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Richard Stanley in his article “Linear Diophantine equations
and local cohomology”, Invent. Math. 68 (1982) made a striking
conjecture concerning the depth of multigraded modules.

Here we concentrate on the case that M is a finitely generated
Z

n-graded S-module, where S = K [x1, . . . , xn] is the polynomial
ring.

An important special case for a Z
n-graded S-module is M = I/J

where J ⊂ I ⊂ S are monomial ideals.
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and each mjK [Zj ] is a free K [Zj ]-module.
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⊕

j=1

mjK [Zj ],

where each mj ∈ M is homogeneous, Zj ⊂ X = {x1, . . . , xn}
and each mjK [Zj ] is a free K [Zj ]-module.

We set sdepth(D) = min{|Zj | j = 1, . . . , r}, and

sdepth M = max{sdepth(D) : D is a Stanley decomposition of M}.

is called the Stanley depth of M.

Conjecture (Stanley) sdepth M ≥ depth M.
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The figure displays Stanley decompositions of

I = x1x3
2 K [x1, x2] ⊕ x3

1 x2
2 K [x1] ⊕ x3

1 x2K [x1],

and

S/I = K [x2] ⊕ x1K [x1] ⊕ x1x2K ⊕ x1x2
2 K ⊕ x2

1 x2K ⊕ x2
1 x2

2 K .



Known cases

The Stanley depth for modules of the form I/J where
J ⊂ I ⊂ SK [x1, . . . , xn] are monomial ideals is a pure
combinatorial invariant, in particular, it does not depend on the
field K , while the depth is homological invariant and in case of
squarefree monomial ideal, a topological invariant of the
attached simplicial complex, and may very well depend on the
field K .



Known cases

The Stanley depth for modules of the form I/J where
J ⊂ I ⊂ SK [x1, . . . , xn] are monomial ideals is a pure
combinatorial invariant, in particular, it does not depend on the
field K , while the depth is homological invariant and in case of
squarefree monomial ideal, a topological invariant of the
attached simplicial complex, and may very well depend on the
field K .

What is know for I/J?
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Cohen–Macaulay algebras.

◮ (H, Popescu) If ∆ is a simplicial complex. Then the Stanley
Reisner ring K [∆] of ∆ satisfies Stanley’s conjecture, if ∆
is shellable.

◮ (H, Jahan, Yassemi) Stanley’s conjecture holds for S/I
when I is Cohen-Macaulay ideal of codimension 2 or
Gorenstein of codimension 3.

◮ (Popescu) If S is a polynomial ring in at most 5 variables,
then Stanley’s conjecture holds for S/I.

◮ (Cimpoeas) If I ⊂ S = K [x1, . . . , xn] is generated by at most
2n − 1 monomials, then Stanley’s conjecture holds for I

◮ (Apel, Okazaki, Yanagawa) If I is a cogeneric monomial
ideal, then Stanley’s conjecture holds for S/I.
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If ∆ is a simplicial complex and g = (1, . . . , 1), then Pg
K [∆]can

be identified with the face poset of ∆.



The characteristic poset of m = (x1, x2, x3) with respect to
g = (1, 1, 1) is given by

◦

◦ ◦ ◦

◦ ◦ ◦
1 2 3

12 23 13

123
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[a, b] = {c ∈ P : a ≤ c ≤ b} is called an interval.

Suppose P is a finite poset. A partition of P is a disjoint union

P : P =
r

⋃

i=1

[ai , bi ]

of intervals.

P : Pg
m = [1, 12] ∪ [2, 23] ∪ [3, 13] ∪ [123, 123].

is a partition of Pg
m.
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I/J gives rise to a Stanley decomposition of

I/J.

In order to describe the Stanley decomposition of I/J coming
from a partition of Pg

I/J we shall need the following notation: for

each b ∈ Pg
I/J , we set

Zb = {xj : b(j) = g(j)},

and define

ρ Pg
I/J → Z≥0, b 7→ ρ(b) = |Zb|.
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Then

D(P) : I/J =
r

⊕

i=1

(
⊕

c

xcK [Zdi
])

is a Stanley decomposition of I/J, where the inner direct sum
is taken over all c ∈ [ci , di ] for which c(j) = ci(j) for all j with
xj ∈ Zdi

. Moreover, sdepthD(P) = min{ρ(di) i = 1, . . . , r}.

(b) Let D be a Stanley decomposition of I/J. Then there exists
a partition P of Pg

I/J such that

sdepthD(P) ≥ sdepthD.

