Cluster algebras and Lie theory, III

Bernard Leclerc, Université de Caen

Séminaire Lotharingien de Combinatoire 69 Strobl, 12 septembre 2012

For M ∈ mod Λ and i = (i₁,...,i_d) let 𝒞_{M,i} be the variety of composition series of M of type i:

$$\{0\} = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_d = M$$

with $M_j/M_{j-1} \cong S_{i_j}$. (A projective variety.)

For M ∈ mod A and i = (i₁,...,i_d) let 𝒞_{M,i} be the variety of composition series of M of type i:

$$\{0\} = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_d = M$$

with $M_j/M_{j-1} \cong S_{i_j}$. (A projective variety.) • $\chi_{M,\mathbf{i}} := \chi(\mathscr{F}_{M,\mathbf{i}}) \in \mathbb{Z}$ (Euler characteristic).

For M ∈ mod Λ and i = (i₁,...,i_d) let 𝒞_{M,i} be the variety of composition series of M of type i:

$$\{0\} = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_d = M$$

with $M_j/M_{j-1} \cong S_{i_j}$. (A projective variety.) • $\chi_{M,i} := \chi(\mathscr{F}_{M,i}) \in \mathbb{Z}$ (Euler characteristic).

Theorem (Lusztig, Geiss-L-Schröer)

There exits a unique $\varphi_M \in \mathbb{C}[N]$ such that for all $\mathbf{j} = (j_1, \dots, j_k)$

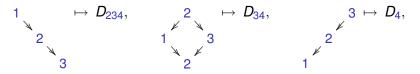
$$\varphi_{\mathcal{M}}(x_{j_1}(t_1)\cdots x_{j_k}(t_k)) = \sum_{\mathbf{a}\in\mathbb{N}^k} \chi_{\mathcal{M},\mathbf{j}^\mathbf{a}} \frac{t_1^{a_1}\cdots t_k^{a_k}}{a_1!\cdots a_k!}$$

where $\mathbf{j}^{\mathbf{a}} = (\underbrace{j_1, \dots, j_1}_{a_1}, \dots, \underbrace{j_k, \dots, j_k}_{a_k})$

The map $M \mapsto \varphi_M$: type A_3

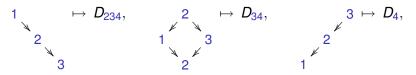
The map $M \mapsto \varphi_M$: type A_3

• Indecomposable projectives:

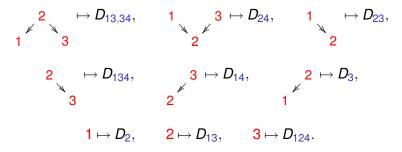


The map $M \mapsto \varphi_M$: type A_3

• Indecomposable projectives:

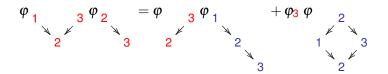


• Other indecomposables:



 $D_{24}D_{134} = D_{14}D_{234} + D_{124}D_{34}$

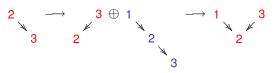
$$D_{24}D_{134} = D_{14}D_{234} + D_{124}D_{34}$$



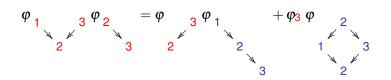
$$D_{24}D_{134} = D_{14}D_{234} + D_{124}D_{34}$$



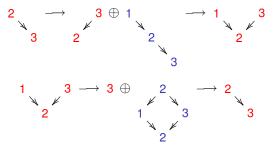
• We have two short exact sequences:



$$D_{24}D_{134} = D_{14}D_{234} + D_{124}D_{34}$$



• We have two short exact sequences:



Multiplicative properties of ϕ

Multiplicative properties of ϕ

Theorem (Geiss-L-Schröer)

- for every $M, L \in \text{mod}\Lambda$, $\varphi_M \varphi_L = \varphi_{M \oplus L}$
- if dim $\operatorname{Ext}^{1}_{\Lambda}(M, L) = \operatorname{dim} \operatorname{Ext}^{1}_{\Lambda}(L, M) = 1$ then

$$\varphi_M \varphi_L = \varphi_{\mathbf{X}} + \varphi_{\mathbf{Y}},$$

where $0 \to M \to X \to L \to 0$ and $0 \to L \to Y \to M \to 0$ are the two non-split short exact sequences.

