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Abstract. Kronecker coefficients encode the tensor products of complex irreducible
representations of symmetric groups. Their stability properties have been considered
recently by several authors (Vallejo, Pak and Panova, Stembridge). In [J. Alg. Combin.

42 (2015), 999–1025], we described a geometric method, based on Schur–Weyl duality,
that allows one to produce huge series of instances of this phenomenon. In this note,
we show how to go beyond these so-called additive triples. We show that the set of
stable triples defines a union of faces of the cone generated by the supports of the
nonzero Kronecker coefficients. Moreover, these faces may have different dimensions,
and many of them have codimension one.

1. Introduction

The complex representation theory of symmetric groups is well understood: the irre-
ducible representations, usually called Specht modules, are indexed by partitions, and
their dimensions are given by the famous hook-length formula. However, the multiplica-
tive structure of the representation ring has always remained elusive. The multiplicities
in tensor products of Specht modules are called Kronecker coefficients. They are poorly
understood and notoriously hard to compute. We refer to the introduction of [3] for
a discussion of some of the most basic questions about Kronecker coefficients whose
answers remain out of reach.

That Kronecker coefficients enjoy certain stability properties has been observed by
Murnaghan in 1938 [4, 5]. Such properties are extremely surprising in that they involve
representations of different groups, but they become less mysterious once translated
in terms of representations of general linear groups, via Schur–Weyl duality. More
stability phenomena have been discovered during the last twenty years, and the wealth
of examples we are now aware of makes the need to understand and organize them
better more urgent. This is one of the goals of this note.

We use the following terminology, taken from [7] and [3]. We denote by [λ] the
Specht module associated with the partition λ. This is an irreducible representation of
the symmetric group Sn, if λ is a partition of n. Kronecker coefficients are defined by
the identity

[λ]⊗ [µ] =
⊕

ν

g(λ, µ, ν) [ν].

They are symmetric in λ, µ, ν and, of course, non-negative.
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Definition. A triple of partitions (λ, µ, ν) is stable if the Kronecker coefficients satisfy

g(kλ, kµ, kν) = 1 for all k ≥ 1.

Equivalently, (λ, µ, ν) is stable if g(λ, µ, ν) 6= 0 and for any triple (α, β, γ), the sequence
of Kronecker coefficients g(α + kλ, β + kµ, γ + kν) is bounded independently of k, or
equivalently, eventually constant. We call the asymptotic value of this coefficient a
stable Kronecker coefficient.

These two properties were called weak stability and stability in [7], where it was
proved that stability implies weak stability. The reverse implication has recently been
established in [6].

In order to get nice finiteness properties we restrict to partitions whose length, rather
than size, is bounded; the length ℓ(λ) of a partition λ is the number of non-zero parts.
We would then like to understand stability phenomena in relation with the Kronecker
semigroup and the Kronecker polyhedron. The former is

Krona,b,c := {(λ, µ, ν), ℓ(λ) ≤ a, ℓ(µ) ≤ b, ℓ(ν) ≤ c, g(λ, µ, ν) 6= 0}.

This is a finitely generated semigroup. A more precise version of the semigroup property
is the elementary, but useful monotonicity property: if g(λ, µ, ν) 6= 0, then, for any triple
(α, β, γ),

g(α + λ, β + µ, γ + ν) ≥ g(α, β, γ).

The semigroup Krona,b,c lives inside a codimension two sublattice of Za+b+c, because
of the obvious condition |λ| = |µ| = |ν| for a Kronecker coefficient g(λ, µ, ν) to be
non-zero. We call this lattice the weight lattice. The cone generated by Krona,b,c is a
rational polyhedral cone PKrona,b,c, that we call the Kronecker polyhedron. It is defined
by some finite list of linear inequalities, corresponding to the equations of its facets (the
maximal faces, of codimension one). The number of facets is huge already for small
values of the parameters, and certainly grows exponentially with a, b, c (see [1] and [9]).

In [2, 3], we showed that all lattice points in certain minimal faces of the Kronecker
polyhedron are stable triples. These minimal faces were defined in terms of certain
standard tableaux with the additivity property, and we call them additive faces. Let us
suppose for simplicity that c = ab (this is not a restriction since it is well known that,
for a Kronecker coefficient g(λ, µ, ν) to be non-zero, the condition ℓ(λ) ≤ ℓ(µ)ℓ(ν) on
the lengths is required). Consider a standard tableau T of rectangular shape a×b. Such
a tableau is additive if there exist increasing sequences x1 < · · · < xa and y1 < · · · < yb
of real (or rational) numbers such that

T (i, j) < T (k, l) if and only if xi + yj < xk + yl.

The main stability result in [3] was the following.

