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The map M — ¢y

@ For M € mod A and i = (fy,...,Iy) let Z); be the variety of
composition series of M of type i:

{0}:MOCM1CM2C-"CMd:M

with M;/M;_4 = S;. (A projective variety.)
@ xwmi:= X(Zm;) € Z (Euler characteristic).

Theorem (Lusztig, Geiss-L-Schroer)

There exits a unique @y € C[N] such that for all j = (jy,...,Jk)

-k
om(xj, ()X, (5)) = Y xwmj ﬁ

€Nk

wherej :(j‘|,...,j1,---7jk7“"jk)
N—_—— N——
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The map M — ¢y, : type As

e Indecomposable projectives:

1 — Doag, 2 = Day, 3 — Dy,
N ¥\ ¥
2 1 3 2
N N ¥ ¥
3 2 1

e Other indecomposables:

2 — Dy334, 1 3 Doy, 1 — Dos,
¥\ N K N
1 3 2 2

2 — Dy3q, 3 — Dig, 2 +— Ds,
N\ ¥ ¥

1+ Do, 2+ Dys, 3 — Di24.
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@ How should we interpret mutations in mod A ?

D24 D134 = D14D234 + D124 D34

2 — 3D 1 — 1 3
N\ ¥ N N ¥
3 2 2 2

\
3
1 3 — 363 2 — 2
N ¥ N N
2 1 3 3
N ¥






Multiplicative properties of ¢

Theorem (Geiss-L-Schroer)

@ forevery M,L € mod A, @u¢r = Qpjer.
@ if dimExt! (M, L) = dimExt (L, M) =1 then
OmPL = Qx + @y,

where0 =M —- X —-L —0and0 — L — Y — M — 0 are the
two non-split short exact sequences.




Multiplicative properties of ¢

Theorem (Geiss-L-Schroer)

@ forevery M,L € mod A, @u¢r = Qpjer.
@ if dimExt! (M, L) = dimExt (L, M) =1 then
PmPL = Px + Py,

where0 =M —- X —-L —0and0 — L — Y — M — 0 are the
two non-split short exact sequences.

@ forevery M, L € mod A, dimExt ! (M, L) = dimExt ! (L, M).
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Rigid /\-modules

Definition

M € mod A is rigid if Ext | (M, M) = 0.

e .= { positive roots of Q = dim N.

Theorem (Geiss-Schroer)

A rigid A-module has at most r non-isomorphic indecomposable
direct summands.

e A rigid A-module T with r non-isomorphic indecomposable direct
summands is called maximal rigid.
e Example in type Agz:

T=1&1 @ 2D 1 @ 2 ¥ 3

N ¥ N ¥ N\ s
2 1 2 1 3 2



elet T=T{@---® T, be maximal rigid and B:=End , T.
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Rigid /\-modules

e Define X(T) := ((@7,,...,07.), I'T)

Theorem (Geiss-L-Schroer)

There exists an explicit maximal rigid module U such that X(U) is
one of the initial seeds of the BFZ cluster structure of C[N].

e Let T, be a non-projective indecomposable summand of T.

Theorem (Geiss-L-Schroer)

There exists a unique indecomposable T, * such that (T/T,) @ Ty™ is
rigid.

Define uy(T) := (T/Tx) @ Tx", the mutation of T in direction K.
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® X(u(T)) = me(X(T)).
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Rigid /\-modules

Theorem (Geiss-L-Schroer)

® X(uk(T)) = uk(X(T))-
@ T+ X(T) gives a 1-to-1 correspondence between maximal rigid
modules in the mutation class of U and clusters of C[N].

@ Every cluster monomial belongs to the dual semicanonical basis
of C[N)].

Does every cluster monomial belong to the dual basis of
C[N] ?
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Quantum affine algebras

@ g, simple Lie algebra over C of type An, Dp, Ep
@ Lg=g®C[t,t7"], loop algebra of g
@ Uy(Lg), quantum enveloping algebra of Lg

Finite dimensional representations of Uy(Lg)
4 [St-Petersburg school, Kyoto school, 80’s]
Trigonometric solutions of the Yang-Baxter equation
4 [Yang, Baxter, 1970]

Boltzmann weights of integrable models of statistical mechanics
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Open problems

e “Many” simple Uy (Lg)-modules are tensor products of smaller
simples.

Problem

@ What are the prime simples ?
@ What is the prime factorization of an arbitrary simple ?

@ Which products of primes are simple ?

e Chari-Pressley (1991): full answer for Uy (Lsl2).
e Hernandez-L; Nakajima (2009): partial answer for Uy(Lg).
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@ Cluster variables are classes of prime simple modules.
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Quantum affine algebras

Theorem (Hernandez-Leclerc 2009, Nakajima 2009)

@ There exists a cluster algebra structure on the Grothendieck ring
of certain tensor subcategories of mod Uy(Lg).

@ Cluster variables are classes of prime simple modules.

@ [HL], types Ap, D4, combinatorial method
@ [N], types An, Dy, Ep, geometric method

~+ new combinatorial and geometric formulas for certain irreducible
characters of Uy(Lg).
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