Generalized Hibi rings and Hibi ideals

Jürgen Herzog
Universität Duisburg-Essen

Ellwangen, March 2011

Outline

Hibi rings

Hibi ideals

Generalized Hibi rings and Hibi ideals

Outline

Hibi rings

Hibi ideals

Generalized Hibi rings and Hibi ideals

Outline

Hibi rings

Hibi ideals

Generalized Hibi rings and Hibi ideals

Hibi rings

In 1985 Hibi introduced a class of algebras which nowadays are called Hibi rings. They are semigroup rings attached to finite posets, and may be viewed as natural generalizations of polynomial rings.

Hibi rings

In 1985 Hibi introduced a class of algebras which nowadays are called Hibi rings. They are semigroup rings attached to finite posets, and may be viewed as natural generalizations of polynomial rings.

Indeed, a polynomial ring in n variables over a field K is just the Hibi ring of the poset $[n-1]=\{1,2, \ldots, n-1\}$.

Hibi rings

In 1985 Hibi introduced a class of algebras which nowadays are called Hibi rings. They are semigroup rings attached to finite posets, and may be viewed as natural generalizations of polynomial rings.

Indeed, a polynomial ring in n variables over a field K is just the Hibi ring of the poset $[n-1]=\{1,2, \ldots, n-1\}$.

Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ be a finite poset. A poset ideal I of P is a subset of P which satisfies the following condition: for every $p \in I$, and $q \in P$ with $q \leq p$, it follows $q \in I$.

Hibi rings

In 1985 Hibi introduced a class of algebras which nowadays are called Hibi rings. They are semigroup rings attached to finite posets, and may be viewed as natural generalizations of polynomial rings.

Indeed, a polynomial ring in n variables over a field K is just the Hibi ring of the poset $[n-1]=\{1,2, \ldots, n-1\}$.

Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ be a finite poset. A poset ideal I of P is a subset of P which satisfies the following condition: for every $p \in I$, and $q \in P$ with $q \leq p$, it follows $q \in I$.
Let $\mathcal{I}(P)$ be the set of the poset ideals of P. Then $\mathcal{I}(P)$ is a sublattice of the power set of P, and hence it is a distributive lattice.

By Birkhoff's theorem any finite distributive lattice arises in this way.

By Birkhoff's theorem any finite distributive lattice arises in this way.

Let K be a field. Then the Hibi ring over K attached to P is the toric ring $K[\mathcal{I}(P)] \subset K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ generated by the set of monomials

$$
\left\{u_{l}: l \in \mathcal{I}(P)\right\}
$$

where $u_{l}=\prod_{p_{i} \in I} x_{i} \prod_{p_{i} \notin I} y_{i}$.

By Birkhoff's theorem any finite distributive lattice arises in this way.

Let K be a field. Then the Hibi ring over K attached to P is the toric ring $K[\mathcal{I}(P)] \subset K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ generated by the set of monomials

$$
\left\{u_{l}: l \in \mathcal{I}(P)\right\}
$$

where $u_{l}=\prod_{p_{i} \in I} x_{i} \prod_{p_{i} \notin I} y_{i}$.
Let $T=K\left[\left\{t_{l}: t_{l} \in \mathcal{I}(P)\right\}\right]$ be the polynomial ring in the variables $t_{\text {/ }}$ over K, and $\varphi T \rightarrow K[\mathcal{I}(P)]$ the K-algebra homomorphism with $t_{l} \mapsto u_{l}$.

By Birkhoff's theorem any finite distributive lattice arises in this way.

