
Séminaire Lotharingien de Combinatoire 66 (2011), Article B66z

MULTIVARIATE POLYNOMIALS IN SAGE

VIVIANE PONS

Abstract. We have developed a patch implementing multivariate polynomials seen
as a multi-base algebra. The patch is to be released into the software Sage and can
already be found within the Sage-Combinat distribution. One can use our patch to
define a polynomial in a set of indexed variables and expand it into a linear basis of the
multivariate polynomials. So far, we have the Schubert polynomials, the Key polyno-
mials of types A, B, C, or D, the Grothendieck polynomials and the non-symmetric
Macdonald polynomials. One can also use a double set of variables and work with spe-
cific double-linear bases like the double Schubert polynomials or double Grothendieck
polynomials. Our implementation is based on a definition of the basis using divided
difference operators and one can also define new bases using these operators.

Introduction

Multivariate polynomials and their bases appear in many combinatorial problems
and one often needs to define a polynomial as a formal sum of elements that live in
a specified basis. The usual implementation of multivariate polynomials is done as a
tensor product of polynomials in one variable. But one can not consider the variables
all together: all bases have to be defined by a product of bases of polynomials in one
variable. It appeared to us that a clear and handy implementation of multivariate
polynomials from a combinatorial point of view would be useful not only to our work
but to the community.

Our approach is based on divided difference operators and their interpretation in
terms of linear bases of the multivariate polynomials algebra as explained by Lascoux
[2]. We define simple operators of types A, B, C, and D in Section 2.1 and use them to
create the divided difference operators in Section 2.2. We then explain in Section 2.3
how these operators allow us to define linear bases of the multivariate polynomials.

Our software has been implemented in Sage, we explain our choice in Section 1. The
full description of the implemented features with code examples can be found in Section
3. The development process is not finished at the time of submission of this paper and
what the program now needs most is to be tested by many users so that bugs can be
reported and suggestions be made on how to improve the features.

1. Choosing Sage

Sage is a mathematics software created in 2005. It is free and open source which is
the main reason why we have chosen it. It is developed by many researchers around
the world and one can join the very lively community who works specifically on combi-
natorics within the Sage-Combinat project. The Sage-Combinat community has been
created in 2001 and was previously known as Mupad-Combinat. It has moved to Sage
in 2008 keeping its main purpose: developing specific tools for algebraic combinatorics
and sharing the programs among researchers.

2 VIVIANE PONS

From the beginning, we wanted not only to develop in Sage but to be part of the
main project by adding our implementation to the software. The program is still in
test mode within the Sage-combinat distribution (see the installation process in Section
3.1).

Working in Sage also allowed us to use previous work and structures developed by the
community. We worked a lot with Weyl Groups which had already been implemented
in Sage. We also used the standard implementation of multi-base algebras as a base for
our own work.

And finally, we hope that being part of Sage will help our software to spread within
the community and thus become useful to the largest possible community.

2. Multi-base polynomials

2.1. Type A, B, C, D operators. At first, we need to define simple operations on
vectors of integers. Let v ∈ Zn, we have the following operators corresponding to the
root system of respective types A, B, C, D:

vsi = (. . . , vi+1, vi, . . .) for 1 ≤ i < n (1)

vsBi = vsCi = (. . . ,−vi, . . .) for 1 ≤ i ≤ n (2)

vsDi = (. . . ,−vi,−vi−1, . . .) for 2 ≤ i ≤ n (3)

The group generated by s1, . . . , sn−1 (respectively s1, . . . , sn−1, s
B
n , and s1, . . . ,

sn−1, s
D
n) is the Weyl group of type A (respectively B or C, D). The operators satisfy

the braid relations :

sisi+1si = si+1sisi+1 and sisj = sjsi, |i− j| 6= 1 (4)

sn−1s
B
n sn−1s

B
n = sBn sn−1s

B
n sn−1 and sis

B
n = sBn si, i ≤ n− 2 (5)

sn−2s
D
n sn−2 = sDn sn−2s

D
n and sis

D
n = sDn si, i 6= n− 2 (6)

The orbit of the vector [1, 2, . . . , n] consists of all permutations of 1, 2, . . . , n, i.e., Sn,
for type A, all signed permutations for type B, C, and all signed permutations with
an even number of minus signs for type D. The elements of the different groups can
be denoted by these objects. In the same way, elements of these groups can be seen
as a product of operators si, called a decomposition. When the product is of minimal
length, it is called a reduced decomposition.

2.2. Action on polynomials. We now have a natural action of the Weyl groups on
polynomials. Indeed, let x = (x1, x2, . . . , xn) be a set of variables and for v ∈ Zn, let xv

stand for the monomial

xv11 x
v2
2 . . . xvnn . (7)

A polynomial in the variables x1, . . . , xn can therefore be seen as a formal sum of vectors
and the action of the operator si becomes an action on polynomials:

xvsi = xvsi . (8)

MULTIVARIABLE POLYNOMIALS IN SAGE 3

From these simple operators si, we can now define the divided difference operators. For
type A, we have:

f∂i :=
f − f si
xi − xi+1

(9)

fπi :=
xif − xi+1f

si

xi − xi+1

= f.(xi∂i) (10)

fπ̂i :=
(f − f si)xi+1

xi − xi+1

= f.(πi − 1) (11)

fTi := f.(πi(t1 + t2)− sit2) (12)

for 1 ≤ i ≤ n− 1. ∂i is the Newton divided difference, πi and π̂i are the isobaric divided
differences and Ti is the generator of the Hecke algebra H2. As the si satisfy the braid
relations, all the above operators do.

