Triangulations of balanced subdivisions of convex polygons

- A. Asinowski (Vienna University of Technology),
- C. Krattenthaler (University of Vienna),
- T. Mansour (University of Haifa)

A convex k-gon

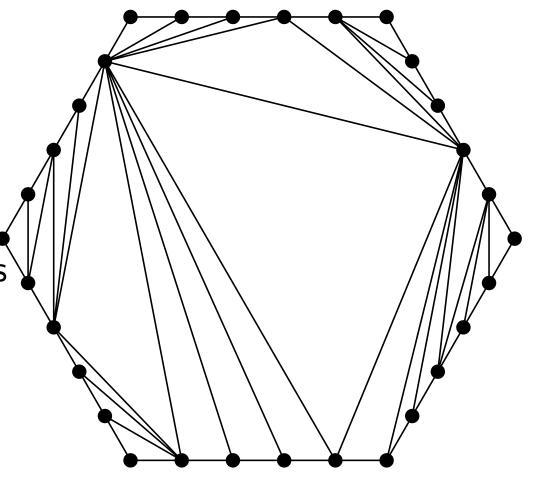
Each side is subdivided by r-1 points

$$n = kr$$

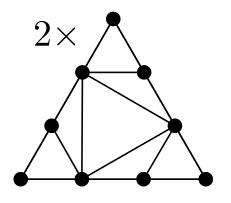
How many triangulations has this configuration?

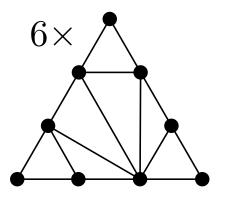
$$tr(k,r) = ?$$

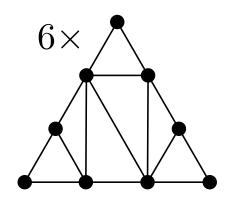
$$k = 6$$
 $r = 5$

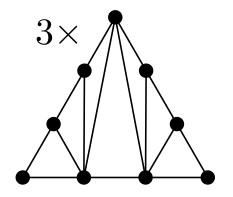


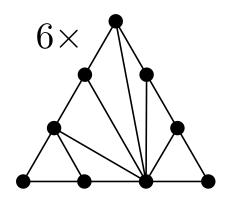
 $\mathsf{tr}(3,3) = 29$













	r=1	2	3	4	5	6
k = 3	1	4	29	229	1847	14974
4	2	30	604	12168	238848	4569624
5	5	250	13740	699310	33138675	1484701075
6	14	2236	332842	42660740	4872907670	510909185422
7	42	20979	8419334	2711857491	745727424435	182814912101920

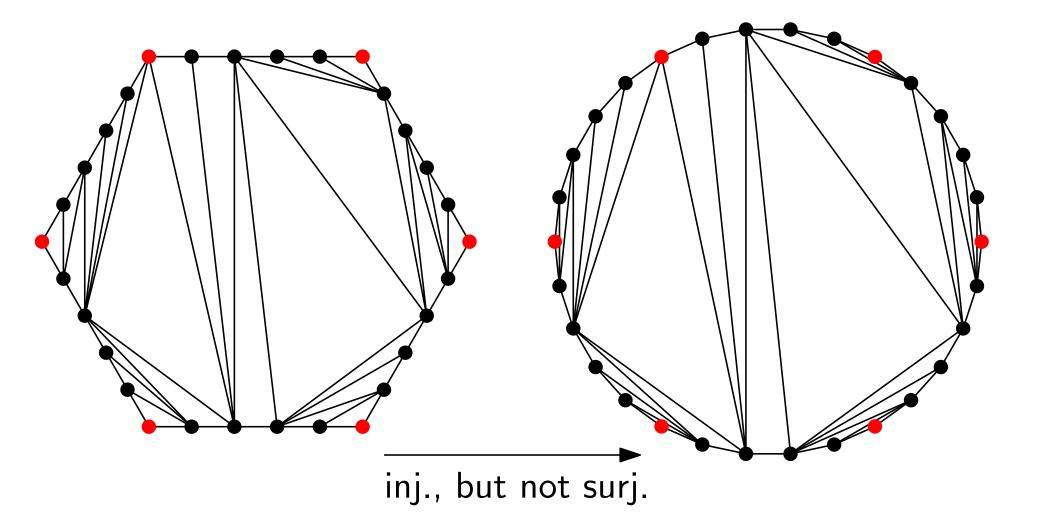
$$\operatorname{tr}(k,1) = C_{k-2}$$

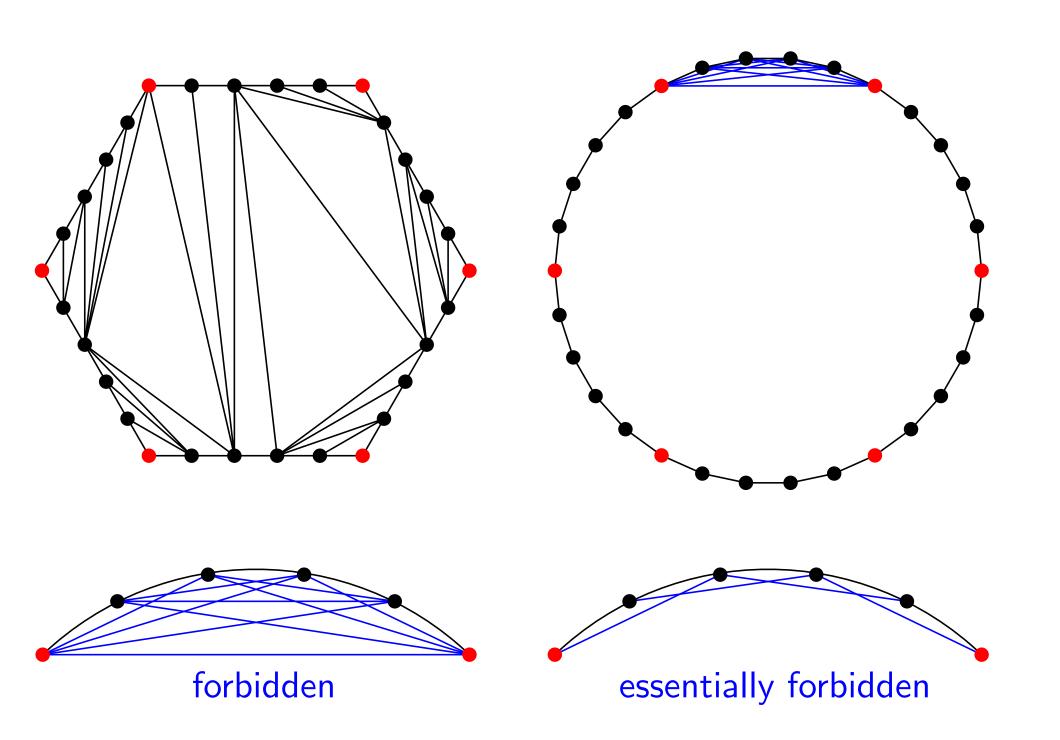
Some results on this topic:

F. Hurtado and M. Noy (1997). Counting triangulations of almost-convex polygons.

R. Bacher and F. Mouton (2003-2010). Triangulations of nearly convex polygons.

FORMULAS





$$\begin{split} \operatorname{tr}(k,r) &= \sum_{m=0}^{k \lfloor r \rfloor} \left(\left[x^m \right] \left(\sum_{\ell \geq 0} \binom{r-\ell}{\ell} (-x)^\ell \right)^k \cdot C_{kr-m-2} \right) \\ &= \sum_{m=0}^{k \lfloor r \rfloor} \left(\left[x^m \right] \left(x^{r/2} U_r \left(\frac{1}{2\sqrt{x}} \right) \right)^k \cdot C_{kr-m-2} \right) \end{split}$$

