop number.

Let now f, g ∈ Hom(H,A), where A is the range algebra of the projection T (see
above). The convolution product ∗ in Hom(H,A) is defined by

f ∗ g = mA ◦ (f ⊗ g) ◦∆H. (6.7)
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Let φ be the Feynman rules and φ− ∈ Hom(H,A) the twisted antipode, defined recur-
sively by

φ−(Γ) = −T
(

φ(Γ) +
∑

γ∈Γ

φ−(γ) φ(Γ/γ)
)

, for all Γ ∈ H. (6.8)

Let us mention here that this twisted antipode implements the BPHZ subtraction (see
Section 4). The renormalized Feynman amplitude φ+ of a graph Γ ∈ H is given by

φ+(Γ) = φ− ∗ φ(Γ). (6.9)

Moreover, Bogoliubov’s subtraction operator is given by (see, for example, [47] for
details)

R̄(Γ) = φ(Γ) +
∑

γ∈Γ

φ−(γ)φ(Γ/γ). (6.10)

Let us now illustrate this with the example of the divergent Feynman graph of Figure 5.
In that case, the expression (6.10) above becomes

R̄(φ(Γ)) = φ(Γ) + φ−(γ)φ(Γ/γ), (6.11)

where the only subdivergent graph γ is given by the internal edges 1 and 2 (see again
Figure 5). The above definition of the twisted antipode leads to

φ−(γ) = −T (φ(γ)) (6.12)

(since the subgraph γ is primitive — the recursion in the definition of the twisted
antipode stops). Inserting the expression (6.12) for the twisted antipode in (6.11)
finally gives

R̄(φ(Γ)) = φ(Γ)− T (φ(γ))φ(Γ/γ), (6.13)

which is, as announced, the same expression as (4.16), the expression computed using
non-algebraic formulas. Note that the explicit form of the projection T is given by the
choice of the renormalization scheme. In Section 4, working in configuration space, we
have used explicit Taylor expansion operators τ .

For the sake of completeness, let us recall that a combinatorial Hopf algebraic struc-
ture like the one described in this section can be also defined for more involved quantum
field theories, such as gauge theories [46, 66].

Moreover, let us also state that a slightly different combinatorial Hopf algebra — the
core Hopf algebra — was defined in [8] (and independently in [43] for vacuum graphs).
Its coproduct does not sum over the class of superficially divergent subgraphs but over
all subgraphs of the respective graph:

∆Γ = Γ⊗ 1 + 1⊗ Γ +
∑

γ⊂Γ

γ ⊗ Γ/γ, ∀Γ ∈ H. (6.14)

The definitions of the coproduct and of the counit follow in a straightforward manner.
One can then verify that this structure is also a Hopf algebra structure. The cohomology
of this Hopf algebra was also investigated in detail [48, 49].

This core algebra contains the renormalization Hopf algebra (presented in this sec-
tion) as a quotient algebra. Moreover, it can be seen as the Connes–Kreimer Hopf
algebra of a QFT model formulated in infinite dimension (see again [48, 49] for more
details).
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Let us end this section by mentioning that the study of the cohomology of the Connes–
Kreimer Hopf algebras allows one to express the combinatorial Dyson–Schwinger equa-
tions as power series in some appropriate insertion operators of graphs (which, from a
mathematical point of view, are Hochschild one-cocyles). The interested reader may
consult the articles [6, 46, 50] or the thesis [75]. For various results on these combina-
torial Dyson–Schwinger equations in the Hopf algebra of decorated rooted trees, one
may also consult [30, 31].

7. Ribbon graphs and scalar QFT on the non-commutative Moyal space

In this section we present the generalization of the results of the previous sec-
tions to the case of ribbon graphs (where the Tutte polynomial generalizes to the
Bollobás–Riordan polynomial) and the case of Φ4 scalar QFT on the 4-dimensional
non-commutative Moyal space.

7.1. Ribbon graphs — the Bollobás–Riordan polynomial. One has the following
definition, generalizing in a natural manner the definition of a graph.

Definition 7.1. A ribbon graph Γ is an orientable surface with boundary represented as
the union of closed disks, also called vertices, and ribbons also called edges, such that:
the disks and the ribbons intersect in disjoint line segments, each such line segment lies
on the boundary of precisely one disk and one ribbon and, finally, every ribbon contains
two such line segments.

