Ideals generated by 2-minors with applications to algebraic statistic

Jürgen Herzog
Universität Duisburg-Essen

Ellwangen, March 2011

Outline

Contingency tables

Random Walks

Primary Decompositions

Ideals generated by 2-minors

Outline

Contingency tables

Random Walks

Primary Decompositions

Ideals generated by 2-minors

Outline

Contingency tables

Random Walks

Primary Decompositions

Ideals generated by 2-minors

Outline

Contingency tables

Random Walks

Primary Decompositions

Ideals generated by 2-minors

Contingency tables

In statistics, a contingency table is used to record and analyze the relation between two or more categorical variables. It displays the (multivariate) frequency distribution of the variables in a matrix format.

Contingency tables

In statistics, a contingency table is used to record and analyze the relation between two or more categorical variables. It displays the (multivariate) frequency distribution of the variables in a matrix format.
The following displays an example of a contingency table

Hair colors

Eye colors Green

Blue
Blonde Red Black Totals

Brown

3	4	20
14	18	8
16	12	5

27

40

33

Totals
$33 \quad 34 \quad 33$
100

Hair colors

Eye colors	Brown	Blonde Red		Black	Totals
		3	4	20	27
	Green	14	18	8	40
	Blue	16	12	5	33
Totals		33	34	33	100

The sequence of row and column sums is called the marginal distribution of the contingency table.

We have to decide for some statistical model (which is our null hypothesis) and to test to what extend the given table fits this model.

We have to decide for some statistical model (which is our null hypothesis) and to test to what extend the given table fits this model.

In general a (2-dimensional) contingency table is an $m \times n$-matrix whose entries are called the cell frequencies.

We have to decide for some statistical model (which is our null hypothesis) and to test to what extend the given table fits this model.

In general a (2-dimensional) contingency table is an $m \times n$-matrix whose entries are called the cell frequencies.
Say our contingency table has cell frequencies $a_{i j}$, while our statistical model gives the expected cell frequencies $e_{i j}$. Then the χ^{2}-statistic of the contingency table is computed by the formula

$$
\chi^{2}=\sum_{i, j} \frac{\left(a_{i j}-e_{i j}\right)^{2}}{e_{i j}}
$$

Under the hypothesis of independence one has

$$
e_{i j}=r_{i} c_{j} / N
$$

where $r_{i}=\sum_{j} a_{i j}$ is the i th row sum, $c_{j}=\sum_{i} a_{i j}$ is the j th column sum and $N=\sum_{i} r_{i}=\sum_{j} c_{j}$ is the total number of samples.

Under the hypothesis of independence one has

$$
e_{i j}=r_{i} c_{j} / N
$$

where $r_{i}=\sum_{j} a_{i j}$ is the i th row sum, $c_{j}=\sum_{i} a_{i j}$ is the j th column sum and $N=\sum_{i} r_{i}=\sum_{j} c_{j}$ is the total number of samples.
In our example we obtain $\chi^{2}=29.001$.

Under the hypothesis of independence one has

$$
e_{i j}=r_{i} c_{j} / N
$$

where $r_{i}=\sum_{j} a_{i j}$ is the i th row sum, $c_{j}=\sum_{i} a_{i j}$ is the j th column sum and $N=\sum_{i} r_{i}=\sum_{j} c_{j}$ is the total number of samples.
In our example we obtain $\chi^{2}=29.001$.
Does the value of χ^{2} fit well our hypothesis of independence???

One strategy to answering this question is to compare the χ^{2}-statistic of the given table with a large number of randomly selected contingency tables with the same marginal distribution.

One strategy to answering this question is to compare the χ^{2}-statistic of the given table with a large number of randomly selected contingency tables with the same marginal distribution.

If only a rather low percentage (which is commonly fixed to be 5%) of those randomly selected contingency tables has a greater χ^{2} than that of the given table, the null hypothesis is rejected.

One strategy to answering this question is to compare the χ^{2}-statistic of the given table with a large number of randomly selected contingency tables with the same marginal distribution.

