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GAMMA-POSITIVITY IN COMBINATORICS AND GEOMETRY

CHRISTOS A. ATHANASIADIS

Abstract. Gamma-positivity is an elementary property that polynomials with sym-
metric coefficients may have, which directly implies their unimodality. The idea behind
it stems from work of Foata, Schützenberger and Strehl on the Eulerian polynomials;
it was revived independently by Brändén and Gal in the course of their study of poset
Eulerian polynomials and face enumeration of flag simplicial spheres, respectively, and
has found numerous applications since then. This paper surveys some of the main results
and open problems on gamma-positivity, appearing in various combinatorial or geometric
contexts, as well as some of the diverse methods that have been used to prove it.
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1. Introduction

The unimodality of polynomials is a major theme which has occupied mathematicians
for the past few decades. At least three surveys [27, 32, 122] about unimodal, log-concave
and real-rooted polynomials, showing the enormous variety of methods which are avail-
able to prove these properties, have been written. This survey article focuses on a related
elementary property, that of γ-positivity, which directly implies symmetry and unimodal-
ity and has provided a new exciting approach to this topic. Gamma-positivity appears
surprisingly often in combinatorial and geometric contexts; this article aims to discuss
some of the main examples, results, methods and open problems around it.

This introductory section provides basic definitions and related comments, as well as an
outline of the remainder of the article. We recall that a polynomial f(x) =

∑
i aix

i ∈ R[x]
is called

• symmetric, with center of symmetry n/2, if ai = an−i for all i ∈ Z (where ai = 0
for negative values of i),
• unimodal, if 0 ≤ a0 ≤ a1 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · for some k ∈ N,
• γ-positive, if

(1) f(x) =

bn/2c∑
i=0

γix
i(1 + x)n−2i

for some n ∈ N and nonnegative reals γ0, γ1, . . . , γbn/2c, and
• real-rooted, if every root of f(x) is real, or else f(x) = 0.

The notion of γ-positivity appeared first in the work of D. Foata and M. Schützenberger
[56] and subsequently of D. Foata and V. Strehl [57, 58] on the classical Eulerian polyno-
mials, discussed in detail in Sections 2.1.1 and 4.1. After having implicitly reappeared in
the theory of enriched poset partitions of J. Stembridge [133] (see also Section 2.3), it was

brought again to light independently by P. Brändén [24, 26] and Ś. Gal [61] in the course
of their study of poset Eulerian polynomials and face enumeration of flag triangulations
of spheres, respectively (see Sections 2.1.2 and 3.1). These works made it clear that γ-
positivity is a concept of independent interest which provides a powerful approach to the
problem of unimodality for symmetric polynomials. Symmetry and real-rootedness of a
polynomial f(x) ∈ R≥0[x] implies its γ-positivity [24, Lemma 4.1] [61, Remark 3.1.1]. On
the other hand, every γ-positive polynomial (whether real-rooted or not) is symmetric
and unimodal, as a sum of symmetric and unimodal polynomials with a common center
of symmetry (a fact already implicit in [62, p. 136]). Thus, γ-positivity can be applied
to general situations and may lead to a more elementary proof of the unimodality of
f(x), even when the latter is real-rooted. Moreover, an explicit expression of the form
(1) gives additional information about f(x) (for instance, it implies a formula for f(−1)
and predicts its sign) and the problem to interpret algebraically or combinatorially the
coefficients γi is often of independent interest.

