

Combinatorics of Affine Crystals and Affine Schubert Calculus

Anne Schilling

Department of Mathematics University of California at Davis

Seminaire Lotharingien 66, Ellwangen, March 6-9, 2011

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

- Lecture 1: Crystal bases, energy function
- Lecture 2: Applications of affine crystals (Kirillov–Reshetikhin crystals, charge, Demazure crystals, nonsymmetric Macdonald polynomials)
- Lecture 3: k-Schur functions and affine Schubert calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Affine Schubert calculus

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Crystals

- Affine crystals
- **KR crystals**
- **Perfectness**
- **Demazure crystals**
- Charge
- Affine Schubert calculus

Affine Schubert calculus

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Crystals

- **Affine crystals**
- **KR crystals**
- Perfectness
- **Demazure crystals**
- Charge
- Affine Schubert calculus

Overview

Drinfeld and Jimbo ~ 1984: independently introduced quantum groups U_q(g)

• Kashiwara \sim 1990: crystal bases, bases for $U_q(\mathfrak{g})$ -modules as $q \rightarrow 0$ combinatorial approach

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Lusztig ~ 1990: canonical bases geometric approach

Overview

- Drinfeld and Jimbo ~ 1984: independently introduced quantum groups U_q(g)
- Kashiwara ~ 1990: crystal bases, bases for U_q(g)-modules as q → 0 combinatorial approach

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Lusztig ~ 1990: canonical bases geometric approach

Overview

- Drinfeld and Jimbo ~ 1984: independently introduced quantum groups U_q(g)
- Kashiwara ~ 1990: crystal bases, bases for U_q(g)-modules as q → 0 combinatorial approach

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Lusztig ~ 1990: canonical bases geometric approach

Applications in.....

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

representation theory → tensor product decomposition solvable lattice models \rightsquigarrow one point functions conformal field theory \rightarrow characters number theory \rightarrow modular forms Bethe Ansatz \sim fermionic formulas combinatorics \sim tableaux combinatorics, charge geometric representation theory \rightarrow geometric crystals topological invariant theory \sim knots and links

$U(\mathfrak{sl}_2)$

associative algebra over \mathbb{C} with 1 generated by e, f, h

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

with relations

$$[e, f] = h, \quad [h, e] = 2e, \quad [h, f] = -2f$$

 $U_q(\mathfrak{sl}_2)$

associative algebra over $\mathbb{C}(q)$ with 1 generated by $e, f, t = q^h, t^{-1} = q^{-h}$ with relations

$$[e, f] = rac{q^h - q^{-h}}{q - q^{-1}}$$
 $q^h e q^{-h} = q^2 e$
 $q^h f q^{-h} = q^{-2} f$

 $U_q(\mathfrak{sl}_2)$ yields $U(\mathfrak{sl}_2)$ as $q \to 1$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

$U(\mathfrak{sl}_2)$

associative algebra over \mathbb{C} with 1 generated by e, f, h

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 $f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

with relations

$$[e, f] = h$$
, $[h, e] = 2e$, $[h, f] = -2f$

$U_q(\mathfrak{sl}_2)$

associative algebra over $\mathbb{C}(q)$ with 1 generated by $e, f, t = q^h, t^{-1} = q^{-h}$ with relations

$$[e, f] = \frac{q^h - q^{-h}}{q - q^{-1}}$$
$$q^h e q^{-h} = q^2 e$$
$$q^h f q^{-h} = q^{-2} f$$

 $U_q(\mathfrak{sl}_2)$ yields $U(\mathfrak{sl}_2)$ as $q \to 1$.

◆ロト ◆課 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のへで

Finite dimensional representations of $U_q(\mathfrak{sl}_2)$ $V(\ell)$ is the $\ell + 1$ dimensional representation of $U_q(\mathfrak{sl}_2)$ with basis vectors u_0, u_1, \ldots, u_ℓ

action of $U_q(\mathfrak{sl}_2)$

$$tu_k = q^{\ell-2k}u_k$$
$$eu_k = [\ell - k + 1]u_{k-1}$$
$$fu_k = [k+1]u_{k+1}$$

Note $u_k = f^{(k)}u_0 = e^{(\ell-k)}u_\ell$. Notation

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}} \qquad [n]! = [1][2][3] \cdots [n]$$
$$f^{(n)} = f^n / [n]! \qquad e^{(n)} = e^n / [n]!$$

Finite dimensional representations of $U_q(\mathfrak{sl}_2)$

 $V(\ell)$ is the $\ell + 1$ dimensional representation of $U_q(\mathfrak{sl}_2)$ with basis vectors u_0, u_1, \ldots, u_ℓ action of $U_q(\mathfrak{sl}_2)$

$$tu_k = q^{\ell-2k}u_k$$

$$eu_k = [\ell - k + 1]u_{k-1}$$

$$fu_k = [k+1]u_{k+1}$$

Note $u_k = f^{(k)}u_0 = e^{(\ell-k)}u_\ell$. Notation

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}} \qquad [n]! = [1][2][3] \cdots [n]$$
$$f^{(n)} = f^n / [n]! \qquad e^{(n)} = e^n / [n]!$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Finite dimensional representations of $U_{\alpha}(\mathfrak{sl}_2)$

 $V(\ell)$ is the $\ell + 1$ dimensional representation of $U_q(\mathfrak{sl}_2)$ with basis vectors u_0, u_1, \ldots, u_ℓ action of $U_q(\mathfrak{sl}_2)$

$$tu_k = q^{\ell-2k}u_k$$

$$eu_k = [\ell - k + 1]u_{k-1}$$

$$fu_k = [k+1]u_{k+1}$$

Note $u_k = f^{(k)} u_0 = e^{(\ell - k)} u_\ell$. Notation

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}} \qquad [n]! = [1][2][3] \cdots [n]!$$
$$f^{(n)} = f^n / [n]! \qquad e^{(n)} = e^n / [n]!$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣|||の��

The representation theory of \mathfrak{g} is the same as the representation theory of $U_q(\mathfrak{g})$.

M integrable highest weight module of U(g)

$$M = \bigoplus_{\lambda \in P} M_{\lambda}$$

 M^q integrable highest weight module of $U_q(\mathfrak{g})$

$$M^q = \bigoplus_{\lambda \in P} M^q_{\lambda}$$

Then dim_{$\mathbb{C}(q)$} $M^q_{\lambda} = \dim_{\mathbb{C}} M_{\lambda}$.

character ch $M^q = \sum_{\lambda \in P} (\dim_{\mathbb{C}(q)} M^q_{\lambda}) e^{\lambda}$ independent of q**Crystal idea:** Take special point q = 0.

The representation theory of \mathfrak{g} is the same as the representation theory of $U_q(\mathfrak{g})$.

M integrable highest weight module of $U(\mathfrak{g})$

$$M = \bigoplus_{\lambda \in P} M_{\lambda}$$

 M^q integrable highest weight module of $U_q(\mathfrak{g})$

$$M^q = \bigoplus_{\lambda \in P} M^q_{\lambda}$$

Then dim_{$\mathbb{C}(q)$} $M^q_{\lambda} = \dim_{\mathbb{C}} M_{\lambda}$.

character $\operatorname{ch} M^q = \sum_{\lambda \in P} (\dim_{\mathbb{C}(q)} M^q_{\lambda}) e^{\lambda}$ independent of q**Crystal idea:** Take special point q = 0.

The representation theory of \mathfrak{g} is the same as the representation theory of $U_q(\mathfrak{g})$.

M integrable highest weight module of $U(\mathfrak{g})$

$$M = \bigoplus_{\lambda \in P} M_{\lambda}$$

 M^q integrable highest weight module of $U_q(\mathfrak{g})$

$$M^q = \bigoplus_{\lambda \in P} M^q_\lambda$$

Then $\dim_{\mathbb{C}(q)} M_{\lambda}^{q} = \dim_{\mathbb{C}} M_{\lambda}$.

character ch $M^q = \sum_{\lambda \in P} (\dim_{\mathbb{C}(q)} M^q_{\lambda}) e^{\lambda}$ independent of q**Crystal idea:** Take special point q = 0.

The representation theory of \mathfrak{g} is the same as the representation theory of $U_q(\mathfrak{g})$.

M integrable highest weight module of $U(\mathfrak{g})$

$$M = \bigoplus_{\lambda \in P} M_{\lambda}$$

 M^q integrable highest weight module of $U_q(\mathfrak{g})$

$$M^q = \bigoplus_{\lambda \in P} M^q_{\lambda}$$

Then $\dim_{\mathbb{C}(q)} M_{\lambda}^{q} = \dim_{\mathbb{C}} M_{\lambda}$.

character ch $M^q = \sum_{\lambda \in P} (\dim_{\mathbb{C}(q)} M^q_{\lambda}) e^{\lambda}$ independent of q**Crystal idea:** Take special point q = 0.

Crystal graph

ヘロト 人間 とくほとう ほとう

æ

Axiomatic Crystals

A $U_q(\mathfrak{g})$ -crystal is a nonempty set *B* with maps

wt:
$$B \to P$$

 $e_i, f_i: B \to B \cup \{\emptyset\}$ for all $i \in I$

satisfying

$$f_{i}(b) = b' \Leftrightarrow e_{i}(b') = b \qquad \text{if } b, b' \in B$$
$$wt(f_{i}(b)) = wt(b) - \alpha_{i} \qquad \text{if } f_{i}(b) \in B$$
$$\langle h_{i}, wt(b) \rangle = \varphi_{i}(b) - \varepsilon_{i}(b)$$
Write
$$b \qquad i \qquad b' \qquad \text{for } b' = f_{i}(b)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition

- B, B' crystals
- $B \otimes B'$ is $B \times B'$ as sets with

$$egin{aligned} &\operatorname{wt}(m{b}\otimesm{b}') = \operatorname{wt}(m{b}) + \operatorname{wt}(m{b}') \ &f_i(m{b}\otimesm{b}') = egin{cases} f_i(m{b})\otimesm{b}' & ext{if }arepsilon_i(m{b}) \geq arphi_i(m{b}') \ &m{b}\otimes f_i(m{b}') & ext{otherwise} \end{aligned}$$

Definition

- B, B' crystals
- $B \otimes B'$ is $B \times B'$ as sets with

$$egin{aligned} &\operatorname{wt}(m{b}\otimesm{b}') = \operatorname{wt}(m{b}) + \operatorname{wt}(m{b}') \ &f_i(m{b}\otimesm{b}') = egin{cases} f_i(m{b})\otimesm{b}' & ext{if }arepsilon_i(m{b}) \geq arphi_i(m{b}') \ &m{b}\otimes f_i(m{b}') & ext{otherwise} \end{aligned}$$

Definition

- B, B' crystals
- $B \otimes B'$ is $B \times B'$ as sets with

$$egin{aligned} &\operatorname{wt}(m{b}\otimesm{b}') = \operatorname{wt}(m{b}) + \operatorname{wt}(m{b}') \ &f_i(m{b}\otimesm{b}') = egin{cases} f_i(m{b})\otimesm{b}' & ext{if }arepsilon_i(m{b}) \geq arphi_i(m{b}') \ &m{b}\otimes f_i(m{b}') & ext{otherwise} \end{aligned}$$

Definition

- B, B' crystals
- $B \otimes B'$ is $B \times B'$ as sets with

$$egin{aligned} &\operatorname{wt}(m{b}\otimesm{b}') = \operatorname{wt}(m{b}) + \operatorname{wt}(m{b}') \ &f_i(m{b}\otimesm{b}') = egin{cases} f_i(m{b})\otimesm{b}' & ext{if }arepsilon_i(m{b}) \geq arphi_i(m{b}') \ &m{b}\otimes f_i(m{b}') & ext{otherwise} \end{aligned}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. Consider letters i and i + 1 in row reading word of the tableau
- **2.** "Bracket" pairs of the form (i + 1, i)
- **3.** Change last unbracketed *i* to an i + 1

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- 1. Consider letters i and i + 1 in row reading word of the tableau
- **2.** "Bracket" pairs of the form (i + 1, i)
- **3.** Change last unbracketed *i* to an i + 1

- 1. Consider letters i and i + 1 in row reading word of the tableau
- **2.** "Bracket" pairs of the form (i + 1, i)
- **3.** Change last unbracketed *i* to an i + 1

3 3 4 5 2 2 3 4 1 1 2 2 3

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1. Consider letters i and i + 1 in row reading word of the tableau
- **2.** "Bracket" pairs of the form (i + 1, i)
- **3.** Change last unbracketed *i* to an i + 1

3 3 4 5 2 2 3 4 1 1 2 2 3

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. Consider letters i and i + 1 in row reading word of the tableau
- **2.** "Bracket" pairs of the form (i + 1, i)
- **3.** Change last unbracketed *i* to an i + 1

3 3 4 5 2 2 3 4 1 1 2 2 3 ((· · ·)) (· · · ·)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. Consider letters i and i + 1 in row reading word of the tableau
- **2.** "Bracket" pairs of the form (i + 1, i)
- **3.** Change last unbracketed *i* to an i + 1

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

Kashiwara–Nakashima tableaux

embed
$$B(\lambda) \hookrightarrow B(\lambda_1^t) \otimes \cdots \otimes B(\lambda_{\lambda_1}^t) \hookrightarrow B()^{\otimes |\lambda|}$$

Type
$$A_r$$
: $1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{r-1} r \xrightarrow{r} r+1$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- strictly increasing in columns
- weakly increasing in rows