 $U_r(x)$ is the Chebyshev polynomial of the second kind

$$\begin{aligned} \operatorname{tr}(k,r) &= \sum_{m=0}^{k \lfloor r \rfloor} \left(\left[x^m \right] \left(\sum_{\ell \geq 0} \binom{r-\ell}{\ell} (-x)^\ell \right)^k \cdot C_{kr-m-2} \right) \\ &= \sum_{m=0}^{k \lfloor r \rfloor} \left(\left[x^m \right] \left(x^{r/2} U_r \left(\frac{1}{2\sqrt{x}} \right) \right)^k \cdot C_{kr-m-2} \right) \\ &= \left[x^{rk-2} \right] \left(\left(x^{r/2} U_r \left(\frac{1}{2\sqrt{x}} \right) \right)^k C(x) \right) \\ &= \left[x^{rk-2} \right] \left(\frac{\left(\left(1 + \sqrt{1 - 4x} \right)^{r+1} - \left(1 - \sqrt{1 - 4x} \right)^{r+1} \right)^k}{2^{(r+1)k} (1 - 4x)^{k/2}} \cdot \frac{1 - \sqrt{1 - 4x}}{2x} \right) \end{aligned}$$

$$= \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{\left(\left(1 + \sqrt{1 - 4x} \right)^{r+1} - \left(1 - \sqrt{1 - 4x} \right)^{r+1} \right)^{k}}{2^{(r+1)k+1}x^{rk}(1 - 4x)^{k/2}} \left(1 - \sqrt{1 - 4x} \right) dx$$

$$x = t(1 - t)$$

$$= \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{((1-t)^{r+1} - t^{r+1})^k}{t^{rk-1}(1-t)^{rk}(1-2t)^{k-1}} dt$$

$$= -\frac{1}{4\pi i} \int_{\mathcal{C}} \frac{((1-t)^{r+1} - t^{r+1})^k}{t^{rk}(1-t)^{rk}(1-2t)^{k-2}} dt$$

$$= \left[t^{rk-2}\right] \frac{((1-t)^{r+1} - t^{r+1})^k}{(1-t)^{rk}(1-2t)^{k-1}}$$

$$=\sum_{j=0}^{k}\sum_{\ell=0}^{rk-(r+1)j-1}(-1)^{j+1}2^{\ell-1}\binom{k}{j}\binom{k-3+\ell}{\ell}\binom{(r-1)k-\ell-2}{rk-(r+1)j-\ell-1}.$$

GENERATING FUNCTIONS

"Vertical" generating functions (r is fixed):

$$\operatorname{tr}(k,r) = -\frac{1}{4\pi i} \int_{\mathcal{C}} \frac{((1-t)^{r+1} - t^{r+1})^k}{t^{rk} (1-t)^{rk} (1-2t)^{k-2}} \ dt$$

$$\sum_{k \geq 1} \operatorname{tr}(k,r) x^k = -\frac{1}{4\pi i} \int_{\mathcal{C}} \sum_{k \geq 1} \frac{((1-t)^{r+1} - t^{r+1})^k x^k (1-2t)^2}{t^{rk} (1-t)^{rk} (1-2t)^k} \ dt$$

$$= -\frac{1}{4\pi i} \int_{\mathcal{C}} \frac{(1-2t)^2 dt}{1-x((1-t)^{r+1}-t^{r+1})t^{-r}(1-t)^{-r}(1-2t)^{-1}}$$

$$= -\frac{1}{4\pi i} \int_{\mathcal{C}} \frac{t^r (1-t)^r (1-2t)^2 dt}{t^r (1-t)^r - x((1-t)^{r+1} - t^{r+1})(1-2t)^{-1}}$$

$$\sum_{k \geq 1} \operatorname{tr}(k,r) x^k = -\frac{1}{4\pi i} \int_{\mathcal{C}} \frac{t^r (1-t)^r (1-2t)^2 \ dt}{t^r (1-t)^r - x ((1-t)^{r+1} - t^{r+1}) (1-2t)^{-1}}$$

$$= -\frac{1}{2} \sum_{i=1}^{r} \operatorname{Res}_{t=t_i(x)} \frac{t^r (1-t)^r (1-2t)^2}{P(x,t)}$$
$$= -\frac{1}{2} \sum_{i=1}^{r} \frac{t_i(x)^r (1-t_i(x))^r (1-2t_i(x))^2}{(\frac{d}{dt}P)(x,t_i(x))}$$

P(x,t) is the denominator of the integrand.

 $t_i(x)$ (i = 1, ..., r) are the "small roots" of P(x, t).

That is, $\lim_{x\to 0} t_i(x) = 0$.

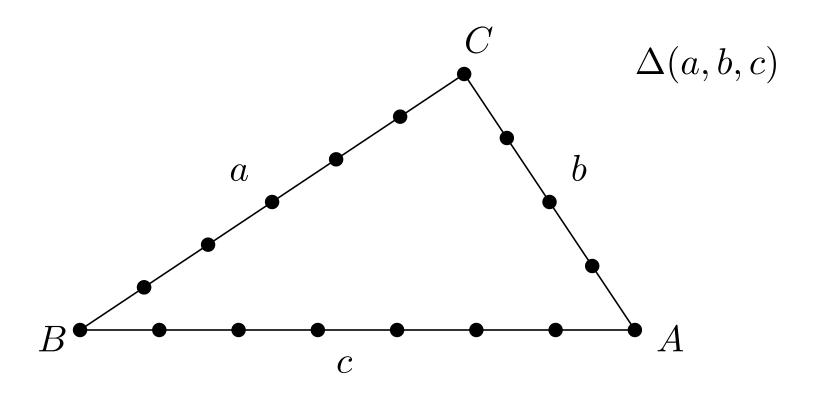
It follows: for fixed r, the "vertical" generating function $\sum_{k>0}\operatorname{tr}(k,r)$ is algebraic.

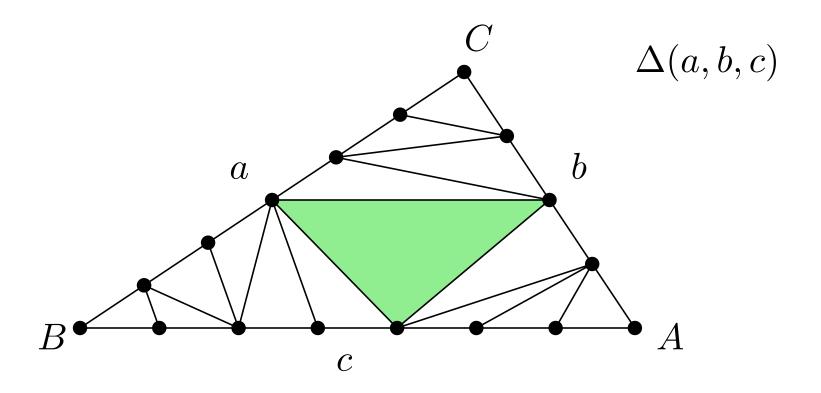
One can prove similarly that for fixed k, the "horizontal" generating function $\sum_{r>0}\operatorname{tr}(k,r)$ is algebraic.