Let us also mention that ribbon graphs can also be defined as graphs equipped with,
for each vertex, a cyclic ordering of the edges incident to that vertex, or as graphs
embedded in surfaces (this last definition was actually the object on which B. Bollobás
and O. Riordan defined their generalization of the Tutte polynomial in [9, 10]).

The definition above can be extended such that a distinct type of edge — the external
edge — is permitted. This type of edge contains only one line segment given by the
intersection between a ribbon and a disk (see Definition 7.1).

An example of such a graph is given in Figure 6.

Figure 6. An example of a ribbon graph with one vertex, one internal
edge, and two external edges.

Definition 7.2. A face of a ribbon graph is a connected component of its boundary as
a surface.

For example, the graph of Figure 6 has two faces.
If we glue disks along the faces, we obtain a closed Riemann surface whose genus is

also called the genus of the graph.

Definition 7.3. The ribbon graph is called planar if this Riemann surface has genus
zero.

For example, the graph of Figure 6 is planar.
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Definition 7.4. A planar graph is called regular if the number of faces broken by
external edges is equal to 1.

The graph of Figure 6 is planar irregular.

As already stated in the Introduction, ribbon graphs are also known as maps (see
for example [18] and references therein). Planar regular maps are also known as outer
maps.

Definition 7.5. The Bollobás–Riordan polynomial of a ribbon graph G is defined by

RΓ(x, y, z) :=
∑

H⊂E

(x− 1)r(Γ)−r(H)yn(H)zk(H)−F (H)+n(H). (7.1)

In the above definition, the symbol F (H) stands for the number of components of
the boundary of the respective subgraph H (the number of faces). The supplementary
variable z is required to keep track of the topological information (the graph genus or
the number of faces).

As the Tutte polynomial, the Bollobás–Riordan polynomial also obeys a deletion/con-
traction relation.

Theorem 7.6. Let Γ be a ribbon graph. Then

RΓ = RΓ/e +RΓ−e (7.2)

for any regular edge e of G, and
RΓ = xRΓ/e (7.3)

for every bridge of Γ.

There are further analogies to the Tutte polynomial, in the sense that, defining
the Bollobás–Riordan polynomial on terminal forms transforms property (7.2) into a
definition. On these terminal forms (that is, graphs with one vertex), the polynomial
is defined by

RΓ(y, z) :=
∑

H⊂Γ

y|E(H)|z2g(H), (7.4)

since, in this case, one has k(H)− F (H) + n(H) = 2g(H).

A multivariate version of the Bollobás–Riordan polynomial exists as well in the lit-
erature, namely

ZΓ(x, β, z) =
∑

H⊂E

xk(H)

(

∏

e∈H

βe

)

zF (H). (7.5)

This version also satisfies a deletion/contraction relation.

Finally, let us mention that a signed version of the Bollobás–Riordan was defined in
[20]; this is a three-variable polynomial defined on signed ribbon graphs, that is, ribbon
graphs for which an element of the set {+,−} is assigned to each edge. A partial duality
with respect to a spanning subgraph was also defined [19]; this allows one to prove that
the Kauffman bracket of a virtual link diagram is equal to the signed Bollobás–Riordan
polynomial of some ribbon graph constructed from a state of the respective virtual link
diagram (the interested reader is referred to [19] for details on this topic). Moreover,
the properties of the multivariate version of this signed Bollobás–Riordan polynomial
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were analyzed in [73] (namely, there its invariance under the partial duality of [19]
was proved). Finally, 4-variable generalizations of the Bollobás–Riordan polynomial for
ribbon graphs were defined in [51] and [45].

7.2. Scalar Φ⋆ 4 QFT on the non-commutative Moyal space; parametric rep-
resentation. Let us start this subsection with some explanations on the interest of
mathematical physicists in QFT on non-commutative spaces.