Kashiwara–Nakashima tableaux

embed
$$B(\lambda) \hookrightarrow B(\lambda_1^t) \otimes \cdots \otimes B(\lambda_{\lambda_1}^t) \hookrightarrow B()^{\otimes |\lambda|}$$

Type
$$A_r$$
: 1 $\xrightarrow{1}$ 2 $\xrightarrow{2}$ \cdots $\xrightarrow{r-1}$ \xrightarrow{r} $\xrightarrow{r+1}$

Example

Type A₃

- strictly increasing in columns
- weakly increasing in rows

Kashiwara–Nakashima tableaux

embed
$$B(\lambda) \hookrightarrow B(\lambda_1^t) \otimes \cdots \otimes B(\lambda_{\lambda_1}^t) \hookrightarrow B()^{\otimes |\lambda|}$$

Type
$$A_r$$
: 1 $\xrightarrow{1}$ 2 $\xrightarrow{2}$ \cdots $\xrightarrow{r-1}$ \xrightarrow{r} $\xrightarrow{r+1}$

Example

Type A₃

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- strictly increasing in columns
- weakly increasing in rows

Kashiwara–Nakashima tableauxembed $B(\lambda) \hookrightarrow B(\lambda_1^t) \otimes \cdots \otimes B(\lambda_{\lambda_1}^t) \hookrightarrow B()^{\otimes |\lambda|}$ Type C_r : $1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{r-1} r \xrightarrow{r} -r \xrightarrow{r-1} \cdots \xrightarrow{1} -1$

Example

- alphabet $[\bar{r}] := \{1 < 2 < \ldots < r < \bar{r} < \bar{r} 1 < \ldots < \bar{1}\}$
- strictly increasing in columns
- for column $b = b(k) \dots b(1)$ there is no pair (z, \overline{z}) s.t.:

$$z = b(p), \qquad \overline{z} = b(q), \qquad q - p \le k - z.$$

more complicated rules for rows

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Kashiwara–Nakashima tableaux embed $B(\lambda) \hookrightarrow B(\lambda_1^t) \otimes \cdots \otimes B(\lambda_{\lambda_*}^t) \hookrightarrow B([-])^{\otimes |\lambda|}$

Type C_r : $1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{r-1} r \xrightarrow{r} r \xrightarrow{r-1} \cdots \xrightarrow{1} r$

Example

- alphabet $[\bar{r}] := \{1 < 2 < \ldots < r < \bar{r} < \bar{r} 1 < \ldots < \bar{1}\}$
- strictly increasing in columns
- for column $b = b(k) \dots b(1)$ there is no pair (z, \overline{z}) s.t.:

$$z = b(p)$$
, $\overline{z} = b(q)$, $q - p \le k - z$.

more complicated rules for rows

<□> <@> < E> < E> E のQ@
Kashiwara–Nakashima tableaux embed $B(\lambda) \hookrightarrow B(\lambda_1^t) \otimes \cdots \otimes B(\lambda_{\lambda_*}^t) \hookrightarrow B([-])^{\otimes |\lambda|}$

Type C_r : $1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{r-1} x \xrightarrow{r} x \xrightarrow{r-1} \cdots \xrightarrow{r-1} x$

Example

- alphabet $[\bar{r}] := \{1 < 2 < \ldots < r < \bar{r} < \overline{r-1} < \ldots < \bar{1}\}$
- strictly increasing in columns
- for column $b = b(k) \dots b(1)$ there is no pair (z, \overline{z}) s.t.:

$$z = b(p), \qquad \overline{z} = b(q), \qquad q - p \le k - z.$$

more complicated rules for rows

▲□▶▲□▶▲□▶▲□▶ □ のへぐ

Kashiwara–Nakashima tableaux embed $B(\lambda) \hookrightarrow B(\lambda_1^t) \otimes \cdots \otimes B(\lambda_{\lambda_*}^t) \hookrightarrow B([-])^{\otimes |\lambda|}$

Type C_r : $1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{r-1} r \xrightarrow{r} r \xrightarrow{r-1} \cdots \xrightarrow{1} r$

Example

- alphabet $[\bar{r}] := \{1 < 2 < \ldots < r < \bar{r} < \bar{r} 1 < \ldots < \bar{1}\}$
- strictly increasing in columns
- for column $b = b(k) \dots b(1)$ there is no pair (z, \overline{z}) s.t.:

 $z = b(p), \qquad \overline{z} = b(q), \qquad q - p \le k - z.$

more complicated rules for rows

・ロト・雪ト・ヨト・ヨー のへで

$\begin{array}{c} \textbf{Kashiwara-Nakashima tableaux} \\ \text{embed } B(\lambda) \hookrightarrow B(\lambda_1^t) \otimes \cdots \otimes B(\lambda_{\lambda_*}^t) \hookrightarrow B(\square)^{\otimes |\lambda|} \end{array}$

Type C_r : $1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{r-1} r \xrightarrow{r} r \xrightarrow{r-1} \cdots \xrightarrow{1} r$

Example

- alphabet $[\bar{r}] := \{1 < 2 < ... < r < \bar{r} < \bar{r} 1 < ... < \bar{1}\}$
- strictly increasing in columns
- for column $b = b(k) \dots b(1)$ there is no pair (z, \overline{z}) s.t.:

$$z = b(p), \qquad \overline{z} = b(q), \qquad q - p \leq k - z.$$

more complicated rules for rows

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Kashiwara–Nakashima tableaux embed $B(\lambda) \hookrightarrow B(\lambda_1^t) \otimes \cdots \otimes B(\lambda_{\lambda_*}^t) \hookrightarrow B([-])^{\otimes |\lambda|}$

Type C_r : $1 \xrightarrow{1} 2 \xrightarrow{2} \cdots \xrightarrow{r-1} r \xrightarrow{r} r \xrightarrow{r-1} \cdots \xrightarrow{1} r$

Example

- alphabet $[\bar{r}] := \{1 < 2 < \ldots < r < \bar{r} < \overline{r-1} < \ldots < \bar{1}\}$
- strictly increasing in columns
- for column $b = b(k) \dots b(1)$ there is no pair (z, \overline{z}) s.t.:

$$z = b(p), \qquad \overline{z} = b(q), \qquad q - p \leq k - z.$$

more complicated rules for rows

Sage Days 7 at IPAM

with Nicolas Thiéry started porting crystal code to SAGE

Dan Bump uses crystals in number theory

イロト 不良 とくほ とくほう 二日

Thematic tutorials

Crystals: http://www.math.ucdavis.edu/~anne/sage/lie/crystals.html Affine crystals: http://www.math.ucdavis.edu/~anne/sage/lie/affine.crystals.html

Sage Days 7 at IPAM

with Nicolas Thiéry started porting crystal code to SAGE Dan Bump uses crystals in number theory

イロト 不良 とくほ とくほう 二日

Thematic tutorials

Crystals: http://www.math.ucdavis.edu/~anne/sage/lie/crystals.html Affine crystals: http://www.math.ucdavis.edu/~anne/sage/lie/affine.crystals.html

Crystals

Affine crystals

KR crystals

Perfectness

Demazure crystals

Charge

Affine Schubert calculus

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Charge

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $\begin{array}{c} U_q'(\widehat{\mathfrak{sl}}_2) \\ P = \mathbb{Z}\Lambda_0 \oplus \mathbb{Z}\Lambda_1 \oplus \delta, \ P' = P/\mathbb{Z}\delta \\ U_q'(\widehat{\mathfrak{sl}}_2) & \longrightarrow & U_q(\mathfrak{sl}_2) \\ \end{array}$ $\begin{array}{c} e_0, f_1 & \mapsto & f \\ e_1, f_0 & \mapsto & e \\ t_0 & \mapsto & t^{-1} \\ t_1 & \mapsto & t \end{array}$

2-dim representation $V = Ku_0 \oplus Ku_1$

$$q^{h}u_{0} = q^{\langle h, \Lambda_{1} - \Lambda_{0} \rangle}u_{0}$$
$$q^{h}u_{1} = q^{\langle h, \Lambda_{0} - \Lambda_{1} \rangle}u_{1}$$
$$e_{0}u_{k} = f_{1}u_{k} = u_{k+1}$$
$$e_{1}u_{k} = f_{0}u_{k} = u_{k-1}$$

crystal graph

Charge

・ロ・・日・・ヨ・・ヨ・ ヨ・ シタや

 $\begin{array}{c} U_q'(\widehat{\mathfrak{sl}}_2)\\ P = \mathbb{Z}\Lambda_0 \oplus \mathbb{Z}\Lambda_1 \oplus \delta, \ P' = P/\mathbb{Z}\delta\\ U_q'(\widehat{\mathfrak{sl}}_2) & \longrightarrow & U_q(\mathfrak{sl}_2)\\ e_0, f_1 & \mapsto & f\\ e_1, f_0 & \mapsto & e\\ t_0 & \mapsto & t^{-1}\\ t_1 & \mapsto & t\end{array}$

2-dim representation $V = Ku_0 \oplus Ku_1$

$$q^{h}u_{0} = q^{\langle h, \Lambda_{1} - \Lambda_{0}
angle}u_{0}$$

 $q^{h}u_{1} = q^{\langle h, \Lambda_{0} - \Lambda_{1}
angle}u_{1}$
 $e_{0}u_{k} = f_{1}u_{k} = u_{k+1}$
 $e_{1}u_{k} = f_{0}u_{k} = u_{k-1}$

crystal graph

Charge

 $\begin{array}{c} U_q'(\widehat{\mathfrak{sl}}_2)\\ P = \mathbb{Z}\Lambda_0 \oplus \mathbb{Z}\Lambda_1 \oplus \delta, \ P' = P/\mathbb{Z}\delta\\ U_q'(\widehat{\mathfrak{sl}}_2) & \longrightarrow & U_q(\mathfrak{sl}_2)\\ e_0, f_1 & \mapsto & f\\ e_1, f_0 & \mapsto & e\\ t_0 & \mapsto & t^{-1}\\ t_1 & \mapsto & t\end{array}$

2-dim representation $V = Ku_0 \oplus Ku_1$

$$q^{h}u_{0} = q^{\langle h, \Lambda_{1} - \Lambda_{0} \rangle}u_{0}$$
$$q^{h}u_{1} = q^{\langle h, \Lambda_{0} - \Lambda_{1} \rangle}u_{1}$$
$$e_{0}u_{k} = f_{1}u_{k} = u_{k+1}$$
$$e_{1}u_{k} = f_{0}u_{k} = u_{k-1}$$

crystal graph

Why affine crystals?

• energy function $E: B_N \otimes \cdots \otimes B_1 \to \mathbb{Z}$

 $E(e_i(b)) = E(b) \quad \text{for } 1 \le i \le n$ $E(e_0(b)) = E(b) - 1$

- if e_0 never acts on rightmost step in $b = b_N \otimes \cdots \otimes b_1$.
- one-dimensional sums

$$X(\lambda,B) = \sum_{b\in\mathcal{P}(\lambda,B)} q^{E(b)}$$

characters of conformal field theories as limits of X(λ, B)

▲□▶▲□▶▲□▶▲□▶ □ のへで

Why affine crystals?

• energy function $E: B_N \otimes \cdots \otimes B_1 \to \mathbb{Z}$

$$\begin{split} E(e_i(b)) &= E(b) \quad \text{ for } 1 \leq i \leq n \\ E(e_0(b)) &= E(b) - 1 \end{split}$$

if e_0 never acts on rightmost step in $b = b_N \otimes \cdots \otimes b_1$.

one-dimensional sums

$$X(\lambda,B) = \sum_{b\in\mathcal{P}(\lambda,B)} q^{E(b)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

characters of conformal field theories as limits of X(λ, B)

Why affine crystals?

• energy function $E: B_N \otimes \cdots \otimes B_1 \to \mathbb{Z}$

$$\begin{split} E(e_i(b)) &= E(b) \quad \text{ for } 1 \leq i \leq n \\ E(e_0(b)) &= E(b) - 1 \end{split}$$

if e_0 never acts on rightmost step in $b = b_N \otimes \cdots \otimes b_1$.

one-dimensional sums

$$X(\lambda, B) = \sum_{b \in \mathcal{P}(\lambda, B)} q^{E(b)}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

characters of conformal field theories as limits of X(λ, B)

Why affine crystals?