If only a rather low percentage (which is commonly fixed to be 5%) of those randomly selected contingency tables has a greater χ^{2} than that of the given table, the null hypothesis is rejected.

But how to produce random contingency tables with the same marginal distribution?

Random Walks

We start at the given table A and take random moves that do not change the marginal distribution. Each single move is given as follows: choose a pair of rows and a pair of columns at random, and modify A at the four entries where the selected rows and columns intersect by adding or subtracting 1 according to the following pattern of signs

with probability $1 / 2$ each. In this way we obtain a random walk on the set of contingency tables with fixed marginal distribution.

If the move produces negative entries, discard it and continue by choosing a new pair of rows and columns.

If the move produces negative entries, discard it and continue by choosing a new pair of rows and columns.

If A is a contingency table of shape $m \times n$, then the number of possible moves is $\binom{m}{2}\binom{n}{2}$, which is a rather big number. In practice one obtains a pretty good selection of randomly selected contingency tables with the same marginal distribution as that of A which allows to test the significance of A, if we restrict the set \mathcal{S} of possible moves.

If the move produces negative entries, discard it and continue by choosing a new pair of rows and columns.

If A is a contingency table of shape $m \times n$, then the number of possible moves is $\binom{m}{2}\binom{n}{2}$, which is a rather big number. In practice one obtains a pretty good selection of randomly selected contingency tables with the same marginal distribution as that of A which allows to test the significance of A, if we restrict the set \mathcal{S} of possible moves.
We say that two contingency tables A and B are connected via \mathcal{S}, if B can be obtained from A by a finite number of moves from \mathcal{S}.

If the move produces negative entries, discard it and continue by choosing a new pair of rows and columns.

If A is a contingency table of shape $m \times n$, then the number of possible moves is $\binom{m}{2}\binom{n}{2}$, which is a rather big number. In practice one obtains a pretty good selection of randomly selected contingency tables with the same marginal distribution as that of A which allows to test the significance of A, if we restrict the set \mathcal{S} of possible moves.
We say that two contingency tables A and B are connected via \mathcal{S}, if B can be obtained from A by a finite number of moves from \mathcal{S}.

The question arises how to decide whether two contingency tables are connected.

By composing the rows of a contingency table of shape $m \times n$ to a vector, we may view it as an element in the set $\mathbb{N}^{m \times n}$ of nonnegative integer vectors.

By composing the rows of a contingency table of shape $m \times n$ to a vector, we may view it as an element in the set $\mathbb{N}^{m \times n}$ of nonnegative integer vectors.
Then the connectedness problem can be rephrased and generalized as follows: let \mathcal{B} be a subset of vectors of \mathbb{Z}^{n}. One defines the graph $G_{\mathcal{B}}$ whose vertex set is the set \mathbb{N}^{n} of nonnegative integer vectors.

By composing the rows of a contingency table of shape $m \times n$ to a vector, we may view it as an element in the set $\mathbb{N}^{m \times n}$ of nonnegative integer vectors.
Then the connectedness problem can be rephrased and generalized as follows: let \mathcal{B} be a subset of vectors of \mathbb{Z}^{n}. One defines the graph $G_{\mathcal{B}}$ whose vertex set is the set \mathbb{N}^{n} of nonnegative integer vectors.
Two vectors \mathbf{a} and \mathbf{c} in \mathbb{N}^{n} are connected by an edge of $G_{\mathcal{B}}$ if

$$
\mathbf{a}-\mathbf{c} \in \pm \mathcal{B} .
$$

By composing the rows of a contingency table of shape $m \times n$ to a vector, we may view it as an element in the set $\mathbb{N}^{m \times n}$ of nonnegative integer vectors.
Then the connectedness problem can be rephrased and generalized as follows: let \mathcal{B} be a subset of vectors of \mathbb{Z}^{n}. One defines the graph $G_{\mathcal{B}}$ whose vertex set is the set \mathbb{N}^{n} of nonnegative integer vectors.
Two vectors \mathbf{a} and \mathbf{c} in \mathbb{N}^{n} are connected by an edge of $G_{\mathcal{B}}$ if

$$
\mathbf{a}-\mathbf{c} \in \pm \mathcal{B} .
$$

We say that \mathbf{a} and \mathbf{c} are connected via \mathcal{B}, if they belong to the same connected component of $G_{\mathcal{B}}$.