If vi > vi+1, the Newton divided difference ∂i can be seen as an operator decre-
menting the vector degree and summing over all the intermediate monomials between
x(...,vi−1,vi+1,...) and x(...,vi+1,vi−1,...). For example,

x(4,1)∂1 = x(3,1) + x(2,2) + x(1,3). (13)

When vi < vi+1, one just needs to switch vi and vi+1, multiply by−1 and do the previous
operation. When vi = vi+1, the result is 0. This description can be used to give a more
general, type-free definition. We can see the vectors indexing the monomials as elements
of the ambient space of the root system of type An−1. The above ∂i operation can then
be seen as a formal sum of vectors, adding factors of the simple root (. . . ,−1, 1 . . .) to
the original vector. The sign of vi − vi+1 is given by the scalar product between the
vector and the ith simple coroot of the ambient space. This definition is equivalent to
the previous one. We can use it to define our divided differences in types B, C, and
D, using the root systems of respective types Bn, Cn, and Dn. Compared to type A,
we add the nth simple root and coroot whose definition depends on the type and create
the nth divided difference operator:

∂Bn =
1− sBn
x

1
2
n − x

− 1
2

n

(14)

∂Cn =
1− sCn
xn − x−1

n

(15)

∂Dn =
1− sDn

x−1
n−1 − xn

(16)

The same construction can be done with the isobaric divided differences π and π̂.

2.3. Linear bases. We can now use these operators to define linear bases of the ring of
multivariate polynomials. Let (x1, x2, . . . , xn) and (y1, y2, . . . , yn) be two sets of variables
and λ a partition of length n, i.e., λ1 ≥ λ2 ≥ . . . ≥ λn. We then define dominant

4 VIVIANE PONS

Schubert polynomials (respectively Grothendieck polynomials and Key polynomials) by

Yλ :=
n∏
i=1

λi∏
j=1

(xi − yj), (17)

Gλ :=
n∏
i=1

λi∏
j=1

(1− yjx−1
i), (18)

Kλ = K̂λ := xλ. (19)

We define Schubert polynomials to be all the non-zero images of the dominant Schubert
polynomials under products of ∂i and Grothendieck polynomials to be all the images of
the dominant Grothendieck polynomials under products of πi. Similarly, the two types
of Key polynomials are defined by taking all the images under products of πi or of π̂i
respectively. Since the operators satisfy relations, we cannot index the polynomials by
the choice of the starting point and the sequence of operators used. Rather, we use
weight vectors v ∈ Nn, the recursive definition being

Y...,vi+1,vi−1,... = Yv∂i (20)

G...,vi+1,vi−1,... = Gvπi (21)

Kvπi = Kvsi (22)

K̂vπ̂i = K̂vsi , (23)

the inal vectors v satisfying vi > vi+1.
As the operators satisfy braids relations, the order one chooses to apply the recursive

rule on a vector does not change the result. There are dominant polynomials in the
images of a dominant polynomial in the Schubert and Grothendieck case; therefore, one
has to check consistency, but this is easy. These families constitute triangular bases of
the polynomials in (x1, . . . , xn). And one can easily express an arbitrary polynomial
in these bases by inverting a triangular matrix. When working with a single set of
variables, one can specialize the yi’s to 0 (respectively to 1) and obtain simple Schubert
polynomials (respectively Grothendieck polynomials), so that dominant polynomials
become

Yλ = xλ, (24)

Gλ =
n∏
i=1

(1− x−1
i)λi . (25)

To work with positive exponents on the Grothendieck basis, one can also set xi = 1−x−1
i .

Both versions of the bases are available in our implementation.
Using the same method, we can also define non-symmetric Macdonald polynomials.

In this case, there will be only one generator polynomial, i.e., M0,0...,0 = 1, and we will
use both the Ti operator and a raising operator to increase the polynomial degree. The
recursive rule is due to Sahi and Knop [1] and one can find its description in Lascoux
[2].

One can also define type B, C, and D Key polynomials using the operators defined
from the Weyl group of the given types as explained in Section 2.2. The corresponding
families of polynomials will then be indexed by vectors in Zn instead of Nn and become

MULTIVARIABLE POLYNOMIALS IN SAGE 5

bases of the Laurent polynomials of (x1, . . . , xn), i.e., with both positive and negative
exponents.

3. Software description

3.1. Installation process. Our software has been developed as a part of the Sage
project. Nevertheless, as it is still in test mode, at the publication time of this paper,
it is not yet available on the main Sage distribution, but one can use it within the
Sage-Combinat distribution.

Step 1

If Sage is not already installed on a computer, please follow the instructions on the
Sage website [6] to get the installation process corresponding to your system.

To get the latest version of our program, make sure you have the last version of Sage
installed. You can upgrade your Sage version by running the following command inside
your sage directory:

./sage -upgrade

The examples below work with Sage 4.7 and later versions.

Step 2

Install Sage-Combinat [5] by running the following command inside the sage direc-
tory:

./sage -combinat install

If you encounter problems, you find more information by visiting the Sage-Combinat
website [5].