• energy function $E: B_N \otimes \cdots \otimes B_1 \to \mathbb{Z}$

$$\begin{split} E(e_i(b)) &= E(b) \quad \text{ for } 1 \leq i \leq n \\ E(e_0(b)) &= E(b) - 1 \end{split}$$

if e_0 never acts on rightmost step in $b = b_N \otimes \cdots \otimes b_1$.

one-dimensional sums

$$X(\lambda, B) = \sum_{b \in \mathcal{P}(\lambda, B)} q^{E(b)}$$

characters of conformal field theories as limits of X(λ, B)

Energy function

Definition

Local energy function $H: B \otimes B \to \mathbb{Z}$

$$H(e_i(b \otimes b')) = H(b \otimes b') \quad \text{if } i \neq 0$$

$$H(e_0(b \otimes b')) = H(b \otimes b') + \begin{cases} 1 & \text{if } e_0 \text{ acts right} \\ -1 & \text{if } e_0 \text{ acts left} \end{cases}$$

Definition

Global energy function $E: B^{\otimes N} \to \mathbb{Z}$

$$E(b_N\otimes\cdots\otimes b_1)=\sum_{N>i\geq 1}i\cdot H(b_{i+1}\otimes b_i)$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣べ⊙

Energy function

Definition

Local energy function $H: B \otimes B \to \mathbb{Z}$

$$H(e_i(b \otimes b')) = H(b \otimes b') \quad \text{if } i \neq 0$$

$$H(e_0(b \otimes b')) = H(b \otimes b') + \begin{cases} 1 & \text{if } e_0 \text{ acts right} \\ -1 & \text{if } e_0 \text{ acts left} \end{cases}$$

Definition

Global energy function $E: B^{\otimes N} \to \mathbb{Z}$

$$E(b_N \otimes \cdots \otimes b_1) = \sum_{N > i \ge 1} i \cdot H(b_{i+1} \otimes b_i)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Example

Type
$$A_{n-1}$$
: $B = \{ 1, ..., n \}$

$$H(b\otimes b')=egin{cases} 1 & ext{if }b>b'\ 0 & ext{otherwise} \end{cases}$$

descents or inversions

$E(b_N \otimes \cdots \otimes b_1) = \sum_{N > i \ge 1} i \cdot H(b_{i+1} \otimes b_i)$ major index

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

Type
$$A_{n-1}$$
: $B = \{ 1, ..., n \}$

$$H(b\otimes b')=egin{cases} 1 & ext{if }b>b'\ 0 & ext{otherwise} \end{cases}$$

descents or inversions

$$E(b_N \otimes \cdots \otimes b_1) = \sum_{N > i \ge 1} i \cdot H(b_{i+1} \otimes b_i)$$
 major index

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Example

Type
$$A_{n-1}$$
: $B = \{[1], ..., [n]\}$

$$H(b\otimes b')=egin{cases} 1 & ext{if }b>b'\ 0 & ext{otherwise} \end{cases}$$

descents or inversions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

$$E(b_N \otimes \cdots \otimes b_1) = \sum_{N > i \ge 1} i \cdot H(b_{i+1} \otimes b_i)$$
 major index

$$b = 3 \otimes 2 \otimes 2 \otimes 1 \otimes 2$$

Example

Type
$$A_{n-1}$$
: $B = \{1, ..., n\}$

$$egin{aligned} \mathcal{H}(b\otimes b') = egin{cases} 1 & ext{if } b > b' \ 0 & ext{otherwise} \end{aligned}$$

descents or inversions

$$E(b_N \otimes \cdots \otimes b_1) = \sum_{N > i \ge 1} i \cdot H(b_{i+1} \otimes b_i)$$
 major index

$$b = 3 \otimes 2 \otimes 2 \otimes 1 \otimes 2$$
$$E(b) = 4 + \cdots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Example

Type
$$A_{n-1}$$
: $B = \{ 1, ..., n \}$

$$egin{aligned} \mathcal{H}(b\otimes b') = egin{cases} 1 & ext{if } b > b' \ 0 & ext{otherwise} \end{aligned}$$

descents or inversions

$$E(b_N \otimes \cdots \otimes b_1) = \sum_{N > i \ge 1} i \cdot H(b_{i+1} \otimes b_i)$$
 major index

$$b = 3 \otimes 2 \otimes 2 \otimes 1 \otimes 2$$
$$E(b) = 4 + 0 + \cdots$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ のへで

Example

Type
$$A_{n-1}$$
: $B = \{ 1, ..., n \}$

$$egin{aligned} \mathcal{H}(b\otimes b') = egin{cases} 1 & ext{if } b > b' \ 0 & ext{otherwise} \end{aligned}$$

descents or inversions

$$E(b_N \otimes \cdots \otimes b_1) = \sum_{N > i \ge 1} i \cdot H(b_{i+1} \otimes b_i)$$
 major index

$$b = 3 \otimes 2 \otimes 2 \otimes 1 \otimes 2$$
$$E(b) = 4 + 0 + 2 + \cdots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Example

Type
$$A_{n-1}$$
: $B = \{ 1, ..., n \}$

$$egin{aligned} \mathcal{H}(b\otimes b') = egin{cases} 1 & ext{if } b > b' \ 0 & ext{otherwise} \end{aligned}$$

descents or inversions

$$E(b_N \otimes \cdots \otimes b_1) = \sum_{N > i \ge 1} i \cdot H(b_{i+1} \otimes b_i)$$
 major index

$$b = 3 \otimes 2 \otimes 2 \otimes 1 \otimes 2$$
$$E(b) = 4 + 0 + 2 + 0$$

Energy function ... inhomogeneous case

We need the combinatorial *R*-matrix

$R: B_1 \otimes B_2 \rightarrow B_2 \otimes B_1$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- affine crystal isomorphism
- maps generators v₁ ⊗ v₂ → v₂ ⊗ v₁ (one-dimensional weight space)

Energy function ... inhomogeneous case

We need the combinatorial *R*-matrix

 $R: B_1 \otimes B_2 \rightarrow B_2 \otimes B_1$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- affine crystal isomorphism
- maps generators v₁ ⊗ v₂ → v₂ ⊗ v₁ (one-dimensional weight space)

Energy function ... inhomogeneous case

We need the combinatorial *R*-matrix

 $\textbf{\textit{R}}:\textbf{\textit{B}}_1\otimes \textbf{\textit{B}}_2\to \textbf{\textit{B}}_2\otimes \textbf{\textit{B}}_1$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- affine crystal isomorphism
- maps generators v₁ ⊗ v₂ → v₂ ⊗ v₁ (one-dimensional weight space)

Combinatorial *R*-matrix

Energy function

Definition

Local energy function $H: B_2 \otimes B_1 \to \mathbb{Z}$

$$H(e_i(b_2\otimes b_1))=H(b_2\otimes b_1)+egin{cases} -1 & ext{if }i=0 ext{ and } LL,\ 1 & ext{if }i=0 ext{ and } RR,\ 0 & ext{otherwise}. \end{cases}$$

Definition

Global energy function $D^R, D^L : B_N \otimes \cdots \otimes B_1 \to \mathbb{Z}$

$$H_{j,i}^R := H_i R_{i+1} R_{i+2} \cdots R_{j-1}$$
 and $H_{j,i}^L := H_{j-1} R_{j-2} R_{j-3} \cdots R_i$,

$$D^R := \sum_{N \ge j > i \ge 1} H_{j,i}$$
 and $D^L := \sum_{N \ge j > i \ge 1} H_{j,i}^L$

Set $D := D^L$.

Energy function

Definition

Local energy function $H: B_2 \otimes B_1 \to \mathbb{Z}$

$$H(e_i(b_2\otimes b_1))=H(b_2\otimes b_1)+egin{cases} -1 & ext{if }i=0 ext{ and } LL,\ 1 & ext{if }i=0 ext{ and } RR,\ 0 & ext{otherwise}. \end{cases}$$

Definition

Global energy function $D^R, D^L: B_N \otimes \cdots \otimes B_1 \to \mathbb{Z}$

$$H_{j,i}^R := H_i R_{i+1} R_{i+2} \cdots R_{j-1}$$
 and $H_{j,i}^L := H_{j-1} R_{j-2} R_{j-3} \cdots R_i$,

$$D^R := \sum_{N \geq j > i \geq 1} H_{j,i}$$
 and $D^L := \sum_{N \geq j > i \geq 1} H^L_{j,i}.$

Set $D := D^L$.

involution on classical crystals $S : B(\lambda) \rightarrow B(\lambda)$

- maps highest weight vector to lowest weight vector
- $S(e_i) = f_{i^*}$ and $S(f_i) = e_{i^*}$ where $\alpha_{i^*} := -\omega_0(\alpha_i)$.

Example

Type A_n : $i^* = n + 1 - i$ Type C_n : $i^* = i$

・ロト・西ト・ヨト・ヨー うへぐ

involution on classical crystals $S : B(\lambda) \rightarrow B(\lambda)$

maps highest weight vector to lowest weight vector

• $S(e_i) = f_{i^*}$ and $S(f_i) = e_{i^*}$ where $\alpha_{i^*} := -\omega_0(\alpha_i)$.

Example

Type A_n : $i^* = n + 1 - i$ Type C_n : $i^* = i$

involution on classical crystals $S : B(\lambda) \rightarrow B(\lambda)$

maps highest weight vector to lowest weight vector

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• $S(e_i) = f_{i^*}$ and $S(f_i) = e_{i^*}$ where $\alpha_{i^*} := -\omega_0(\alpha_i)$.

Example

Type A_n : $i^* = n + 1 - i$ Type C_n : $i^* = i$

involution on classical crystals $S : B(\lambda) \rightarrow B(\lambda)$

maps highest weight vector to lowest weight vector

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• $S(e_i) = f_{i^*}$ and $S(f_i) = e_{i^*}$ where $\alpha_{i^*} := -\omega_0(\alpha_i)$.

Example

Type A_n : $i^* = n + 1 - i$ Type C_n : $i^* = i$

involution on classical crystals $S: B(\lambda) \rightarrow B(\lambda)$

maps highest weight vector to lowest weight vector

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

•
$$S(e_i) = f_{i^*}$$
 and $S(f_i) = e_{i^*}$ where $\alpha_{i^*} := -\omega_0(\alpha_i)$.

Example

Type A_n : $i^* = n + 1 - i$ Type C_n : $i^* = i$

same as Schützenberger involution in type A

involution on classical crystals $S: B(\lambda) \rightarrow B(\lambda)$

maps highest weight vector to lowest weight vector

•
$$S(e_i) = f_{i^*}$$
 and $S(f_i) = e_{i^*}$ where $\alpha_{i^*} := -\omega_0(\alpha_i)$.

Example

・ロン ・ 四 と ・ 回 と ・ 回 と

э.

Affine Lusztig involution

Extend the Lusztig involution to affine crystal by:

$$ilde{S}(e_0)=f_0$$
 and $ilde{S}(f_0)=e_0.$

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

E 990

Affine Lusztig involution

Extend the Lusztig involution to affine crystal by:

$$ilde{S}(e_0)=\mathit{f}_0$$
 and $ilde{S}(\mathit{f}_0)=\mathit{e}_0.$

Affine Schubert calculus

Left and right energy

Henriques-Kamnitzer commutor

$$egin{aligned} & \mathcal{B}(\lambda)\otimes\mathcal{B}(\mu) o\mathcal{B}(\mu)\otimes\mathcal{B}(\lambda)\ & b\otimes b'\mapsto\mathcal{S}(\mathcal{S}(b')\otimes\mathcal{S}(b)) \end{aligned}$$

Combinatorial R-matrix

 $egin{aligned} & B_2\otimes B_1 o B_1\otimes B_2 \ & b\otimes b'\mapsto ilde{S}(ilde{S}(b')\otimes ilde{S}(b)) \end{aligned}$

Theorem (Lenart, S., Tingley 2011)

Define

$$\tau: \quad B_N \otimes \cdots \otimes B_1 \to B_1 \otimes \cdots \otimes B_N$$
$$b_N \otimes \cdots \otimes b_1 \mapsto S(b_1) \otimes \cdots \otimes S(b_N)$$

Then

$$D^R(b) = D^L(\tau(b))$$

Left and right energy

Henriques-Kamnitzer commutor

$$egin{aligned} & \mathcal{B}(\lambda)\otimes\mathcal{B}(\mu)
ightarrow\mathcal{B}(\mu)\otimes\mathcal{B}(\lambda)\ & b\otimes b'\mapsto\mathcal{S}(\mathcal{S}(b')\otimes\mathcal{S}(b)) \end{aligned}$$

Combinatorial *R*-matrix

$$\tau: \quad B_N \otimes \cdots \otimes B_1 \to B_1 \otimes \cdots \otimes B_N$$
$$b_N \otimes \cdots \otimes b_1 \mapsto S(b_1) \otimes \cdots \otimes S(b_N)$$

$$D^R(b) = D^L(\tau(b)).$$

Left and right energy

Henriques-Kamnitzer commutor

$$egin{aligned} & {\mathcal B}(\lambda)\otimes {\mathcal B}(\mu) o {\mathcal B}(\mu)\otimes {\mathcal B}(\lambda)\ & b\otimes b'\mapsto {\mathcal S}({\mathcal S}(b')\otimes {\mathcal S}(b)) \end{aligned}$$

Combinatorial R-matrix

$$egin{aligned} B_2\otimes B_1 &
ightarrow B_1\otimes B_2 \ b\otimes b' &\mapsto ilde{S}(ilde{S}(b')\otimes ilde{S}(b)) \end{aligned}$$

Theorem (Lenart, S., Tingley 2011)

Define

$$\tau: \quad B_N \otimes \cdots \otimes B_1 \to B_1 \otimes \cdots \otimes B_N$$
$$b_N \otimes \cdots \otimes b_1 \mapsto S(b_1) \otimes \cdots \otimes S(b_N)$$

Then

$$D^R(b) = D^L(\tau(b)).$$

Outline

- Lecture 1: Crystal bases, energy function
- Lecture 2: Applications of affine crystals (Kirillov–Reshetikhin crystals, charge, Demazure crystals, nonsymmetric Macdonald polynomials)
- Lecture 3: k-Schur functions and affine Schubert calculus

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Crystals

Affine crystals

KR crystals

Perfectness

Demazure crystals

Charge

Affine Schubert calculus

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

${\mathfrak g}$ Lie algebra/Kac–Moody Lie algebra

- Crystal bases are combinatorial bases for $U_q(\mathfrak{g})$ as $q \rightarrow 0$
- Affine finite crystals:
 - appear in 1d sums of exactly solvable lattice models
 - path realization of integrable highest weight $U_q(g)$ -modules
 - fermionic formulas, generalized Kostka polynomials, symmetric functions
 - fusion/quantum cohomology structure constants
- Irreducible finite-dimensional affine U_q(g)-modules classified by Chari-Pressley via Drinfeld polynomials
- HKOTY conjectured that the Kirillov-Reshetikhin modules W^{r,s} have crystal bases