The present article is an expanded version of the author’s lectures at the 77th Séminaire
Lotharingien de Combinatoire (September 2016, Strobl, Austria). Section 2 discusses the
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variety of examples of γ-positive polynomials in combinatorics, beginning with the pro-
totypical example of Eulerian polynomials, together with some general results. Many of
these examples come up again in the geometric contexts of Section 3. That section centers
around Gal’s conjecture, claiming that h-polynomials of flag simplicial homology spheres
are γ-positive. This conjecture and its relatives provide a general framework under which
a lot of the seemingly unrelated γ-positivity phenomena of Section 2 can be considered,
partially explains their abundance and allows for tools from geometric combinatorics to be
applied to their study. Section 4 discusses the plethora of methods used in the literature
to prove γ-positivity. Section 5 is devoted to generalizations and variations of the concept
of γ-positivity, giving an emphasis to equivariant and symmetric function generalizations.
The choice of topics is strongly affected by the author’s knowledge and personal taste;
in particular, possible probabilistic aspects of γ-positivity are not treated. Some pre-
viously unpublished statements and open problems are included. Other expositions on
γ-positivity can be found in [27, Section 3] [97, Chapter 4].

Notation. For integers a ≤ b we set [a, b] := {a, a + 1, . . . , b} and use the abbreviation
[n] := [1, n] for n ∈ N. We will denote by |Ω| the cardinality, and by 2Ω the set of all
subsets, of a finite set Ω. For Ω ⊆ Z, we will also denote by Stab(Ω) the set of all subsets
of Ω which do not contain two consecutive integers.

2. Gamma-positivity in combinatorics

This section describes instances of γ-positivity in combinatorics. Much of the motiva-
tion comes from the study of Eulerian polynomials which, along with generalizations and
variations, are discussed in detail. For any undefined notation or terminology, we refer to
Stanley’s textbooks [125, 127].

2.1. Variations of Eulerian polynomials.

2.1.1. Eulerian polynomials. One of the most important polynomials in combinatorics is
the Eulerian polynomial, defined by any of the equivalent formulas

(2) An(x) :=
∑
w∈Sn

xasc(w) =
∑
w∈Sn

xdes(w) =
∑
w∈Sn

xexc(w) =
∑
w∈Sn

xwexc(w)−1

for every positive integer n. Here asc(w), des(w), exc(w) and wexc(w) denotes the cardi-
nality of the set Asc(w) of ascents, Des(w) of descents, Exc(w) of excedances and Wexc(w)
of weak excedances, respectively, of the permutation w ∈ Sn, defined by

• Asc(w) := {i ∈ [n− 1] : w(i) < w(i+ 1)},
• Des(w) := {i ∈ [n− 1] : w(i) > w(i+ 1)},
• Exc(w) := {i ∈ [n− 1] : w(i) > i},
• Wexc(w) := {i ∈ [n] : w(i) ≥ i}.
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For the first few values of n, we have

An(x) =



1, if n = 1,

1 + x, if n = 2,

1 + 4x+ x2, if n = 3,

1 + 11x+ 11x2 + x3, if n = 4,

1 + 26x+ 66x2 + 26x3 + x4, if n = 5,

1 + 57x+ 302x2 + 302x3 + 57x4 + x5, if n = 6,

1 + 120x+ 1191x2 + 2416x3 + 1191x4 + 120x5 + x6, if n = 7.

The Eulerian polynomial An(x), which is clearly symmetric, provides the prototypical
example of a γ-positive polynomial in combinatorics. The corresponding γ-coefficients for
the first few values of n are determined from the expressions

An(x) =



1 + x, if n = 2,

(1 + x)2 + 2x, if n = 3,

(1 + x)3 + 8x(1 + x), if n = 4,

(1 + x)4 + 22x(1 + x)2 + 16x2, if n = 5,

(1 + x)5 + 52x(1 + x)3 + 136x2(1 + x), if n = 6,

(1 + x)6 + 114x(1 + x)4 + 720x2(1 + x)2 + 272x3, if n = 7.

The γ-positivity of An(x) (which, of course, follows from the well known fact that An(x)
is real-rooted for all n) was first shown combinatorially by Foata and Schützenberger [56,
Theorem 5.6]. An explicit combinatorial interpretation of the corresponding γ-coefficients
follows from the results of [58]. Recall that a double excedance of w ∈ Sn is any index 1 ≤
i ≤ n such that w(i) > i > w−1(i) and that w ∈ Sn is called an up-down permutation, if
Asc(w) = {1, 3, 5, . . . }∩[n−1]. The first four, as well as the last two, interpretations of γn,i
in the following fundamental result are easily shown to be equivalent to one another; the
fifth one follows from the fourth and the bijection (one of the fundamental transformations
of Foata and Schützenberger [56]) of [127, Proposition 1.3.1]. An additional interpretation,
in terms of increasing binary trees, is discussed in [62, p. 136].