We fix a field K and define the binomial ideal

$$
I_{\mathcal{B}}=\left(\mathbf{x}^{\mathbf{b}^{+}}-\mathbf{x}^{\mathbf{b}^{-}}: \mathbf{b} \in \mathcal{B}\right) \subset K\left[x_{1}, \ldots, x_{n}\right]
$$

where for a vector $\mathbf{a} \in \mathbb{Z}^{n}$, the vectors $\mathbf{a}^{+}, \mathbf{a}^{-} \in \mathbb{N}^{n}$ are the unique vectors with $\mathbf{a}=\mathbf{a}^{+}-\mathbf{a}^{-}$and $\operatorname{supp}\left(a^{+}\right) \cap \operatorname{supp}\left(a^{-}\right)=\emptyset$.

We fix a field K and define the binomial ideal

$$
I_{\mathcal{B}}=\left(\mathbf{x}^{\mathbf{b}^{+}}-\mathbf{x}^{\mathbf{b}^{-}}: \mathbf{b} \in \mathcal{B}\right) \subset K\left[x_{1}, \ldots, x_{n}\right],
$$

where for a vector $\mathbf{a} \in \mathbb{Z}^{n}$, the vectors $\mathbf{a}^{+}, \mathbf{a}^{-} \in \mathbb{N}^{n}$ are the unique vectors with $\mathbf{a}=\mathbf{a}^{+}-\mathbf{a}^{-}$and $\operatorname{supp}\left(a^{+}\right) \cap \operatorname{supp}\left(a^{-}\right)=\emptyset$.

Theorem. The non-negative integer vectors \mathbf{a} and \mathbf{c} are connected via \mathcal{B} if and only if $\mathbf{x}^{\mathbf{a}}-\mathbf{x}^{\mathrm{c}} \in I_{\mathcal{B}}$.

We fix a field K and define the binomial ideal

$$
I_{\mathcal{B}}=\left(\mathbf{x}^{\mathbf{b}^{+}}-\mathbf{x}^{\mathbf{b}^{-}}: \mathbf{b} \in \mathcal{B}\right) \subset K\left[x_{1}, \ldots, x_{n}\right]
$$

where for a vector $\mathbf{a} \in \mathbb{Z}^{n}$, the vectors $\mathbf{a}^{+}, \mathbf{a}^{-} \in \mathbb{N}^{n}$ are the unique vectors with $\mathbf{a}=\mathbf{a}^{+}-\mathbf{a}^{-}$and $\operatorname{supp}\left(a^{+}\right) \cap \operatorname{supp}\left(a^{-}\right)=\emptyset$.

Theorem. The non-negative integer vectors \mathbf{a} and \mathbf{c} are connected via \mathcal{B} if and only if $\mathbf{x}^{\mathbf{a}}-\mathbf{x}^{\mathbf{c}} \in I_{\mathcal{B}}$.

How to decide whether a binomial belongs to a binomial ideal?

Primary Decompositions

Given a binomial ideal I and a binomial f, can we find feasible conditions in terms of the exponents appearing in f that guarantee that $f \in I$?

Primary Decompositions

Given a binomial ideal / and a binomial f, can we find feasible conditions in terms of the exponents appearing in f that guarantee that $f \in I$?

The following strategy may be successful in some cases. Write the given binomial ideal I as an intersection $I=\bigcap_{k=1}^{r} J_{k}$ of ideals J_{k}. Then $f \in I$ if and only if $f \in J_{k}$ for all k.

Primary Decompositions

Given a binomial ideal / and a binomial f, can we find feasible conditions in terms of the exponents appearing in f that guarantee that $f \in I$?
The following strategy may be successful in some cases. Write the given binomial ideal $/$ as an intersection $I=\bigcap_{k=1}^{r} J_{k}$ of ideals J_{k}. Then $f \in l$ if and only if $f \in J_{k}$ for all k.
This strategy is useful only if each of the ideals J_{k} has a simple structure, so that it is possible to describe the conditions that guarantee that f belongs to J_{k}.