 ${\mathfrak g}$ Lie algebra/Kac–Moody Lie algebra

- Crystal bases are combinatorial bases for $U_q(\mathfrak{g})$ as $q \to 0$
- Affine finite crystals:
 - · appear in 1d sums of exactly solvable lattice models
 - path realization of integrable highest weight $U_q(g)$ -modules
 - fermionic formulas, generalized Kostka polynomials, symmetric functions
 - fusion/quantum cohomology structure constants
- Irreducible finite-dimensional affine U_q(g)-modules classified by Chari-Pressley via Drinfeld polynomials
- HKOTY conjectured that the Kirillov-Reshetikhin modules *W^{r,s}* have crystal bases

 ${\mathfrak g}$ Lie algebra/Kac–Moody Lie algebra

- Crystal bases are combinatorial bases for $U_q(\mathfrak{g})$ as $q \to 0$
- Affine finite crystals:
 - · appear in 1d sums of exactly solvable lattice models
 - path realization of integrable highest weight $U_q(g)$ -modules
 - fermionic formulas, generalized Kostka polynomials, symmetric functions
 - fusion/quantum cohomology structure constants
- Irreducible finite-dimensional affine U_q(g)-modules classified by Chari-Pressley via Drinfeld polynomials
- HKOTY conjectured that the Kirillov-Reshetikhin modules W^{r,s} have crystal bases

 ${\mathfrak g}$ Lie algebra/Kac–Moody Lie algebra

- Crystal bases are combinatorial bases for $U_q(\mathfrak{g})$ as $q \to 0$
- Affine finite crystals:
 - · appear in 1d sums of exactly solvable lattice models
 - path realization of integrable highest weight $U_q(g)$ -modules
 - fermionic formulas, generalized Kostka polynomials, symmetric functions
 - fusion/quantum cohomology structure constants
- Irreducible finite-dimensional affine U_q(g)-modules classified by Chari-Pressley via Drinfeld polynomials
- HKOTY conjectured that the Kirillov-Reshetikhin modules $W^{r,s}$ have crystal bases

Progress on Kirillov-Reshetikhin crystals ...

• Existence of KR crystals

- Existence of KR crystals for nonexceptional types
 → joint with Masato Okado (arXiv:0706.2224)
- Combinatorial models for KR crystals
 - Type $A \rightarrow$ Shimozono
 - Types $D_n^{(1)}$, $B_n^{(1)}$, $A_{2n-1}^{(2)}$ \rightarrow AS (arXiv:0704.2046)
 - Types $C_n^{(1)}$, $A_{2n}^{(2)}$, $D_{n+1}^{(2)}$ \rightarrow joint with Ghislain Fourier and Masato Okado (arXiv:0810.5067)
 - Type *E*⁽¹⁾,...
 - → joint with Brant Jones (arXiv:0909.2442)
- Perfectness

Progress on Kirillov-Reshetikhin crystals ...

Existence of KR crystals

Existence of KR crystals for nonexceptional types
 → joint with Masato Okado (arXiv:0706.2224)

Combinatorial models for KR crystals

- Type $A \rightarrow$ Shimozono
- Types $D_n^{(1)}$, $B_n^{(1)}$, $A_{2n-1}^{(2)}$ \rightarrow AS (arXiv:0704.2046)
- Types $C_n^{(1)}$, $A_{2n}^{(2)}$, $D_{n+1}^{(2)}$ \rightarrow joint with Ghislain Fourier and Masato Okado (arXiv:0810.5067)
- Type *E*⁽¹⁾₆,...
 - \rightarrow joint with Brant Jones (arXiv:0909.2442)

• Perfectness

(ロ) (同) (三) (三) (三) (三) (○) (○)

Progress on Kirillov-Reshetikhin crystals ...

Existence of KR crystals

Existence of KR crystals for nonexceptional types
 → joint with Masato Okado (arXiv:0706.2224)

Combinatorial models for KR crystals

- Type $A \rightarrow$ Shimozono
- Types $D_n^{(1)}$, $B_n^{(1)}$, $A_{2n-1}^{(2)}$ \rightarrow AS (arXiv:0704.2046)
- Types $C_n^{(1)}$, $A_{2n}^{(2)}$, $D_{n+1}^{(2)}$ \rightarrow joint with Ghislain Fourier and Masato Okado (arXiv:08)10.5067)
- Type *E*⁽¹⁾₆,...
 - \rightarrow joint with Brant Jones (arXiv:0909.2442)

Perfectness

Perfectness of all nonexceptional KR crystals

 → joint with Ghislain Fourier and Masato Okado
 (arXiv:0811.1604)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

...and applications ...

- Demazure crystals and nonsymmetric Macdonald polynomials
 - Sanderson, Ion

 - Interpretation of energy function as affine grading
 → joint with Peter Tingley
- Charge and energy
 - Nakayashiki and Yamada in type A
 - Definition of charge for type *C* from Ram-Yip formula, relation to crystal energy

 \rightarrow joint with Cristian Lenart

...and applications ...

- Demazure crystals and nonsymmetric Macdonald polynomials
 - Sanderson, Ion

 - Interpretation of energy function as affine grading
 → joint with Peter Tingley

Charge and energy

- Nakayashiki and Yamada in type A
- Definition of charge for type *C* from Ram-Yip formula, relation to crystal energy

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 \rightarrow joint with Cristian Lenart

Existence of Kirillov-Reshetikhin crystals

Theorem (OS 07)

The Kirillov-Reshetikhin crystals B^{r,s} exist for nonexceptional types.

Proof uses results on characters by Nakajima and Hernandez.

Combinatorial models for these crystals can be constructed using the classical decompositions

$$B^{r,s} \cong igoplus_{\Lambda} B(\Lambda)$$

and the automorphism σ (*i* special node $\sigma(i) = 0$)

$$f_0 = \sigma^{-1} \circ f_i \circ \sigma$$
$$e_0 = \sigma^{-1} \circ e_i \circ \sigma$$

or using the virtual crystal construction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Existence of Kirillov-Reshetikhin crystals

Theorem (OS 07)

The Kirillov-Reshetikhin crystals B^{r,s} exist for nonexceptional types.

Combinatorial models for these crystals can be constructed using the classical decompositions

$$B^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$

and the automorphism σ (*i* special node $\sigma(i) = 0$)

$$f_0 = \sigma^{-1} \circ f_i \circ \sigma$$
$$e_0 = \sigma^{-1} \circ e_i \circ \sigma$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

or using the virtual crystal construction

tals Perfectness

Demazure crystals

crystals Charge

Affine Schubert calculus

Dynkin diagrams for nonexceptional types

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 - のへで

als Perfectness

Demazure crystals

crystals Charge

Affine Schubert calculus

Dynkin diagrams for nonexceptional types

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ・豆 - のへで

Demazure crystals

Charge

Affine Schubert calculus

3

Perfectness

Affine crystals

KR crystals

$$B^{r,s} \cong B(s^r)$$
 as $\{1, 2, \dots, n-1\}$ -crystal

Demazure crystals

Charge

Affine Schubert calculus

= 900

Perfectness

Affine crystals

KR crystals

$$B^{r,s} \cong B(s^r)$$
 as $\{1, 2, \dots, n-1\}$ -crystal

Demazure crystals

Charge

Affine Schubert calculus

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Perfectness

Affine crystals

KR crystals

$$B^{r,s} \cong B(s^r)$$
 as $\{1, 2, \dots, n-1\}$ -crystal

$$\begin{array}{cccc} B^{r,s} & \stackrel{\mathrm{pr}}{\longrightarrow} & B^{r,s} \\ f_{a} & & \downarrow^{f_{a+1}} \\ B^{r,s} & \stackrel{\mathrm{pr}}{\longrightarrow} & B^{r,s} \\ \langle h_{a+1} \, , \, \operatorname{wt}(\operatorname{pr}(b)) \rangle = \langle h_{a} \, , \, \operatorname{wt}(b) \rangle \end{array}$$

Demazure crystals

Charge

Affine Schubert calculus

Perfectness

Affine crystals

KR crystals

$$B^{r,s} \cong B(s^r)$$
 as $\{1, 2, \dots, n-1\}$ -crystal

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

Example

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

Example

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

Example

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

Example

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

Example

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example

Classical crystal: $B(s^r)$ set of Young tableaux of shape (s^r) over alphabet $\{1, 2, ..., n\}$

Promotion:

- Remove righmost *n*, play jeu de taquin and repeat.
- Increase all entries by one and place 1's in the empty spaces.

Example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで
Types $B_n^{(1)}$, $D_n^{(1)}$, $A_{2n-1}^{(2)}$

$$B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$
 as $\{1, 2, \dots, n\}$ -crystal

where Λ is obtained from $s\Lambda_r$ by removing

Dynkin diagram automorphism σ interchanging 0 and 1

 $f_0 = \sigma \circ f_1 \circ \sigma$ $e_0 = \sigma \circ e_1 \circ \sigma$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (OS 07)

Crystals Affine crystals KR crystals Perfectness Demazure crystals Charge Affine Schubert calculus

Types $B_n^{(1)}$, $D_n^{(1)}$, $A_{2n-1}^{(2)}$

$$B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$
 as $\{1, 2, \dots, n\}$ -crystal

where Λ is obtained from $s\Lambda_r$ by removing

Dynkin diagram automorphism σ interchanging 0 and 1

$$f_0 = \sigma \circ f_1 \circ \sigma$$
$$e_0 = \sigma \circ e_1 \circ \sigma$$

Theorem (OS 07)

Crystals Affine crystals KR crystals Perfectness Demazure crystals Charge Affine Schubert calculus

Types $B_n^{(1)}$, $D_n^{(1)}$, $A_{2n-1}^{(2)}$

$$B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$
 as $\{1, 2, \dots, n\}$ -crystal

where Λ is obtained from $s\Lambda_r$ by removing

Dynkin diagram automorphism σ interchanging 0 and 1

$$f_0 = \sigma \circ f_1 \circ \sigma$$
$$e_0 = \sigma \circ e_1 \circ \sigma$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Theorem (OS 07)

$$B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$
 as $\{1, 2, \dots, n\}$ -crystal

where Λ is obtained from $s\Lambda_r$ by removing \square

Virtual crystal: ambient crystal $\hat{V}^{r,s} = B^{r,s}$ of type $A_{2n+1}^{(2)}$

Definition

 $V^{r,s}$ is the subset of $b \in \hat{V}^{r,s}$ such that $\sigma(b) = b$ such that

 $e_i = \begin{cases} \hat{e}_0 \hat{e}_1 & \text{for } i = 0\\ \hat{e}_{i+1} & \text{for } 1 \le i \le r \end{cases}$

Theorem (FOS 08)

$$B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$
 as $\{1, 2, \dots, n\}$ -crystal

where Λ is obtained from $s\Lambda_r$ by removing \square

Virtual crystal: ambient crystal $\hat{V}^{r,s} = B^{r,s}$ of type $A_{2n+1}^{(2)}$

Definition $V^{r,s}$ is the subset of $b \in \hat{V}^{r,s}$ such that $\sigma(b) = b$ such that $e_i = \begin{cases} \hat{e}_0 \hat{e}_1 & \text{for } i = 0\\ \hat{e}_{i+1} & \text{for } 1 < i < n \end{cases}$

Theorem (FOS 08)

$$B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$
 as $\{1, 2, \dots, n\}$ -crystal

where Λ is obtained from $s\Lambda_r$ by removing \square

Virtual crystal: ambient crystal $\hat{V}^{r,s} = B^{r,s}$ of type $A_{2n+1}^{(2)}$

Definition

 $V^{r,s}$ is the subset of $b \in \hat{V}^{r,s}$ such that $\sigma(b) = b$ such that

$$e_i = egin{cases} \hat{e}_0 \, \hat{e}_1 & ext{for } i = 0 \ \hat{e}_{i+1} & ext{for } 1 \leq i \leq r \end{cases}$$

Theorem (FOS 08)

$$B^{r,s} \cong V^{r,s} \cong \bigoplus_{\Lambda} B(\Lambda)$$
 as $\{1, 2, \dots, n\}$ -crystal

where Λ is obtained from $s\Lambda_r$ by removing \square

Virtual crystal: ambient crystal $\hat{V}^{r,s} = B^{r,s}$ of type $A_{2n+1}^{(2)}$

Definition

 $V^{r,s}$ is the subset of $b \in \hat{V}^{r,s}$ such that $\sigma(b) = b$ such that

$$e_i = egin{cases} \hat{e}_0 \, \hat{e}_1 & ext{for } i = 0 \ \hat{e}_{i+1} & ext{for } 1 \leq i \leq r \end{cases}$$

Theorem (FOS 08)

$$V^{r,s} \cong B^{r,s}$$
 as a $\{0, 1, \ldots, n\}$ -crystal

Charge Affine Schubert calculus

Crystals

Affine crystals

KR crystals

Perfectness

Demazure crystals

Charge

Affine Schubert calculus

・ロト・日本・日本・日本・日本・日本

Perfectness of KR crystals

Conjecture (HKOTT)

The KR crystal $B^{r,s}$ is perfect if and only if $\frac{s}{c_r}$ is an integer. If $B^{r,s}$ is perfect, its level is $\frac{s}{c_r}$.

Theorem (FOS 08)

If g is of nonexceptional type, the Conjecture is true.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Perfectness of KR crystals

Conjecture (HKOTT)

The KR crystal $B^{r,s}$ is perfect if and only if $\frac{s}{c_r}$ is an integer. If $B^{r,s}$ is perfect, its level is $\frac{s}{c_r}$.