Proposition 1. Let T be an additive standard tableau of rectangular shape a× b. For

a partition λ = (λ1, . . . , λab), define two partitions aT (λ), bT (λ) by

aT (λ)i =
b

∑

j=1

λT (i,j) and bT (λ)j =
a

∑

i=1

λT (i,j).

Then (λ, aT (λ), bT (λ)) is a stable triple.
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Moreover, the set of these additive triples, for a fixed T , is exactly the set of lattice
points inside a minimal face fT of PKrona,b,ab defined by this standard tableau.

We want to stress here that the fact that stable triples can be related to faces of the
Kronecker polyhedron is by no means a surprise. A general statement is the following.

Proposition 2. The set SKrona,b,c of weakly stable triples in Krona,b,c is the intersection

of Krona,b,c with a union of faces of PKrona,b,c.

More generally, one can associate with any face of the Kronecker polyhedron a positive
integer, which gives the order of growth of the stretched Kronecker coefficients on the
interior of the face. This will be discussed in the last section of this paper.

Concentrating on (weakly) stable triples, it is natural to try to describe the faces of
PKrona,b,c that are maximal in SKrona,b,c. We will call the faces of PKrona,b,c whose
intersection with Krona,b,c is contained in SKrona,b,c the stable faces, and those that are
maximal in SKrona,b,c the maximal stable faces (which we do not expect a priori to be
maximal faces in PKrona,b,c, or facets). Among many other questions, we can ask: what
is the maximal dimension of such a face? What can be their dimensions? Could they
all be of the same dimension? Can the additive stable faces be maximal in SKrona,b,c?
More generally, what are the stable faces containing a given additive stable face?

The main goal of this note is to answer some of these questions, in particular the last
one, and draw some unexpected consequences. In [3] we explained how to describe the
local structure of the Kronecker polyhedron around an additive face. Among the faces
that contain such an additive face, we will distinguish those that have a property that
we will call strong simpliciality. We will prove the following result.

Theorem 1. Among the faces of PKrona,b,c that contain an additive face, the stable

ones are exactly those that are strongly simplicial.

The fact that strongly simplicial faces are stable will be proved in Theorem 2, and
Theorem 3 will provide the reverse implication.

A priori, we would have expected the stable faces to be very special, in particular to
have high codimension. Surprisingly, our theorem has the following consequence.

Corollary 1. The polyhedral cone PKrona,b,c always contains stable facets.

This means that there exist families of stable triples of the largest possible dimension.
It would be extremely interesting to have a full classification. We can give many explicit
examples of strongly simplicial facets and show that there always exist many of them
(Proposition 4). We can also describe their structure, which is that of a cone over a
hypercube (Proposition 3). The vertices of this hypercube are in bijection with the
additive faces contained in the facet.

Another striking phenomenon is the following. Consider an additive face, and the
maximal stable faces that contain it. It may very well happen that these maximal
faces have different dimensions! In fact, it seems quite plausible that the maximal
stable faces can have all the possible dimensions between the smallest and maximal
possible dimensions. In particular, the set of stable triples seems to have a very intricate
structure in general.
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2. Strongly simplicial faces

2.1. The geometric method. Let us briefly recall the main features of the geometric
method used in [2, 3] in order to approach Kronecker coefficients. Let A,B be complex
vector spaces of finite dimensions a, b. By Schur–Weyl duality, Kronecker coefficients
are the multiplicities of the Schur powers Sλ(A⊗B), when decomposed into irreducible
representations for GL(A)×GL(B). By the Borel–Weil theorem,

Sλ(A⊗ B) = H0(Fl(A⊗ B), Lλ)

for a suitable linearized line bundle Lλ on the variety Fl(A ⊗ B) of complete flags in
A⊗B. A standard tableau T defines an embedding

ιT : Fl(A)× Fl(B) →֒ Fl(A⊗ B).

The induced map on equivariant Picard groups

ι∗T : Pic(Fl(A⊗B)) ≃ Zab → Pic(Fl(A)× Fl(B)) ≃ Za × Zb

is precisely our map λ 7→ (aT (λ), bT (λ)) when expressed in the natural basis. In partic-
ular, restriction gives a non-zero map

H0(Fl(A⊗B), Lλ) −→ H0(Fl(A)× Fl(B), LaT (λ) ⊗LbT (λ)) = SaT (λ)A⊗ SbT (λ)B, (2.1)

implying that the Kronecker coefficient g(λ, aT (λ), bT (λ)) is positive. Then we can
define a filtration of H0(Fl(A ⊗ B), Lλ) by the order of vanishing on Fl(A) × Fl(B).
This allows us to define an injective map