Non-commutative QFT can be seen as a potential candidate for new physics be-
yond the celebrated Standard Model of elementary particle physics. Moreover, non-
commutativity of space-time is believed to be a possible framework for the quantification
of gravity. Thus, it was argued in [25] that the space-time becomes non-commutative at
the Planck scale (the physical energy scale where gravitational effects have the same or-
der of magnitude as quantum effects; thus, the energy scale where gravity and quantum
physics cannot “ignore themselves” anymore). Moreover, non-commutative QFT has
been shown to be related to loop quantum gravity and to group field theory [3, 34, 55],
some of the major candidates for a quantified theory of gravity (more details on group
field theory are also given in the last section of this survey). Non-commutative mod-
els have also been shown to be effective theories of certain models of string theories
and of matrix theories [22, 64]. Finally, changing point of view, it was argued that
non-commutative models can be better adapted for describing the physics of effective
non-local interactions, as it is the case in the fractional quantum Hall effect [54, 60]. For
more details on non-commutative QFT, the interested reader may consult the review
paper [63].

From a mathematical point of view, the Moyal space, one of the simplest cases of
such a non-commutative setting, can be defined in the following way.

Definition 7.7. The Moyal algebra is the linear space of smooth and rapidly decreasing
functions S(RD) equipped with the Moyal product

(f ⋆ g)(x) =

∫

dDk

(2π)D
dDy f(x+

1

2
Θ · k)g(x+ y)eik·y, ∀x ∈ R

D, (7.6)

where Θ is a D-dimensional skew-symmetric matrix.

Remark 7.8.

(1) The Moyal product is non-local, non-commutative, but it is still associative.
(2) Taking the matrix Θ to be vanishing leads to the usual commutative multipli-

cation of functions.

The Moyal algebra defined above can be extended by duality, considering the product
of a tempered distribution with a Schwartz-class function. The identity, the polynomi-
als, the δ function, and its derivatives can then be shown to belong to this extended
Moyal algebra (see [35] for details). One can then prove that

[xµ, xν ]⋆ := xµ ⋆ xν − xν ⋆ xµ = iΘµν , for all µ, ν = 1, 2, . . . , D. (7.7)

Let us note that this relation can also be used as a definition of the Moyal space.



SOME COMBINATORIAL ASPECTS OF QUANTUM FIELD THEORY 21

In this survey we take D = 4 (the usual 4-dimensional space-time). The non-
commutativity matrix Θ is taken to be

Θ =

(

Θ2 0
0 Θ2

)

, Θ2 =

(

0 −θ
θ 0

)

.

Non-commutative quantum field theories are then implemented by replacing the usual
commutative multiplication of fields by the non-commutative ⋆-product. Thus, the
action of the non-commutative Φ⋆ 4 model reads

S[Φ] =

∫

R4

d4x

[

1

2

4
∑

µ=1

(∂µΦ ⋆ ∂µΦ) (x) +
1

2
m2Φ⋆ 2(x) + V ⋆

int[Φ]

]

, (7.8)

where the non-commutative interaction potential is given by

V ⋆
int[Φ] =

λ

4
Φ⋆ 4(x). (7.9)

As in the commutative case, one can apply the Fourier transform in order to transfer
this action to one on momentum space. A first consequence of the use of the Moyal
product is that its use does not change the propagation part of the action. This is a
direct consequence of the following mathematical property:

∫

d4x (Φ ⋆Ψ)(x) =

∫

d4xΦ(x) Ψ(x), for all Φ and Ψ. (7.10)

Thus, the propagator of the theory has the same form as in the commutative case; this
is particularly useful for implementing the parametric representation in a similar way.

Nevertheless, the use of the Moyal product at the level of the interaction terms
changes completely the situation: the non-commutative interaction is not equivalent to
the commutative one (as this is also the case for the propagation). The interaction part
no longer preserves the invariance under permutation of external fields. This invariance
is restricted to cyclic permutations only. Furthermore, there exists a basis — the matrix
base — of the Moyal algebra where the Moyal product takes the form of an ordinary
matrix product. For these reasons the associated Feynman graphs are ribbon graphs,
just like the ones described in the previous subsection.

For more details on the implementation of QFTs on the non-commutative Moyal
space, the interested reader is referred to [63] and references therein.

Let us now move on to the implementation of the non-commutative parametric rep-
resentation. This can be achieved using the same trick (4.17) as in the commutative
case. The difference comes however from the fact that the interaction part is non-
trivially dependent on the non-commutativity parameter θ, and this dependence will
consequently appear in the form of the two polynomials which give the parametric rep-
resentation of the respective Feynman integral (we denote these polynomials by U⋆(α, θ)
and V ⋆(pext, α, θ)).