Multiplicative properties of ϕ

Theorem (Geiss-L-Schröer)

- for every $M, L \in \text{mod}\Lambda$, $\varphi_M \varphi_L = \varphi_{M \oplus L}$
- if dim Ext $\frac{1}{\Lambda}(M, L) = \dim \operatorname{Ext} \frac{1}{\Lambda}(L, M) = 1$ then

$$\varphi_{\mathsf{M}}\varphi_{\mathsf{L}}=\varphi_{\mathsf{X}}+\varphi_{\mathsf{Y}},$$

where $0 \rightarrow M \rightarrow X \rightarrow L \rightarrow 0$ and $0 \rightarrow L \rightarrow Y \rightarrow M \rightarrow 0$ are the two non-split short exact sequences.

• for every $M, L \in \text{mod}\Lambda$, dim $\text{Ext}^1_{\Lambda}(M, L) = \text{dim} \text{Ext}^1_{\Lambda}(L, M)$.

Definition

 $M \in \operatorname{mod} \Lambda$ is rigid if $\operatorname{Ext}^{1}_{\Lambda}(M, M) = 0$.

Definition

 $M \in \operatorname{mod} \Lambda$ is rigid if $\operatorname{Ext} {}^{1}_{\Lambda}(M, M) = 0$.

• $r := \sharp$ positive roots of $Q = \dim N$.

Definition

 $M \in \operatorname{mod} \Lambda$ is rigid if $\operatorname{Ext}^{1}_{\Lambda}(M, M) = 0$.

• $r := \sharp$ positive roots of $Q = \dim N$.

Theorem (Geiss-Schröer)

A rigid Λ -module has at most r non-isomorphic indecomposable direct summands.

Definition

 $M \in \operatorname{mod} \Lambda$ is rigid if $\operatorname{Ext}^{1}_{\Lambda}(M, M) = 0$.

• r := # positive roots of $Q = \dim N$.

Theorem (Geiss-Schröer)

A rigid Λ -module has at most r non-isomorphic indecomposable direct summands.

• A rigid Λ -module T with r non-isomorphic indecomposable direct summands is called maximal rigid.

Definition

 $M \in \operatorname{mod} \Lambda$ is rigid if $\operatorname{Ext}^{1}_{\Lambda}(M, M) = 0$.

• r := # positive roots of $Q = \dim N$.

Theorem (Geiss-Schröer)

A rigid Λ -module has at most r non-isomorphic indecomposable direct summands.

• A rigid Λ -module T with r non-isomorphic indecomposable direct summands is called maximal rigid.

• Example in type A₃:

$$T = 1 \oplus 1 \oplus 2 \oplus 1 \oplus 2 \oplus 3$$

$$2 \oplus 1 \oplus 2 \oplus 3$$

$$4 \oplus 3 \oplus 2$$

$$4 \oplus 3 \oplus 3$$

$$4 \oplus 3 \oplus$$

• Let $T = T_1 \oplus \cdots \oplus T_r$ be maximal rigid and $B := \operatorname{End}_{\Lambda} T$.

• Let $T = T_1 \oplus \cdots \oplus T_r$ be maximal rigid and $B := \operatorname{End}_{\Lambda} T$. Let Γ_T be the Gabriel quiver of B.

• Let $T = T_1 \oplus \cdots \oplus T_r$ be maximal rigid and $B := \operatorname{End}_{\Lambda} T$. Let Γ_T be the Gabriel quiver of B.

Theorem (Geiss-L-Schröer)

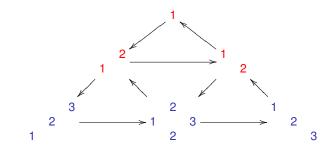
 Γ_T has no loops nor 2-cycles.

• Let $T = T_1 \oplus \cdots \oplus T_r$ be maximal rigid and $B := \operatorname{End}_{\Lambda} T$. Let Γ_T be the Gabriel quiver of B.

Theorem (Geiss-L-Schröer)

 Γ_T has no loops nor 2-cycles.

• Example in type A₃:



• Define $\Sigma(T) := ((\varphi_{T_1}, \dots, \varphi_{T_r}), \Gamma_T)$

• Define
$$\Sigma(T) := ((\varphi_{T_1}, \dots, \varphi_{T_r}), \Gamma_T)$$

Theorem (Geiss-L-Schröer)

There exists an explicit maximal rigid module U such that $\Sigma(U)$ is one of the initial seeds of the BFZ cluster structure of $\mathbb{C}[N]$.