H0(Fl(A⊗ B), Lλ) →֒ H0(Fl(A)× Fl(B), LaT (λ) ⊗ LbT (λ) ⊗ S∗N∗), (2.2)

where N denotes the normal bundle of the embedding ιT , and S∗N∗ is the symmetric
algebra of the dual bundle, the conormal bundle. This map must be thought of as
taking a section of Lλ to its Taylor expansion in the normal directions to Fl(A)×Fl(B).
Moreover, if λ is strictly decreasing, the line bundle Lλ is very ample. By the usual
properties of ample bundles, the previous map becomes surjective onto every finite part
of S∗N∗ if Lλ is sufficiently ample (that is, if the differences λi−λi+1 are large enough).
This shows that the multiplicities in Sλ(A⊗B) = H0(Fl(A⊗B), Lλ) — in alternative
terms, the Kronecker coefficients — are somehow controlled by the normal bundle.

This works particularly well when the embedding ιT is convex, in the sense that the
weights of the normal bundle are contained in a strictly convex cone. Combinatorially,
this exactly means that the tableau T is additive. Then the Kronecker coefficient
g(α+ kλ, β + kaT (λ), γ + kbT (λ)) is bounded by the multiplicity of Lβ−aT (α) ⊗Lγ−bT (α)

inside S∗N∗, and the latter is finite by convexity. This implies that we can focus on
a finite part of this algebra, independently of k. However, if λ is strict and k is large
enough, the surjectivity of (2.2) in finite degrees implies that we have equality between
the latter multiplicity and the Kronecker coefficient. In particular, this coefficient does
not depend on k, when big enough: this is the stability phenomenon. Of course, we get
much more information since we are in principle able to compute the stable Kronecker
coefficients, directly from the normal bundle.

Combinatorially, the weights of the conormal bundle are determined as follows. De-
note by e1, . . . , ea and f1, . . . , fb bases of the character lattices of maximal tori in GL(A)
and GL(B). If T (i, j) = k (i.e., the box (i, j) is numbered k in T ), let gk = ei + fj.
Then the weights of the normal bundle are the differences gℓ − gk for ℓ > k. Among
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these weights, the horizontal and vertical ones are those of the form ep− eq and fp− fq.
They will appear repeatedly, in fact, in the conormal bundle their multiplicities are b
for the horizontal ones and a for the vertical ones. In particular, these multiplicities
will be bigger than one as soon as we suppose that a, b > 2. All the other weights have
multiplicity one. Of course, the multiplicity of Lβ−aT (α) ⊗ Lγ−bT (α) inside S∗N∗, which
gives the stable Kronecker coefficient, can be obtained as the number of ways to express
the weight (β − aT (α), γ − bT (α)) as a non-negative linear combination of the weights
of the conormal bundle, considered with their multiplicities.

Obviously, this is possible only when (β − aT (α), γ − bT (α)) belongs to the cone
generated by these weights, which we call the conormal cone. This cone gives a local
picture of the Kronecker polyhedron locally around fT . In particular, any face of the
latter containing fT can be identified with a face of the conormal cone, and conversely.

Let us summarize these results, which will be used repeatedly in the remaining of the
paper.

Lemma 1. (1) The lattice points in the additive face fT are the triples

(λ, aT (λ), bT (λ)).
(2) The conormal cone is the cone generated by the vectors gℓ − gk, ℓ > k.
(3) The Kronecker coefficient g(α + kλ, β + kaT (λ), γ + kbT (λ)) is bounded by the

integer VT (β−aT (α), γ−bT (β)), where VT (σ, θ) is the number of ways of decom-

posing (σ, θ) as a non-negative linear combination of the vectors gℓ − gk ℓ > k,
taking into account multiplicities.

2.2. Perturbations of additive triples. Now consider a triple of the form
(λ, aT (λ) + σ, bT (λ) + θ), where σ and θ are not necessarily partitions, but sequences
(or weights) such that aT (λ) + σ and bT (λ) + θ are partitions.

By the injectivity of (2.2), the Kronecker coefficient g(kλ, k(aT (λ)+σ), k(bT (λ)+ θ))
is bounded by the multiplicity of (kσ, kθ) as a weight of S∗N∗. If we suppose that the
line generated by (σ, θ) belongs to the conormal cone, this multiplicity will eventually
become positive, and we expect it to grow to infinity with k. However, this is not
necessarily the case: the multiplicity will remain bounded if (σ, θ) belongs to a face
of the cone which is strongly simplicial. By this we mean that the weights of the
conormal bundle contained in the face, considered with their multiplicities, define a
basis of the linear space generated by the face. Then the multiplicity will be 0 or 1, the
second possibility occurring exactly when (kσ, kθ) belongs to the lattice generated by
the latter weights.