3.2. Define a polynomial. Sage programming is object-oriented. The object con-
taining the main software methods is called AbstractPolynomialRing. One first needs
to create this object:

sage: A = AbstractPolynomialRing(QQ)

sage: A

The abstract ring of multivariate polynomials on x over Rational

Field

Here, A represents the abstract algebra. To create an actual polynomial, we need a
concrete basis.

sage: m = A.monomial_basis(); m

The ring of multivariate polynomials on x over Rational Field on

the monomial basis

m is a concrete basis and we shall use it to create polynomials. Both of the syntaxes
presented below can be used.

sage: pol = m[1,1,2] + m[2,3]; pol

x[1, 1, 2] + x[2, 3, 0]

sage: pol = m([1 ,1,2]) + m([2 ,3]); pol

x[1, 1, 2] + x[2, 3, 0]

6 VIVIANE PONS

x[1, 1, 2] means x(1,1,2) = x11x
1
2x

2
3. One does not have to declare beforehand how many

variables are to be used, it will be computed from the size of the vectors. To know on
how many variables a polynomial is defined, one can look at its parent. It can also be
changed if needed.

sage: pol.parent ()

The ring of multivariate polynomials on x over Rational Field

with 3 variables on the monomial basis

sage: pol = pol.change_nb_variables (4)

sage: pol

x[1, 1, 2, 0] + x[2, 3, 0, 0]

sage: pol.parent ()

The ring of multivariate polynomials on x over Rational Field

with 4 variables on the monomial basis

Now we have a polynomial object to work with. A polynomial will always be seen
as a formal sum of vectors: it cannot be factorized. If two polynomials are multiplied,
the result will always be expanded as a sum.

sage: pol * pol

x[2, 2, 4, 0] + 2*x[3, 4, 2, 0] + x[4, 6, 0, 0]

3.3. Apply operators. We can now apply the divided differences operators defined in
Section 2.2.

sage: pol = m[1,1,2] + m[2,3]; pol

x[1, 1, 2] + x[2, 3, 0]

sage: pol.divided_difference (2)

-x[1, 1, 1] + x[2, 1, 1] + x[2, 2, 0] + x[2, 0, 2]

sage: pol.divided_difference_isobar (2)

x[2, 1, 2] + x[2, 2, 1] + x[2, 3, 0] + x[2, 0, 3]

By default, the operator type is A, but we can also apply B, C, and D operators.

sage: pol.divided_difference (2,"B")

x[1, -1, 2] + x[1, 0, 2] + x[2, 0, 0] + x[2, -3, 0] + x[2, -2,

0] + x[2, -1, 0] + x[2, 1, 0] + x[2, 2, 0]

sage: pol.divided_difference (2,"C")

x[1, 0, 2] + x[2, 0, 0] + x[2, -2, 0] + x[2, 2, 0]

sage: pol.divided_difference (2,"D")

x[0, 0, 0] + x[-2, -2, 0] + x[-1, -1, 0] + x[1, 1, 0] + x[1, 0,

2] + x[2, 2, 0] + x[0, -1, 2]

We have seen in Section 2.2 that type B, C, and D operators were defined from the
root systems of types Bn, Cn, and Dn, by the addition of the nth simple root and coroot.
For each type, only one new operator was created which was the nth divided difference.
But on the above example, applying the second divided difference on a polynomial in
three variables gives a different result for types B, C, and D than for type A. Even
though groups have been used to give a definition of our operators, we have extended

MULTIVARIABLE POLYNOMIALS IN SAGE 7

it to obtain a definition only depending on the polynomial. From the root systems of
type Bn, Cn, and Dn, we had

∂Bn =
1− sBn
x

1
2
n − x

− 1
2

n

(26)

∂Cn =
1− sCn
xn − x−1

n

(27)

∂Dn =
1− sDn

x−1
n−1 − xn

(28)

So we just set

∂Bi =
1− sBi
x

1
2
i − x

− 1
2

i

(29)

∂Ci =
1− sCi
xi − x−1

i

(30)

∂Di =
1− sDi
x−1
i−1 − xi

(31)

with 1 ≤ i ≤ n for types B and C, and 2 ≤ i ≤ n for type D. These definitions allow
us to study these operators for themselves and not relatively to their groups. As an
example, this allows us to study the relations between ∂Bi and ∂Bi+1. It does not make
sense from a group point of view but it remains an interesting question.

Of course, one may want to use the group based operators only and not the generalized
ones. This is possible by using a different basis. The basis we have been using so far is
called the Monomial basis and is not related to any group. One can use a basis which
is directly related to a root system called the Ambient space basis.

sage: ma = A.ambient_space_basis("A"); ma

The ring of multivariate polynomials on x over Rational Field on

the Ambient space basis of type A

sage: pol = ma[1,1,2] + ma[2,3]

sage: pol

x(1, 1, 2) + x(2, 3, 0)

sage: pol.parent ()

The ring of multivariate polynomials on x over Rational Field

with 3 variables on the Ambient space basis of type A

sage: pol.divided_difference (2)

-x(1, 1, 1) + x(2, 1, 1) + x(2, 2, 0) + x(2, 0, 2)

Note that Ambient Space basis is very close to the Monomial basis but the polynomial
contains its type within its parent. It is related to a root system and only operators
defined by this root system can be applied.

sage: mb = A.ambient_space_basis("B"); mb

The ring of multivariate polynomials on x over Rational Field on

the Ambient space basis of type B

sage: pol = mb[1,1,2] + mb[2,3]

8 VIVIANE PONS

sage: pol.divided_difference (2)

-x(1, 1, 1) + x(2, 1, 1) + x(2, 2, 0) + x(2, 0, 2)

sage: pol.divided_difference (3)

x(1, 1, 0) + x(1, 1, -2) + x(1, 1, -1) + x(1, 1, 1)

Conversions between the Monomial basis and the Ambient space bases can be carried
out easily:

sage: pol = m[1,1,2] + m[2,3]; pol

x[1, 1, 2] + x[2, 3, 0]

sage: pol.parent ()

The ring of multivariate polynomials on x over Rational Field

with 3 variables on the monomial basis

sage: pol = ma(pol); pol

x(1, 1, 2) + x(2, 3, 0)

sage: pol.parent ()

The ring of multivariate polynomials on x over Rational Field

with 3 variables on the Ambient space basis of type A

sage: pol = mb(pol); pol

x(1, 1, 2) + x(2, 3, 0)

sage: pol.parent ()

The ring of multivariate polynomials on x over Rational Field

with 3 variables on the Ambient space basis of type B

Even though the objects seem similar, one must always be careful with which basis one
is working as it will impact the result of the operations as soon as operators are used.