Theorem (FOS 08)

If g is of nonexceptional type, the Conjecture is true.

▲□▶▲圖▶▲≣▶▲≣▶ ▲国▼

$$\begin{split} & P = \oplus_{i \in I} \mathbb{Z} \Lambda_i \text{ weight lattice of } \mathfrak{g}, \quad P^+ \text{ set of dominant weights.} \\ & P_\ell^+ = \{\Lambda \in P^+ \mid \operatorname{lev}(\Lambda) = \ell\} \text{ level } \ell \text{ dominant weights} \end{split}$$

$$arepsilon(m{b}) = \sum_{i \in I} arepsilon_i(m{b}) \Lambda_i \quad ext{and} \quad arphi(m{b}) = \sum_{i \in I} arphi_i(m{b}) \Lambda_i$$

Definition

The crystal \mathcal{B} is perfect of level ℓ if:

- **1.** $\mathcal{B} \cong$ crystal graph of a finite-dimensional $U'_q(\mathfrak{g})$ -module.
- 2. $\mathcal{B} \otimes \mathcal{B}$ is connected.
- $\exists \lambda \in P_0$ such that $wt(B) \subset \lambda + \sum_{i \in \Lambda(D)} \mathbb{Z}_{\leq 0} \alpha_i$ and \exists unique element in B of classical weight λ .
- $\forall \ b \in \mathcal{B}, \ \mathsf{lev}(\epsilon(b)) \geq \ell.$
- $\forall \ \Lambda \in \mathcal{P}_{\ell}^{+}$, if unique elements $b_{\Lambda}, b^{\Lambda} \in \mathcal{B},$ such that

$$\begin{split} & P = \oplus_{i \in I} \mathbb{Z} \Lambda_i \text{ weight lattice of } \mathfrak{g}, \quad P^+ \text{ set of dominant weights.} \\ & P_\ell^+ = \{\Lambda \in P^+ \mid \operatorname{lev}(\Lambda) = \ell\} \text{ level } \ell \text{ dominant weights} \end{split}$$

$$arepsilon(m{b}) = \sum_{i \in I} arepsilon_i(m{b}) \Lambda_i \quad ext{and} \quad arphi(m{b}) = \sum_{i \in I} arphi_i(m{b}) \Lambda_i$$

Definition

The crystal \mathcal{B} is perfect of level ℓ if:

1. $\mathcal{B} \cong$ crystal graph of a finite-dimensional $U'_{q}(\mathfrak{g})$ -module.

2. $\mathcal{B} \otimes \mathcal{B}$ is connected.

3. $\exists \lambda \in P_0$ such that wt(\mathcal{B}) $\subset \lambda + \sum_{i \in I \setminus \{0\}} \mathbb{Z}_{\leq 0} \alpha_i$ and \exists unique element in \mathcal{B} of classical weight λ .

4. \forall **b** \in \mathcal{B} , $\operatorname{lev}(\varepsilon(\mathbf{b})) \geq \ell$.

5. $\forall \Lambda \in P_{\ell}^+$, \exists unique elements $b_{\Lambda}, b^{\Lambda} \in \mathcal{B}$, such that

$$\begin{split} & P = \oplus_{i \in I} \mathbb{Z} \Lambda_i \text{ weight lattice of } \mathfrak{g}, \quad P^+ \text{ set of dominant weights.} \\ & P_\ell^+ = \{\Lambda \in P^+ \mid \operatorname{lev}(\Lambda) = \ell\} \text{ level } \ell \text{ dominant weights} \end{split}$$

$$arepsilon(m{b}) = \sum_{i \in I} arepsilon_i(m{b}) \Lambda_i \quad ext{and} \quad arphi(m{b}) = \sum_{i \in I} arphi_i(m{b}) \Lambda_i$$

Definition

The crystal \mathcal{B} is perfect of level ℓ if:

- **1.** $\mathcal{B} \cong$ crystal graph of a finite-dimensional $U'_q(\mathfrak{g})$ -module.
- **2.** $\mathcal{B}\otimes\mathcal{B}$ is connected.
- **3.** $\exists \lambda \in P_0$ such that $wt(\mathcal{B}) \subset \lambda + \sum_{i \in I \setminus \{0\}} \mathbb{Z}_{\leq 0} \alpha_i$ and \exists unique element in \mathcal{B} of classical weight λ .
- **4.** $\forall \ b \in \mathcal{B}, \ \operatorname{lev}(\varepsilon(b)) \geq \ell.$
- **5.** $\forall \Lambda \in P_{\ell}^+$, \exists unique elements $b_{\Lambda}, b^{\Lambda} \in \mathcal{B}$, such that

$$\begin{split} & P = \oplus_{i \in I} \mathbb{Z} \Lambda_i \text{ weight lattice of } \mathfrak{g}, \quad P^+ \text{ set of dominant weights.} \\ & P_\ell^+ = \{\Lambda \in P^+ \mid \operatorname{lev}(\Lambda) = \ell\} \text{ level } \ell \text{ dominant weights} \end{split}$$

$$arepsilon(m{b}) = \sum_{i \in I} arepsilon_i(m{b}) \Lambda_i \quad ext{and} \quad arphi(m{b}) = \sum_{i \in I} arphi_i(m{b}) \Lambda_i$$

Definition

The crystal \mathcal{B} is perfect of level ℓ if:

- **1.** $\mathcal{B} \cong$ crystal graph of a finite-dimensional $U'_q(\mathfrak{g})$ -module.
- **2.** $\mathcal{B}\otimes\mathcal{B}$ is connected.
- **3.** $\exists \lambda \in P_0$ such that $wt(\mathcal{B}) \subset \lambda + \sum_{i \in I \setminus \{0\}} \mathbb{Z}_{\leq 0} \alpha_i$ and \exists unique element in \mathcal{B} of classical weight λ .

4. $\forall b \in \mathcal{B}, \text{ lev}(\varepsilon(b)) \geq \ell.$ **5.** $\forall \Lambda \in P_{\ell}^+, \exists \text{ unique elements } b_{\Lambda}, b^{\Lambda} \in \mathcal{B}, \text{ such that}$

$$\begin{split} & P = \oplus_{i \in I} \mathbb{Z} \Lambda_i \text{ weight lattice of } \mathfrak{g}, \quad P^+ \text{ set of dominant weights.} \\ & P_\ell^+ = \{\Lambda \in P^+ \mid \operatorname{lev}(\Lambda) = \ell\} \text{ level } \ell \text{ dominant weights} \end{split}$$

$$arepsilon(m{b}) = \sum_{i \in I} arepsilon_i(m{b}) \Lambda_i \quad ext{and} \quad arphi(m{b}) = \sum_{i \in I} arphi_i(m{b}) \Lambda_i$$

Definition

The crystal \mathcal{B} is perfect of level ℓ if:

- **1.** $\mathcal{B} \cong$ crystal graph of a finite-dimensional $U'_q(\mathfrak{g})$ -module.
- **2.** $\mathcal{B}\otimes\mathcal{B}$ is connected.
- **3.** $\exists \lambda \in P_0$ such that $wt(\mathcal{B}) \subset \lambda + \sum_{i \in I \setminus \{0\}} \mathbb{Z}_{\leq 0} \alpha_i$ and \exists unique element in \mathcal{B} of classical weight λ .
- **4.** $\forall b \in \mathcal{B}, \text{ lev}(\varepsilon(b)) \geq \ell.$

5. $\forall \Lambda \in P_{\ell}^+$, \exists unique elements $b_{\Lambda}, b^{\Lambda} \in \mathcal{B}$, such that

$$\begin{split} & P = \oplus_{i \in I} \mathbb{Z} \Lambda_i \text{ weight lattice of } \mathfrak{g}, \quad P^+ \text{ set of dominant weights.} \\ & P_\ell^+ = \{\Lambda \in P^+ \mid \operatorname{lev}(\Lambda) = \ell\} \text{ level } \ell \text{ dominant weights} \end{split}$$

$$arepsilon(m{b}) = \sum_{i \in I} arepsilon_i(m{b}) \Lambda_i \quad ext{and} \quad arphi(m{b}) = \sum_{i \in I} arphi_i(m{b}) \Lambda_i$$

Definition

The crystal \mathcal{B} is perfect of level ℓ if:

- **1.** $\mathcal{B} \cong$ crystal graph of a finite-dimensional $U'_q(\mathfrak{g})$ -module.
- **2.** $\mathcal{B}\otimes\mathcal{B}$ is connected.
- **3.** $\exists \lambda \in P_0$ such that $wt(\mathcal{B}) \subset \lambda + \sum_{i \in I \setminus \{0\}} \mathbb{Z}_{\leq 0} \alpha_i$ and \exists unique element in \mathcal{B} of classical weight λ .
- **4.** $\forall b \in \mathcal{B}, \text{ lev}(\varepsilon(b)) \geq \ell.$
- **5.** $\forall \Lambda \in P_{\ell}^+$, \exists unique elements $b_{\Lambda}, b^{\Lambda} \in \mathcal{B}$, such that

$$\varepsilon(b_{\Lambda}) = \Lambda = \varphi(b^{\Lambda})$$

Example: $B^{1,2}$ of type $C_2^{(1)}$

$B^{1,2} \cong B(2\Lambda_1) \oplus B(0).$

Bijection $\varepsilon: B_{\min}^{1,2} \to P_1^+$ given by:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

Example: $B^{1,2}$ of type $C_2^{(1)}$

・ロト・西ト・ヨト・ヨト・ ヨー うへぐ

Example: $B^{1,1}$ of type $C_3^{(1)}$

 $B^{1,1} \cong B(\Lambda_1)$

・ロト ・ 四ト ・ ヨト ・ ヨト æ

Example: $B^{1,1}$ of type $C_3^{(1)}$

 $B^{1,1}\cong B(\Lambda_1)$

 $B^{1,1}$ is not perfect. ε is not a bijection:

Kyoto path model

 $B(\Lambda)$ highest weight infinite-dimensional crystal of type \mathfrak{g} $u_{\Lambda} \in B(\Lambda)$ highest weight vector

Theorem (KMN²)

$$\begin{split} \Lambda &\in P_{\mathcal{S}}^{+} \\ B^{r_{1},\ell c_{r_{1}}}, B^{r_{2},\ell c_{r_{2}}}, \dots \text{ perfect of level-} \ell \\ &\Phi : B(\Lambda) \cong \dots \otimes B^{r_{2},\ell c_{r_{2}}} \otimes B^{r_{1},\ell c_{r_{1}}} \otimes B(\widetilde{\Lambda}) \end{split}$$

 $\begin{array}{l} \mathcal{B} \text{ perfect} \\ \mathcal{B}_{\min} = \{ b \in \mathcal{B} \mid \operatorname{lev}(\varepsilon(b)) = \ell \} \\ \varepsilon, \varphi : \mathcal{B}_{\min} \to \mathcal{P}_{\ell}^+ \text{ are bijections} \\ \text{Induced automorphism } \tau = \varphi \circ \varepsilon^{-1} \text{ on } \mathcal{P}_{\ell}^+ \\ \text{Ground state } \Phi(u_{\Lambda}) = \cdots \otimes b_{\tau^2(\Lambda)} \otimes b_{\tau(\Lambda)} \otimes b_{\ell} \end{array}$

Kyoto path model

 $B(\Lambda)$ highest weight infinite-dimensional crystal of type \mathfrak{g} $u_{\Lambda} \in B(\Lambda)$ highest weight vector

Theorem (KMN²)

$$\begin{split} & \Lambda \in \mathcal{P}_{\mathcal{S}}^{+} \\ & B^{r_{1},\ell c_{r_{1}}}, B^{r_{2},\ell c_{r_{2}}}, \dots \text{ perfect of level-} \ell \\ & \Phi : B(\Lambda) \cong \dots \otimes B^{r_{2},\ell c_{r_{2}}} \otimes B^{r_{1},\ell c_{r_{1}}} \otimes B(\widetilde{\Lambda}) \end{split}$$

 $\begin{array}{l} \mathcal{B} \text{ perfect} \\ \mathcal{B}_{\min} = \{ b \in \mathcal{B} \mid \operatorname{lev}(\varepsilon(b)) = \ell \} \\ \varepsilon, \varphi : \mathcal{B}_{\min} \to \mathcal{P}_{\ell}^+ \text{ are bijections} \\ \text{Induced automorphism } \tau = \varphi \circ \varepsilon^{-1} \text{ on } \mathcal{P}_{\ell}^+ \\ \text{Ground state } \Phi(u_{\Lambda}) = \cdots \otimes b_{\tau^2(\Lambda)} \otimes b_{\tau(\Lambda)} \otimes b_{\ell} \end{array}$

Kyoto path model

 $B(\Lambda)$ highest weight infinite-dimensional crystal of type \mathfrak{g} $u_{\Lambda} \in B(\Lambda)$ highest weight vector

Theorem (KMN²)

$$\begin{split} & \Lambda \in \boldsymbol{P}_{\boldsymbol{s}}^{+} \\ & B^{r_{1},\ell c_{r_{1}}}, B^{r_{2},\ell c_{r_{2}}}, \dots \text{ perfect of level-} \ell \\ & \Phi : B(\Lambda) \cong \dots \otimes B^{r_{2},\ell c_{r_{2}}} \otimes B^{r_{1},\ell c_{r_{1}}} \otimes B(\widetilde{\Lambda}) \end{split}$$

