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Contingency tables

In statistics, a contingency table is used to record and analyze
the relation between two or more categorical variables. It
displays the (multivariate) frequency distribution of the variables
in a matrix format.
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In statistics, a contingency table is used to record and analyze
the relation between two or more categorical variables. It
displays the (multivariate) frequency distribution of the variables
in a matrix format.

The following displays an example of a contingency table
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The sequence of row and column sums is called the marginal
distribution of the contingency table.
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We have to decide for some statistical model (which is our null
hypothesis) and to test to what extend the given table fits this
model.

In general a (2-dimensional) contingency table is an
m × n-matrix whose entries are called the cell frequencies.

Say our contingency table has cell frequencies aij , while our
statistical model gives the expected cell frequencies eij . Then
the χ2-statistic of the contingency table is computed by the
formula

χ2 =
∑

i ,j

(aij − eij)
2

eij
.
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Under the hypothesis of independence one has

eij = ricj/N

where ri =
∑

j aij is the i th row sum, cj =
∑

i aij is the j th
column sum and N =

∑

i ri =
∑

j cj is the total number of
samples.

In our example we obtain χ2 = 29.001.

Does the value of χ2 fit well our hypothesis of independence???
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One strategy to answering this question is to compare the
χ2-statistic of the given table with a large number of randomly
selected contingency tables with the same marginal distribution.

If only a rather low percentage (which is commonly fixed to be
5 %) of those randomly selected contingency tables has a
greater χ2 than that of the given table, the null hypothesis is
rejected.

But how to produce random contingency tables with the same
marginal distribution?



Random Walks

We start at the given table A and take random moves that do
not change the marginal distribution. Each single move is given
as follows: choose a pair of rows and a pair of columns at
random, and modify A at the four entries where the selected
rows and columns intersect by adding or subtracting 1
according to the following pattern of signs

+ −
− +

or
− +
+ −

with probability 1/2 each. In this way we obtain a random walk
on the set of contingency tables with fixed marginal distribution.



If the move produces negative entries, discard it and continue
by choosing a new pair of rows and columns.
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possible moves is
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)

, which is a rather big number. In
practice one obtains a pretty good selection of randomly
selected contingency tables with the same marginal distribution
as that of A which allows to test the significance of A, if we
restrict the set S of possible moves.
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If the move produces negative entries, discard it and continue
by choosing a new pair of rows and columns.

If A is a contingency table of shape m × n, then the number of
possible moves is

(m
2

)(n
2

)

, which is a rather big number. In
practice one obtains a pretty good selection of randomly
selected contingency tables with the same marginal distribution
as that of A which allows to test the significance of A, if we
restrict the set S of possible moves.

We say that two contingency tables A and B are connected via
S, if B can be obtained from A by a finite number of moves from
S.

The question arises how to decide whether two contingency
tables are connected.
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By composing the rows of a contingency table of shape m × n
to a vector, we may view it as an element in the set N

m×n of
nonnegative integer vectors.

Then the connectedness problem can be rephrased and
generalized as follows: let B be a subset of vectors of Z

n. One
defines the graph GB whose vertex set is the set N

n of
nonnegative integer vectors.

Two vectors a and c in N
n are connected by an edge of GB if

a − c ∈ ±B.

We say that a and c are connected via B, if they belong to the
same connected component of GB.



We fix a field K and define the binomial ideal

IB = (xb+ − xb−

: b ∈ B) ⊂ K [x1, . . . , xn],

where for a vector a ∈ Z
n, the vectors a+, a− ∈ N

n are the
unique vectors with a = a+ − a− and supp(a+) ∩ supp(a−) = ∅.



We fix a field K and define the binomial ideal

IB = (xb+ − xb−

: b ∈ B) ⊂ K [x1, . . . , xn],

where for a vector a ∈ Z
n, the vectors a+, a− ∈ N

n are the
unique vectors with a = a+ − a− and supp(a+) ∩ supp(a−) = ∅.

Theorem. The non-negative integer vectors a and c are
connected via B if and only if xa − xc ∈ IB.