3.4. Working with multi-bases. We have already seen that our polynomials could
be expressed on a different basis depending on which operations we wanted to make.
But the Monomial basis as well as the Ambient space bases are just different versions
of polynomials seen as sums of monomials. It is also possible to work with the linear
bases we have defined in Section 2.3. Here is an example of the Schubert basis:

sage: A = AbstractPolynomialRing(QQ)

sage: Schub = A.schubert_basis_on_vectors ()

sage: Schub

The ring of multivariate polynomials on x over Rational Field on

the Schubert basis of type A (indexed by vectors)

It can be used to create a Schubert polynomial and convert it to the monomial basis.

sage: pol = Schub [1,2,2] + Schub [3,4]; pol

Y(1, 2, 2) + Y(3, 4, 0)

sage: pol.expand ()

x(1, 2, 2) + x(2, 1, 2) + x(2, 2, 1) + x(3, 4, 0) + x(4, 3, 0)

sage: m(pol)

x[1, 2, 2] + x[2, 1, 2] + x[2, 2, 1] + x[3, 4, 0] + x[4, 3, 0]

sage: Schub(m[1,2,4] + m[2,3])

Y(1, 2, 4) - Y(1, 3, 3) - Y(1, 4, 2) - Y(2, 1, 4) + Y(2, 3, 0) +

Y(2, 3, 2) + Y(2, 4, 1) + Y(3, 1, 3) - Y(3, 2, 0) - Y(3, 2,

2) - Y(4, 2, 1) + Y(5, 1, 1)

MULTIVARIABLE POLYNOMIALS IN SAGE 9

One can multiply Schubert polynomials together and the result will be given in the
same basis. However the program is converting the two polynomials into the monomial
basis to multiply them and then convert the result back into the Schubert basis.

sage: pol1 = Schub [1,2,2] + Schub [3,4]

sage: pol2 = Schub [3,1,2]

sage: pol1 * pol2

Y(4, 3, 4) + Y(5, 2, 4) + Y(6, 5, 2) + Y(6, 6, 1) + Y(7, 4, 2) +

Y(7, 5, 1)

We have other bases implemented. Below is an example of the Key polynomials. One
can convert directly from Schubert to Key polynomials without using the monomial
basis manually (it is automatically done by the program):

sage: K = A.demazure_basis_on_vectors ();K

The ring of multivariate polynomials on x over Rational Field on

the Demazure basis of type A (indexed by vectors)

sage: pol = K[2,1,4] + K[3,5,1];pol

K(2, 1, 4) + K(3, 5, 1)

sage: pol.expand ()

x(2, 1, 4) + x(2, 2, 3) + x(2, 3, 2) + x(2, 4, 1) + x(3, 1, 3) +

x(3, 2, 2) + x(3, 3, 1) + x(3, 5, 1) + x(4, 1, 2) + x(4, 2,

1) + x(4, 4, 1) + x(5, 3, 1)

sage: Schub(pol)

Y(2, 1, 4) + Y(3, 5, 1) - Y(5, 1, 1)

sage: K(m[1,2,4] + m[2,3])

K(1, 2, 4) - K(1, 3, 3) - K(1, 4, 2) - K(2, 1, 4) + K(2, 3, 0) +

K(2, 3, 2) + K(2, 4, 1) + K(3, 1, 3) - K(3, 2, 0) - K(3, 2,

2) + K(4, 1, 2) - K(4, 2, 1)

sage: Khat = A.demazure_hat_basis_on_vectors ()

sage: pol = Khat [2,1,4] + Khat [3,5,1];pol

^K(2, 1, 4) + ^K(3, 5, 1)

sage: pol.expand ()

x(2, 1, 4) + x(2, 2, 3) + x(2, 3, 2) + x(3, 1, 3) + x(3, 2, 2) +

x(3, 5, 1) + x(4, 4, 1)

sage: Schub(pol)

Y(2, 1, 4) - Y(2, 4, 1) + Y(3, 5, 1) - Y(4, 1, 2) + Y(4, 2, 1) -

Y(5, 1, 1) - Y(5, 3, 1)

sage: Khat(m[1,2,4] + m[2,3])

^K(1, 2, 4) - ^K(1, 3, 3) + ^K(2, 3, 0) + ^K(2, 3, 2)

The key polynomials are also defined in type B, C, and D.

sage: K = A.demazure_basis_on_vectors ("B");K

The ring of multivariate polynomials on x over Rational Field on

the Demazure basis of type B (indexed by vectors)

sage: pol = K[1,2,-2]

sage: pol

K(1, 2, -2)

sage: pol.expand ()

10 VIVIANE PONS

x(1, 2, 0) + x(1, 2, -2) + x(1, 2, -1) + x(1, 2, 1) + x(1, 2, 2)