Let K be a field. Then the Hibi ring over K attached to P is the toric ring $K[\mathcal{I}(P)] \subset K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ generated by the set of monomials

$$
\left\{u_{I}: I \in \mathcal{I}(P)\right\}
$$

where $u_{l}=\prod_{p_{i} \in I} x_{i} \prod_{p_{i} \notin \mid} y_{i}$.
Let $T=K\left[\left\{t_{l}: t_{l} \in \mathcal{I}(P)\right\}\right]$ be the polynomial ring in the variables $t_{\boldsymbol{l}}$ over K, and $\varphi T \rightarrow K[\mathcal{I}(P)]$ the K-algebra homomorphism with $t_{l} \mapsto u_{l}$.
One fundamental result concerning Hibi rings is that the toric ideal $L_{p}=\operatorname{Ker} \varphi$ has a reduced Gröbner basis consisting of the so-called Hibi relations:

$$
t_{I} t_{J}-t_{I \cap J} t_{U \cup J} \text { with } I \nsubseteq J \text { and } J \nsubseteq I .
$$

Hibi showed that any Hibi ring is a normal Cohen-Macaulay domain of dimension $1+|P|$, and that it is Gorenstein if and only if the attached poset P is graded, that is, all maximal chains of P have the same cardinality.

Hibi showed that any Hibi ring is a normal Cohen-Macaulay domain of dimension $1+|P|$, and that it is Gorenstein if and only if the attached poset P is graded, that is, all maximal chains of P have the same cardinality.

More generally, for any finite lattice \mathcal{L}, not necessarily distributive, one may consider the K algebra $K[\mathcal{L}]$ with generators $y_{\alpha}, \alpha \in \mathcal{L}$, and relations $y_{\alpha} y_{\beta}=y_{\alpha \wedge \beta} y_{\alpha \vee \beta}$ where \wedge and \vee denote meet and join in \mathcal{L}. Hibi showed that $K[\mathcal{L}]$ is a domain if and only if \mathcal{L} is distributive, in other words, if \mathcal{L} is an ideal lattice of a poset.

Let K be a field and $X=\left(x_{i j}\right)_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}$ a matrix of indeterminates. We denote by $K[X]$ the polynomial ring over K with the indeterminates $x_{i j}$, and by A the K-subalgebra of $K[X]$ generated by all maximal minors of X.

Let K be a field and $X=\left(X_{i j}\right)_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}$ a matrix of indeterminates. We denote by $K[X]$ the polynomial ring over K with the indeterminates $x_{i j}$, and by A the K-subalgebra of $K[X]$ generated by all maximal minors of X.

The K-algebra $A \subset K[X]$ is the coordinate ring of the Grassmannian of the m-dimensional vector K-subspaces of K^{n}.

Let K be a field and $X=\left(X_{i j}\right)_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}$ a matrix of indeterminates. We denote by $K[X]$ the polynomial ring over K with the indeterminates $x_{i j}$, and by A the K-subalgebra of $K[X]$ generated by all maximal minors of X.

The K-algebra $A \subset K[X]$ is the coordinate ring of the Grassmannian of the m-dimensional vector K-subspaces of K^{n}.

Let $<$ be the lexicographic order on $K[X]$ induced by
$x_{11}>x_{12}>\cdots>x_{1 n}>x_{21}>x_{22}>\cdots>x_{m 1}>x_{m 2}>\cdots>x_{m n}$.
We denote by $\delta=\left[a_{1}, a_{2}, \ldots, a_{m}\right]$ the maximal minor of X with columns $a_{1}<a_{2}<\cdots<a_{m}$. Then

$$
\operatorname{in}_{<}(\delta)=x_{1, a_{1}} x_{2, a_{2}} \cdots x_{m, a_{m}}
$$

is the 'diagonal' of δ.

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring, $<$ a monomial order on S and $A \subset S$ a K-subalgebra.

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring, $<$ a monomial order on S and $A \subset S$ a K-subalgebra.

Then the K-algebra $\mathrm{in}_{<}(A)$ generated by all monomials $\mathrm{in}_{<}(f)$ with $f \in A$ is called the initial algebra of A with respect to $<$.

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring, $<$ a monomial order on S and $A \subset S$ a K-subalgebra.

Then the K-algebra in ${ }_{<}(A)$ generated by all monomials $\mathrm{in}_{<}(f)$ with $f \in A$ is called the initial algebra of A with respect to $<$.
In general $\mathrm{in}_{<}(A)$ is not finitely generated. A subset $\mathcal{S} \subset A$ is called a Sagbi bases of A with respect to $<$, if the elements $f \in \mathcal{S}$ generate A over K. This concept has been introduced by Robbiano and Sweedler and independently by Kapur and Madlener.