 $\begin{array}{l} \mathcal{B} \text{ perfect} \\ \mathcal{B}_{\min} = \{ b \in \mathcal{B} \mid \operatorname{lev}(\varepsilon(b)) = \ell \} \\ \varepsilon, \varphi : \mathcal{B}_{\min} \rightarrow \mathcal{P}_{\ell}^{+} \text{ are bijections} \\ \text{Induced automorphism } \tau = \varphi \circ \varepsilon^{-1} \text{ on } \mathcal{P}_{\ell}^{+} \\ \text{Ground state } \Phi(u_{\Lambda}) = \cdots \otimes b_{\tau^{2}(\Lambda)} \otimes b_{\tau(\Lambda)} \otimes b_{\Lambda} \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Crystals

- **Affine crystals**
- **KR crystals**
- Perfectness
- **Demazure crystals**
- Charge

Affine Schubert calculus

Demazure module:

 $V_w(\lambda) := U_q(\mathfrak{g})^{>0} \cdot U_{w(\lambda)}$

Demazure crystal: $w = s_{i_N} \cdots s_{i_1}$ fixed reduced expression $B_w(\lambda) = f_w(u_\lambda)$ where $f_w(b) := \int f^{m_N} \cdots f^{m_1}(b) \mid m_k \in \mathbb{Z}_{\geq 0}$

・ロト・日本・日本・日本・日本・日本

Demazure module:

$$V_w(\lambda) := U_q(\mathfrak{g})^{>0} \cdot u_{w(\lambda)}$$

Demazure crystal: $w = s_{i_N} \cdots s_{i_1}$ fixed reduced expression

 $B_w(\lambda) = f_w(u_\lambda)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $f_w(b) := \{ f_{i_N}^{m_N} \cdots f_{i_1}^{m_1}(b) \mid m_k \in \mathbb{Z}_{\geq 0} \}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

Affine Demazure crystals

Demazure crystal: $B_w(\lambda) = B_v(\tau(\lambda))$ where $w = v\tau \in \widetilde{W}$ affine extended Weyl group

Theorem (Fourier,S.,Shimozono 2006; S., Tingley 2011)

 $B = B^{r_N,\ell c_{r_N}} \otimes \cdots \otimes B^{r_1,\ell c_{r_1}}$ $\lambda = -(c_{r_1}\omega_{r_1^*} + \cdots + c_{r_N}\omega_{r_N^*})$ $t_{\lambda} = v_{\tau} \in \widetilde{W} \text{ translation by } \lambda$ Then there is a unique isomorphism of affine crystals

 $j: B(\ell \Lambda_{\tau(0)}) \to B \otimes B(\ell \Lambda_0),$

which satisfies

 $j(u_{\ell \wedge_{\tau(0)}}) = u_B \otimes u_{\ell \wedge_0}$ $j(B_v(\ell \wedge_{\tau(0)})) = B \otimes u_{\ell \wedge_0}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ④�?

Affine Demazure crystals

Demazure crystal: $B_w(\lambda) = B_v(\tau(\lambda))$ where $w = v\tau \in \widetilde{W}$ affine extended Weyl group

Theorem (Fourier, S., Shimozono 2006; S., Tingley 2011)

 $B = B^{r_N,\ell c_{r_N}} \otimes \cdots \otimes B^{r_1,\ell c_{r_1}}$ $\lambda = -(c_{r_1}\omega_{r_1^*} + \cdots + c_{r_N}\omega_{r_N^*})$ $t_{\lambda} = v_{\tau} \in \widetilde{W} \text{ translation by } \lambda$ Then there is a unique isomorphism of affine crystals

$$j: B(\ell \Lambda_{\tau(0)}) \to B \otimes B(\ell \Lambda_0),$$

which satisfies

$$egin{aligned} & j(u_{\ell \Lambda_{ au(0)}}) = u_B \otimes u_{\ell \Lambda_0} \ & j\left(B_{\mathbf{v}}(\ell \Lambda_{ au(0)})
ight) = B \otimes u_{\ell \Lambda_0}. \end{aligned}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Example **Demazure crystal:** $B_{-2\omega_2}(\Lambda_0)$ of type $A_2^{(1)}$ $t_{-2\omega_2} = s_2 s_1 s_0 s_2 \tau$ with $\tau : \mathbf{0} \to \mathbf{2} \to \mathbf{1} \to \mathbf{0}$

Demazure arrows

Definition

$$B = B^{r_N, s_N} \otimes \cdots \otimes B^{r_1, s_1}, \quad \text{fix } \ell \ge \lceil s_k / c_k \rceil \text{ for all } 1 \le k \le N$$

 f_i on $b \in B$ is an ℓ -Demazure arrow if $\varphi_i(b) > 0$ and

- **1.** $i \in I \setminus \{0\}$ or
- **2.** i = 0 and $\varepsilon_0(b) \ge \ell$.

Energy

Theorem (S., Tingley 2011)

 $B = B^{r_N, s_N} \otimes \cdots \otimes B^{r_1, s_1}$, ℓ as above, $b \in B$

- **1.** $\varepsilon_0(b) \ge \ell$ implies $D^R(f_0(b)) = D^R(b) + 1$;
- **2.** $\varphi_0(b) \ge \ell$ implies $D^L(e_0(b)) = D^L(b) + 1$.

Remark

Works even in nonperfect setting!

Demazure arrows

Definition

$$B = B^{r_N, s_N} \otimes \cdots \otimes B^{r_1, s_1}, \quad \text{fix } \ell \geq \lceil s_k / c_k \rceil \text{ for all } 1 \leq k \leq N$$

 f_i on $b \in B$ is an ℓ -Demazure arrow if $\varphi_i(b) > 0$ and

- **1.** $i \in I \setminus \{0\}$ or
- **2.** i = 0 and $\varepsilon_0(b) \ge \ell$.

Energy

Theorem (S., Tingley 2011)

 $B=B^{r_N,s_N}\otimes \cdots \otimes B^{r_1,s_1}$, ℓ as above, $b\in B$

- **1.** $\varepsilon_0(b) \ge \ell$ implies $D^R(f_0(b)) = D^R(b) + 1$;
- **2.** $\varphi_0(b) \ge \ell$ implies $D^L(e_0(b)) = D^L(b) + 1$.

Remark

Works even in nonperfect setting!

Demazure arrows

Definition

$$B = B^{r_N, s_N} \otimes \cdots \otimes B^{r_1, s_1}, \quad ext{fix } \ell \geq \lceil s_k / c_k \rceil ext{ for all } 1 \leq k \leq N$$

 f_i on $b \in B$ is an ℓ -Demazure arrow if $\varphi_i(b) > 0$ and

- **1.** $i \in I \setminus \{0\}$ or
- **2.** i = 0 and $\varepsilon_0(b) \ge \ell$.

Energy

Theorem (S., Tingley 2011)

 $B = B^{r_N,s_N} \otimes \cdots \otimes B^{r_1,s_1}$, ℓ as above, $b \in B$

- **1.** $\varepsilon_0(b) \ge \ell$ implies $D^R(f_0(b)) = D^R(b) + 1$;
- **2.** $\varphi_0(b) \ge \ell$ implies $D^L(e_0(b)) = D^L(b) + 1$.

Remark

Works even in nonperfect setting!

Charge Affine Schubert calculus

Energy in Demazure crystal

Theorem (S., Tingley 2011)

$$B = B^{r_N,\ell c_{r_N}} \otimes \cdots \otimes B^{r_1,\ell c_{r_1}}$$
 , $b \in B$

 $D^{R}(b) - D^{R}(u_{B}) =$ number of Demazure e_{0} arrows from b to u_{B}

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Energy in Demazure crystal

Theorem (S., Tingley 2011)

$$B = B^{r_N,\ell c_{r_N}} \otimes \cdots \otimes B^{r_1,\ell c_{r_1}}$$
 , $b \in B$

 $D^{R}(b) - D^{R}(u_{B}) =$ number of Demazure e_{0} arrows from b to u_{B}

Energy in nonperfect setting

Theorem (Kang, Kashiwara, Misra, Miwa, Nakashima, Nakayashiki 1992)

 $B = B^{r_N, s_N} \otimes \cdots \otimes B^{r_1, s_1}$, fix $\ell \ge \lceil s_k/c_k \rceil$ for all $1 \le k \le N$ $\Lambda \in P_{\ell}^+$. Then

$$B\otimes B(\Lambda)\cong igoplus_{\Lambda'}B(\Lambda'),$$

where sum is over finite collection of (not necessarily distinct) $\Lambda' \in P_\ell^+.$

Theorem (S., Tingley 2011)

 $B = B^{r_N, s_N} \otimes \cdots \otimes B^{r_1, s_1}$, ℓ as above, $b \in B$

 $D^{R}(b) - D^{R}(u_{B}^{b}) =$ number of Demazure e_{0} arrows from b to u_{B}^{b}

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Energy in nonperfect setting

Theorem (Kang, Kashiwara, Misra, Miwa, Nakashima, Nakayashiki 1992)

 $B = B^{r_N, s_N} \otimes \cdots \otimes B^{r_1, s_1}$, fix $\ell \ge \lceil s_k/c_k \rceil$ for all $1 \le k \le N$ $\Lambda \in P_{\ell}^+$. Then

$$B\otimes B(\Lambda)\cong igoplus_{\Lambda'}B(\Lambda'),$$

where sum is over finite collection of (not necessarily distinct) $\Lambda' \in P_\ell^+.$

Theorem (S., Tingley 2011)

 $B = B^{r_N,s_N} \otimes \cdots \otimes B^{r_1,s_1}$, ℓ as above, $b \in B$

 $D^{R}(b) - D^{R}(u_{B}^{b}) =$ number of Demazure e_{0} arrows from b to u_{B}^{b}

Nonsymmetric Macdonald polynomials

Sanderson, Ion: Relation between nonsymmetric Macdonald polynomials and Demazure characters

$$m{\mathcal{E}}_{\lambda}(q,0)= q^{c} \operatorname{ch}(V_{t_{\lambda}}(\Lambda_{0}))ert_{e^{\delta}=q,\;e^{\Lambda_{0}}=1}$$

Example

 $E_{(0,0,2)}(q,0) = x_1^2 + (q+1)x_1x_2 + x_2^2 + (q+1)x_1x_3 + (q+1)x_2x_3 + x_3^2$ $2 \otimes 1 \xrightarrow{2} 3 \otimes 1 \xrightarrow{0} 1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \xrightarrow{1} 2 \otimes 2 \xrightarrow{2} 2 \otimes 3 \xrightarrow{2} 3 \otimes 3$ $\xrightarrow{1} 3 \otimes 2 \xrightarrow{1} 1 \otimes 3 \xrightarrow{1} 2 \xrightarrow{1} 3 \otimes 3$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Nonsymmetric Macdonald polynomials

Sanderson, Ion: Relation between nonsymmetric Macdonald polynomials and Demazure characters

$$m{\mathcal{E}}_{\lambda}(q,0)=q^{c}\operatorname{ch}(V_{t_{\lambda}}(\Lambda_{0}))ert_{e^{\delta}=q,\;e^{\Lambda_{0}}=1}$$

Example

$$E_{(0,0,2)}(q,0) = x_1^2 + (q+1)x_1x_2 + x_2^2 + (q+1)x_1x_3 + (q+1)x_2x_3 + x_3^2$$

$$2 \otimes 1 \xrightarrow{2} 3 \otimes 1 \xrightarrow{0} 1 \otimes 1 \xrightarrow{1} 1 \otimes 2 \xrightarrow{1} 2 \otimes 2 \xrightarrow{2} 2 \otimes 3 \xrightarrow{2} 3 \otimes 3$$

$$\xrightarrow{1} 3 \otimes 2 \xrightarrow{2} 1 \otimes 3 \xrightarrow{1} 7$$

Charge Affine Schubert calculus

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Crystals

- **Affine crystals**
- **KR crystals**
- Perfectness
- **Demazure crystals**

Charge

Affine Schubert calculus

1979 Lascoux, Schützenberger charge for type A

1995 Lascoux, Leclerc, Thibon from geometry of crystal 1997 Nakayashiki, Yamada relation charge and energy type *A* **2000 Kuniba, Misra, Okado, Takagi, Uchiyama relation of** cyclage to f_0 in Demazure crystals of type *A* **2001 Shimozono/ S., Warnaar** generalization of charge to Littlewood-Richardson tableaux in type *A* **2005 Lecouvey** conjectural charge for types *B*, *C*, *D*

Definitions of charge

- from reading word, cyclage graph
- catabolism

Approach: charge from Ram–Yip formula for Macdonald polynomials from alcove paths via quantum Bruhat order

 Lascoux, Schützenberger charge for type *A* Lascoux, Leclerc, Thibon from geometry of crystal 1997 Nakayashiki, Yamada relation charge and energy type *A* Kuniba, Misra, Okado, Takagi, Uchiyama relation of cyclage to f_0 in Demazure crystals of type *A* Shimozono/ S., Warnaar generalization of charge to Littlewood-Richardson tableaux in type *A* Lecouvey conjectural charge for types *B*, *C*, *D*

Definitions of charge

- from reading word, cyclage graph
- catabolism

Approach: charge from Ram–Yip formula for Macdonald polynomials from alcove paths via quantum Bruhat order

1979 Lascoux, Schützenberger charge for type *A* 1995 Lascoux, Leclerc, Thibon from geometry of crystal 1997 Nakayashiki, Yamada relation charge and energy type *A* 2000 Kuniba, Misra, Okado, Takagi, Uchiyama relation of cyclage to f_0 in Demazure crystals of type *A* 2001 Shimozono/ S., Warnaar generalization of charge to Littlewood-Richardson tableaux in type *A* 2005 Lecouvey conjectural charge for types *B*, *C*, *D*