+ x(2, 1, 0) + x(2, 1, -2) + x(2, 1, -1) + x(2, 1, 1) + x(2,

1, 2) + x(2, 2, 0) + x(2, 2, -1) + x(2, 2, 1)

sage: pol = m[-2,1,1] + m[1,-1,1]; pol

x[-2, 1, 1] + x[1, -1, 1]

sage: K(pol)

K(0, 0, 0) + K(-2, 1, 1) - K(-1, 1, 1) - K(-1, 1, 2) - K(-1, 0,

1) - 2*K(1, 0, 0) - K(1, -2, 1) + K(1, -1, 0) + 2*K(1, -1, 1)

+ K(1, -1, 2) + K(1, 1, 0) - K(1, 1, -1) - 2*K(1, 0, 1) + K

(0, 1, 1) + K(0, 0, 1)

Back in type A, we also have the simple Grothendieck basis. We have two versions
of it related by a change of variable explained in Section 2.3 to avoid using negative
exponents.

sage: Grothn = A.grothendieck_negative_basis_on_vectors ();

Grothn

The ring of multivariate polynomials on x over Rational Field on

the Grothendieck basis of type A with negative exponents (

indexed by vectors)

sage: pol = Grothn [1,2] + Grothn [2,2]; pol

G(1, 2) + G(2, 2)

sage: Grothp = A.grothendieck_positive_basis_on_vectors ();

Grothp

The ring of multivariate polynomials on x over Rational Field on

the Grothendieck basis of type A, with positive exponents (

indexed by vectors)

sage: pol.expand ()

2*x(0, 0) + x(-2, 0) - x(-2, -1) - 3*x(-1, 0) - x(-1, -2) + 4*x

(-1, -1) + x(0, -2) - 3*x(0, -1)

sage: pol = Grothp [1,2] + Grothp [2,2]; pol

G(1, 2) + G(2, 2)

sage: pol.expand ()

x(1, 2) + x(2, 1)

sage: pol.expand ().subs_var ([(i,1-A.var(i)^(-1)) for i in xrange

(1,3)])

2*x(0, 0) + x(-2, 0) - x(-2, -1) - 3*x(-1, 0) - x(-1, -2) + 4*x

(-1, -1) + x(0, -2) - 3*x(0, -1)

The last basis we have implemented are the non-symmetric Macdonald polynomials.
In order to use it, one has to define a polynomial ring on a bigger field than Q to use
variables in the coefficients.

sage: var(’t1 t2 q’)

(t1, t2, q)

sage: K.<t1,t2,q> = QQ[]

sage: K = K.fraction_field()

sage: A = AbstractPolynomialRing(K);A

MULTIVARIABLE POLYNOMIALS IN SAGE 11

The abstract ring of multivariate polynomials on x over Fraction

Field of Multivariate Polynomial Ring in t1, t2, q over

Rational Field

sage: Mac = A.macdonald_basis_on_vectors ()

sage: pol = Mac [1,2]; pol

M(1, 2)

sage: pol.expand ()

t2^3*x(0, 0) + t2^2/q*x(1, 0) + ((t2*q+t2)/q^2)*x(1, 1) + 1/q^2*

x(1, 2) + ((t2^2*q+t2^2)/q)*x(0, 1) + t2/q*x(0, 2)

sage: m = A.monomial_basis()

sage: Mac(m[1,1])

(-t1*t2)*M(0, 0) + M(1, 0) + q*M(1, 1) + ((t1*t2*q^2+t2^2*q-t1*t

2-t2^2)/(-t1*q-t2))*M(0, 1)

3.5. Define a new basis. All our bases are defined with divided differences acting
recursively on sums of monomials. If one needs to work with a new basis where objects
are indexed by vectors, the only thing to be implemented is the rule converting one
vector to a sum of monomials. The inverse conversion is automatically done if the basis
is triangular. One can define one’s own conversion function and so create a new basis.
Below is an example to recreate the Schubert polynomials.

sage: def schubert_on_basis(v, basis , call_back):

... for i in xrange(len(v) -1):

... if(v[i]<v[i+1]):

... v[i], v[i+1] = v[i+1] + 1, v[i]

... return call_back(v).divided_difference(i+1)

... return basis(v)

Above is a definition of a recursive function that transforms a Schubert element into a
sum of monomials. The principle is easy: we take the Schubert vector as an argument
(v) and test if we find an index i such that vi < vi+1. If we do, we compute the Schubert
polynomial where vi and vi+1 are switched and apply a divided difference operator. If v
is antidominant, then the result is xv that we get with basis(v). The three parameters of
this function are the vector v corresponding to our Schubert element, a basis parameter
which is the monomial basis we convert to, and call back that we use to call back our
function (this ensures getting a cached method, i.e., things are not calculated twice).
To create a new basis, one needs to write a function that takes these three arguments
and returns the polynomial associated with the vector v. It can directly be written into
the sage command line as above or in the notebook, or in a file attached to your session.
The function will not directly be called by the user, it will be passed to a method and
the program will send the right values to basis and call back. If more arguments are
needed, one just adds them this way:

sage: def qt_schubert_on_basis(v, basis , call_back , q=1, t=1):

... for i in xrange(len(v) -1):

... if(v[i]<v[i+1]):

... v[i], v[i+1] = v[i+1] + 1, v[i]

12 VIVIANE PONS

... return q*1/t*call_back(v).divided_difference(i

+1)

... return basis(v)