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring, $<$ a monomial order on S and $A \subset S$ a K-subalgebra.

Then the K-algebra in ${ }_{<}(A)$ generated by all monomials $\mathrm{in}_{<}(f)$ with $f \in A$ is called the initial algebra of A with respect to $<$.

In general $\mathrm{in}_{<}(A)$ is not finitely generated. A subset $\mathcal{S} \subset A$ is called a Sagbi bases of A with respect to $<$, if the elements $f \in \mathcal{S}$ generate A over K. This concept has been introduced by Robbiano and Sweedler and independently by Kapur and Madlener.

Theorem The maximal minors of X form a Sagbi bases of the Grassmannian algebra A.

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring, $<$ a monomial order on S and $A \subset S$ a K-subalgebra.

Then the K-algebra in ${ }_{<}(A)$ generated by all monomials $\mathrm{in}_{<}(f)$ with $f \in A$ is called the initial algebra of A with respect to $<$.

In general $\mathrm{in}_{<}(A)$ is not finitely generated. A subset $\mathcal{S} \subset A$ is called a Sagbi bases of A with respect to $<$, if the elements $f \in \mathcal{S}$ generate A over K. This concept has been introduced by Robbiano and Sweedler and independently by Kapur and Madlener.
Theorem The maximal minors of X form a Sagbi bases of the Grassmannian algebra A.

What is the use of this theorem?

We define a partial on the set \mathcal{L} of maximal minors of X :

$$
\left[a_{1}, a_{2}, \ldots, a_{m}\right] \leq\left[b_{1}, b_{2}, \ldots, b_{m}\right] \quad \Leftrightarrow \quad a_{i} \leq b_{i} \quad \text { for all } i
$$

The set \mathcal{L} with this partial order is a distributive lattice.

We define a partial on the set \mathcal{L} of maximal minors of X :

$$
\left[a_{1}, a_{2}, \ldots, a_{m}\right] \leq\left[b_{1}, b_{2}, \ldots, b_{m}\right] \quad \Leftrightarrow \quad a_{i} \leq b_{i} \quad \text { for all } i
$$

The set \mathcal{L} with this partial order is a distributive lattice.
Theorem $\mathrm{in}_{<}(A)$ is isomorphic to the Hibi ring $K[\mathcal{L}]$ of the lattice \mathcal{L}.

We define a partial on the set \mathcal{L} of maximal minors of X :

$$
\left[a_{1}, a_{2}, \ldots, a_{m}\right] \leq\left[b_{1}, b_{2}, \ldots, b_{m}\right] \quad \Leftrightarrow \quad a_{i} \leq b_{i} \quad \text { for all } i
$$

The set \mathcal{L} with this partial order is a distributive lattice.
Theorem $\mathrm{in}_{<}(A)$ is isomorphic to the Hibi ring $K[\mathcal{L}]$ of the lattice \mathcal{L}.

Indeed, let T be the polynomial ring over K in the variables t_{δ} with $\delta \in \mathcal{L}$, and let $\psi: T \rightarrow \mathrm{in}_{<}(A)$ be the K-algebra homomorphism with $\psi\left(t_{\delta}\right)=\mathrm{in}_{<}(\delta)$. One shows that the Hibi relations

$$
t_{\delta_{1}} t_{\delta_{2}}-t_{\delta_{1} \vee \delta_{2}} t_{\delta_{1} \wedge \delta_{2}}, \quad \delta_{1}, \delta_{1} \in \mathcal{L}
$$

generate $\operatorname{Ker} \psi$.

We define a partial on the set \mathcal{L} of maximal minors of X :

$$
\left[a_{1}, a_{2}, \ldots, a_{m}\right] \leq\left[b_{1}, b_{2}, \ldots, b_{m}\right] \quad \Leftrightarrow \quad a_{i} \leq b_{i} \quad \text { for all } i
$$

The set \mathcal{L} with this partial order is a distributive lattice.
Theorem $\mathrm{in}_{<}(A)$ is isomorphic to the Hibi ring $K[\mathcal{L}]$ of the lattice \mathcal{L}.