Primary Decompositions

Given a binomial ideal / and a binomial f, can we find feasible conditions in terms of the exponents appearing in f that guarantee that $f \in I$?
The following strategy may be successful in some cases. Write the given binomial ideal $/$ as an intersection $I=\bigcap_{k=1}^{r} J_{k}$ of ideals J_{k}. Then $f \in l$ if and only if $f \in J_{k}$ for all k.

This strategy is useful only if each of the ideals J_{k} has a simple structure, so that it is possible to describe the conditions that guarantee that f belongs to J_{k}.
A natural choice for such an intersection is a primary decomposition of l. In the case that l is a radical ideal the natural choice for the ideals J_{k} are the minimal prime ideals of l.

We apply the above strategy to contingency tables A of shape $2 \times n$.

We apply the above strategy to contingency tables A of shape $2 \times n$.

A single move is given by choosing a pair of columns, and modify A at the four entries where the selected columns intersect the two rows by adding or subtracting 1 according to the following pattern of signs

We apply the above strategy to contingency tables A of shape $2 \times n$.

A single move is given by choosing a pair of columns, and modify A at the four entries where the selected columns intersect the two rows by adding or subtracting 1 according to the following pattern of signs

Given a set of moves. We want to decide when two contingency tables A and B are connected.

In algebraic terms: given a matrix

$$
\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n} \\
y_{1} & y_{2} & \ldots & y_{n}
\end{array}\right)
$$

We let S be the set of 2-minors corresponding to the given set of moves.

In algebraic terms: given a matrix

$$
\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n} \\
y_{1} & y_{2} & \ldots & y_{n}
\end{array}\right)
$$

We let S be the set of 2-minors corresponding to the given set of moves.

This set of minors is indexed by the edges of a graph G :

$$
x_{i} y_{j}-x_{j} y_{i}, \quad\{i, j\} \in E(G)
$$

In algebraic terms: given a matrix

$$
\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n} \\
y_{1} & y_{2} & \ldots & y_{n}
\end{array}\right)
$$

We let S be the set of 2-minors corresponding to the given set of moves.

This set of minors is indexed by the edges of a graph G :

$$
x_{i} y_{j}-x_{j} y_{i}, \quad\{i, j\} \in E(G)
$$

We call

$$
J_{G}=\left(x_{i} y_{j}-x_{j} y_{i}:\{i, j\} \in E(G)\right)
$$

the edge ideal of G.

Theorem Let G be a finite graph on the vertex set $[n]$ and J_{G} its edge ideal. Then J_{G} has a squarefree initial ideal with respect to the lexicographic order induced by
$x_{1}>x_{2}>\cdots>x_{n}>y_{1}>y_{2}>\cdots>y_{n}$.

Theorem Let G be a finite graph on the vertex set $[n]$ and J_{G} its edge ideal. Then J_{G} has a squarefree initial ideal with respect to the lexicographic order induced by
$x_{1}>x_{2}>\cdots>x_{n}>y_{1}>y_{2}>\cdots>y_{n}$.
Corollary J_{G} is a radical ideal. In particular, J_{G} is the intersection of its minimal prime ideals.

Theorem Let G be a finite graph on the vertex set $[n]$ and J_{G} its edge ideal. Then J_{G} has a squarefree initial ideal with respect to the lexicographic order induced by
$x_{1}>x_{2}>\cdots>x_{n}>y_{1}>y_{2}>\cdots>y_{n}$.
Corollary J_{G} is a radical ideal. In particular, J_{G} is the intersection of its minimal prime ideals.
Which are the minimal prime ideals of J_{G} ??

Let G be a simple graph on [n]. For each subset $S \subset[n]$ we define a prime ideal $P_{S}(G) \subset K\left[x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}\right]$.