Now that we have the function, we will pass it to our algebra to create a new basis:

sage: A = AbstractPolynomialRing(QQ)

sage: myBasis = A.linear_basis_on_vectors ("A","MySchub","Y",

schubert_on_basis)

sage: pol = myBasis [2,1,3];pol

Y(2, 1, 3)

sage: pol.expand ()

x(2, 1, 3) + x(2, 2, 2) + x(2, 3, 1) + x(3, 1, 2) + x(3, 2, 1) +

x(4, 1, 1)

sage: myBasis(A.an_element ())

Y(1, 2, 3) - Y(1, 3, 2) - Y(2, 1, 3) + Y(2, 3, 1) + Y(3, 1, 2) -

Y(3, 2, 1) + Y(4, 1, 1)

This is a copy of the Schubert basis, and it works the same way as the previous bases
we have seen in Section 3.4. Below is an example with a parametrized function:

sage: var(’q t’)

(q, t)

sage: K.<q,t> = QQ[]

sage: K = K.fraction_field()

sage: A = AbstractPolynomialRing(K)

sage: qtSchubertBasis = A.linear_basis_on_vectors ("A","qtSchub

","YQ",qt_schubert_on_basis ,(("q",q) ,("t",t)))

sage: pol = qtSchubertBasis [1,2,3]; pol

YQ(1, 2, 3)

sage: pol.expand ()

q^3/t^3*x(1, 2, 3) + q^3/t^3*x(1, 3, 2) + q^3/t^3*x(2, 1, 3) +

2*q^3/t^3*x(2, 2, 2) + q^3/t^3*x(2, 3, 1) + q^3/t^3*x(3, 1,

2) + q^3/t^3*x(3, 2, 1)

The extra parameters are sent by a tuple of couples (parameter name, parameter value)
to the main algebra that will create the new basis.

3.6. Double set of variables. Our program also contains another algebra to work
with a double set of variables.

sage: D = DoubleAbstractPolynomialRing(QQ); D

The abstract ring of multivariate polynomials on x over The

abstract ring of multivariate polynomials on y over Rational

Field

One can see that the double algebra is the algebra of multivariate polynomials in the x
variables with the multivariate polynomials in the y variables as coefficients.

sage: D.an_element ()

y[0]*x[0, 0, 0] + 2*y[0]*x[1, 0, 0] + y[0]*x[1, 2, 3] + 3*y[0]*x

[2, 0, 0]

MULTIVARIABLE POLYNOMIALS IN SAGE 13

One can specify which bases to use in the x variables and which bases to use in the y
variables.

sage: Dx = D

sage: Dy = D.base_ring()

sage: Schubx = Dx.schubert_basis_on_vectors ()

sage: Schuby = Dy.schubert_basis_on_vectors ()

sage: pol = Schuby [2,1,3] * Schubx [1,1,2]

sage: pol

(Yy(2,1,3))*Yx(1, 1, 2)

The expand function or all direct conversions are done in the x variables.

sage: pol.expand ()

(Yy(2,1,3))*x(1, 1, 2) + (Yy(2,1,3))*x(1, 2, 1) + (Yy(2,1,3))*x

(2, 1, 1)

sage: mx = Dx.monomial_basis()

sage: mx(pol)

(Yy(2,1,3))*x[1, 1, 2] + (Yy(2,1,3))*x[1, 2, 1] + (Yy(2,1,3))*x

[2, 1, 1]

But, of course, one can also easily change the basis for the y variables.

sage: my = Dy.monomial_basis()

sage: pol.change_coeffs_bases(my)

(y[2,1,3]+y[2,2,2]+y[2,3,1]+y[3,1,2]+y[3,2,1]+y[4,1,1])*Yx(1, 1,

2)

sage: pol = mx(pol); pol

(Yy(2,1,3))*x[1, 1, 2] + (Yy(2,1,3))*x[1, 2, 1] + (Yy(2,1,3))*x

[2, 1, 1]

sage: pol.change_coeffs_bases(my)

(y[2,1,3]+y[2,2,2]+y[2,3,1]+y[3,1,2]+y[3,2,1]+y[4,1,1])*x[1, 1,

2] + (y[2,1,3]+y[2,2,2]+y[2,3,1]+y[3,1,2]+y[3,2,1]+y[4,1,1])*

x[1, 2, 1] + (y[2,1,3]+y[2,2,2]+y[2,3,1]+y[3,1,2]+y[3,2,1]+y

[4,1,1])*x[2, 1, 1]

One can also change the role of variables between the main ones and the coefficients.

sage: pol

(Yy(2,1,3))*x[1, 1, 2] + (Yy(2,1,3))*x[1, 2, 1] + (Yy(2,1,3))*x

[2, 1, 1]

sage: pol.swap_coeffs_elements ()

(x[1,1,2]+x[1,2,1]+x[2,1,1])*Yy(2, 1, 3)

So we have seen that we can use our previous bases on a double set of variables. But
we also have specific bases that only work with a double set of variables. Let us see the
double Schubert polynomials and double Grothendieck polynomials, the way they were
defined in Section 2.3.

sage: DoubleSchub = D.double_schubert_basis_on_vectors ();

DoubleSchub

14 VIVIANE PONS

The ring of multivariate polynomials on x over The abstract ring

of multivariate polynomials on y over Rational Field on the

Double Schubert basis of type A (indexed by vectors)

sage: pol = DoubleSchub [1,2]; pol

y[0]*YY(1, 2)

sage: pol.expand ()

(-y(2,1,0)-y(2,0,1))*x(0, 0) + (y(1,1,0)+y(1,0,1)+y(2,0,0))*x(1,

0) + (-2*y(1,0,0)-y(0,1,0)-y(0,0,1))*x(1, 1) + y[0]*x(1, 2)