We fix a field K and define the binomial ideal

IB = (xb+ − xb−

: b ∈ B) ⊂ K [x1, . . . , xn],

where for a vector a ∈ Z
n, the vectors a+, a− ∈ N

n are the
unique vectors with a = a+ − a− and supp(a+) ∩ supp(a−) = ∅.

Theorem. The non-negative integer vectors a and c are
connected via B if and only if xa − xc ∈ IB.

How to decide whether a binomial belongs to a binomial ideal?
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Primary Decompositions

Given a binomial ideal I and a binomial f , can we find feasible
conditions in terms of the exponents appearing in f that
guarantee that f ∈ I?

The following strategy may be successful in some cases. Write
the given binomial ideal I as an intersection I =

⋂r
k=1 Jk of

ideals Jk . Then f ∈ I if and only if f ∈ Jk for all k .

This strategy is useful only if each of the ideals Jk has a simple
structure, so that it is possible to describe the conditions that
guarantee that f belongs to Jk .

A natural choice for such an intersection is a primary
decomposition of I. In the case that I is a radical ideal the
natural choice for the ideals Jk are the minimal prime ideals of I.
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We apply the above strategy to contingency tables A of shape
2 × n.

A single move is given by choosing a pair of columns, and
modify A at the four entries where the selected columns
intersect the two rows by adding or subtracting 1 according to
the following pattern of signs

+ −
− +

or
− +
+ −

Given a set of moves. We want to decide when two
contingency tables A and B are connected.
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In algebraic terms: given a matrix
(

x1 x2 . . . xn

y1 y2 . . . yn

)

.

We let S be the set of 2-minors corresponding to the given set
of moves.

This set of minors is indexed by the edges of a graph G:

xiyj − xjyi , {i , j} ∈ E(G).

We call

JG = (xiyj − xjyi : {i , j} ∈ E(G))

the edge ideal of G.
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Theorem Let G be a finite graph on the vertex set [n] and JG its
edge ideal. Then JG has a squarefree initial ideal with respect
to the lexicographic order induced by
x1 > x2 > · · · > xn > y1 > y2 > · · · > yn.

Corollary JG is a radical ideal. In particular, JG is the
intersection of its minimal prime ideals.

Which are the minimal prime ideals of JG??
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Let T = [n] \ S, and let G1, . . . , Gc(S) be the connected
component of GT . Here GT is the induced subgraph of G
whose edges are exactly those edges {i , j} of G for which
i , j ∈ T . For each Gi we denote by G̃i the complete graph on
the vertex set V (Gi). We set

PS(G) = (
⋃

i∈S

{xi , yi}, JG̃1
, . . . , JG̃c(S)

).

PS(G) is a prime ideal containing JG.

Theorem JG =
⋂

S⊂[n] PS(G)



Theorem Let G be a connected simple graph on the vertex set
[n], and S ⊂ [n]. Then PS(G) is a minimal prime ideal of JG if
and only if S = ∅, or S 6= ∅ and each i ∈ S is a cut point of
G([n]\S)∪{i}, i.e., one has c(S \ {i}) < c(S).



Theorem Let G be a connected simple graph on the vertex set
[n], and S ⊂ [n]. Then PS(G) is a minimal prime ideal of JG if
and only if S = ∅, or S 6= ∅ and each i ∈ S is a cut point of
G([n]\S)∪{i}, i.e., one has c(S \ {i}) < c(S).

Consider for example the path graph G of length 4.

• • • •1 2 3 4

Then the only subsets S ⊂ [4], besides the empty set, for which
each i ∈ S is a cut-point of the graph G([4]\S)∪{i}, are the sets
S = {2} and S = {3}. Thus

JG = I2(X ) ∩ (x2, x2, x3y4 − x4y3) ∩ (x3, y3, x1y2 − x2y1),

where

X =

(

x1 x2 x3 x4

y1 y2 y3 y4

)

.