Let G be a simple graph on $[n]$. For each subset $S \subset[n]$ we define a prime ideal $P_{S}(G) \subset K\left[x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}\right]$.
Let $T=[n] \backslash S$, and let $G_{1}, \ldots, G_{c(S)}$ be the connected component of G_{T}. Here G_{T} is the induced subgraph of G whose edges are exactly those edges $\{i, j\}$ of G for which $i, j \in T$. For each G_{i} we denote by \tilde{G}_{i} the complete graph on the vertex set $V\left(G_{i}\right)$. We set

$$
P_{S}(G)=\left(\bigcup_{i \in \mathcal{S}}\left\{x_{i}, y_{i}\right\}, J_{\tilde{G}_{1}}, \ldots, J_{\tilde{G}_{c(S)}}\right) .
$$

$P_{S}(G)$ is a prime ideal containing J_{G}.

Let G be a simple graph on $[n]$. For each subset $S \subset[n]$ we define a prime ideal $P_{S}(G) \subset K\left[x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}\right]$.
Let $T=[n] \backslash S$, and let $G_{1}, \ldots, G_{c(S)}$ be the connected component of G_{T}. Here G_{T} is the induced subgraph of G whose edges are exactly those edges $\{i, j\}$ of G for which $i, j \in T$. For each G_{i} we denote by \tilde{G}_{i} the complete graph on the vertex set $V\left(G_{i}\right)$. We set

$$
P_{S}(G)=\left(\bigcup_{i \in S}\left\{x_{i}, y_{i}\right\}, J_{\tilde{G}_{1}}, \ldots, J_{\tilde{G}_{c(S)}}\right) .
$$

$P_{S}(G)$ is a prime ideal containing J_{G}.
Theorem $J_{G}=\bigcap_{S \subset[n]} P_{S}(G)$

Theorem Let G be a connected simple graph on the vertex set [n], and $S \subset[n]$. Then $P_{S}(G)$ is a minimal prime ideal of J_{G} if and only if $S=\emptyset$, or $S \neq \emptyset$ and each $i \in S$ is a cut point of $G_{([n] \backslash S) \cup\{i\}}$, i.e., one has $c(S \backslash\{i\})<c(S)$.

Theorem Let G be a connected simple graph on the vertex set [$n]$, and $S \subset[n]$. Then $P_{S}(G)$ is a minimal prime ideal of J_{G} if and only if $S=\emptyset$, or $S \neq \emptyset$ and each $i \in S$ is a cut point of $G_{([n \backslash \backslash S) \cup\{i\}}$, i.e., one has $c(S \backslash\{i\})<c(S)$.
Consider for example the path graph G of length 4.

Then the only subsets $S \subset[4]$, besides the empty set, for which each $i \in S$ is a cut-point of the graph $G_{([4] \backslash S) \cup\{i\}}$, are the sets $S=\{2\}$ and $S=\{3\}$. Thus

$$
J_{G}=I_{2}(X) \cap\left(x_{2}, x_{2}, x_{3} y_{4}-x_{4} y_{3}\right) \cap\left(x_{3}, y_{3}, x_{1} y_{2}-x_{2} y_{1}\right),
$$

where

$$
X=\left(\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4}
\end{array}\right)
$$

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be two contingency tables of shape 2×4. Let \mathcal{S} be the set of adjacent moves

$$
\begin{aligned}
& \pm\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right), \\
& \pm\left(\begin{array}{cccc}
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0
\end{array}\right), \\
& \pm\left(\begin{array}{cccc}
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right) .
\end{aligned}
$$

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ be two contingency tables of shape 2×4. Let \mathcal{S} be the set of adjacent moves

$$
\begin{aligned}
& \pm\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0
\end{array}\right), \\
& \pm\left(\begin{array}{cccc}
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0
\end{array}\right), \\
& \pm\left(\begin{array}{cccc}
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right) .
\end{aligned}
$$