+ (-y[1])*x(2, 0) + y[0]*x(2, 1) + (y(1,1,0)+y(1,0,1)+y

(2,0,0))*x(0, 1) + (-y[1])*x(0, 2)

sage: DGroth = D.double_grothendieck_basis_on_vectors (); DGroth

The ring of multivariate polynomials on x over The abstract ring

of multivariate polynomials on y over Rational Field on the

Double Grothendieck basis of type A (indexed by vectors)

sage: pol =DGroth [1,2]; pol

y[0]*GG(1, 2)

sage: pol.expand ()

y[0]*x(0, 0) + (-y(2,1,1))*x(-2, -2) + (y(1,1,1))*x(-2, -1) + (-

y[1])*x(-1, 0) + (y(1,1,1))*x(-1, -2) + (y(2,0,0)-y(0,1,1))*x

(-1, -1) + (-y[1])*x(0, -1)

4. Some advanced applications

4.1. Projective degrees of Schubert varieties. In his Ph.D. thesis, Veigneau [7]
presents an application of the software ACE by computing the projective degree of
Schubert varieties. We can implement this same function with our patch on Sage-
Combinat. The projective degree d(X) of a sub-variety X ⊂ PM of codimension k is
the number of intersections between X and a generic hyperplane of dimension k. For
σ a permutation of size n and Xσ a Schubert sub-variety of the flag variety F(Cn)

embedded in PM by the Plücker embedding (with M = 2N − 1 where N = n(n−1)
2

is
the dimension of F(Cn)), d(Xσ) is a coefficient in a product in the Schubert basis.
More precisely, the first Chern class of the tautologic invertible vectorial fiber of PM is
h = (n − 1)x1 + (n − 2)x2 + . . . + xn−1 and d(Xσ) is the coefficient of Yn−1,n−2,...,0 in
hN−`(σ)Yv, where Yv is the Schubert polynomial indexed by v, the Lehmer code of σ [3].
The following function computes these degrees:

def proj_deg(perm):

n = len(perm)

d = n*(n-1)/2 - perm.length ()

we create the polynomial ring and the bases

A = AbstractPolynomialRing(QQ)

Schub = A.schubert_basis_on_vectors ()

we compute the product

h = sum([(n-i) * A.var(i) for i in xrange(1,n)])

res = Schub(h**d * Schub(perm.to_lehmer_code()))

MULTIVARIABLE POLYNOMIALS IN SAGE 15

we look for the right coefficient

for (key , coeff) in res:

if ([key[i] for i in xrange(n)] == [n-i for i in xrange

(1,n+1)]):

return coeff

return 0

One can also compute the product and directly read the result:

sage: A = AbstractPolynomialRing(QQ)

sage: m = A.monomial_basis()

sage: Schub = A.schubert_basis_on_vectors ()

sage: Schub((3*m[1] + 2*m[0,1] + m[0,0,1])^4 * Schub [1,0,1,0])

8*Y(1, 1, 4, 0) + 23*Y(1, 2, 3, 0) + 24*Y(1, 3, 2, 0) + 39*Y(1,

4, 1, 0) + 15*Y(1, 5, 0, 0) + Y(1, 0, 5, 0) + 48*Y(2, 1, 3,

0) + 101*Y(2, 2, 2, 0) + 117*Y(2, 3, 1, 0) + 84*Y(2, 4, 0, 0)

+ 12*Y(2, 0, 4, 0) + 173*Y(3, 1, 2, 0) + 78*Y(3, 2, 1, 0) +

147*Y(3, 3, 0, 0) + 53*Y(3, 0, 3, 0) + 283*Y(4, 1, 1, 0) +

171*Y(4, 2, 0, 0) + 96*Y(4, 0, 2, 0) + 93*Y(5, 1, 0, 0) +

176*Y(5, 0, 1, 0) + 80*Y(6, 0, 0, 0)

sage: proj_deg(Permutation ([2,1,4,3]))

78

We can use our function to compute the degree for all permutations of size 4:

sage: degrees = {}

sage: for perm in Permutations (4):

....: degrees[perm] = proj_deg(perm)

....:

sage: degrees

{[2, 1, 4, 3]: 78, [1, 3, 4, 2]: 48, [3, 2, 4, 1]: 3, [3, 1, 2,

4]: 48, [4, 2, 1, 3]: 3, [1, 4, 2, 3]: 46, [3, 2, 1, 4]: 16,

[4, 1, 3, 2]: 3, [2, 3, 4, 1]: 6, [3, 4, 2, 1]: 1, [1, 2, 3,

4]: 720, [1, 3, 2, 4]: 280, [2, 4, 3, 1]: 3, [2, 3, 1, 4]:

46, [3, 4, 1, 2]: 2, [4, 2, 3, 1]: 1, [1, 4, 3, 2]: 16, [4,

1, 2, 3]: 6, [2, 4, 1, 3]: 12, [4, 3, 1, 2]: 1, [4, 3, 2, 1]:

1, [3, 1, 4, 2]: 14, [2, 1, 3, 4]: 220, [1, 2, 4, 3]: 220}

4.2. Determinants of Schur functions. Grassmannian Schubert polynomials are
the Schubert polynomials indexed by vectors v such that v1 ≤ v2 ≤ . . . ≤ vn. They
are symmetric functions in x1, . . . , xn. In a single set of variables (i.e., specializing y to
0), Grassmannian Schubert polynomials are equal to Schur functions. More precisely,
the transition matrix between double Grassmannian Schubert polynomials and Schur
functions is unitriangular.