Let us insist on the definition of strongly simplicial faces.

Definition. A face F of the Kronecker polytope is strongly simplicial if it contains an
additive face fT such that, locally around fT , the face F corresponds to a face of the
conormal cone which is strongly simplicial in the sense that:

(1) it is a face of dimension d generated by d vectors gk1+1 − gk1 , . . . , gkd+1 − gkd ;
(2) none of these vectors is horizontal or vertical;
(3) no other vector of the form gp − gq belongs to the face;
(4) in particular, the pairs {k1, k1 + 1}, . . . , {kd, kd + 1} do not intersect.

The structure of a strongly simplicial face is not difficult to describe. Recall that an
additive tableau T is defined by parameters x1 < · · · < xa and y1 < · · · < yb such that
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T (i, j) < T (k, l) if and only if xi + yj < xk + yl. Of course, these parameters are not
unique. In fact, the tableau T really corresponds to a connected component CT of the
complement of the collection of hyperplanes defined by the equations xi + yj = xk + yl
inside the parameter space.

Locally around the additive face fT , the Kronecker polyhedron is, by hypothesis, the
simplicial cone over the vectors gk1+1 − gk1 , . . . , gkd+1 − gkd . Let us choose one of them,
say gks+1 − gks . Since it is neither horizontal nor vertical, we can exchange the entries
ks and ks + 1 in T and obtain another standard tableau Ts. We claim that Ts is again
additive. Indeed, observe that CT is the dual cone of the normal cone at T . Suppose
that the entries ks and ks+1 of T appear in boxes (i, j) and (k, l), so that the half-space
xi + xj < xk + xl is the dual cone of the ray generated by gks+1 − gks . The fact that
gks+1−gks is an extremal vector of the cone implies that the hyperplane xi+yj = xk+yl
is really a facet of CT . Crossing this facet we get into a component corresponding to
Ts, which is therefore also additive.

Iterating the process, we deduce that the 2d standard tableaux obtained by consid-
ering all the possibilities to exchange the entries (k1, k1 + 1), . . . , (kd, kd + 1), are all
additive. Moreover, the Kronecker polyhedron, around each of the corresponding ad-
ditive faces, is described by the same cone, up to a change of signs for the generators.
Since

(aTs
(λ), bTs

(λ)) = (aT (λ), bT (λ)) + (λks − λks+1)(gks+1 − gks),

this implies that the intersection of Krona,b,c with our strongly simplicial face is equal
to the set of triples

(λ, µ, ν) = (λ, aT (λ), bT (λ)) +
d

∑

i=1

us(gks+1 − gks), (2.3)

with 0 ≤ us ≤ λks − λks+1, these coefficients u1, . . . , ud being all integers. Note that it
would a priori be possible that we get a triple of partitions (λ, µ, ν) given by the same
expression but with rational coefficients u1, . . . , ud, not all integral. In this case, the
Kronecker coefficient g(λ, µ, ν) is zero.

In other words, the identity (2.3) defines a lattice LF , which could be a proper
sublattice of the intersection of the weight lattice with the linear span of F . In this
lattice, F is simply defined by the inequalities 0 ≤ us ≤ λks − λks+1 for 1 ≤ s ≤ d.
Recall that d is the number of generators of the face in the normal directions of an
additive face it contains. In particular, the codimension of F is the codimension of an
additive face (that is, a+ b− 2) minus d. We get the following description of strongly
simplicial faces.

Proposition 3. A strongly simplicial face F of codimension δ in the Kronecker poly-

hedron is a cone over a hypercube of dimension a+ b− 2− δ.

The main result of this paper is the following.

Theorem 2. A strongly simplicial face F of the Kronecker polyhedron is stable. More

precisely, a point in F is a stable triple if it belongs to LF , and the corresponding

Kronecker coefficient is zero otherwise.

Proof. Consider a triple of the form (kλ+α, k(aT (λ)+σ)+β, k(bT (λ)+ θ))+γ), where
as before (σ, θ) belongs to the simplicial face corresponding to F in the conormal cone
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of the additive face fT . As we have seen, the corresponding Kronecker coefficient is
bounded by the multiplicity of (kσ + β − aT (α), kθ + γ − bT (α)) as a weight of S∗N∗.
Suppose that we have expressed this weight as a non-negative integer linear combination
t1η1+ · · ·+tNηN of the weights η1, . . . , ηN of the conormal bundle, considered with their
multiplicities. Suppose these weights are indexed in such a way that the first d generate
our simplicial face. By projection along the direction of this face, we get a relation of
the form

pF (β − aT (α), γ − bT (α)) = td+1pF (ηd+1) + · · ·+ tNpF (ηN), (2.4)

where pF denotes the projection. However, the projected weights pF (ηd+1), . . . , pF (ηN)
generate a strictly convex cone, so the latter equation has only finitely many non-
negative integer solutions (td+1, . . . , tN). These solutions do not depend on k, and, for
each of these, the original equation has at most one solution in (t1, . . . , td) since it can
be considered as an equation in the simplicial face F . This proves that the Kronecker
coefficient g(kλ+α, k(aT (λ)+σ)+β, k(bT (λ)+ θ))+γ) is bounded independently of k.

