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THE PROBLEM



A convex k-gon

Each side is subdivided
by » — 1 points

n = kr

How many triangulations
has this configuration?
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tl’(k, 1) = Cr_9




Some results on this topic:

F. Hurtado and M. Noy (1997).
Counting triangulations of almost-convex polygons.

R. Bacher and F. Mouton (2003-2010).
Triangulations of nearly convex polygons.
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PEEEIRES

U, (x) is the Chebyshev polynomial of the second kind
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GENERATING FUNCTIONS



“Vertical” generating functions (r is fixed):
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P(x,t) is the denominator of the integrand.
ti(x) (i=1,...,r) are the “small roots” of P(x,

Ov

That is, lim,_,g tz(llj) —



It follows: for fixed r, the “vertical” generating function
Zkzo tr(k,r) is algebraic.

One can prove similarly that for fixed k, the “horizontal”
generating function ) | ., tr(k,r) is algebraic.



Example: For »r = 2 we have
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THE CASE k = 3 (NON-BALANCED)
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D-trianguations
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D-trianguations
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tr(A(p, p,p)) = 2°77" — 3%—:2 (Spé_ 1>
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OEIS about tr(A(p, p,p)):

It seems that a(n)=sum {i, j, k>=0}C(p, i+j)*C(p,

j+k)*C(p, k+i)). - Benoit Cloitre, Oct 25 2004
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ASYMPTOTICS
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Motivation / starting point:

PLANAR SETS WITH FEW TRIANGULATIONS



What is the minimum / maximum number of triangulations

that a planar point set|of size n

in general position|can have

~

number of points
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no three points lie on the sa

\

me line
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What is the minimum / maximum number of triangulations
that a planar point set of size n in general position can have?




non-crossing
perfect matchings

What is the minimum / maximum number of Triangtiations
that a planar point set of size n in general position can have?
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non-crossing
spanning trees

What is the minimum / maximum number of Triangtiations
that a planar point set of size n in general position can have?



[some class of non-crossing graphs]

SN T

What is the minimum / maximum number of Triangtiations
that a planar point set of size n in general position can have?

Typical situation for maximum:

No exact results but only upper and lower bounds are known:
Triangulations: €2(8.65™) and O(30™).
Non-crossing perfect matchings: €2(3.09") and O(10.05").
All non-crossing graphs: 2(41.18") and O(187.53").

Summary of such results: Adam Sheffer, Numbers of Plane Graphs:
adamsheffer.wordpress.com/numbers-of-plane-graphs/



[some class of non-crossing graphs]

SN T

What is the minimum / maximum number of Triangtiations
that a planar point set of size n in general position can have?

Typical situation for minimum:

Attained by sets of points in convex position

for many classes of non-crossing graphs:

all non-crossing graphs; non-crossing connected graphs;

all the classes of cycle-free graphs.
(Aichholzer, Hackl, Huemer, Hurtado, Krasser, Vogtenhuber, 2007)

BUT NOT FOR TRIANGULATIONS



n points in convex position: Cp—9 = ©*(4™) triangulations




n points in convex position: Cp—9 = ©%(4") triangulations

“Double circle”:




n points in convex position: Cp—9 = ©*(4™) triangulations

“Double circle”:




n points in convex position: Cp—9 = ©%(4") triangulations

“Double circle”: ©*(v/12") triangulations




The double circle with n points has @*(\/12n) triangulations.
(Santos and Seidel, 2003; the case r = 2 of our result)

For n < 15, the double circle has indeed the minimum number

of triangulations over all sets of n points in general position.
(Aichholzer et al., 2001-2016)

Conjecture: This is true for any n.
(Aichholzer, Hurtado, Noy, 2004)

Any set of n points in general position has €2(2.63™) triangulations.
(Aichholzer et al., 2016)



Generalized double circle:




Generalized double circle:

We have k regions that consist of » + 1 points in convex position, and
one central region equivalent to a subdivided balanced convex polygon.
(The shown edges are unavoidable in any triangulation.)




This configuration has

tr(k,r) - C*_, triangulations

r fixed, k — oo:
o (2(r+ DYre )

minimum for r = 2:

0*(v12")

k fixed, r — o0:
0 (8")



2(r + 1)1/7”0,%71

For integer r, the minimum is at r = 2.

However, for real r (C,, = F(nlri?&;)+2)),

the minimum is at r =~ 1.4957.

This leads to the idea to “mix” non-subdivided sides
with sides subdivided by one point.



2(r + 1)1/7”0,%71

For integer r, the minimum is at r = 2.

However, for real r (C,, = F(nlri?&;)+2)),

the minimum is at r =~ 1.4957.

This leads to the idea to “mix” non-subdivided sides
with sides subdivided by one point.

o n the total number of points

s the number of subdivided sides
n,s — oo, s/n—

tr = ©°((43%)")

minimum for o = 1/2 —

again the double circle with 1/12.




SUMMARY

For the number of triangulations of the convex k-gon

with sides subdivided by » — 1 points, we found:
An inclusion-exclusion formula, a double sum formula,
the asymptotic behaviour for £k — oo or/and r — oc.

We proved that “vertical” (7 is fixed) and “’horizontal” (% is fixed)
generating functions are algebraic.

For £k = 3, we also found formulas for the non-balanced case.



SUMMARY

For the number of triangulations of the convex k-gon
with sides subdivided by » — 1 points, we found:
An inclusion-exclusion formula, a double sum formula,
the asymptotic behaviour for £ — oo or/and r — cc.

We proved that “vertical” (7 is fixed) and “’horizontal” (% is fixed)
generating functions are algebraic.

For £k = 3, we also found formulas for the non-balanced case.

Our results imply that for the problem of characterizing

a planar point set in general position of size n with the
minimal number of triangulations, it is impossile to

“beat” the bound of ©((1/12)") attained by double circle,
using balanced subdivided polygons, in whatever way n — oc;
or using the “mixed " construction.
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