Example: For r=2 we have

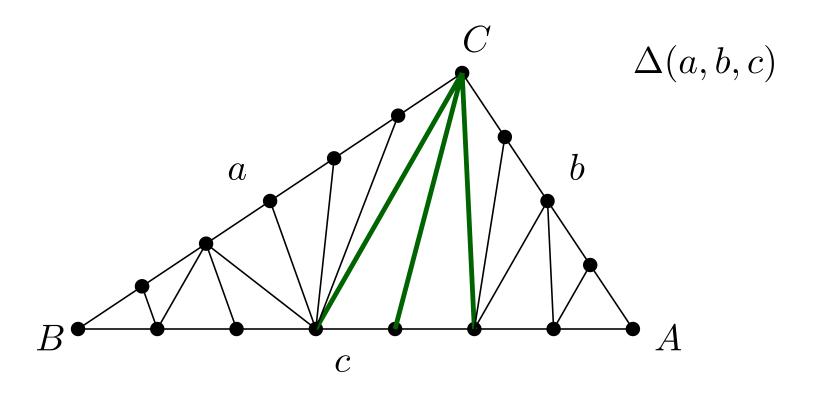
$$\sum_{k\geq 1} \operatorname{tr}(k,2) x^k = \frac{1}{8} \sqrt{\frac{x}{x+4}} \times \left(\sqrt{1+2x+2\sqrt{x(x+4)}} \left(\sqrt{x} + \sqrt{x+4} \right)^2 - \sqrt{1+2x-2\sqrt{x(x+4)}} \left(\sqrt{x} - \sqrt{x+4} \right)^2 \right)$$

THE CASE k=3 (NON-BALANCED)





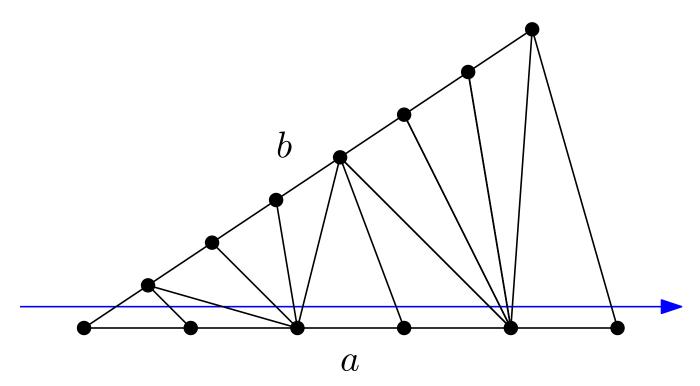
T-trianguations



D-triangulations

D-trianguations

$$\operatorname{tr}(\Delta(a,b,0)) = \binom{a+b}{a}$$



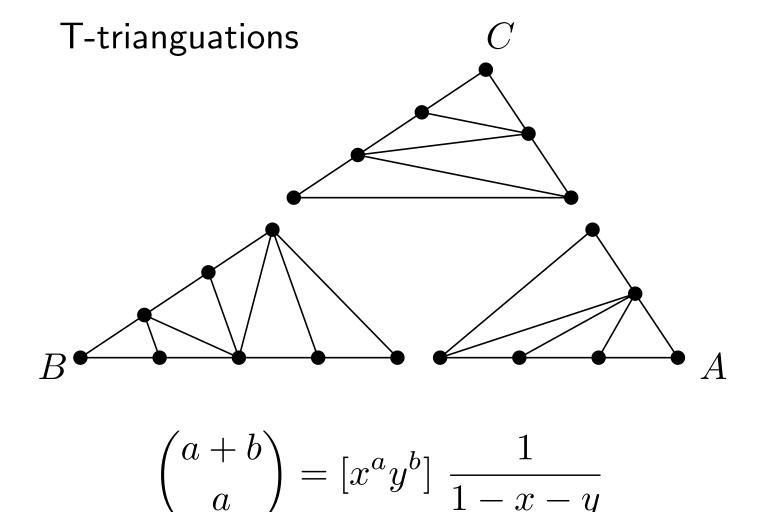
D-trianguations

$$\operatorname{tr}_{D,A}(\Delta(a,b,c)) = \binom{a+b+c-1}{a-1}A$$

D-trianguations

$$\operatorname{tr}_D(\Delta(a,b,c)) = \binom{a+b+c-1}{a-1} + \binom{a+b+c-1}{b-1} + \binom{a+b+c-1}{c-1}$$

T-trianguations C B A



$$\operatorname{tr}_T(\Delta(a,b,c)) = [x^a y^b z^c] \frac{xyz}{(1-x-y)(1-y-z)(1-z-x)}$$

$$\operatorname{tr}_T(\Delta(a,b,c)) = [x^a y^b z^c] \frac{xyz}{(1-x-y)(1-y-z)(1-z-x)}$$

$$= 2^{s} - \sum_{\ell=0}^{a-1} {s \choose \ell} - \sum_{\ell=0}^{b-1} {s \choose \ell} - \sum_{\ell=0}^{c-1} {s \choose \ell}$$

$$s = a + b + c - 1$$

$$\operatorname{tr}(\Delta(a,b,c)) = 2^s - \sum_{\ell=0}^{a-2} \binom{s}{\ell} - \sum_{\ell=0}^{b-2} \binom{s}{\ell} - \sum_{\ell=0}^{c-2} \binom{s}{\ell}$$

$$\operatorname{tr}(\Delta(p,p,p)) = 2^{3p-1} - 3\sum_{\ell=0}^{p-2} \binom{3p-1}{\ell}$$

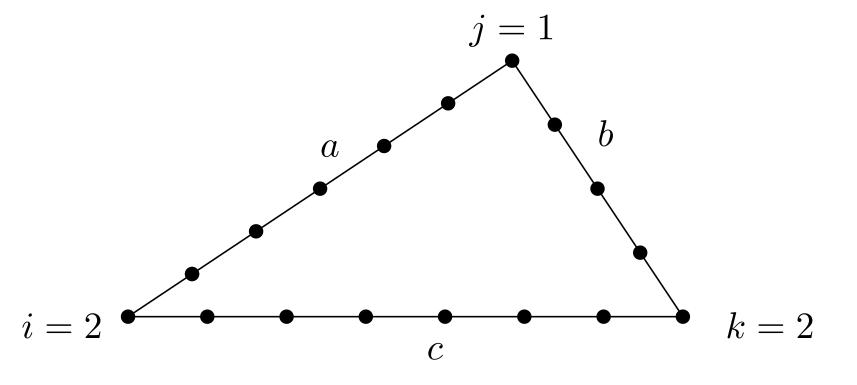
OEIS about $tr(\Delta(p, p, p))$:

It seems that $a(n)=sum_{i, j, k>=0}C(p, i+j)*C(p, j+k)*C(p, k+i)). - Benoit Cloitre, Oct 25 2004$