• Define
$$\Sigma(T) := ((\varphi_{T_1}, \dots, \varphi_{T_r}), \Gamma_T)$$

Theorem (Geiss-L-Schröer)

There exists an explicit maximal rigid module U such that $\Sigma(U)$ is one of the initial seeds of the BFZ cluster structure of $\mathbb{C}[N]$.

• Let T_k be a non-projective indecomposable summand of T.

• Define
$$\Sigma(T) := ((\varphi_{T_1}, \dots, \varphi_{T_r}), \Gamma_T)$$

Theorem (Geiss-L-Schröer)

There exists an explicit maximal rigid module U such that $\Sigma(U)$ is one of the initial seeds of the BFZ cluster structure of $\mathbb{C}[N]$.

• Let T_k be a non-projective indecomposable summand of T.

Theorem (Geiss-L-Schröer)

There exists a unique indecomposable T_k^* such that $(T/T_k) \oplus T_k^*$ is rigid.

• Define
$$\Sigma(T) := ((\varphi_{T_1}, \dots, \varphi_{T_r}), \Gamma_T)$$

Theorem (Geiss-L-Schröer)

There exists an explicit maximal rigid module U such that $\Sigma(U)$ is one of the initial seeds of the BFZ cluster structure of $\mathbb{C}[N]$.

• Let T_k be a non-projective indecomposable summand of T.

Theorem (Geiss-L-Schröer)

There exists a unique indecomposable T_k^* such that $(T/T_k) \oplus T_k^*$ is rigid.

Define $\mu_k(T) := (T/T_k) \oplus T_k^*$, the mutation of *T* in direction *k*.

Theorem (Geiss-L-Schröer)

• $\Sigma(\mu_k(T)) = \mu_k(\Sigma(T)).$

Theorem (Geiss-L-Schröer)

- $\Sigma(\mu_k(T)) = \mu_k(\Sigma(T)).$
- *T* → Σ(*T*) gives a 1-to-1 correspondence between maximal rigid modules in the mutation class of *U* and clusters of C[*N*].

Theorem (Geiss-L-Schröer)

- $\Sigma(\mu_k(T)) = \mu_k(\Sigma(T)).$
- *T* → Σ(*T*) gives a 1-to-1 correspondence between maximal rigid modules in the mutation class of *U* and clusters of C[*N*].
- Every cluster monomial belongs to the dual semicanonical basis of $\mathbb{C}[N]$.

Theorem (Geiss-L-Schröer)

- $\Sigma(\mu_k(T)) = \mu_k(\Sigma(T)).$
- *T* → Σ(*T*) gives a 1-to-1 correspondence between maximal rigid modules in the mutation class of *U* and clusters of C[*N*].
- Every cluster monomial belongs to the dual semicanonical basis of $\mathbb{C}[N]$.

Open problem:

Theorem (Geiss-L-Schröer)

- $\Sigma(\mu_k(T)) = \mu_k(\Sigma(T)).$
- *T* → Σ(*T*) gives a 1-to-1 correspondence between maximal rigid modules in the mutation class of *U* and clusters of C[*N*].
- Every cluster monomial belongs to the dual semicanonical basis of $\mathbb{C}[N]$.

Open problem:

Does every cluster monomial belong to the dual canonical basis of $\mathbb{C}[N]$?

• \mathfrak{g} , simple Lie algebra over \mathbb{C} of type A_n , D_n , E_n

- \mathfrak{g} , simple Lie algebra over \mathbb{C} of type A_n , D_n , E_n
- $L\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$, loop algebra of \mathfrak{g}

- \mathfrak{g} , simple Lie algebra over \mathbb{C} of type A_n , D_n , E_n
- $L\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$, loop algebra of \mathfrak{g}
- $U_q(Lg)$, quantum enveloping algebra of Lg

- \mathfrak{g} , simple Lie algebra over \mathbb{C} of type A_n , D_n , E_n
- $L\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$, loop algebra of \mathfrak{g}
- $U_q(Lg)$, quantum enveloping algebra of Lg