This is precisely the definition of stability, up to the fact that the Kronecker coefficient
g(λ, aT (λ) + σ, bT (λ) + θ) must be equal to one. Recall that by [7, Prop. 3.2], the only
alternative is that it is equal to zero. So what remains to prove is that, if (λ, µ, ν) is
a point of F that also belongs to the lattice LF , the Kronecker coefficient g(λ, µ, ν)
cannot be zero.

To check this, we will use that (λ, µ, ν) is given by (2.3) for some integer coefficients
u1, . . . , ud such that 0 ≤ us ≤ λks − λks+1 for all s. Denote the partition of t with t
parts equal to one by ωt. Recall that we denoted the standard tableau obtained by
exchanging the entries ks and ks + 1 in T by Ts. It is straightforward to check that

(ωks , aTs
(ωks), bTs

(ωks))− (ωks , aT (ωks), bT (ωks)) = gks+1 − gks .

This allows us to rewrite (2.3) as

(λ, µ, ν) = (θ, aT (θ), bT (θ)) +
d

∑

s=1

us(ωks , aTs
(ωks), bTs

(ωks)),

where θ = λ −
∑d

s=1 usωks . Since us ≤ λks − λks+1 for all s, this θ is again a par-
tition. Since T and the Ts are all additive, we know that g(θ, aT (θ), bT (θ)) = 1 and
g(ωks , aTs

(ωks), bTs
(ωks)) = 1 for all s. In particular, all these Kronecker coefficients are

non-zero, and from the semigroup property we deduce that g(λ, µ, ν) is positive. �

Corollary 2. A strongly simplicial face is the non-negative integral span of the additive

triples it contains. Moreover, any additive face is properly contained in some strongly

simplicial face.

Proof. The first statement means that any stable triple in F can be obtained as a linear
combination with positive integer coefficients, of some stable triples in the additive faces
contained in F . This is what we established in the proof of Theorem 2.

For the second statement, simply observe that at least one face of the Kronecker
polyhedron that contains fT and has dimension one more must be simplicial. Indeed,
these faces correspond to the minimal generators of the conormal cone, and they are
simplicial exactly for those generators that are neither horizontal nor vertical. However,
the generators cannot be all horizontal or vertical, since otherwise, inside T , the integer
k + 1 would always be South-East of k, which is absurd. �
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Remarks. One can wonder if there can be non-trivial arithmetic conditions on the
strongly simplicial faces, for the Kronecker coefficients to be non-zero? This would
mean that LF is really a proper sublattice of the intersection of F with the weight
lattice. This seems a priori possible but we have no example of such a phenomenon.

One can also wonder if stable Kronecker coefficients, when one considers strongly
simplicial faces, count points in some polytopes, as they do on additive faces [3]. In
the proof above, we indeed bounded the stretched Kronecker coefficients by numbers of
points in some polytopes, but it is not clear that this bound coincides with the stable
Kronecker coefficient. In the additive case, this follows from an ampleness argument,
which does not apply in this more general situation.

2.3. Strongly simplicial facets. In [3] we gave a combinatorial description of the
facets of the Kronecker polytope containing a given additive face fT . These facets are in
bijection with the maximal relaxations compatible with T , where a maximal relaxation
R is given by an additive (non-standard) tableau defined by sequences x1 ≤ · · · ≤ xa

and y1 ≤ · · · ≤ yb such that the sums R(i, j) = xi+yj are not necessarily distinct. What
we require is that the set of vectors ei + fj − ek − fl, for R(i, j) = R(k, l), has maximal
rank r = a + b− 3. Such a family of vectors being given, the sequences x1 ≤ · · · ≤ xa

and y1 ≤ · · · ≤ yb are uniquely defined up to translation and multiplication by the
same positive number. It is convenient to define the tableau R uniquely by letting
x1 = y1 = 0 and asking the two sequences to be made of integers, with no common
divisor. The compatibility condition with a standard tableau T is that R(i, j) < R(k, l)
implies T (i, j) < T (k, l). In other words, R defines a partial order on the boxes in the
rectangle a × b, which is refined by the total order defined by T . The equation of the
facet FR is then given by