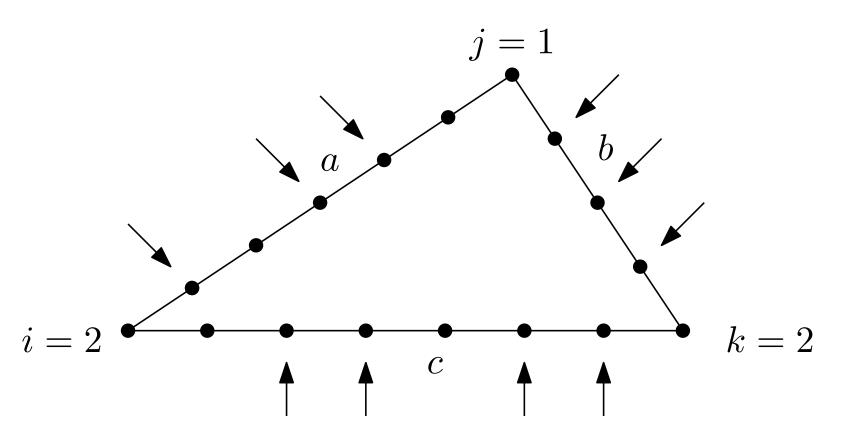
$$\operatorname{tr}(\Delta(p,p,p)) = \sum_{i,j,k>0} \binom{p}{i+j} \binom{p}{j+k} \binom{p}{k+i}$$

$$\operatorname{tr}(\Delta(a,b,c)) = \sum_{i,j,k \ge 0} \binom{a}{i+j} \binom{b}{j+k} \binom{c}{k+i}$$

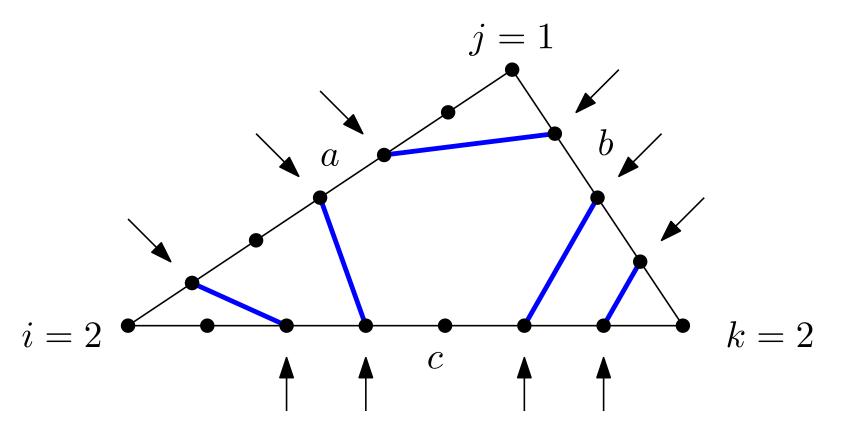
$$\operatorname{tr}(\Delta(a,b,c)) = \sum_{i,j,k \geq 0} \binom{a}{i+j} \binom{b}{j+k} \binom{c}{k+i}$$



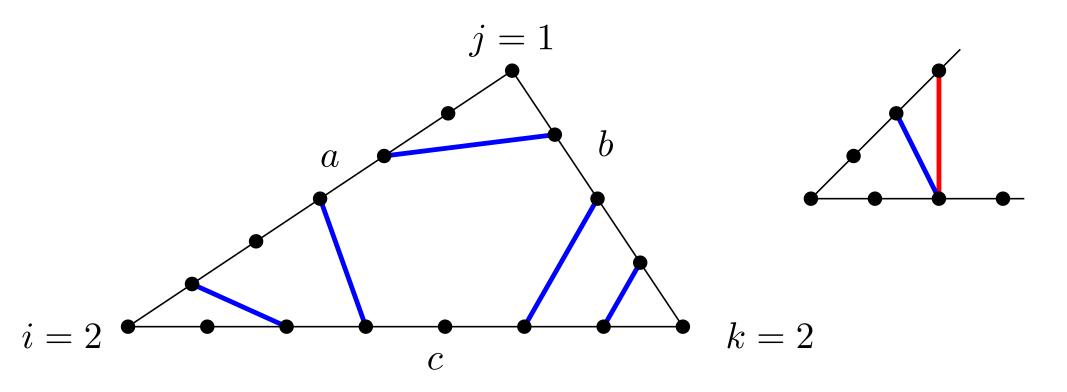
$$\operatorname{tr}(\Delta(a,b,c)) = \sum_{i,j,k \geq 0} \binom{a}{i+j} \binom{b}{j+k} \binom{c}{k+i}$$



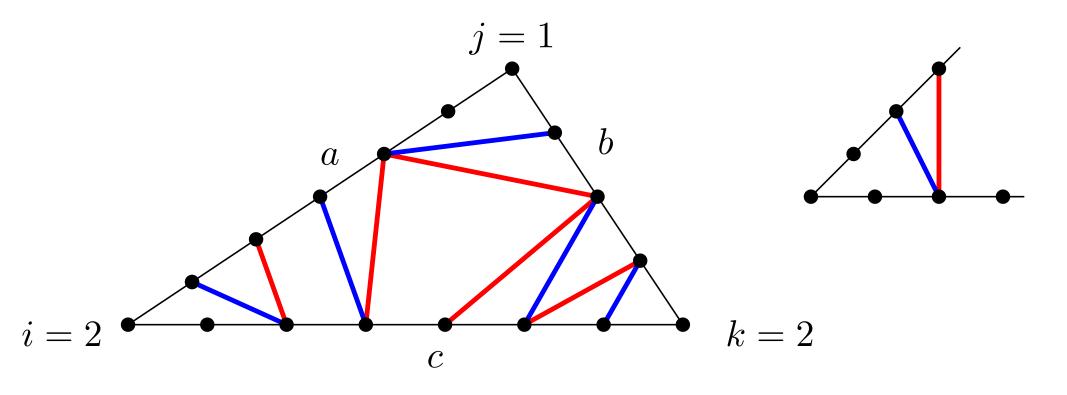
$$\operatorname{tr}(\Delta(a,b,c)) = \sum_{i,j,k \geq 0} \binom{a}{i+j} \binom{b}{j+k} \binom{c}{k+i}$$



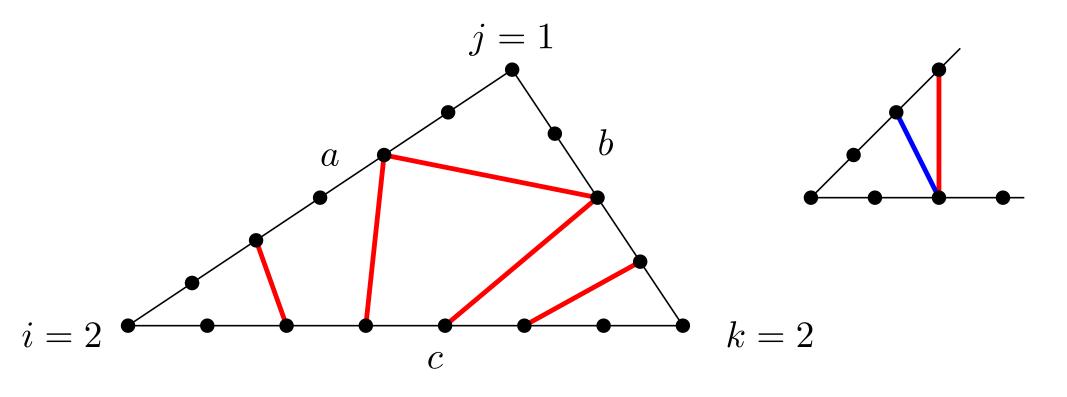
$$\operatorname{tr}(\Delta(a,b,c)) = \sum_{i,j,k \geq 0} \binom{a}{i+j} \binom{b}{j+k} \binom{c}{k+i}$$