sage: A = AbstractPolynomialRing(QQ)

sage: Schub = A.schubert_basis_on_vectors ()

sage: pol = Schub [1,2]

16 VIVIANE PONS

sage: pol.expand ()

x(1, 2) + x(2, 1)

sage:

sage: D = DoubleAbstractPolynomialRing(QQ)

sage: DSChub = D.double_schubert_basis_on_vectors ()

sage: pol = DSchub [1,2]

sage: pol

y[0]*YY(1, 2)

sage: Schub = D.schubert_basis_on_vectors ()

sage: Schub(pol)

y[0]*Yx(1, 2) + (-y(2,1,0)-y(2,0,1))*Yx(0, 0) + (-y(1,0,0)-y

(0,1,0)-y(0,0,1))*Yx(1, 1) + (y(1,1,0)+y(1,0,1)+y(2,0,0))*Yx

(0, 1) + (-y[1])*Yx(0, 2)

This allows us to compute determinants of Schur functions by replacing these by Schu-
bert polynomials and specializing arbitrarily the y variables. For example, we can
compute

|sµ(A)|µ⊆11, (32)

where A ∈ [{x1, x2}, {x1, x3}, {x2, x3}], and prove that it is equal to
∏

j>i(xj − xi).
First, we replace sµ by

|Yu(A, y)|u=00,01,11 (33)

and specialize y1 = x1, y2 = x2, in which case the determinant becomes∣∣∣∣∣∣
1 1 1
0 x3 − x2 x3 − x1
0 0 (x3 − x1)(x2 − x1)

∣∣∣∣∣∣ (34)

and gives the result. The following function computes the above Matrix:

def compute_matrix(variables , alphabet , indices):

n = len(indices)

#Initial definitions

K = PolynomialRing(QQ ,[var(v) for v in variables])

K = K.fraction_field ()

D = DoubleAbstractPolynomialRing(K)

DSchub = D.double_schubert_basis_on_vectors ()

result_matrix = []

for u in indices:

line = []

#the expansion on the double schubert will allow us to

compute the result

pu = DSchub(u).expand ()

MULTIVARIABLE POLYNOMIALS IN SAGE 17

for a in alphabet:

#we apply our polynomial on alphabets and

specialize the y (this should be improved on

further versions)

pol = pu.subs_var([(i,K(a[i])) for i in xrange(len(

a))])

pol = pol.swap_coeffs_elements ()

pol = pol.subs_var([(i,K(variables[i])) for i in

xrange(pol.nb_variables ())])

if(pol ==0):

coeff = 0

else:

coeff = list(list(pol)[0][1]) [0][1]

line.append(coeff)

result_matrix.append(line)

return Matrix(K,result_matrix)

In Sage:

sage: variables = ("x1", "x2", "x3")

sage: alphabet = [["x1","x2"] ,["x1","x3"] ,["x2","x3"]]

sage: indices = [[0 ,0] ,[0 ,1] ,[1 ,1]]

sage:

sage: res = compute_matrix(variables , alphabet , indices)

sage: res

[1 1 1]

[0 -x2 + x3 -x1 + x3]

[0 0 x1^2 - x1*x2 - x1*x3 + x2*x3]

sage: det = res.determinant ()

sage: det

-x1^2*x2 + x1*x2^2 + x1^2*x3 - x2^2*x3 - x1*x3^2 + x2*x3^2

sage: factor(det)

(x2 - x3) * (-x1 + x2) * (x1 - x3)

References

[1] F. Knop and S. Sahi. Difference equations and symmetric polynomials defined by their zeros.
International Mathematics Research Notices, 1996(10):473–486, 1996.

[2] A. Lascoux. Schubert and Macdonald polynomials, a parallel. Electronically available at http:

//igm.univ-mlv.fr/%7Eal/ARTICLES/Dummies.pdf.
[3] A. Lascoux. Classes de Chern des variétés de drapeaux. C. R. Acad. Sci. Paris Sér. I Math.,

295(5):393–398, 1982.
[4] I. G. Macdonald. Affine Hecke algebras and orthogonal polynomials. Astérisque No. 237, Exp.

No. 797, 4, 189–207, 1996. Séminaire Bourbaki, Vol. 1994/95.
[5] The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer explo-

ration in algebraic combinatorics, 2008. http://combinat.sagemath.org.
[6] W. A. Stein et al. Sage Mathematics Software (Version 4.7). The Sage Development Team, 2011.

http://www.sagemath.org.

http://igm.univ-mlv.fr/%7Eal/ARTICLES/Dummies.pdf
http://igm.univ-mlv.fr/%7Eal/ARTICLES/Dummies.pdf
http://combinat.sagemath.org
http://www.sagemath.org

18 VIVIANE PONS

[7] S. Veigneau. Calcul symbolique et calcul distribué en combinatoire algébrique. PhD thesis, Université
de Marne-la-Vallée, 1996.

Institut Gaspard Monge, Université Paris-Est, Marne-la-Vallée, France

	Introduction
	1. Choosing Sage
	2. Multi-base polynomials
	2.1. Type A, B, C, D operators
	2.2. Action on polynomials
	2.3. Linear bases

	3. Software description
	3.1. Installation process
	3.2. Define a polynomial
	3.3. Apply operators
	3.4. Working with multi-bases
	3.5. Define a new basis
	3.6. Double set of variables

	4. Some advanced applications
	4.1. Projective degrees of Schubert varieties
	4.2. Determinants of Schur functions

	References