a
∑

i=1

xiµi +
b

∑

j=1

yjνj =
a

∑

i=1

b
∑

j=1

(xi + yj)λT (i,j),

where T is some standard tableau compatible with R.
Can such a maximal relaxation R define a strongly simplicial facet? This would

mean that R is defined by strictly increasing sequences, and that there exist exactly
r = a + b − 3 values of R appearing twice, the corresponding difference vectors being
independent. In terms of the hyperplanes of equations xi + yj − xk − yl = 0 and
the arrangement they define in the open cone defined by 0 = x1 < · · · < xa and
0 = y1 < · · · < yb, such an R corresponds to a point where exactly r hyperplanes
meet transversally. Recall that this transversality property implies that any of the 2r

standard tableaux T compatible with R is additive.

Another unexpected fact is that, in general, there exist surprisingly many strongly
simplicial facets!

Proposition 4. PKron(a, b, ab) contains at least
(

a+b−4
b−2

)

strongly simplicial facets.

Proof. One can construct tableaux defining strongly simplicial facets by a simple in-
ductive procedure: suppose that a tableau S defines a simplicial facet for the shape
a × (b − 1). Then we get one for the shape a × b by adding a column defined by
yb = xa + yb−1. Of course, this also works for rows. So starting from the tableau
defining the unique simplicial face in shape 2 × 2, we can construct

(

a+b−4
b−2

)

strongly



ON THE ASYMPTOTICS OF KRONECKER COEFFICIENTS, 2 9

simplicial facets in shape a × b by choosing to apply the previous process on rows or
columns successively, in all possible orders. �

2.4. Examples. Let us examine in more detail the low dimension cases.

Example 1. For a = b = 2 there is exactly one additive face (up to symmetry). This
additive face is the intersection of two facets, one of which is strongly simplicial. On
the additive face, we get

g((λ1, λ2, λ3, λ4), (λ1 + λ2, λ3 + λ4), (λ1 + λ3, λ2 + λ4)) = 1,

and for the strongly simplicial facet we get the more general statement that

g((λ1, λ2, λ3, λ4), (µ1, µ2), (ν1, ν2)) = 1

when µ1 − ν2 = λ1 − λ4 and λ1 + λ3 ≤ µ1 ≤ λ1 + λ2. Moreover, all these triples are
stable.

Example 2. For a = b = 3 there exist 42 standard tableaux fitting in a square of size
three, among which 36 are additive. The number of maximal relaxations is 17. They
are encoded in the following tableaux:

F+
1

0 0 0
0 0 0
1 1 1

F+
2

0 0 0
1 1 1
1 1 1

F+
3

0 0 1
1 1 2
2 2 3

F+
4

0 1 1
1 2 2
2 3 3

F+
5

0 1 2
2 3 4
3 4 5

F6

0 0 1
0 0 1
1 1 2

F+
7

0 0 1
1 1 2
1 1 2

F8

0 1 1
1 2 2
1 2 2

F9

0 1 2
1 2 3
2 3 4

F+
10

0 1 2
1 2 3
3 4 5

and for each tableau F+
i there is another one denoted F−

i obtained by a reflection in
the diagonal.

Recall that additive faces have dimension four. A detailed analysis yields the following
result.

Proposition 5. For a = b = 3, the maximal strongly simplicial faces are, up to reflec-

tion in the diagonal:

(1) in codimension one, F+
5 and F+

10;

(2) in codimension two, F+
3 ∩ F+

4 , F+
3 ∩ F9, F

+
4 ∩ F9;

(3) in codimension three, F6 ∩ F+
7 ∩ F9 and F+

7 ∩ F8 ∩ F9.

Let us describe the sets of triples (λ, µ, ν) on these strongly simplicial faces. We will
use the notations λij = λi + λj and λijk = λi + λj + λk.

F+
5 is defined by the equation

2µ2 + 3µ3 + ν2 + 2ν3 = λ2 + 2λ3 + 2λ4 + 3λ5 + 3λ6 + 4λ7 + 4λ8 + 5λ9

and the inequalities

λ124 ≤ µ1 ≤ λ123,

λ123 + λ146 ≤ µ1 + ν1 ≤ λ123 + λ145,

λ12 − λ79 ≤ µ1 − ν3 ≤ λ12 − λ89.
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F+
10 is defined by the equation

µ2 + 3µ3 + ν2 + 2ν3 = λ2 + λ3 + 2λ4 + 2λ5 + 3λ6 + 3λ7 + 4λ8 + 5λ9

and the inequalities

λ13 − λ89 ≤ ν1 − µ3 ≤ λ12 − λ89,

λ569 + λ789 ≤ µ3 + ν3 ≤ λ469 + λ789,

λ789 ≤ µ3 ≤ λ689.