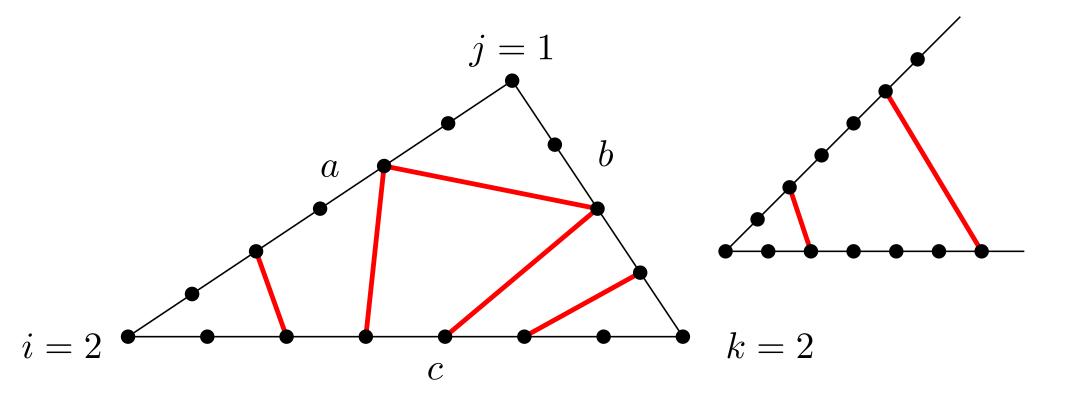
$$\operatorname{tr}(\Delta(a,b,c)) = \sum_{i,j,k \geq 0} \binom{a}{i+j} \binom{b}{j+k} \binom{c}{k+i}$$



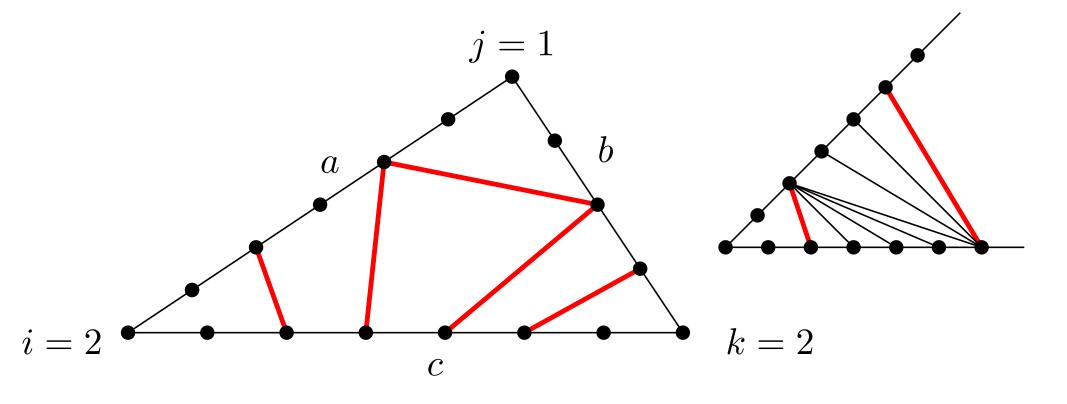
$$\operatorname{tr}(\Delta(a,b,c)) = \sum_{i,j,k \geq 0} \binom{a}{i+j} \binom{b}{j+k} \binom{c}{k+i}$$



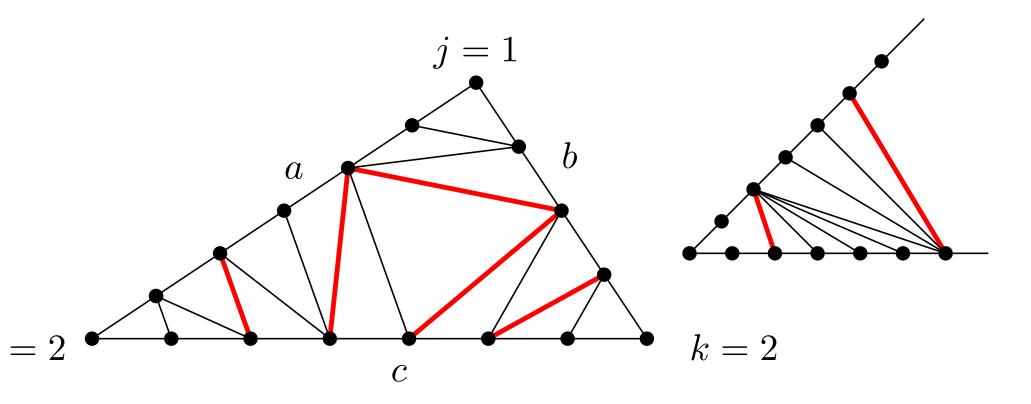
$$\operatorname{tr}(\Delta(a,b,c)) = \sum_{i,j,k \geq 0} \binom{a}{i+j} \binom{b}{j+k} \binom{c}{k+i}$$



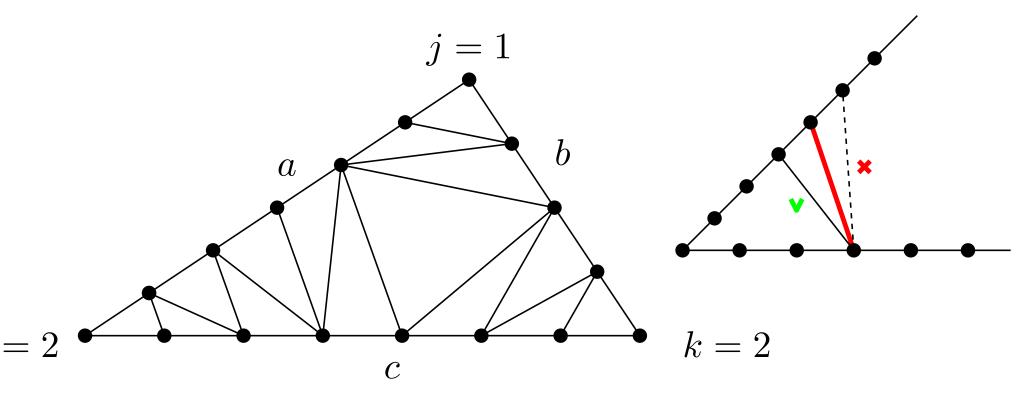
$$\operatorname{tr}(\Delta(a,b,c)) = \sum_{i,j,k \geq 0} \binom{a}{i+j} \binom{b}{j+k} \binom{c}{k+i}$$