Indeed, let T be the polynomial ring over K in the variables t_{δ} with $\delta \in \mathcal{L}$, and let $\psi: T \rightarrow \mathrm{in}_{<}(A)$ be the K-algebra homomorphism with $\psi\left(t_{\delta}\right)=\mathrm{in}_{<}(\delta)$. One shows that the Hibi relations

$$
t_{\delta_{1}} t_{\delta_{2}}-t_{\delta_{1} \vee \delta_{2}} t_{\delta_{1} \wedge \delta_{2}}, \quad \delta_{1}, \delta_{1} \in \mathcal{L}
$$

generate $\operatorname{Ker} \psi$.
Corollary The coordinate ring A of the Grassmannian of m-dimensional K-subspaces of K^{n} is a Gorenstein ring of dimension $m(n-m)+1$.

Hibi ideals

Let P be a finite poset. The ideal $H_{P} \subset K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ which his generated by the monomials

$$
u_{I}=\prod_{p \in I} x_{p} \prod_{p \notin I} y_{q}, \quad I \subset \mathcal{I}(P)
$$

is called the Hibi ideal of P.

Hibi ideals

Let P be a finite poset. The ideal $H_{P} \subset K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ which his generated by the monomials

$$
u_{I}=\prod_{p \in I} x_{p} \prod_{p \notin I} y_{q}, \quad I \subset \mathcal{I}(P)
$$

is called the Hibi ideal of P.
Theorem (a) H_{P} has a linear resolution.
(b) $H_{P}=\bigcap_{p \leq q}\left(x_{p}, y_{q}\right)$.

Hibi ideals

Let P be a finite poset. The ideal $H_{P} \subset K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ which his generated by the monomials

$$
u_{I}=\prod_{p \in I} x_{p} \prod_{p \notin I} y_{q}, \quad I \subset \mathcal{I}(P)
$$

is called the Hibi ideal of P.
Theorem (a) H_{P} has a linear resolution.
(b) $H_{P}=\bigcap_{p \leq q}\left(x_{p}, y_{q}\right)$.

Application: Let G be a finite simple graph on the vertex set [n]. One defines the edge ideal I_{G} of G as the monomial ideal in $K\left[x_{1}, \ldots, x_{n}\right]$ with set of generators $\left\{x_{i} x_{j}:\{i, j\} \in E(G)\right\}$.

Hibi ideals

Let P be a finite poset. The ideal $H_{P} \subset K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ which his generated by the monomials

$$
u_{I}=\prod_{p \in I} x_{p} \prod_{p \notin I} y_{q}, \quad I \subset \mathcal{I}(P)
$$

is called the Hibi ideal of P.
Theorem (a) H_{P} has a linear resolution.
(b) $H_{P}=\bigcap_{p \leq q}\left(x_{p}, y_{q}\right)$.

Application: Let G be a finite simple graph on the vertex set [n]. One defines the edge ideal I_{G} of G as the monomial ideal in $K\left[x_{1}, \ldots, x_{n}\right]$ with set of generators $\left\{x_{i} x_{j}:\{i, j\} \in E(G)\right\}$.
For which graphs is I_{G} Cohen-Macaulay?

Theorem (H-Hibi) Let G be a bipartite graph with vertex partition $V \cup V^{\prime}$. Then the following conditions are equivalent:
(a) G is a Cohen-Macaulay graph;
(b) $|V|=\left|V^{\prime}\right|$ and the vertices $V=\left\{x_{1}, \ldots, x_{n}\right\}$ and $V^{\prime}=\left\{y_{1}, \ldots, y_{n}\right\}$ can be labelled such that:
(i) $\left\{x_{i}, y_{i}\right\}$ are edges for $i=1, \ldots, n$;
(ii) if $\left\{x_{i}, y_{j}\right\}$ is an edge, then $i \leq j$;
(iii) if $\left\{x_{i}, y_{j}\right\}$ and $\left\{x_{j}, y_{k}\right\}$ are edges, then $\left\{x_{i}, y_{k}\right\}$ is an edge.

$$
P
$$

The Alexander dual: let I be a squarefree monomial ideal. Then

$$
I=\bigcap_{j=1}^{r} P_{F_{j}},
$$

where for a subset $F \subset[n]$ we set $P_{F}=\left(\left\{x_{i}: i \in F\right\}\right)$.