F+
3 ∩ F+

4 is defined by the two equations

ν2 = λ258 and µ2 + 2µ3 + ν3 = λ369 + λ456 + 2λ789

and the inequalities

λ124 ≤ µ1 ≤ λ123 and λ789 ≤ µ3 ≤ λ689.

F+
3 ∩ F5 is defined by the two equations

ν1 = λ136 and µ1 − µ3 + ν2 = λ124 + λ258 − λ689

and the inequalities

λ125 ≤ µ1 ≤ λ124 and λ689 ≤ µ3 ≤ λ679.

F+
4 ∩ F5 is defined by the two equations

ν3 = λ479 and µ1 − µ3 − ν2 = λ124 − λ258 − λ689

and the inequalities

λ134 ≤ µ1 ≤ λ124 and λ689 ≤ µ3 ≤ λ589.

F6 ∩ F+
7 ∩ F9 is defined by the three equalities

µ1 + ν1 = λ125 + λ136, µ2 = λ348, ν2 = λ247

and the inequalities
λ126 ≤ µ1 ≤ λ125.

F+
7 ∩ F8 ∩ F9 is defined by the three equalities

µ1 + ν1 = λ124 + λ135, µ2 = λ356, ν2 = λ267

and the inequalities
λ125 ≤ µ1 ≤ λ124.

There are no arithmetic constraints on these strongly simplicial faces, so the Kro-
necker coefficients are always equal to one, and all these triples are stable.

Note also that the additive face defined by the standard tableau

1 2 3
4 5 7
6 8 9

is contained in both F+
5 and F+

3 ∩ F+
4 , showing that an additive face can be contained

in two maximal strongly simplicial faces of different dimensions! This indicates that
the structure of the set of additive triples must be quite intricate in general.
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Example 3. For a = b = 4 there are 6660 additive tableaux and 457 maximal relax-
ations, according to [1, 9]. Among these, we know 43 strongly simplicial ones, among
which

0 1 2 3
1 2 3 4
4 5 6 7
7 8 9 A

0 1 2 5
1 2 3 6
3 4 5 8
7 8 9 C

0 1 2 5
1 2 3 6
3 4 5 8
8 9 A D

0 1 2 5
2 3 4 7
3 4 5 8
8 9 A D

0 1 2 6
2 3 4 8
3 4 5 9
5 6 7 B

0 1 2 7
1 2 3 8
3 4 5 A
5 6 7 C

0 1 2 7
2 3 4 9
3 4 5 A
5 6 7 C

0 1 4 6
2 3 6 8
3 4 7 9
7 8 B D

0 1 5 7
5 6 A C
6 7 B D
B C G I

0 2 3 6
3 5 6 9
5 7 8 B
7 9 A D

(The symbols A,B, etc. stand for 10, 11, etc.) It would be interesting to have the
complete list.

2.5. Symmetries. There exist two natural involutions on the set of additive tableaux.
Recall that an additive tableau can be defined by increasing sequences x1 < · · · < xa

and y1 < · · · < yb such that the sums xi + yj are distinct. We can replace each of
these sequences by the other one, reordered increasingly. Since this preserves the set of
hyperplanes of equations xi + yj = xk + yl, this defines two commuting involutions on
the set of additive tableaux, and then also on the set of maximal relaxations, and on
the subset of simplicial relaxations.

3. Non-simplicial faces

3.1. The degree of a face. Recall that a stretched Kronecker coefficient g(kλ, kµ, kν)
is quasipolynomial: there exists a collection of polynomials P0, . . . , Pp−1, such that

g(kλ, kµ, kν) = Pi(k) for k ≡ i (mod p).

By the monotonicity property, Pi+j(k + ℓ) ≥ Pi(k) as soon as Pj(ℓ) 6= 0. This implies
that, among the polynomials P0, . . . , Pp−1, those that are not identically zero have the
same degree d, and the same leading term as well. We call d = d(λ, µ, ν) the degree of
the triple (λ, µ, ν). For example, weakly stable triples have degree zero, and a triple of
degree zero is one that has a weakly stable multiple.

Another straightforward consequence of the monotonicity property, and of the con-
vexity of the faces, is the following statement.

Proposition 6. Let F be a face of the Kronecker polyhedron. The degree is constant

on the interior of F , and can only decrease, or remain the same, on its boundary faces.

Definition. Let F be a face of the Kronecker polyhedron. We define its degree as
the degree of its interior points. For example, any additive face, more generally any
strongly simplicial face, has degree zero.
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3.2. The defect of simpliciality. For a non-simplicial face containing an additive
face, we will show that the degree can be read off directly from the normal bundle.