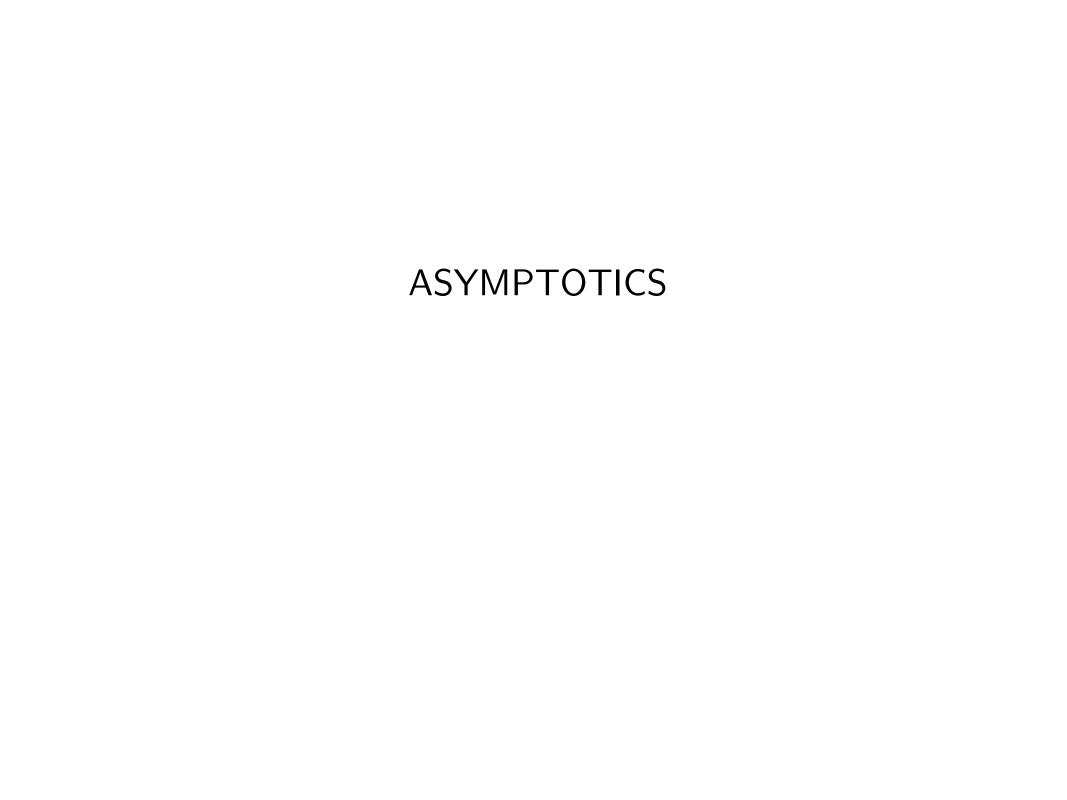


$$\operatorname{tr}(\Delta(a,b,c)) = \sum_{i,j,k \geq 0} \binom{a}{i+j} \binom{b}{j+k} \binom{c}{k+i}$$

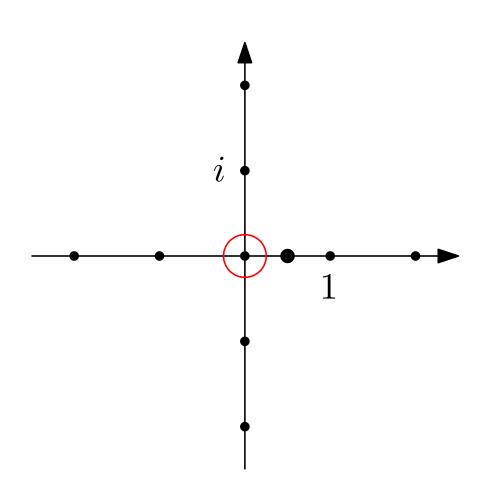


$$\operatorname{tr}(\Delta(a,b,c)) = \sum_{i,j,k \geq 0} \binom{a}{i+j} \binom{b}{j+k} \binom{c}{k+i}$$





$$\operatorname{tr}(k,r) = -\frac{1}{4\pi i} \int_{\mathcal{C}} \frac{((1-t)^{r+1} - t^{r+1})^k \ dt}{t^{rk} (1-t)^{rk} (1-2t)^{k-2}}$$



$$\operatorname{tr}(k,r) = -\frac{1}{4\pi i} \int_{\mathcal{C}} \frac{((1-t)^{r+1} - t^{r+1})^k dt}{t^{rk} (1-t)^{rk} (1-2t)^{k-2}}$$

$$ho
ightarrow \infty \ \Rightarrow$$
 \int over half-circle $ightarrow 0$



$$\operatorname{tr}(k,r) = -\frac{1}{4\pi i} \int_{\mathcal{C}} \frac{((1-t)^{r+1} - t^{r+1})^k dt}{t^{rk} (1-t)^{rk} (1-2t)^{k-2}}$$

$$= -\frac{2^{(r-2)k}}{\pi} \int_{-\infty}^{\infty} \frac{du}{(1+4u^2)^{rk}(iu)^{k-2}} \left(\left(1+2iu\right)^{r+1} - \left(1-2iu\right)^{r+1} \right)^k$$

k fixed, $r \to \infty$

$$\operatorname{tr}(k,r) = -\frac{2^{(r-2)k}}{\pi} \int_{-\infty}^{\infty} \frac{du}{(1+4u^2)^{rk}(iu)^{k-2}} \left(\left(1+2iu\right)^{r+1} - \left(1-2iu\right)^{r+1} \right)^{k} du$$

k fixed, $r \to \infty$

$$\operatorname{tr}(k,r) = -\frac{2^{(r-2)k}}{\pi} \int_{-\infty}^{\infty} \frac{du}{(1+4u^2)^{rk}(iu)^{k-2}} \left(\left(1+2iu\right)^{r+1} - \left(1-2iu\right)^{r+1} \right)^{k} du$$

$$w = ur$$

$$= -\frac{2^{(r-2)k} r^{k-3}}{\pi} \int_{-\infty}^{\infty} \frac{dw}{\left(1 + 4\frac{w^2}{r^2}\right)^{rk} (iw)^{k-2}} \left(\left(1 + \frac{2iw}{r}\right)^{r+1} - \left(1 - \frac{2iw}{r}\right)^{r+1} \right)^k$$

k fixed, $r \to \infty$

$$\operatorname{tr}(k,r) = -\frac{2^{(r-2)k}}{\pi} \int_{-\infty}^{\infty} \frac{du}{(1+4u^2)^{rk}(iu)^{k-2}} \left(\left(1+2iu\right)^{r+1} - \left(1-2iu\right)^{r+1} \right)^{k} du$$

$$w = ur$$

$$= -\frac{2^{(r-2)k} r^{k-3}}{\pi} \int_{-\infty}^{\infty} \frac{dw}{\left(1 + 4\frac{w^2}{r^2}\right)^{rk}} (iw)^{k-2} \left(\left(1 + \frac{2iw}{r}\right)^{r+1} - \left(1 - \frac{2iw}{r}\right)^{r+1} \right)^k \right]$$

$$= \left(2i \sin(2w)\right)^k$$

$$= \left(2i \sin(2w)\right)^k$$

$$= \frac{2^{(r-1)k} r^{k-3}}{\pi} \left(\int_{-\infty}^{\infty} \frac{\sin^k(2w)}{w^{k-2}} dw \right) (1 + o(1)).$$

$$k \to \infty$$

$$\operatorname{tr}(k,r) = -\frac{2^{(r-2)k}}{\pi} \int_{-\infty}^{\infty} \frac{du}{(1+4u^2)^{rk}(iu)^{k-2}} \left(\left(1+2iu\right)^{r+1} - \left(1-2iu\right)^{r+1} \right)^{k} du$$

$$k \to \infty$$

 $w=u(kR)^{1/2}$, where R=r(r+5)/6

$$\begin{split} &\operatorname{tr}(k,r) = -\frac{2^{(r-2)k}}{\pi} \int_{-\infty}^{\infty} \frac{du}{(1+4u^2)^{rk}(iu)^{k-2}} \left(\left(1+2iu\right)^{r+1} - \left(1-2iu\right)^{r+1} \right)^k \\ &= \frac{2^{(r-1)k}}{\pi \left(kR\right)^{3/2}} \int_{-\infty}^{\infty} \frac{w^2 \, dw}{\left(1+\frac{4w^2}{kR}\right)^{rk} \left(\frac{2iw}{(kR)^{1/2}}\right)^k} \left(\left(1+\frac{2iw}{(kR)^{1/2}}\right)^{r+1} - \left(1-\frac{2iw}{(kR)^{1/2}}\right)^{r+1} \right)^k \end{split}$$