The Alexander dual: let I be a squarefree monomial ideal. Then

$$
I=\bigcap_{j=1}^{r} P_{F_{j}},
$$

where for a subset $F \subset[n]$ we set $P_{F}=\left(\left\{x_{i}: i \in F\right\}\right)$.
The ideal

$$
I^{\vee}=\left(x_{F_{1}}, \ldots, x_{F_{r}}\right)
$$

is called the Alexander dual of I. Here for a subset $F \subset[n]$ we set $x_{F}=\prod_{i \in F} x_{i}$.

The Alexander dual: let / be a squarefree monomial ideal. Then

$$
I=\bigcap_{j=1}^{r} P_{F_{j}},
$$

where for a subset $F \subset[n]$ we set $P_{F}=\left(\left\{x_{i}: i \in F\right\}\right)$.
The ideal

$$
I^{\vee}=\left(x_{F_{1}}, \ldots, x_{F_{r}}\right)
$$

is called the Alexander dual of I. Here for a subset $F \subset[n]$ we set $x_{F}=\prod_{i \in F} x_{i}$.
Example:
$I=\left(x_{1} x_{4}, x_{1} x_{5}, x_{2} x_{5}, x_{3} x_{5}\right)=\left(x_{1}, x_{2}, x_{3}\right) \cap\left(x_{1}, x_{5}\right) \cap\left(x_{4}, x_{5}\right)$.

The Alexander dual: let I be a squarefree monomial ideal. Then

$$
I=\bigcap_{j=1}^{r} P_{F_{j}},
$$

where for a subset $F \subset[n]$ we set $P_{F}=\left(\left\{x_{i}: i \in F\right\}\right)$.
The ideal

$$
I^{\vee}=\left(x_{F_{1}}, \ldots, x_{F_{r}}\right)
$$

is called the Alexander dual of I. Here for a subset $F \subset[n]$ we set $x_{F}=\prod_{i \in F} x_{i}$.
Example:
$I=\left(x_{1} x_{4}, x_{1} x_{5}, x_{2} x_{5}, x_{3} x_{5}\right)=\left(x_{1}, x_{2}, x_{3}\right) \cap\left(x_{1}, x_{5}\right) \cap\left(x_{4}, x_{5}\right)$.
Therefore $I^{\vee}=\left(x_{1} x_{2} x_{3}, x_{1} x_{5}, x_{4} x_{5}\right)$.

Theorem (Eagon-Reiner) Let $I \subset S$ be a squarefree monomial ideal. Then I^{V} is Cohen-Macaulay, if and only if $/$ has a linear resolution.

Theorem (Eagon-Reiner) Let $I \subset S$ be a squarefree monomial ideal. Then $I V$ is Cohen-Macaulay, if and only if I has a linear resolution.

Since $H_{P}=\bigcap_{p \leq q}\left(x_{p}, y_{q}\right)$ and has a linear resolution, the Alexander dual H_{P}^{\vee} is Cohen-Macaulay by the Eagon-Reiner Theorem.

Theorem (Eagon-Reiner) Let $I \subset S$ be a squarefree monomial ideal. Then I^{V} is Cohen-Macaulay, if and only if I has a linear resolution.

Since $H_{P}=\bigcap_{p \leq q}\left(x_{p}, y_{q}\right)$ and has a linear resolution, the Alexander dual H_{P}^{\vee} is Cohen-Macaulay by the Eagon-Reiner Theorem.

But $H_{p}^{\vee}=\left(\left\{x_{p} y_{q}: p \leq q\right\}\right)$ is the edge ideal of a bipartite graph satisfying the conditions (i), (ii) and (ii). This proves one direction of the classification theorem of Cohen-Macaulay bipartite graphs.