Finite dimensional representations of $U_q(Lg)$

- \mathfrak{g} , simple Lie algebra over \mathbb{C} of type A_n , D_n , E_n
- $L\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$, loop algebra of \mathfrak{g}
- $U_q(Lg)$, quantum enveloping algebra of Lg

Finite dimensional representations of $U_q(Lg)$

↓ [St-Petersburg school, Kyoto school, 80's]

Trigonometric solutions of the Yang-Baxter equation

- \mathfrak{g} , simple Lie algebra over \mathbb{C} of type A_n , D_n , E_n
- $L\mathfrak{g} = \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$, loop algebra of \mathfrak{g}
- $U_q(Lg)$, quantum enveloping algebra of Lg

Finite dimensional representations of $U_q(Lg)$

[St-Petersburg school, Kyoto school, 80's]

Trigonometric solutions of the Yang-Baxter equation

[Yang, Baxter, 1970]

Boltzmann weights of integrable models of statistical mechanics

• "Many" simple $U_q(L\mathfrak{g})$ -modules are tensor products of smaller simples.

• "Many" simple $U_q(L\mathfrak{g})$ -modules are tensor products of smaller simples.

Problem

• What are the prime simples ?

• "Many" simple $U_q(L\mathfrak{g})$ -modules are tensor products of smaller simples.

Problem

- What are the prime simples ?
- What is the prime factorization of an arbitrary simple ?

• "Many" simple $U_q(L\mathfrak{g})$ -modules are tensor products of smaller simples.

Problem

- What are the prime simples ?
- What is the prime factorization of an arbitrary simple ?
- Which products of primes are simple ?

• "Many" simple $U_q(L\mathfrak{g})$ -modules are tensor products of smaller simples.

Problem

- What are the prime simples ?
- What is the prime factorization of an arbitrary simple ?
- Which products of primes are simple ?

• Chari-Pressley (1991): full answer for $U_q(L\mathfrak{sl}_2)$.

• "Many" simple $U_q(L\mathfrak{g})$ -modules are tensor products of smaller simples.

Problem

- What are the prime simples ?
- What is the prime factorization of an arbitrary simple ?
- Which products of primes are simple ?
- Chari-Pressley (1991): full answer for $U_q(L\mathfrak{sl}_2)$.
- Hernandez-L; Nakajima (2009): partial answer for $U_q(L\mathfrak{g})$.

Theorem (Hernandez-Leclerc 2009, Nakajima 2009)

- There exists a cluster algebra structure on the Grothendieck ring of certain tensor subcategories of mod $U_q(Lg)$.
- Cluster variables are classes of prime simple modules.

Theorem (Hernandez-Leclerc 2009, Nakajima 2009)

- There exists a cluster algebra structure on the Grothendieck ring of certain tensor subcategories of mod $U_q(Lg)$.
- Cluster variables are classes of prime simple modules.
- [HL], types A_n , D_4 , combinatorial method

Theorem (Hernandez-Leclerc 2009, Nakajima 2009)

- There exists a cluster algebra structure on the Grothendieck ring of certain tensor subcategories of mod $U_q(Lg)$.
- Cluster variables are classes of prime simple modules.
- [HL], types A_n , D_4 , combinatorial method
- [N], types A_n , D_n , E_n , geometric method

Theorem (Hernandez-Leclerc 2009, Nakajima 2009)

- There exists a cluster algebra structure on the Grothendieck ring of certain tensor subcategories of mod $U_q(Lg)$.
- Cluster variables are classes of prime simple modules.
- [HL], types A_n , D_4 , combinatorial method
- [N], types A_n , D_n , E_n , geometric method

 \rightsquigarrow new combinatorial and geometric formulas for certain irreducible characters of $U_q(Lg)$.

References

- S. Fomin, A. Zelevinsky, *Cluster algebras I: Foundations*, J. Amer. Math. Soc. **15** (2002), 497–529.
- S. Fomin, A. Zelevinsky, *Cluster algebras II: Finite type classification*, Invent. Math. **154** (2003), 63–121.
- A. Zelevinsky, *What is a cluster algebra ?*, Notices of the AMS 54, 11, (2007), 1494–1495.
- S. Fomin, *Cluster algebra portal*, http://www.math.lsa.umich.edu/
- B. Leclerc, *Cluster algebras and representation theory*, ICM 2010 Hyderabad, arXiv:1009.4552.