Then A and B are connected via \mathcal{S} if and only if the following conditions are satisfied:
(a) $\sum_{j=1}^{4} a_{i j}=\sum_{j=1}^{4} b_{i j}$ for $i=1,2$;
(b) $a_{1 j}+a_{2 j}=b_{1 j}+b_{2 j}$ for $j=1,2,3,4$;
(c) either $a_{12}+a_{22} \geq 1$ and $b_{12}+b_{22} \geq 1$, or $a_{i j}=b_{i j}$ for $i, j \leq 2$, and $a_{13}+a_{14}=b_{13}+b_{14}$ and $a_{23}+a_{24}=b_{23}+b_{24} ;$
(d) either $a_{13}+a_{23} \geq 1$ and $b_{13}+b_{23} \geq 1$, or $a_{i j}=b_{i j}$ for $i, j \geq 3$, and $a_{11}+a_{12}=b_{11}+b_{12}$ and $a_{21}+a_{22}=b_{21}+b_{22}$.

Ideals generated by 2-minors

We have seen that any ideal generated by a set of 2-minors of an $2 \times n$-matrix of indeterminates is a radical ideal.

Ideals generated by 2-minors

We have seen that any ideal generated by a set of 2-minors of an $2 \times n$-matrix of indeterminates is a radical ideal.

What about ideal generated by a set of 2-minors of an $m \times n$-matrix of indeterminates?

Ideals generated by 2-minors

We have seen that any ideal generated by a set of 2-minors of an $2 \times n$-matrix of indeterminates is a radical ideal.

What about ideal generated by a set of 2-minors of an $m \times n$-matrix of indeterminates?

Consider the ideal I generated by the 2-minors

$$
a e-b d, b f-c e, d h-e g, e i-f h
$$

of the matrix

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

Ideals generated by 2-minors

We have seen that any ideal generated by a set of 2-minors of an $2 \times n$-matrix of indeterminates is a radical ideal.

What about ideal generated by a set of 2-minors of an $m \times n$-matrix of indeterminates?

Consider the ideal I generated by the 2-minors

$$
a e-b d, b f-c e, d h-e g, e i-f h
$$

of the matrix

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

Then $c d h-$ aei $\in \sqrt{I} \backslash I$. So I is not a radical ideal.

Let $X=\left(x_{i j}\right)_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}$ be a matrix of indeterminates, and let S be the polynomial ring over a field K in the variables $x_{i j}$.

Let $X=\left(x_{i j}\right)_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}$ be a matrix of indeterminates, and let S be the polynomial ring over a field K in the variables $x_{i j}$.
The 2-minor $\delta=\left[a_{1}, a_{2} \mid b_{1}, b_{2}\right]$ is called adjacent if $a_{2}=a_{1}+1$ and $b_{2}=b_{1}+1$.

Let $X=\left(x_{i j}\right)_{\substack{i=1, \ldots, m \\ j=1, \ldots, n}}$ be a matrix of indeterminates, and let S be the polynomial ring over a field K in the variables $x_{i j}$.
The 2-minor $\delta=\left[a_{1}, a_{2} \mid b_{1}, b_{2}\right]$ is called adjacent if $a_{2}=a_{1}+1$ and $b_{2}=b_{1}+1$.

Let \mathcal{C} be any set of adjacent 2-minors. We call such a set a configuration of adjacent 2 -minors. A configuration of adjacent 2 -minors may be identified with a polyomino. We denote by $I(\mathcal{C})$ the ideal generated by the elements of \mathcal{C}.

Let $X=\left(x_{i j}\right)_{\substack{i=1, \ldots, \ldots, m \\ j=1, \ldots, n}}$ be a matrix of indeterminates, and let S be the polynomial ring over a field K in the variables $x_{i j}$.
The 2-minor $\delta=\left[a_{1}, a_{2} \mid b_{1}, b_{2}\right]$ is called adjacent if $a_{2}=a_{1}+1$ and $b_{2}=b_{1}+1$.
Let \mathcal{C} be any set of adjacent 2-minors. We call such a set a configuration of adjacent 2 -minors. A configuration of adjacent 2 -minors may be identified with a polyomino. We denote by $I(\mathcal{C})$ the ideal generated by the elements of \mathcal{C}.
The set of vertices of \mathcal{C}, denoted $V(\mathcal{C})$, is the union of the vertices of its adjacent 2 -minors. Two distinct minors in $\delta, \gamma \in \mathcal{C}$ are called connected if there exist $\delta_{1} \ldots, \delta_{r} \in \mathcal{C}$ such that $\delta=\delta_{1}, \gamma=\delta_{r}$, and δ_{i} and δ_{i+1} have a common edge.