Using a Grassmannian development of the Pfaffians obtained through these Gaussian
integrations, one can prove (see again [44]) that the Feynman integral of a generic graph
Γ reads

φ(Γ) =

∫ ∞

0

e−V
⋆(pext,α,θ)/U⋆(α)

U⋆(α, θ)2

|E|
∏

ℓ=1

(e−m
2αℓdαℓ). (7.11)
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In order to present the exact form of the polynomials U⋆
Γ(α, θ) and V

⋆
Γ (pext, α, θ),we

need the following definition (see again [44] for details).

Definition 7.9.

(1) A ⋆-tree of a connected ribbon graph is a sub-ribbon graph with one boundary
component.

(2) A two ⋆-tree is a sub-ribbon graph with two boundary components.

Note that these definitions are non-trivial generalizations of the notions of trees and
two-trees, respectively (see Definition 3.2(8) and (9)). Let us also mention that ⋆-trees
are also known as quasi-trees in the knot theory literature and as unicellular maps in
the combinatorics literature (see for example [73] and [17] and references therein).

We have

U⋆
Γ(α, θ) =

(

θ

2

)b
∑

T ⋆ ⋆-tree

∏

e/∈T ⋆

2
αe
θ
, (7.12)

where b = F − 1 + 2g.
The case of the polynomial V ⋆(pext, α, θ) is more involved, because the non-com-

mutative setting presented here allows for it to be complex. We have the following
theorems.

Theorem 7.10 ([44, Theorem 5.2]). The real part of the polynomial V ⋆
Γ (pext, α, θ) reads

X ⋆
Γ(pext, α, θ) =

(

θ

2

)b+1
∑

T ⋆
2

two-⋆-tree

∏

e/∈T ⋆
2

2
αe
θ
(pT ⋆

2
)2, (7.13)

where pT ⋆
2

is the sum of the external momenta entering one of the two faces of the
two-⋆-tree T ⋆

2 .

Note that we say that an external momentum enters a face if the respective external
edge is hooked to one of the vertices of the face (we also consider in the sum above,
for each such external momentum, the sign + if the momentum is ingoing, respectively
− if it is outgoing). As in the commutative case, the choice of the face in the above
theorem is irrelevant (by momentum conservation).

Theorem 7.11 ([44, Theorem 5.3]). The imaginary part of the polynomial V ⋆
Γ (pext, α, θ)

reads

Y⋆
Γ(pext, α, θ) =

(

θ

2

)b
∑

T ⋆ ⋆-tree

∏

e/∈T ⋆

2
αe
θ
ψ(p), (7.14)

where ψ(p) is the phase obtained by following the momenta entering the face of the
⋆-tree T ⋆.

Let us give some explanations on the definition of ψ(p). We denote the (unique) face
of the ⋆-tree by f . One can then define an incidence matrix (ǫ̃f,i) between this face and
the external edges of the graph (in the same way one defines the usual incidence matrix
between vertices and edges). Following the external momenta entering the face, one can
define an order relation on these momenta. One then has ψ(p) =

∑

i<j(ǫ̃f,ipi)∧ (ǫ̃f,ipj),

where pi ∧ pj =
1
θ
pµiΘµνp

ν
j . This expression generalizes in a straightforward manner the

expression which gives, as a function of the incoming/outgoing momenta, the phase
corresponding to a Moyal vertex.
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7.3. Relation between the multivariate Bollobás–Riordan polynomial and the
polynomials of the parametric representation. It can be shown that also the
polynomials U⋆

Γ(α, θ)Γ and V ⋆
Γ (pext, α, θ) satisfy a deletion/contraction relation. More

precisely, we have the following result.

Theorem 7.12 ([44, Theorem 5.1]). For any semi-regular edge e, we have

U⋆
Γ(α, θ) = αeU

⋆
Γ−e(α, θ) + U⋆

Γ/e(α, θ). (7.15)

One can moreover prove the following relation between the multivariate Bollobás–
Riordan polynomial and the polynomial U⋆

Γ(α, θ) of the parametric representation:

U⋆
Γ(α, θ) = (θ/2)

1

2
(|V |−|E|−1)

(

∏

e∈E

αe

)

× lim
w→0

w−1ZΓ

(

1, θ
2αe
, w
)

. (7.16)

Note that the commutative limit (θ → 0) gives the usual Φ4 model on the commutative
R4. This can be seen as well in the parametric representation, where U⋆

Γ(α, θ) is given by
UΓ(α) plus some noncommutative corrections which factor θ2 (corrections thus vanishing
in the commutative limit). This directly applies to equation (7.16) (where one obviously
has to take the limits in the appropriate order on the right-hand side), and it leads to

UΓ(α) = lim
θ→0

U⋆
Γ(α, θ) = lim

θ→0

(

(θ/2)
1

2
(|V |−|E|−1)

(

∏

e∈E

αe

)

× lim
w→0

w−1ZΓ

(

1, θ
2αe
, w
)

)

.