Definitions of charge

- from reading word, cyclage graph
- catabolism

Approach: charge from Ram–Yip formula for Macdonald polynomials from alcove paths via quantum Bruhat order

1979 Lascoux, Schützenberger charge for type *A* 1995 Lascoux, Leclerc, Thibon from geometry of crystal 1997 Nakayashiki, Yamada relation charge and energy type *A* 2000 Kuniba, Misra, Okado, Takagi, Uchiyama relation of cyclage to f_0 in Demazure crystals of type *A* 2001 Shimozono/ S., Warnaar generalization of charge to Littlewood-Richardson tableaux in type *A* 2005 Lecouvey conjectural charge for types *B*, *C*, *D*

Definitions of charge

- from reading word, cyclage graph
- catabolism

Approach: charge from Ram–Yip formula for Macdonald polynomials from alcove paths via quantum Bruhat order

1979 Lascoux, Schützenberger charge for type A 1995 Lascoux, Leclerc, Thibon from geometry of crystal 1997 Nakayashiki, Yamada relation charge and energy type A 2000 Kuniba, Misra, Okado, Takagi, Uchiyama relation of cyclage to f_0 in Demazure crystals of type A 2001 Shimozono/ S., Warnaar generalization of charge to Littlewood-Richardson tableaux in type A

2005 Lecouvey conjectural charge for types B, C, D

Definitions of charge

- from reading word, cyclage graph
- catabolism

Approach: charge from Ram–Yip formula for Macdonald polynomials from alcove paths via quantum Bruhat order

1979 Lascoux, Schützenberger charge for type A 1995 Lascoux, Leclerc, Thibon from geometry of crystal 1997 Nakayashiki, Yamada relation charge and energy type A 2000 Kuniba, Misra, Okado, Takagi, Uchiyama relation of cyclage to f_0 in Demazure crystals of type A 2001 Shimozono/ S., Warnaar generalization of charge to Littlewood-Richardson tableaux in type A 2005 Lecouvey conjectural charge for types *B*, *C*, *D*

Definitions of charge

- from reading word, cyclage graph
- catabolism

Approach: charge from Ram–Yip formula for Macdonald polynomials from alcove paths via quantum Bruhat order

1979 Lascoux, Schützenberger charge for type A 1995 Lascoux, Leclerc, Thibon from geometry of crystal 1997 Nakayashiki, Yamada relation charge and energy type A 2000 Kuniba, Misra, Okado, Takagi, Uchiyama relation of cyclage to f_0 in Demazure crystals of type A 2001 Shimozono/ S., Warnaar generalization of charge to Littlewood-Richardson tableaux in type A 2005 Lecouvey conjectural charge for types *B*, *C*, *D*

Definitions of charge

- from reading word, cyclage graph
- catabolism

Approach: charge from Ram–Yip formula for Macdonald polynomials from alcove paths via quantum Bruhat order

1979 Lascoux, Schützenberger charge for type A 1995 Lascoux, Leclerc, Thibon from geometry of crystal 1997 Nakayashiki, Yamada relation charge and energy type A 2000 Kuniba, Misra, Okado, Takagi, Uchiyama relation of cyclage to f_0 in Demazure crystals of type A 2001 Shimozono/ S., Warnaar generalization of charge to Littlewood-Richardson tableaux in type A 2005 Lecouvey conjectural charge for types *B*, *C*, *D*

Definitions of charge

- from reading word, cyclage graph
- catabolism

Approach: charge from Ram–Yip formula for Macdonald polynomials from alcove paths via quantum Bruhat order

1979 Lascoux, Schützenberger charge for type A 1995 Lascoux, Leclerc, Thibon from geometry of crystal 1997 Nakayashiki, Yamada relation charge and energy type A 2000 Kuniba, Misra, Okado, Takagi, Uchiyama relation of cyclage to f_0 in Demazure crystals of type A 2001 Shimozono/ S., Warnaar generalization of charge to Littlewood-Richardson tableaux in type A 2005 Lecouvey conjectural charge for types B, C, D

Definitions of charge

- from reading word, cyclage graph
- catabolism

Approach: charge from Ram-Yip formula for Macdonald polynomials from alcove paths via quantum Bruhat order

 gives charge directly on Kashiwara–Nakashima tableaux for single columns (ロ) (同) (三) (三) (三) (○) (○)

Charge à la Lascoux and Schützenberger: *w* word of partition content μ

Example

 $\mu = (3, 3, 3, 1)$

1132214323

charge(1132214323) = 1 + 2 + 3 = 6

・ロト・西ト・西ト・西・ うくぐ

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Charge à la Lascoux and Schützenberger: *w* word of partition content μ

Example

 $\mu = (3, 3, 3, 1)$

11<mark>32214</mark>323

Charge à la Lascoux and Schützenberger: w word of partition content μ

Charge à la Lascoux and Schützenberger: *w* word of partition content μ

Example

 $\mu = (3, 3, 3, 1)$

 1132214323
 charge contribution 1

 11
 2
 323

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Charge à la Lascoux and Schützenberger: *w* word of partition content μ

Example

 $\mu = (3, 3, 3, 1)$

 1132214323
 charge contribution 1

 11
 2
 323

charge(1132214323) = 1 + 2 + 3 = 6

Charge à la Lascoux and Schützenberger: *w* word of partition content μ

Example

 $\mu = (3, 3, 3, 1)$

1132214323charge contribution 111 2323charge contribution 2

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Charge à la Lascoux and Schützenberger: *w* word of partition content μ

Example

 $\mu = (3, 3, 3, 1)$

11 <mark>322</mark> 1	4323	charge contribution 1
1 <mark>1</mark> 2	<mark>32</mark> 3	charge contribution 2
12	3	

charge(1132214323) = 1 + 2 + 3 = 6

・ロト・日本・モート ヨー うへで

Charge à la Lascoux and Schützenberger: *w* word of partition content μ

Example

 $\mu = (3, 3, 3, 1)$

charge contribution 1	14323	322	11
charge contribution 2	<mark>32</mark> 3	2	11
	3	2	1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Charge à la Lascoux and Schützenberger: *w* word of partition content μ

Example

 $\mu = (3, 3, 3, 1)$

11 <mark>32214</mark> 323	charge contribution 1
11 2 <mark>32</mark> 3	charge contribution 2
123	charge contribution 3

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Charge à la Lascoux and Schützenberger: *w* word of partition content μ

Example

 $\mu = (3, 3, 3, 1)$

charge contribution 1	14323	11	
charge contribution 2	<mark>32</mark> 3	2	11
charge contribution 3	3	2	1

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Charge Affine Schubert calculus

Charge on KN tableaux - type A

$$B_{\mu} := igodot_{i=1}^{\mu_1} B^{\mu_i^t,1}$$

circular order \prec_i : $i \prec_i i + 1 \prec_i \cdots \prec_i n \prec_i 1 \prec_i \cdots \prec_i i - 1$ construct reordered *c* from $b \in B_{\mu}$

Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Charge on KN tableaux - type A

$$B_{\mu} := \bigotimes_{i=1}^{\mu_1} B^{\mu_i^t,1}$$

circular order \prec_i : $i \prec_i i + 1 \prec_i \cdots \prec_i n \prec_i 1 \prec_i \cdots \prec_i i - 1$ construct reordered *c* from $b \in B_{\mu}$

Example

crystals Charge

Affine Schubert calculus

Charge on KN tableaux - type A

$$B_{\mu}:=igotimes_{i=1}^{\mu_1}B^{\mu_i^t,1}$$

circular order \prec_i : $i \prec_i i + 1 \prec_i \cdots \prec_i n \prec_i 1 \prec_i \cdots \prec_i i - 1$ construct reordered *c* from $b \in B_{\mu}$

Example

$$b = \underbrace{\begin{vmatrix} 3 & 2 & 1 & 2 \\ 5 & 3 & 2 \\ 6 & 4 & 4 \end{vmatrix}}_{cw(b)} = \begin{pmatrix} 6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\ 1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Charge Affine Schubert calculus

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Charge on KN tableaux - type A

Example

$$b = \begin{bmatrix} 3 & 2 & 1 & 2 \\ 5 & 3 & 2 \\ 6 & 4 & 4 \end{bmatrix} \text{ and } c = \begin{bmatrix} 3 & 3 & 4 & 2 \\ 5 & 2 & 2 \\ 6 & 4 & 1 \end{bmatrix}$$
$$cw(b) = \begin{pmatrix} 6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\ 1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3 \end{pmatrix}$$

 $\sum_{\gamma\in ext{Des}(c)} \operatorname{arm}(\gamma) = \operatorname{charge}(\operatorname{cw}_2(b))$

Charge Affine Schubert calculus

Charge on KN tableaux - type A

Example

$$b = \begin{bmatrix} 3 & 2 & 1 & 2 \\ 5 & 3 & 2 \\ 6 & 4 & 4 \end{bmatrix} \text{ and } c = \begin{bmatrix} 3 & 3 & 4 & 2 \\ 5 & 2 & 2 \\ 6 & 4 & 1 \end{bmatrix}$$
$$cw(b) = \begin{pmatrix} 6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\ 1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3 \end{pmatrix}$$

 $\sum_{\gamma\in ext{Des}(c)} \operatorname{arm}(\gamma) = \operatorname{charge}(\operatorname{cw}_2(b))$

Charge on KN tableaux - type A

Example

$$b = \begin{bmatrix} 3 & 2 & 1 & 2 \\ 5 & 3 & 2 \\ 6 & 4 & 4 \end{bmatrix} \text{ and } c = \begin{bmatrix} 3 & 3 & 4 & 2 \\ 5 & 2 & 2 \\ 6 & 4 & 1 \end{bmatrix}$$
$$cw(b) = \begin{pmatrix} 6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\ 1 & 1 & 3 & 2 & 2 & 1 & 4 & 3 & 2 & 3 \end{pmatrix}$$

$$\sum_{\gamma\in ext{Des}(c)} \operatorname{arm}(\gamma) = \operatorname{charge}(\operatorname{cw}_2(b))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Charge Affine Schubert calculus

Charge on KN tableaux - type A

Example

$$b = \begin{bmatrix} 3 & 2 & 1 & 2 \\ 5 & 3 & 2 \\ 6 & 4 & 4 \end{bmatrix} \text{ and } c = \begin{bmatrix} 3 & 3 & 4 & 2 \\ 5 & 2 & 2 \\ 6 & 4 & 1 \end{bmatrix}$$
$$cw(b) = \begin{pmatrix} 6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\ 1_2 & 1_2 & 3_1 & 2_1 & 2 & 1 & 4 & 3 & 2 & 3 \end{pmatrix}$$

$$\sum_{\gamma\in \mathrm{Des}(c)} \operatorname{arm}(\gamma) = \mathrm{charge}(\mathrm{cw}_2(b))$$

◆□▶ ◆□▶ ◆ ミ▶ ◆ ミ▶ ・ ミー のへぐ

Charge Affine Schubert calculus

Charge on KN tableaux - type A

Example

$$b = \begin{bmatrix} 3 & 2 & 1 & 2 \\ 5 & 3 & 2 \\ 6 & 4 & 4 \end{bmatrix} \text{ and } c = \begin{bmatrix} 3 & 3 & 4 & 2 \\ 5 & 2 & 2 \\ 6 & 4 & 1 \end{bmatrix}$$
$$cw(b) = \begin{pmatrix} 6 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 1 \\ 1_2 & 1_2 & 3_1 & 2_1 & 2 & 1 & 4 & 3 & 2 & 3 \end{pmatrix}$$

$$\sum_{\gamma \in \text{Des}(c)} \operatorname{arm}(\gamma) = \text{charge}(\text{cw}_2(b))$$

・ロト・四ト・モート ヨー うへの

Example

Doubling the columns and cyclically reordered:

1 1/ 2 2/ 3 3/

Example

Doubling the columns and cyclically reordered:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

charge(b) = (2 + 2 + 4)/2 = 4

charge(b) =
$$\frac{1}{2} \sum_{\gamma \in \text{Des}(c)} \operatorname{arm}(\gamma)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example

charge(b) = (2 + 2 + 4)/2 = 4

$$\operatorname{charge}(b) = \frac{1}{2} \sum_{\gamma \in \operatorname{Des}(c)} \operatorname{arm}(\gamma)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □
Theorem (Lenart, S. 2011)

$$B = B^{r_N,1} \otimes \cdots \otimes B^{r_1,1}$$
 of type $A_n^{(1)}$ or type $C_n^{(1)}$
Then for $b \in B$

D(b) = -charge(b)

- show $D(e_ib) = D(b)$ and $charge(e_ib) = charge(b)$ for i = 1, 2..., n
- show $D(e_0b) = D(b) + 1$ and charge $(e_0b) = \text{charge}(b) + 1$ if $\varphi_0(b) \ge 1$ (Demazure arrow)
- = for type $G_{k}^{(1)}$ for every b there exists path to type $A_{k}^{(1)}$ using Demazure arrows

Theorem (Lenart, S. 2011)

$$B = B^{r_N,1} \otimes \cdots \otimes B^{r_1,1}$$
 of type $A_n^{(1)}$ or type $C_n^{(1)}$
Then for $b \in B$

$$D(b) = -\text{charge}(b)$$

- show $D(e_ib) = D(b)$ and $charge(e_ib) = charge(b)$ for i = 1, 2..., n
- show $D(e_0b) = D(b) + 1$ and $charge(e_0b) = charge(b) + 1$ if $\varphi_0(b) \ge 1$ (Demazure arrow)
- for type C_n⁽¹⁾ for every b there exists path to type A_n⁽¹⁾ using Demazure arrows