Generalized Hibi ideals and Hibi rings

Let P be a finite poset and $\mathcal{I}(P)$ the set of poset ideals of P. An r-multichain of $\mathcal{I}(P)$ is a chain of poset ideals of length r,

$$
\mathcal{I}: I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{r}=P .
$$

Generalized Hibi ideals and Hibi rings

Let P be a finite poset and $\mathcal{I}(P)$ the set of poset ideals of P. An r-multichain of $\mathcal{I}(P)$ is a chain of poset ideals of length r,

$$
\mathcal{I}: I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{r}=P
$$

We define a partial order on the set $\mathcal{I}_{r}(P)$ of all r-multichains of $\mathcal{I}(P)$ by setting $\mathcal{I} \leq \mathcal{I}^{\prime}$ if $I_{k} \subseteq I_{k}^{\prime}$ for $k=1, \ldots, r$.

Generalized Hibi ideals and Hibi rings

Let P be a finite poset and $\mathcal{I}(P)$ the set of poset ideals of P. An r-multichain of $\mathcal{I}(P)$ is a chain of poset ideals of length r,

$$
\mathcal{I}: I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{r}=P
$$

We define a partial order on the set $\mathcal{I}_{r}(P)$ of all r-multichains of $\mathcal{I}(P)$ by setting $\mathcal{I} \leq \mathcal{I}^{\prime}$ if $I_{k} \subseteq I_{k}^{\prime}$ for $k=1, \ldots, r$.
The partially ordered set $\mathcal{I}_{r}(P)$ is a distributive lattice, if we define the meet of $\mathcal{I}: I_{1} \subseteq \cdots \subseteq I_{r}$ and $\mathcal{I}^{\prime}: I_{1}^{\prime} \subseteq \cdots \subseteq I_{r}^{\prime}$ as $\mathcal{I} \cap \mathcal{I}^{\prime}$ where

$$
\left(\mathcal{I} \cap \mathcal{I}^{\prime}\right)_{k}=I_{k} \cap I_{k}^{\prime}
$$

for $k=1, \ldots, r$, and the join as $\mathcal{I} \cup \mathcal{I}^{\prime}$ where

$$
\left(\mathcal{I} \cup \mathcal{I}^{\prime}\right)_{k}=I_{k} \cup I_{k}^{\prime}
$$

for $k=1, \ldots, r$.

With each r-multichain \mathcal{I} of $\mathcal{I}_{r}(P)$ we associate a monomial $u_{\mathcal{I}}$ in the polynomial ring $S=K\left[\left\{x_{i j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}\right]$ in $r n$ indeterminates which is defined as

$$
u_{\mathcal{I}}=x_{1 J_{1}} x_{2 J_{2}} \cdots x_{r J_{r}},
$$

where $x_{k J_{k}}=\prod_{p_{\ell} \in J_{k}} x_{k \ell}$ and $J_{k}=I_{k} \backslash I_{k-1} \quad$ for $k=1, \ldots, r$.

With each r-multichain \mathcal{I} of $\mathcal{I}_{r}(P)$ we associate a monomial $u_{\mathcal{I}}$ in the polynomial ring $S=K\left[\left\{x_{i j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}\right]$ in $r n$ indeterminates which is defined as

$$
u_{\mathcal{I}}=x_{1 J_{1}} x_{2 J_{2}} \cdots x_{r J_{r}},
$$

where $x_{k J_{k}}=\prod_{p_{\ell} \in J_{k}} x_{k \ell}$ and $J_{k}=I_{k} \backslash I_{k-1} \quad$ for $k=1, \ldots, r$.
We denote by $H_{r, P}$ the monomial ideal in S generated by these monomials and by $R_{r}(P)$ the K-subalgebra generated by the monomial generators of $H_{r, P}$.