Definition. A face F of the Kronecker polyhedron is called δ-simplicial if there exists
an additive face fT in F such that the face f of the conormal cone corresponding to F
is δ-simplicial. By this we mean that f has dimension d, but contains d+ δ weights of
the conormal bundle, counted with their multiplicities.

Strongly simplicial is therefore the same as 0-simplicial. Note also that, starting from
a face F of the Kronecker polyhedron, the integer δ will not depend on the minimal
face fT contained in F . This is a consequence of the following statement.

Theorem 3. A δ-simplicial face F of the Kronecker polyhedron has degree δ.

Proof. We consider F with the additive face fT , and we identify F with the corre-
sponding face of the conormal cone. We consider stretched Kronecker coefficients
g(kλ, k(aT (λ) + σ), k(bT (λ) + θ)), where the weight (σ, θ) belongs to the linear span
of the face. Denote this Kronecker coefficient by gk. It may a priori happen that the
lattice generated by the weights of the conormal bundle belonging to the face does not
contain (σ, θ). In general, there exists a minimal integer e, depending on (σ, θ), such
that e(σ, θ) belongs to this lattice. If k is not divisible by e, then k(σ, θ) does not
belong to the lattice and gk = 0. If we restrict to those k that are divisible by e, then
the number of ways to express k(σ, θ) as a non-negative integer linear combination of
weights of the conormal bundle certainly grows like kδ. By the injectivity of (2.2), this
implies that the growth of gk is at most of the order kδ.

To get the required conclusion, we must control the surjectivity of (2.2). The key
point is the following general statement.

Lemma 2. Let L be an ample line bundle and M a globally generated line bundle on

a smooth complex projective variety X. Let ι : Y →֒ X be the embedding of a smooth

subvariety, and denote the normal bundle by N . Then there exist integers m and n, not
depending on M , such that the natural map

H0(X, IdY ⊗ La ⊗M) −→ H0(Y, SdN∗ ⊗ ι∗(La ⊗M))

is surjective when a ≥ md+ n.

If we apply this statement to ιT , we deduce that there exist integers mT , nT such that
(2.2) is surjective up to degree d as soon as λi −λi+1 ≥ mTd+nT for each i. Replacing
λ by kλ, we get the surjectivity up to degree (k − nT )/mT . This yields a lower bound
for gk of order (k − nT/mT )

δ, and the claim follows. �

Proof of the lemma. To get the surjectivity it is enough to prove that

H1(X, Id+1
Y ⊗ La ⊗M) = 0.

Let π : Z → X be the blow-up of Y , and E the exceptional divisor. Since π∗OZ(−iE) =
I iY and there are no higher direct images, we are reduced to proving that

H1(Z,OZ(−(d+ 1)E)⊗ π∗(La ⊗M)) = 0.

The canonical line bundle of Z is KZ = π∗KX ⊗ OZ((c − 1)E), if c denotes the codi-
mension of Y in X. So we can rewrite the previous condition as

H1(Z,KZ ⊗OZ(−(d+ c)E)⊗ π∗(La ⊗M ⊗K−1
X )) = 0.
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We can find an a0 such that La0 ⊗K−1
X is ample. Moreover, there exists b0 such that

IY ⊗ Lb0 is generated by global sections, hence also OZ(−E)⊗ π∗Lb0 . Then

OZ(−(d+ c)E)⊗ π∗(La ⊗M ⊗K−1
X )

is nef and big as soon as a ≥ a0+ b0(d+ c), and the required vanishing follows from the
Kawamata–Viehweg vanishing theorem. �
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[2] Manivel L., Applications de Gauss et pléthysme, Ann. Inst. Fourier 47 (1997), 715–773.
[3] Manivel L., On the asymptotics of Kronecker coefficients, J. Algebraic Combin. 42 (2015), 999–

1025.
[4] Murnaghan F.D., The analysis of the Kronecker product of irreducible representations of the sym-

metric group, Amer. J. Math. 60 (1938), 761–784.
[5] Murnaghan F.D., On the analysis of the Kronecker product of irreducible representations of Sn,

Proc. Natl. Acad. Sci. U.S.A. 41 (1955). 515–518.
[6] Sam S., Snowden A., Proof of Stembridge’s conjecture on stability of Kronecker coefficients, J.

Algebraic Combin. 43 (2016), 1–10.
[7] Stembridge J., Generalized stability of Kronecker coefficients, preprint, August 2014. With an

Appendix, available at http://www.math.lsa.umich.edu/~jrs/papers.
[8] Vallejo E., Stability of Kronecker coefficients via discrete tomography, arχiv:1408.6219.
[9] Vergne M., Walter M., Moment cones of representations, arχiv:1410.8144.


