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The map M 7→ ϕM

For M ∈modΛ and i = (i1, . . . , id) let FM,i be the variety of
composition series of M of type i:

{0}= M0 ⊂M1 ⊂M2 ⊂ ·· · ⊂Md = M

with Mj/Mj−1
∼= Sij . (A projective variety.)

χM,i := χ(FM,i) ∈ Z (Euler characteristic).

Theorem (Lusztig, Geiss-L-Schröer)

There exits a unique ϕM ∈ C[N] such that for all j = (j1, . . . , jk )

ϕM(xj1(t1) · · ·xjk (tk )) = ∑
a∈Nk

χM,ja
t1a1 · · · tk ak

a1! · · ·ak !

where ja = (j1, . . . , j1︸ ︷︷ ︸
a1

, . . . , jk , . . . , jk︸ ︷︷ ︸
ak

)
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The map M 7→ ϕM : type A3
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How should we interpret mutations in modΛ ?

D24D134 = D14D234 +D124D34
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Multiplicative properties of ϕ

Theorem (Geiss-L-Schröer)
for every M,L ∈modΛ, ϕMϕL = ϕM⊕L

if dim Ext 1
Λ
(M,L) = dim Ext 1

Λ
(L,M) = 1 then

ϕMϕL = ϕX +ϕY ,

where 0→M → X → L→ 0 and 0→ L→ Y →M → 0 are the
two non-split short exact sequences.

for every M,L ∈modΛ, dim Ext 1
Λ
(M,L) = dim Ext 1

Λ
(L,M).
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for every M,L ∈modΛ, ϕMϕL = ϕM⊕L

if dim Ext 1
Λ
(M,L) = dim Ext 1

Λ
(L,M) = 1 then

ϕMϕL = ϕX +ϕY ,

where 0→M → X → L→ 0 and 0→ L→ Y →M → 0 are the
two non-split short exact sequences.

for every M,L ∈modΛ, dim Ext 1
Λ
(M,L) = dim Ext 1

Λ
(L,M).



Rigid Λ-modules

Definition

M ∈modΛ is rigid if Ext 1
Λ
(M,M) = 0.

• r := ] positive roots of Q = dim N .

Theorem (Geiss-Schröer)
A rigid Λ-module has at most r non-isomorphic indecomposable
direct summands.

• A rigid Λ-module T with r non-isomorphic indecomposable direct
summands is called maximal rigid.

• Example in type A3:

T = 1 ⊕ 1
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Rigid Λ-modules

• Let T = T1⊕·· ·⊕Tr be maximal rigid and B := End ΛT .

Let ΓT be the Gabriel quiver of B.

Theorem (Geiss-L-Schröer)
ΓT has no loops nor 2-cycles.

• Example in type A3:
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Rigid Λ-modules

• Define Σ(T ) := ((ϕT1 , . . . ,ϕTr ), ΓT )

Theorem (Geiss-L-Schröer)

There exists an explicit maximal rigid module U such that Σ(U) is
one of the initial seeds of the BFZ cluster structure of C[N].

• Let Tk be a non-projective indecomposable summand of T .

Theorem (Geiss-L-Schröer)

There exists a unique indecomposable Tk
∗ such that (T/Tk )⊕Tk

∗ is
rigid.

Define µk (T ) := (T/Tk )⊕Tk
∗, the mutation of T in direction k .
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Rigid Λ-modules

Theorem (Geiss-L-Schröer)

Σ(µk (T )) = µk (Σ(T )).

T 7→ Σ(T ) gives a 1-to-1 correspondence between maximal rigid
modules in the mutation class of U and clusters of C[N].
Every cluster monomial belongs to the dual semicanonical basis
of C[N].

Open problem:

Does every cluster monomial belong to the dual canonical basis of
C[N] ?
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Σ(µk (T )) = µk (Σ(T )).
T 7→ Σ(T ) gives a 1-to-1 correspondence between maximal rigid
modules in the mutation class of U and clusters of C[N].
Every cluster monomial belongs to the dual semicanonical basis
of C[N].

Open problem:

Does every cluster monomial belong to the dual canonical basis of
C[N] ?



Rigid Λ-modules

Theorem (Geiss-L-Schröer)
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Quantum affine algebras

g, simple Lie algebra over C of type An, Dn, En

Lg = g⊗C[t , t−1], loop algebra of g

Uq(Lg), quantum enveloping algebra of Lg

Finite dimensional representations of Uq(Lg)

 [St-Petersburg school, Kyoto school, 80’s]

Trigonometric solutions of the Yang-Baxter equation

 [Yang, Baxter, 1970]

Boltzmann weights of integrable models of statistical mechanics
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Open problems

• “Many” simple Uq(Lg)-modules are tensor products of smaller
simples.

Problem
What are the prime simples ?

What is the prime factorization of an arbitrary simple ?

Which products of primes are simple ?

• Chari-Pressley (1991): full answer for Uq(Lsl2).

• Hernandez-L; Nakajima (2009): partial answer for Uq(Lg).
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Quantum affine algebras

Theorem (Hernandez-Leclerc 2009, Nakajima 2009)
There exists a cluster algebra structure on the Grothendieck ring
of certain tensor subcategories of mod Uq(Lg).
Cluster variables are classes of prime simple modules.

[HL], types An, D4, combinatorial method

[N], types An, Dn, En, geometric method

 new combinatorial and geometric formulas for certain irreducible
characters of Uq(Lg).
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