In particular, sdepth I/J can be computed as the maximum of
the numbers sdepthD(P), where P runs over the (finitely
many) partitions of Pg

I/J .
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◮ (C. Biro, D. Howard, M. Keller, W. Trotter, S. Young)
sdepth(x1, . . . , xn) = ⌈n/2⌉.

◮ (Shen) Let I ⊂ S = K [x1, . . . , xn] be a complete
intersection monomial ideal minimally generated by m
elements. Then sdepth(I) = n − ⌊m/2⌋.

◮ (Floystad, H) Let s be the largest integer such that
n + 1 ≥ (2s + 1)(s + 1). Then the Stanley depth of any
squarefree monomial ideal in n variables is greater or
equal to 2s + 1. Explicitly this lower bound is

2
⌊
√

2n + 2.25 + 0.5
2

⌋

− 1.
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a chain of Z
n-graded submodules of M such that

Mi/Mi−1 ≃ (S/Pi)(−ai) where ai ∈ Z
n and where each Pi is a

monomial prime ideal.

One has

Min(M) ⊂ Ass(M) ⊂ {P1, . . . , Pr} ⊂ Supp(M),

and

min{dim S/P1, . . . , S/Pr} ≤ depth M, sdepth M

≤ min{dim S/P : P ∈ Ass(M)}.

The upper inequality has been proved by Apel.
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S = K [x1, . . . , xn]-module. It is also Z-graded,i.e.,

M =
⊕

i∈Z

Mi , with Mi =
⊕

a∈Zn
|a|=i

Ma.

HM(t) =
∑

i∈Z

dimK Mi t
i =

Q(t)
(1 − t)d , Q(1) 6= 0

is the Hilbert series of M.

Example: HS(t) = 1
(1−t)n for S = K [x1, . . . , xn].
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For any such sum decomposition S of HM(t) we set

hdepthS = min{b1, . . . , rr}

, and calls

hdepth M = max{hdepthS : S is a sum decomposition of HM(t)}.

the Hilbert depth of M. Obviously, hdepth M ≥ sdepth M.
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The inequality hdepth M ≥ depth M is unknown in general.

The Hilbert depth has been computed is some interesting
special cases

◮ (Bruns, Krattenthaler, Uliczka) Let M(n, k) be the k-syzygy
module of K = S/(x1, . . . , xn). Then

hdepth M(n, k) = n − 1 for⌊n/2⌋ ≤ k < n,

and

hdepth M(n, k) ≥ sdepth M(n, k) ≥ ⌊(n + k)/2⌋

for k < n/2.

◮ (Bruns, Krattenthaler, Ulizcka)
hdepth(x1, . . . , xn)k = ⌈n/(k + 1)⌉
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Stanley depth for syzygies

We have

hdepth M(n, k) = n − 1 ≥ depth M(n, k) = k

for ⌊n/2⌋ ≤ k < n.

In general, if M is a finitely generated Z
n-graded of depth t , and

Zk (M) is its k th syzygy module, then

depth Zk (M) = t + k for k = 1, . . . , n − t .

In particular for I ⊂ S one has depth I ≥ depth S/I + 1.

It is not known whether sdepth I = sdepth S/I + 1.

Theorem (Floystad, H) sdepth Zk (M) ≥ k for all k .
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G.Floystad, J. Herzog, Gröbner bases of syzygies and
Stanley depth.



J.Herzog, M.Vladiou, X.Zheng, How to compute the Stanley
depth of a monomial ideal, J. Algebra 322 (2009),
3151–3169.

J. Herzog, A. SoleymanJahan and S. Yassemi, Stanley
decompositions and partitionable simplicial complexes. J.
Algebr. Comb. 27, 113125 (2008).

J. Herzog, A. Soleyman Jahan, X. Zheng, Skeletons of
monomial ideals, Math. Nachr. 283 (2010), 14031408.

R. Okazaki, K. Yanagawa, Alexander duality and Stanley
depth of multigraded modules.

D. Popescu, Stanley depth of multigraded modules, J.
Algebra 321(2009), 2782-2797.

Y. Shen, Stanley depth of complete intersection monomial
ideals and upper-discrete partitions, J. Algebra 321 (2009),
12851292.

R.Stanley, Linear Diophantine equations and local
cohomology, Inventiones Mathematicae 68, (1982),
175–193.


	The conjecture
	Known cases
	How to compute the Stanley depth
	Upper and lower bounds
	Stanley depth for syzygies