A Configuration of adjacent 2-minors

A Configuration of adjacent 2-minors

A Chess board configuration

Theorem Let \mathcal{C} be a configuration of adjacent 2-minors. Then the following conditions are equivalent:
(a) $I(\mathcal{C})$ is a prime ideal.
(b) \mathcal{C} is a chessboard configuration with no cycle of length 4.

Theorem Let \mathcal{C} be a configuration of adjacent 2-minors. Then the following conditions are equivalent:
(a) $I(C)$ is a prime ideal.
(b) \mathcal{C} is a chessboard configuration with no cycle of length 4.

Here is another case of primality of ideals of 2-minors discovered by my student Qureshi.

Theorem Let \mathcal{C} be a configuration of adjacent 2-minors. Then the following conditions are equivalent:
(a) $I(\mathcal{C})$ is a prime ideal.
(b) \mathcal{C} is a chessboard configuration with no cycle of length 4.

Here is another case of primality of ideals of 2-minors discovered by my student Qureshi.

Let \mathcal{C} be a configuration of 2 -minors. A minor $\left[a_{1}, a_{2} \mid b_{1}, b_{2}\right]$ is called an inner minor of \mathcal{C}, if all adjacent 2-minors $[a, a+1 \mid b, b+1]$ with $a_{1} \leq a<a_{2}$ and $b_{1} \leq b<b_{2}$ belong to \mathcal{C}.

An inner minor

An inner minor

Not an inner minor

A configuration \mathcal{C} is called rectangular, if each minor $\left[a_{1}, a_{2} \mid b_{1}, b_{2}\right]$ with $\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right) \in V(\mathcal{C})$ is an inner minor of \mathcal{C}. In the language of polyminoes, a rectangular configuration is a convex polyomino.

A configuration \mathcal{C} is called rectangular, if each minor $\left[a_{1}, a_{2} \mid b_{1}, b_{2}\right]$ with $\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right) \in V(\mathcal{C})$ is an inner minor of \mathcal{C}. In the language of polyminoes, a rectangular configuration is a convex polyomino.

A rectangular configuration

A configuration \mathcal{C} is called rectangular, if each minor $\left[a_{1}, a_{2} \mid b_{1}, b_{2}\right]$ with $\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{1}\right),\left(a_{2}, b_{2}\right) \in V(\mathcal{C})$ is an inner minor of \mathcal{C}. In the language of polyminoes, a rectangular configuration is a convex polyomino.

A rectangular configuration

Not rectangular

Theorem (Quereshi) Let \mathcal{C} be a rectangular configuration. Then the ideal generated by all inner 2-minors is a prime ideal.
(1) P. Diaconis, D. Eisenbud, B. Sturmfels. Lattice walks and primary decomposition, Mathematical Essays in Honor of Gian-Carlo Rota, Birkhäuser, Boston, 1998, pp. 173-193.
© J Herzog, V. Ene. An Introduction to Gröbner bases, book in preparation.

围 J. Herzog, T. Hibi, F. Hreinsdottir, T. Kahle, J. Rauh. Binomial edge ideals and conditional independence statements, Adv. Appl. Math. 45 (2010), 317-333.

目 J. Herzog, T. Hibi. Ideals generated by adjacent 2-minors, preprint 2011.
© S. Hoşten, J. Shapiro. Primary decomposition of lattice basis ideals. J.Symbolic Computation, 29 (2000), 625-639.
(in S. Hoşten, S. Sullivant, Ideals of adjacent minors, J. Algebra 277 (2004), 615-642.

击 M. Ohtani, Graphs and Ideals generated by some 2-minors, Comm. Algebra, in press.
(A. Qureshi, Ideals generated be 2-minors, preprint 2010.