$$k \to \infty$$

 $w=u(kR)^{1/2}$, where R=r(r+5)/6

$$\operatorname{tr}(k,r) = -\frac{2^{(r-2)k}}{\pi} \int_{-\infty}^{\infty} \frac{du}{(1+4u^2)^{rk}(iu)^{k-2}} \left(\left(1+2iu\right)^{r+1} - \left(1-2iu\right)^{r+1} \right)^k$$

$$= \frac{2^{(r-1)k}}{\pi (kR)^{3/2}} \int_{-\infty}^{\infty} \frac{w^2 dw}{\left(1+\frac{4w^2}{kR}\right)^{rk} \left(\frac{2iw}{(kR)^{1/2}}\right)^k} \left[\left(1+\frac{2iw}{(kR)^{1/2}}\right)^{r+1} - \left(1-\frac{2iw}{(kR)^{1/2}}\right)^{r+1} \right]^k$$

$$= \exp(4w^2r/R)$$

$$= \left(2(r+1)\frac{2iw}{(kR)^{1/2}} + 2\frac{(r+1)r(r-1)}{6}\frac{(2iw)^3}{(kR)^{3/2}} + \dots\right)^k$$

$$= 2^k(r+1)^k \left(\frac{2iw}{(kR)^{1/2}}\right)^k \left(1+\frac{r(r-1)}{6}\frac{(2iw)^2}{kR} + \dots\right)^k$$

$$\exp\left(-4w^2\left(\frac{r}{R} + \frac{r(r-1)}{6R}\right)\right) = \exp(-4w^2)$$

$$\exp(-4w^2r(r-1)/6R)$$

$$= \left(\frac{2^{rk}(r+1)^k}{\pi (kR)^{3/2}} \int_{-\infty}^{\infty} w^2 \exp(-4w^2) dw\right) (1+o(1)) = \frac{2^{rk}(r+1)^k}{16\sqrt{\pi} (kR)^{3/2}} (1+o(1))$$

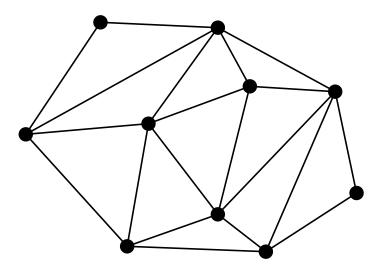
Motivation / starting point:

PLANAR SETS WITH FEW TRIANGULATIONS

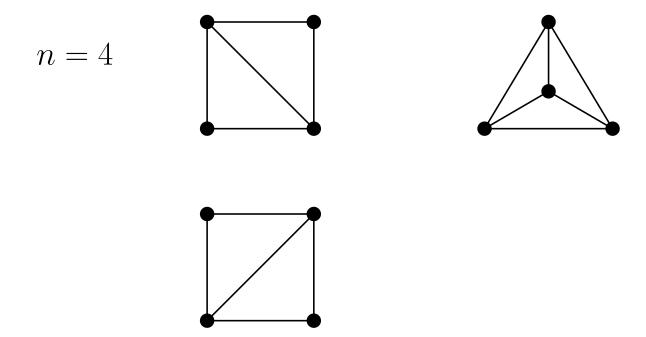
What is the minimum / maximum number of triangulations that a planar point set of size n in general position can have?

number of points

no three points lie on the same line

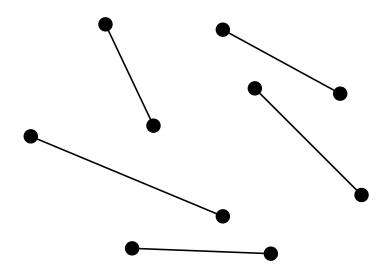


What is the minimum / maximum number of triangulations that a planar point set of size n in general position can have?



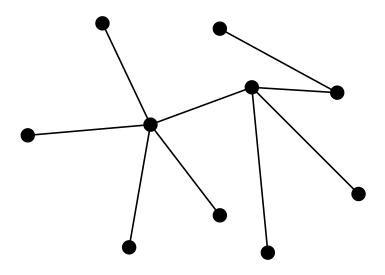
non-crossing perfect matchings

What is the minimum / maximum number of triangulations that a planar point set of size n in general position can have?



non-crossing spanning trees

What is the minimum / maximum number of triangulations that a planar point set of size n in general position can have?



[some class of non-crossing graphs]

What is the minimum / maximum number of triangulations that a planar point set of size n in general position can have?

Typical situation for maximum:

No exact results but only upper and lower bounds are known:

Triangulations: $\Omega(8.65^n)$ and $O(30^n)$.

Non-crossing perfect matchings: $\Omega(3.09^n)$ and $O(10.05^n)$.

All non-crossing graphs: $\Omega(41.18^n)$ and $O(187.53^n)$.

Summary of such results: Adam Sheffer, Numbers of Plane Graphs: adamsheffer.wordpress.com/numbers-of-plane-graphs/

[some class of non-crossing graphs]

What is the minimum / maximum number of triangulations that a planar point set of size n in general position can have?

Typical situation for minimum:

Attained by sets of points in convex position for many classes of non-crossing graphs:

all non-crossing graphs; non-crossing connected graphs; all the classes of cycle-free graphs.

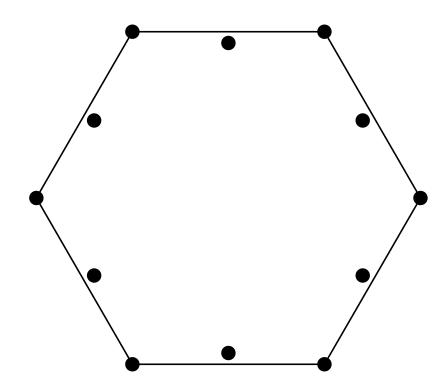
(Aichholzer, Hackl, Huemer, Hurtado, Krasser, Vogtenhuber, 2007)

BUT NOT FOR TRIANGULATIONS

$$n$$
 points in convex position: $C_{n-2} = \Theta^*(4^n)$ triangulations

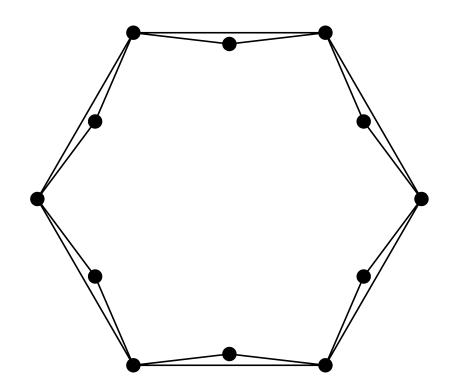
$$n$$
 points in convex position: $C_{n-2} = \Theta^*(4^n)$ triangulations