With each r-multichain \mathcal{I} of $\mathcal{I}_{r}(P)$ we associate a monomial $u_{\mathcal{I}}$ in the polynomial ring $S=K\left[\left\{x_{i j}: 1 \leq i \leq r, 1 \leq j \leq n\right\}\right]$ in $r n$ indeterminates which is defined as

$$
u_{\mathcal{I}}=x_{1 J_{1}} x_{2 J_{2}} \cdots x_{r J_{r}},
$$

where $x_{k J_{k}}=\prod_{p_{\ell} \in J_{k}} x_{k \ell}$ and $J_{k}=I_{k} \backslash I_{k-1} \quad$ for $k=1, \ldots, r$.
We denote by $H_{r, P}$ the monomial ideal in S generated by these monomials and by $R_{r}(P)$ the K-subalgebra generated by the monomial generators of $H_{r, P}$.

For $r=2$ the ideal $H_{r, P}$ is just the classical Hibi ideal, and $R_{r}(P)$ the Hibi ring of the ideal lattice $\mathcal{I}(P)$ of P.

Let T be the polynomial ring over K in the set of indeterminates $\left\{t_{\mathcal{I}}: \mathcal{I} \in \mathcal{I}_{r}(P)\right\}$.

Let T be the polynomial ring over K in the set of indeterminates $\left\{t_{\mathcal{I}}: \mathcal{I} \in \mathcal{I}_{r}(P)\right\}$.

Furthermore let $\varphi: T \rightarrow R_{r}(P)$ be the surjective K-algebra homomorphism with $\varphi\left(t_{\mathcal{I}}\right)=u_{\mathcal{I}}$ for all $\mathcal{I} \in \mathcal{I}_{r}(P)$.

Let T be the polynomial ring over K in the set of indeterminates $\left\{t_{\mathcal{I}}: \mathcal{I} \in \mathcal{I}_{r}(P)\right\}$.
Furthermore let $\varphi: T \rightarrow R_{r}(P)$ be the surjective K-algebra homomorphism with $\varphi\left(t_{\mathcal{I}}\right)=u_{\mathcal{I}}$ for all $\mathcal{I} \in \mathcal{I}_{r}(P)$.
Theorem The set

$$
\Gamma=\left\{t_{\mathcal{I}} t_{\mathcal{I}^{\prime}}-t_{\mathcal{I} \cup \mathcal{I}^{\prime}} t_{\mathcal{I} \cap \mathcal{I}^{\prime}} \in T: \mathcal{I}, \mathcal{I}^{\prime} \in \mathcal{I}_{r}(P) \text { incomparable }\right\}
$$

is a reduced Gröbner basis of the ideal $L_{r}=\operatorname{Ker} \varphi$ with respect to the reverse lexicographic order.

Let T be the polynomial ring over K in the set of indeterminates $\left\{t_{\mathcal{I}}: \mathcal{I} \in \mathcal{I}_{r}(P)\right\}$.
Furthermore let $\varphi: T \rightarrow R_{r}(P)$ be the surjective K-algebra homomorphism with $\varphi\left(t_{\mathcal{I}}\right)=u_{\mathcal{I}}$ for all $\mathcal{I} \in \mathcal{I}_{r}(P)$.
Theorem The set

$$
\Gamma=\left\{t_{\mathcal{I}} t_{\mathcal{I}^{\prime}}-t_{\mathcal{I} \cup \mathcal{I}^{\prime}} t_{\mathcal{I} \cap \mathcal{I}^{\prime}} \in T: \mathcal{I}, \mathcal{I}^{\prime} \in \mathcal{I}_{r}(P) \text { incomparable }\right\}
$$

is a reduced Gröbner basis of the ideal $L_{r}=\operatorname{Ker} \varphi$ with respect to the reverse lexicographic order.
Corollary $R_{r}(P)$ is a normal Cohen-Macaulay domain of dimension $n(r-1)+1$

Corollary Let P be a finite poset. The following conditions are equivalent:

- $R_{r}(P)$ is Gorenstein.
- $R_{2}(P)$ is Gorenstein.
- P is graded.