Theorem (Lenart, S. 2011)

$$B = B^{r_N,1} \otimes \cdots \otimes B^{r_1,1}$$
 of type $A_n^{(1)}$ or type $C_n^{(1)}$
Then for $b \in B$

D(b) = -charge(b)

- show $D(e_ib) = D(b)$ and $charge(e_ib) = charge(b)$ for i = 1, 2..., n
- show $D(e_0b) = D(b) + 1$ and $charge(e_0b) = charge(b) + 1$ if $\varphi_0(b) \ge 1$ (Demazure arrow)
- for type C_n⁽¹⁾ for every b there exists path to type A_n⁽¹⁾ using Demazure arrows

Theorem (Lenart, S. 2011)

$$B = B^{r_N,1} \otimes \cdots \otimes B^{r_1,1}$$
 of type $A_n^{(1)}$ or type $C_n^{(1)}$
Then for $b \in B$

$$D(b) = -\text{charge}(b)$$

- show $D(e_ib) = D(b)$ and $charge(e_ib) = charge(b)$ for i = 1, 2..., n
- show $D(e_0b) = D(b) + 1$ and $charge(e_0b) = charge(b) + 1$ if $\varphi_0(b) \ge 1$ (Demazure arrow)
- for type C_n⁽¹⁾ for every *b* there exists path to type A_n⁽¹⁾ using Demazure arrows

Charge Affine Schubert calculus

Crystals

- **Affine crystals**
- **KR crystals**
- Perfectness
- **Demazure crystals**
- Charge

Affine Schubert calculus

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Progress on ... affine Schubert calculus

Symmetric functions and geometry:

(ロ) (同) (三) (三) (三) (○) (○)

• *K*-theory of the affine Grassmannian, stable affine Grothendieck polynomials

 \rightarrow joint with Thomas Lam and Mark Shimozono

(arXiv:0901.1506)

Murnaghan–Nakayama rule for k-Schur functions
→ joint with Jason Bandlow and Mike Zabrocki

Progress on ... affine Schubert calculus

Symmetric functions and geometry:

(ロ) (同) (三) (三) (三) (○) (○)

• *K*-theory of the affine Grassmannian, stable affine Grothendieck polynomials

 \rightarrow joint with Thomas Lam and Mark Shimozono (arXiv:0901.1506)

Murnaghan–Nakayama rule for k-Schur functions
 → joint with Jason Bandlow and Mike Zabrocki

Progress on ... affine Schubert calculus

Symmetric functions and geometry:

(ロ) (同) (三) (三) (三) (○) (○)

• *K*-theory of the affine Grassmannian, stable affine Grothendieck polynomials

 \rightarrow joint with Thomas Lam and Mark Shimozono

(arXiv:0901.1506)

- Murnaghan–Nakayama rule for k-Schur functions
 - \rightarrow joint with Jason Bandlow and Mike Zabrocki

- Enumerative Geometry: counting subspaces satisfying certain intersection conditions (Hilbert's 15th problem) Schubert, Pieri, Giambelli,... 1874
- Cohomology: computations in cohomology ring of the Grassmannian H^{*}(G/P) with G = SL_n(ℂ) and P ⊂ G maximal parabolic 1950's
- **Symmetric Functions:** cohomology ring of Grassmannian (with its natural Schubert basis) same as the algebra of symmetric functions (with Schur basis) 1950's
- **Combinatorics:** multiplication of Schubert basis governed by Littlewood-Richardson rule 1970's

(日) (日) (日) (日) (日) (日) (日)

- Enumerative Geometry: counting subspaces satisfying certain intersection conditions (Hilbert's 15th problem) Schubert, Pieri, Giambelli,... 1874
- Cohomology: computations in cohomology ring of the Grassmannian H^{*}(G/P) with G = SL_n(ℂ) and P ⊂ G maximal parabolic 1950's
- **Symmetric Functions:** cohomology ring of Grassmannian (with its natural Schubert basis) same as the algebra of symmetric functions (with Schur basis) 1950's
- **Combinatorics:** multiplication of Schubert basis governed by Littlewood-Richardson rule 1970's

(ロ) (同) (三) (三) (三) (○) (○)

- Enumerative Geometry: counting subspaces satisfying certain intersection conditions (Hilbert's 15th problem) Schubert, Pieri, Giambelli,... 1874
- Cohomology: computations in cohomology ring of the Grassmannian H^{*}(G/P) with G = SL_n(ℂ) and P ⊂ G maximal parabolic 1950's
- **Symmetric Functions:** cohomology ring of Grassmannian (with its natural Schubert basis) same as the algebra of symmetric functions (with Schur basis) 1950's
- Combinatorics: multiplication of Schubert basis governed by Littlewood-Richardson rule 1970's

(ロ) (同) (三) (三) (三) (○) (○)

- Enumerative Geometry: counting subspaces satisfying certain intersection conditions (Hilbert's 15th problem) Schubert, Pieri, Giambelli,... 1874
- Cohomology: computations in cohomology ring of the Grassmannian H^{*}(G/P) with G = SL_n(ℂ) and P ⊂ G maximal parabolic 1950's
- **Symmetric Functions:** cohomology ring of Grassmannian (with its natural Schubert basis) same as the algebra of symmetric functions (with Schur basis) 1950's
- **Combinatorics:** multiplication of Schubert basis governed by Littlewood-Richardson rule 1970's

Definition

G affine Kac–Moody group $P \subset G$ maximal parabolic subgroup G/P affine Grassmannian Gr

Example: $\mathcal{K} = \mathbb{C}((t)), \mathcal{O} = \mathbb{C}[[t]]$ affine Grassmannian $Gr = SL_{k+1}(\mathcal{K})/SL_{k+1}(\mathcal{O})$

Theorem (Lam)

Schubert bases of H_{*}(Gr) and H^{*}(Gr) are given by k-Schur functions and affine Stanley symmetric functions of Lascoux, Lapointe, Morse

Structure constants include genus zero Gromov-Witten invariants or fusion coefficients

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

Definition

G affine Kac–Moody group $P \subset G$ maximal parabolic subgroup G/P affine Grassmannian Gr

Example: $\mathcal{K} = \mathbb{C}((t)), \mathcal{O} = \mathbb{C}[[t]]$ affine Grassmannian $Gr = SL_{k+1}(\mathcal{K})/SL_{k+1}(\mathcal{O})$

Theorem (Lam)

Schubert bases of H_{*}(Gr) and H^{*}(Gr) are given by k-Schur functions and affine Stanley symmetric functions of Lascoux, Lapointe, Morse

Structure constants include genus zero Gromov-Witten invariants or fusion coefficients

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

Definition

G affine Kac–Moody group $P \subset G$ maximal parabolic subgroup G/P affine Grassmannian Gr

Example: $\mathcal{K} = \mathbb{C}((t)), \mathcal{O} = \mathbb{C}[[t]]$ affine Grassmannian $Gr = SL_{k+1}(\mathcal{K})/SL_{k+1}(\mathcal{O})$

Theorem (Lam)

Schubert bases of $H_*(Gr)$ and $H^*(Gr)$ are given by k-Schur functions and affine Stanley symmetric functions of Lascoux, Lapointe, Morse

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Structure constants include genus zero Gromov-Witten invariants or fusion coefficients

Definition

G affine Kac–Moody group $P \subset G$ maximal parabolic subgroup G/P affine Grassmannian Gr

Example: $\mathcal{K} = \mathbb{C}((t)), \mathcal{O} = \mathbb{C}[[t]]$ affine Grassmannian $Gr = SL_{k+1}(\mathcal{K})/SL_{k+1}(\mathcal{O})$

Theorem (Lam)

Schubert bases of $H_*(Gr)$ and $H^*(Gr)$ are given by k-Schur functions and affine Stanley symmetric functions of Lascoux, Lapointe, Morse

Structure constants include genus zero Gromov-Witten invariants or fusion coefficients

nilHecke algebra

Definition (nilHecke algebra)

The nilHecke algebra

- generators A_1, \ldots, A_{n-1}
- relations

$$A_i A_j = A_j A_i$$
 for $|i - j| \ge 2$
 $A_i A_{i+1} A_i = A_{i+1} A_i A_{i+1}$
 $A_i^2 = 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

- For each Weyl group W one can construct a new nilHecke algebra by taking the associated graded ℂ[W].
- Finding Stanley symmetric functions for each *W* is equivalent to finding a particular commutative subalgebra of the nilHecke algebra.

Theorem (Lam; LSS 07)

Schubert bases of $H_*(Gr)$ and $H^*(Gr)$ are given by k-Schur functions and affine Stanley symmetric functions for type $A_n^{(1)}$ and $C_n^{(1)}$.

Theorem (LSS 09)

Schubert bases of K_{*}(Gr) and K^{*}(Gr) are given by K-k-Schur functions and affine stable Grothendieck polynomials.

- For each Weyl group *W* one can construct a new nilHecke algebra by taking the associated graded $\mathbb{C}[W]$.
- Finding Stanley symmetric functions for each *W* is equivalent to finding a particular commutative subalgebra of the nilHecke algebra.

Theorem (Lam; LSS 07)

Schubert bases of $H_*(Gr)$ and $H^*(Gr)$ are given by k-Schur functions and affine Stanley symmetric functions for type $A_n^{(1)}$ and $C_n^{(1)}$.

Theorem (LSS 09)

Schubert bases of K_{*}(Gr) and K^{*}(Gr) are given by K-k-Schur functions and affine stable Grothendieck polynomials.

- For each Weyl group *W* one can construct a new nilHecke algebra by taking the associated graded $\mathbb{C}[W]$.
- Finding Stanley symmetric functions for each *W* is equivalent to finding a particular commutative subalgebra of the nilHecke algebra.

Theorem (Lam; LSS 07)

Schubert bases of $H_*(Gr)$ and $H^*(Gr)$ are given by *k*-Schur functions and affine Stanley symmetric functions for type $A_n^{(1)}$ and $C_n^{(1)}$.

Theorem (LSS 09)

Schubert bases of K_{*}(Gr) and K^{*}(Gr) are given by K-k-Schur functions and affine stable Grothendieck polynomials.

- For each Weyl group *W* one can construct a new nilHecke algebra by taking the associated graded $\mathbb{C}[W]$.
- Finding Stanley symmetric functions for each *W* is equivalent to finding a particular commutative subalgebra of the nilHecke algebra.

Theorem (Lam; LSS 07)

Schubert bases of $H_*(Gr)$ and $H^*(Gr)$ are given by k-Schur functions and affine Stanley symmetric functions for type $A_n^{(1)}$ and $C_n^{(1)}$.

Theorem (LSS 09)

Schubert bases of $K_*(Gr)$ and $K^*(Gr)$ are given by K-k-Schur functions and affine stable Grothendieck polynomials.

k-Schur functions $s_{\lambda}^{(k)}$ Structure coefficients $s_{\lambda}^{(k)}s_{\mu}^{(k)} = \sum_{\nu} c_{\lambda\mu}^{k,\nu}s_{\nu}^{(k)}$

Observation: (inspired by Postnikov and Stroppel/Korff)

- s_{λ} evaluated at crystal operators acting on $B^{1,k}$ of type $A_{n-1}^{(1)}$ yields fusion coefficients
- s_{λ} evaluated at crystal operators acting on $B^{n,1}$ of type $A_{n+k-1}^{(1)}$ yields quantum cohomology structure coefficients

k-Schur functions $s_{\lambda}^{(k)}$ Structure coefficients $s_{\lambda}^{(k)}s_{\mu}^{(k)} = \sum_{\nu} c_{\lambda\mu}^{k,\nu}s_{\nu}^{(k)}$

Observation: (inspired by Postnikov and Stroppel/Korff)

- s_{λ} evaluated at crystal operators acting on $B^{1,k}$ of type $A_{n-1}^{(1)}$ yields fusion coefficients
- s_{λ} evaluated at crystal operators acting on $B^{n,1}$ of type $A_{n+k-1}^{(1)}$ yields quantum cohomology structure coefficients

k-Schur functions
$$s_{\lambda}^{(k)}$$
Structure coefficients $s_{\lambda}^{(k)}s_{\mu}^{(k)} = \sum_{\nu} c_{\lambda\mu}^{k,\nu}s_{\nu}^{(k)}$

Observation: (inspired by Postnikov and Stroppel/Korff)

- s_{λ} evaluated at crystal operators acting on $B^{1,k}$ of type $A_{n-1}^{(1)}$ yields fusion coefficients
- s_{λ} evaluated at crystal operators acting on $B^{n,1}$ of type $A_{n+k-1}^{(1)}$ yields quantum cohomology structure coefficients

k-Schur functions
$$s_{\lambda}^{(k)}$$
Structure coefficients $s_{\lambda}^{(k)}s_{\mu}^{(k)} = \sum_{\nu} c_{\lambda\mu}^{k,\nu}s_{\nu}^{(k)}$

Observation: (inspired by Postnikov and Stroppel/Korff)

- s_{λ} evaluated at crystal operators acting on $B^{1,k}$ of type $A_{n-1}^{(1)}$ yields fusion coefficients
- s_{λ} evaluated at crystal operators acting on $B^{n,1}$ of type $A_{n+k-1}^{(1)}$ yields quantum cohomology structure coefficients