"Double circle":



$$n$$
 points in convex position: $C_{n-2} = \Theta^*(4^n)$ triangulations

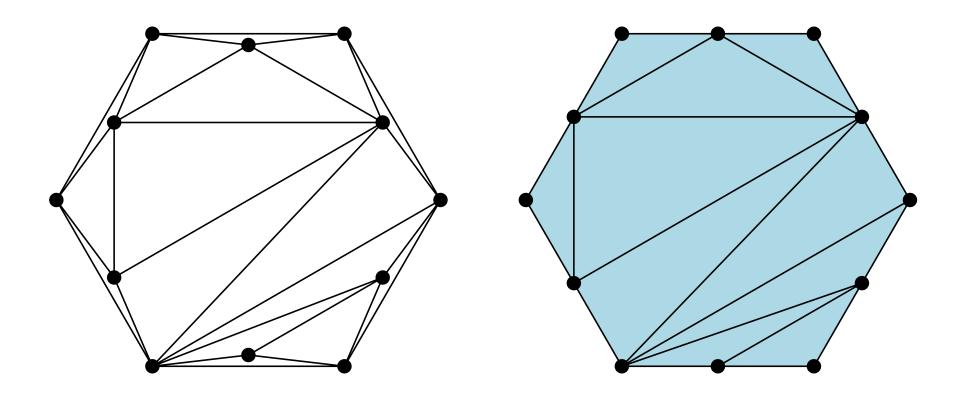
"Double circle":



$$n$$
 points in convex position: $C_{n-2} = \Theta^*(4^n)$ triangulations

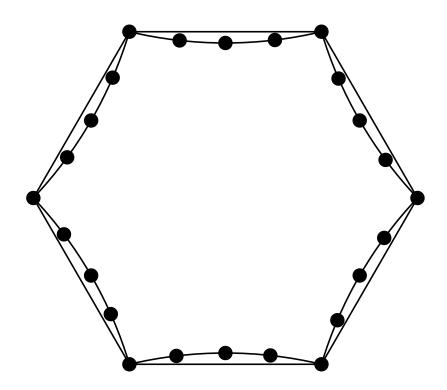
"Double circle":

$$\Theta^*(\sqrt{12}^n)$$
 triangulations



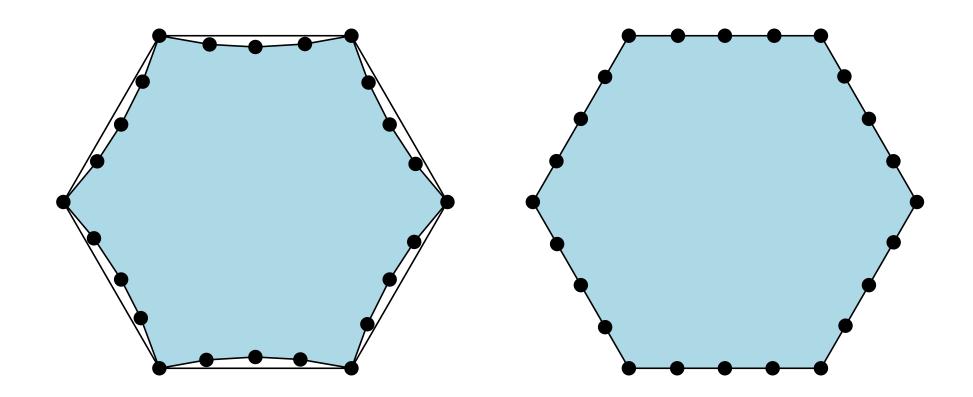
- The double circle with n points has $\Theta^*(\sqrt{12}^n)$ triangulations. (Santos and Seidel, 2003; the case r=2 of our result)
- For $n \le 15$, the double circle has indeed the minimum number of triangulations over all sets of n points in general position. (Aichholzer et al., 2001–2016)
- Conjecture: This is true for any n. (Aichholzer, Hurtado, Noy, 2004)
- Any set of n points in general position has $\Omega(2.63^n)$ triangulations. (Aichholzer et al., 2016)

Generalized double circle:

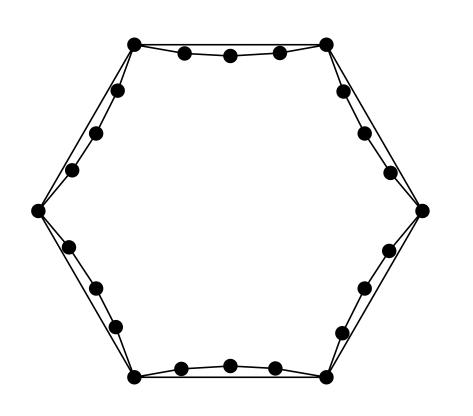


Generalized double circle:

We have k regions that consist of r+1 points in convex position, and one central region equivalent to a subdivided balanced convex polygon. (The shown edges are unavoidable in any triangulation.)



This configuration has $\operatorname{tr}(k,r)\cdot C^k_{r-1}$ triangulations



$$r$$
 fixed, $k \to \infty$:
$$\Theta^* \left((2(r+1)^{1/r} C_{r-1}^{1/r})^n \right)$$

minimum for r=2:

$$\Theta^*(\sqrt{12}^n)$$

 $k \text{ fixed, } r \to \infty$: $\Theta^*(8^n)$

$$2(r+1)^{1/r}C_{r-1}^{1/r}$$

For **integer** r, the minimum is at r = 2.

However, for real r ($C_n = \frac{\Gamma(2n+1)}{\Gamma(n+1)\Gamma(n+2)}$),

the minimum is at $r \approx 1.4957$.

This leads to the idea to "mix" non-subdivided sides with sides subdivided by one point.

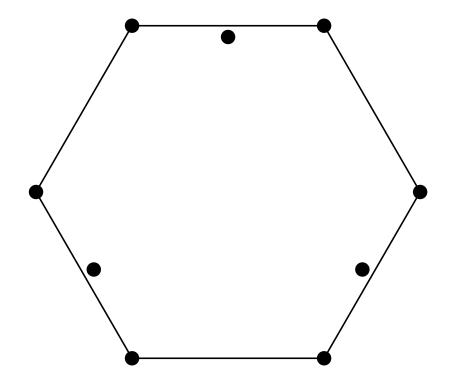
$$2(r+1)^{1/r}C_{r-1}^{1/r}$$

For **integer** r, the minimum is at r = 2.

However, for real
$$r$$
 $(C_n = \frac{\Gamma(2n+1)}{\Gamma(n+1)\Gamma(n+2)})$,

the minimum is at $r \approx 1.4957$.

This leads to the idea to "mix" non-subdivided sides with sides subdivided by one point.



n the total number of points s the number of subdivided sides

$$n, s \to \infty, s/n \to \alpha$$
:

$$\mathsf{tr} = \Theta^*((4^{1-\alpha}3^\alpha)^n)$$

minimum for $\alpha = 1/2$ –

again the double circle with $\sqrt{12}$.

SUMMARY

For the number of triangulations of the convex k-gon with sides subdivided by r-1 points, we found:

An inclusion-exclusion formula, a double sum formula, the asymptotic behaviour for $k \to \infty$ or/and $r \to \infty$.

We proved that "vertical" (r is fixed) and "horizontal" (k is fixed) generating functions are algebraic.

For k=3, we also found formulas for the non-balanced case.

SUMMARY

For the number of triangulations of the convex k-gon with sides subdivided by r-1 points, we found: An inclusion-exclusion formula, a double sum formula,

the asymptotic behaviour for $k \to \infty$ or/and $r \to \infty$.

We proved that "vertical" (r is fixed) and "horizontal" (k is fixed) generating functions are algebraic.

For k=3, we also found formulas for the non-balanced case.

Our results imply that for the problem of characterizing a planar point set in general position of size n with the minimal number of triangulations, it is impossile to "beat" the bound of $\Theta((\sqrt{12})^n)$ attained by double circle, using balanced subdivided polygons, in whatever way $n \to \infty$; or using the "mixed" construction.

END