(7.17)
The second polynomial, V ⋆

Γ (α, pext, θ), can also be related to the multivariate Bol-
lobás–Riordan polynomial in a similar way (see again [44] for details).

For the sake of completeness, let us also mention that the parametric representa-
tion of a non-commutative renormalizable scalar model, different from (7.8) (the latter
being actually non-renormalizable) — the Grosse–Wulkenhaar model [36] — was fully
implemented. Its polynomials do not obey a deletion/contraction relation, but they
obey some other types of recursive relations [45]. Algebraic topological properties of
the parametric representation of the Grosse–Wulkenhaar model (as well as of the para-
metric representation of the commutative model (4.2)) were studied in [2].

8. Combinatorial Connes–Kreimer Hopf algebras for renormalizable
Φ⋆ 4 QFT on the non-commutative Moyal space

The definition of the Hopf algebra of non-commutative Feynman graphs which drives
the combinatorics of renormalization is formally the same as in the commutative case.
Nevertheless, in the definition of the coproduct one has to sum over the superficially
divergent subgraphs of the respective graph, and this class of superficially divergent
graphs takes now explicitly into account the topology of the graph. Thus, using var-
ious QFT techniques, it was proved in [36] that the superficially divergent graphs of
the renormalizable Grosse–Wulkenhaar non-commutative model are the planar regular
ribbon graphs with two and four external edges.

We denote by H⋆ the unital, associative algebra freely generated by 1PI ribbon
Feynman graphs of the renormalizable Grosse–Wulkenhaar Φ⋆ 4 model (including the
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empty set, which we denote by 1H⋆). The product m is bilinear, commutative and given
by the operation of disjoint union. Let the coproduct ∆ : H⋆ → H⋆⊗H⋆ be defined by

∆Γ = Γ⊗ 1H⋆ + 1H⋆ ⊗ Γ +
∑

γ∈Γ

γ ⊗ Γ/γ, for all Γ ∈ H⋆, (8.1)

where, as earlier, we write Γ for the set of two and four external edges planar regular
sub-ribbon graphs of Γ. Furthermore, we define the counit ε : H⋆ → K by

ε(1H⋆) = 1, ε(Γ) = 0, ∀Γ 6= 1H⋆ . (8.2)

Finally, the antipode is given recursively by

S : H⋆ →H⋆ (8.3)

Γ 7→ − Γ−
∑

γ∈Γ

S(γ)Γ/γ.

Then the following result holds true.

Theorem 8.1 ([71, Theorem 4.1]). The quadruple (H⋆,∆, ε, S) is a Hopf algebra.

The main difficulty in the proof of this theorem (in comparison with the original
Connes–Kreimer theorem) comes from the necessity of defining gluing data which re-
spect to the ribbon graph cyclic ordering. Figure 7 shows an example of an insertion
of a graph with four external edges with gluing data which respects the cyclic ordering
(the dotted lines showing how the four external legs of the subgraph to be inserted and
the four edges of the chosen vertex are put together — the insertion place).

Figure 7. Insertion of a regular ribbon graph with four external edges.
The cyclic ordering is respected by the chosen gluing data.

The renormalized Feynman amplitude is defined in analogy to the commutative case
(see equation (6.9)).

Let us end this section by recalling that in [70] the role played by Hochschild coho-
mology of these types of Hopf algebras in non-commutative QFT was studied in detail;
non-trivial examples of graphs with one or two independent cycles have been explicitly
worked out.
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Figure 8. A possible vertex of a three-dimensional quantum gravity
tensor model.

Figure 9. A possible vertex of a four-dimensional quantum gravity ten-
sor model.