Corollary Let P be a finite poset. The following conditions are equivalent:

- $R_{r}(P)$ is Gorenstein.
- $R_{2}(P)$ is Gorenstein.
- P is graded.

Proof: One shows that $R_{r}(P) \cong R_{2}(P \times[r-1])$.

Corollary Let P be a finite poset. The following conditions are equivalent:

- $R_{r}(P)$ is Gorenstein.
- $R_{2}(P)$ is Gorenstein.
- P is graded.

Proof: One shows that $R_{r}(P) \cong R_{2}(P \times[r-1])$.
Finally we consider the generalized Hibi ideal $H_{r, P}$ and its Alexander dual.

Let $C \subset P$ a multichain of length r, i.e., $C=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ with $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$. Let \mathcal{C} be the set of all multichains of length r of P.

Let $C \subset P$ a multichain of length r, i.e., $C=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ with $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$. Let \mathcal{C} be the set of all multichains of length r of P.

We define the monomial $u_{C}=\prod_{i=1}^{r} x_{i, p_{i}}$ and let

$$
I_{r, P}=\left(\left\{u_{C}: C \in \mathcal{C}\right\}\right)
$$

Let $C \subset P$ a multichain of length r, i.e., $C=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ with $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$. Let \mathcal{C} be the set of all multichains of length r of P.
We define the monomial $u_{C}=\prod_{i=1}^{r} x_{i, p_{i}}$ and let

$$
I_{r, P}=\left(\left\{u_{C}: C \in \mathcal{C}\right\}\right)
$$

The ideals $I_{r, P}$ may be interpreted as facet ideals of a completely balanced simplicial complexes, as introduced by Stanley.

Let $C \subset P$ a multichain of length r, i.e., $C=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ with $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$. Let \mathcal{C} be the set of all multichains of length r of P.

We define the monomial $u_{C}=\prod_{i=1}^{r} x_{i, p_{i}}$ and let

$$
I_{r, P}=\left(\left\{u_{C}: C \in \mathcal{C}\right\}\right)
$$

The ideals $I_{r, P}$ may be interpreted as facet ideals of a completely balanced simplicial complexes, as introduced by Stanley.
Theorem (a) $H_{r, P}$ has a linear resolution.
(b) $H_{r, P}^{\vee}=I_{r, P}$.

Let $C \subset P$ a multichain of length r, i.e., $C=\left\{p_{1}, p_{2}, \ldots, p_{r}\right\}$ with $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$. Let \mathcal{C} be the set of all multichains of length r of P.

We define the monomial $u_{C}=\prod_{i=1}^{r} x_{i, p_{i}}$ and let

$$
I_{r, P}=\left(\left\{u_{C}: C \in \mathcal{C}\right\}\right)
$$

The ideals $I_{r, P}$ may be interpreted as facet ideals of a completely balanced simplicial complexes, as introduced by Stanley.
Theorem (a) $H_{r, P}$ has a linear resolution.
(b) $H_{r, P}^{\vee}=I_{r, P}$.

Corollary The facet ideal of a completely balanced simplicial complex arising from a poset is Cohen-Macaulay.

固 J．A．Eagon and V．Reiner，Resolutions of Stanley－Reisner rings and Alexander duality．J．of Pure and Appl．Algebra， 130， 265 － 275 （1998）．

固 V．Ene，J．Herzog，F．Mohammadi，Monomial ideals and toric rings of Hibi type arising form a finite poset， Europ．J．Comb．32，404－421，（2011）

这 J．Herzog and T．Hibi，Distributive lattices，bipartite graphs and Alexander duality．J．Algebraic Combin．22，289－302 （2005）．

圁 J．Herzog and T．Hibi，Monomial Ideals．Springer（2010）．
Ti．Tibi，Distributive lattices，affine semigroup rings and algebras with straightening laws，in＂Commutative Algebra and Combinatorics＂（M．Nagata and H．Matsumura，eds．） Adv．Stud．Pure Math．11，North－Holland，Amsterdam， 93－109（1987）．
R R．Stanley，Balanced Cohen－Macaulay complexes．Trans． Amer．Math．Soc．249，139－157（1979）．