Let A = (aij) and B = (bij) be two contingency tables of shape
2 × 4. Let S be the set of adjacent moves

±
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Let A = (aij) and B = (bij) be two contingency tables of shape
2 × 4. Let S be the set of adjacent moves

±
(

1 −1 0 0
−1 1 0 0

)

,

±
(

0 1 −1 0
0 −1 1 0

)

,

±
(

0 0 1 −1
0 0 −1 1

)

.

Then A and B are connected via S if and only if the following

conditions are satisfied:



(a)
∑4

j=1 aij =
∑4

j=1 bij for i = 1, 2;

(b) a1j + a2j = b1j + b2j for j = 1, 2, 3, 4;

(c) either a12 + a22 ≥ 1 and b12 + b22 ≥ 1, or aij = bij for
i , j ≤ 2, and a13 + a14 = b13 + b14 and
a23 + a24 = b23 + b24;

(d) either a13 + a23 ≥ 1 and b13 + b23 ≥ 1, or aij = bij for
i , j ≥ 3, and a11 + a12 = b11 + b12 and
a21 + a22 = b21 + b22.
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Ideals generated by 2-minors

We have seen that any ideal generated by a set of 2-minors of
an 2 × n-matrix of indeterminates is a radical ideal.

What about ideal generated by a set of 2-minors of an
m × n-matrix of indeterminates?

Consider the ideal I generated by the 2-minors

ae − bd , bf − ce, dh − eg, ei − fh

of the matrix




a b c
d e f
g h i



 .

Then cdh − aei ∈
√

I \ I. So I is not a radical ideal.
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Let X = (xij) i=1,...,m
j=1,...,n

be a matrix of indeterminates, and let S be

the polynomial ring over a field K in the variables xij .

The 2-minor δ = [a1, a2|b1, b2] is called adjacent if a2 = a1 + 1
and b2 = b1 + 1.

Let C be any set of adjacent 2-minors. We call such a set a
configuration of adjacent 2-minors. A configuration of adjacent
2-minors may be identified with a polyomino. We denote by I(C)
the ideal generated by the elements of C.

The set of vertices of C, denoted V (C), is the union of the
vertices of its adjacent 2-minors. Two distinct minors in δ, γ ∈ C
are called connected if there exist δ1 . . . , δr ∈ C such that
δ = δ1, γ = δr , and δi and δi+1 have a common edge.
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A Chess board configuration
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the following conditions are equivalent:

(a) I(C) is a prime ideal.

(b) C is a chessboard configuration with no cycle of length 4.
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Theorem Let C be a configuration of adjacent 2-minors. Then
the following conditions are equivalent:

(a) I(C) is a prime ideal.

(b) C is a chessboard configuration with no cycle of length 4.

Here is another case of primality of ideals of 2-minors
discovered by my student Qureshi.

Let C be a configuration of 2-minors. A minor [a1, a2|b1, b2] is
called an inner minor of C, if all adjacent 2-minors
[a, a + 1|b, b + 1] with a1 ≤ a < a2 and b1 ≤ b < b2 belong to C.
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A configuration C is called rectangular, if each minor
[a1, a2|b1, b2] with (a1, b1), (a1, b2), (a2, b1), (a2, b2) ∈ V (C) is
an inner minor of C. In the language of polyminoes, a
rectangular configuration is a convex polyomino.
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A configuration C is called rectangular, if each minor
[a1, a2|b1, b2] with (a1, b1), (a1, b2), (a2, b1), (a2, b2) ∈ V (C) is
an inner minor of C. In the language of polyminoes, a
rectangular configuration is a convex polyomino.

A rectangular configuration

Not rectangular



Theorem (Quereshi) Let C be a rectangular configuration.
Then the ideal generated by all inner 2-minors is a prime ideal.
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in preparation.

J. Herzog, T. Hibi, F. Hreinsdottir, T. Kahle, J. Rauh.
Binomial edge ideals and conditional independence
statements, Adv. Appl. Math. 45 (2010), 317–333.

J. Herzog, T. Hibi. Ideals generated by adjacent 2-minors,
preprint 2011.
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