9. Perspectives — combinatorics of quantum gravity tensor models

One of the main perspectives of the combinatorial approaches presented here is their
extension for the study of the properties of quantum gravity models. The group field
theory formalism of quantum gravity (for general reviews, see [32, 56, 57, 58]) is the
most adapted for such a study, since it is formulated as a QFT. These models were
developed as a generalization of two-dimensional matrix models (which naturally make
use of ribbon graphs just as non-commutative quantum field theories do) to the three-
and four-dimensional cases.

The natural candidates for generalizations of matrix models in higher dimensions
(> 2) are tensor models. In the combinatorially simplest case, the elementary cells that,
by gluing together form the space itself, are the D-simplices (D being the dimension
of space). Since a D-simplex has D + 1 facets on its boundary, the backbone of group
field theoretical models in dimension D should be some abstract ΦD+1 interaction on
rank D tensor fields φ (see Figures 8 and 9, which represent, for D = 3 and D = 4, the
vertex of these Feynman quantum gravity tensor graphs).

In [37, 69], some propositions for generalizations of the Bollobás–Riordan polynomial
to the level of these rank three tensor models have been established, and it was proven
that they respect a deletion/contraction property. Due to the increased topological
complexity of the graphs, a different way of contracting edges had to be used.

Furthermore, a polynomial for triangulations (no graphs being taken into consider-
ations) has also been recently proposed in [52]. It is thus interesting to understand if



26 ADRIAN TANASA

some connection between these propositions exists and if any of them could be related
to some parametric representation of these quantum gravity models, as shown here to
be the case for both commutative and non-commutative QFTs.

Let us also stress the fact that different topological and analytic insights in this type
of formulation of quantum gravity models have been investigated in the recent literature
(see [4, 3, 5, 11, 33, 42, 53, 67] and references therein).

It would be interesting to investigate whether or not these models can be related to
the operation of cabling in knot theory and thereby to the colored Jones polynomials.
Within the quantum gravity framework described in this section, (edge-)colored tensor
models have been recently proposed and investigated (see [38] and references therein).
On the other hand, the relation of parallel cabling to combinatorics in general and to
the Bollobás–Riordan polynomial of a ribbon graph in particular was analyzed in [39].

For the sake of completeness, let us end this survey by mentioning other types of
mathematical perspectives, such as number theoretical conjectures related to Feynman
integrals, definition of knot invariants, etc. The interested reader may for example
consult [13] and [12, 14, 15, 16] (and references therein) for various other developments
related to the combinatorics of graph polynomials and QFT.
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Appendix A. Grassmann variables, determinants and Pfaffians

Grassmann variables χ1, χ2, . . . , χn are defined through their anticommutation rela-
tions

χiχj = −χjχi, for all i and j. (A.4)

A direct consequence of this relation is that any function of these variables is a poly-
nomial with highest degree one in each variable. The rules of Grassmann integrations
are then

∫

dχ = 0 and

∫

χ dχ = 1. (A.5)

The determinant of any n-dimensional square matrix can be expressed as a Grass-
mann Gaussian integral over 2n independent Grassmann variables which one can de-
note by ψ̄1, ψ̄2, . . . , ψ̄n, ψ1, ψ2, . . . , ψn. (The reader should be warned that the bars have
nothing to do with complex conjugation.) More precisely, we have

detM =

∫

∏

dψ̄idψie
−

∑
ij ψ̄iMijψj . (A.6)

The Pfaffian Pf(A) of a skew-symmetric matrix A is defined by

detA = [Pf(A)]2, (A.7)

where the sign of the term A1,2A3,4 · · · is fixed to be +1.
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Proposition A.1 ([1, Proposition 3]). The Pfaffian of an n-dimensional skew-sym-
metric matrix A is given by

Pf(A) =

∫

∏

dχie
−

∑
i<j χiAijχj =

∫

dχ1 dχ2 · · · dχne
− 1

2

∑
i,j χiAijχj . (A.8)

Lemma A.2 ([44, Lemma 2.1]). The determinant of a matrix D + A, where D is
diagonal and A skew-symmetric, can be written in the form

det(D + A) =

∫

∏

dχidωie
−

∑
i χiDiiωi−

∑
i<j χiAijχj+

∑
i<j ωiAijωj . (A.9)
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943–971; arχiv:1003.1679.

[28] J. Ellis-Monaghan and C. Merino, Graph polynomial and their applications. I. The Tutte polyno-
mial, in: Structural Analysis of Complex Networks, Matthias Dehmer (ed.), Birkhäuser/Springer,
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