Theorem 2.1 (cf. Foata–Strehl [58]). For all n ≥ 1,

(3) An(x) =

b(n−1)/2c∑
i=0

γn,ix
i(1 + x)n−1−2i,

where γn,i is equal to each of the following:

• the number of w ∈ Sn for which Asc(w) ∈ Stab([n− 2]) has i elements,
• the number of w ∈ Sn for which Asc(w) ∈ Stab([2, n− 1]) has i elements,
• the number of w ∈ Sn for which Des(w) ∈ Stab([n− 2]) has i elements,
• the number of w ∈ Sn for which Des(w) ∈ Stab([2, n− 1]) has i elements,
• the number of w ∈ Sn with i excedances and no double excedance, for which the

smallest of the maximum elements of the cycles of w is a fixed point,
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• the number of w ∈ Sn with i excedances and no double excedance, for which the
largest of the minimum elements of the cycles of w is a fixed point.

In particular, An(x) is γ-positive and

(4) An(−1) =

{
0, if n is even,

(−1)(n−1)/2 γn,(n−1)/2, if n is odd,

for all n, where γn,(n−1)/2 is the number of up-down permutations in Sn.

We will now describe some refinements and variations of this theorem (more related
results appear in the sequel). The following two theorems refine the third interpretation
of the γ-positivity of An(x), given in Theorem 2.1. For w ∈ Sn, we denote by inv(w) the
number of inversions (pairs (i, j) ∈ [n] × [n] such that i < j and w(i) > w(j)) of w, and
let

• (2-13)w be the number of pairs (i, j) ∈ [n − 1] × [n − 1] such that i < j and
w(j) < w(i) < w(j + 1),
• (31-2)w be the number of pairs (i, j) ∈ [n]× [n] such that i+ 1 < j and w(i+ 1) <
w(j) < w(i),
• cros(w) be the number of pairs (i, j) ∈ [n]× [n] such that i < j ≤ w(i) < w(j), or
w(i) < w(j) < i < j,
• nest(w) be the number of pairs (i, j) ∈ [n]× [n] such that i < j ≤ w(j) < w(i), or
w(j) < w(i) < i < j.

Equations (5) and (6) appear as the specialization u = v = w = 1 of [115, Theorem 2] and
as [115, Corollary 6]; the expansion (6) for the left-hand side of (5) was originally shown
by Brändén [26, Section 5]. Equation (7) is the main statement of [116, Theorem 1]; the
positivity of the coefficient of xi(1 + x)n−1−2i, as a polynomial in q, was conjectured in a
preprint version of [22]. A related result appears in [22, Remark 3.4].

Theorem 2.2 (Brändén [26], Shin–Zeng [115, 116]). For all n ≥ 1,∑
w∈Sn

p(2−13)wq(31−2)wxdes(w) =
∑
w∈Sn

pnest(w)qcros(w)xwexc(w)−1(5)

=

b(n−1)/2c∑
i=0

an,i(p, q)x
i(1 + x)n−1−2i(6)

and

(7)
∑
w∈Sn

qinv(w)−exc(w)xexc(w) =

b(n−1)/2c∑
i=0

an,i(q
2, q)xi(1 + x)n−1−2i,

where

(8) an,i(p, q) =
∑
w

p(2−13)wq(31−2)w,

and the sum runs through all permutations w ∈ Sn for which Des(w) ∈ Stab([n− 2]) has
i elements.
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The following theorem of J. Shareshian and M. Wachs, the proof of which is sketched
in Section 4.3, follows from the methods used to prove the specialization p = 1 in [114,
Theorem 4.4]. This special case was stated in [111, Remark 5.5] without giving an explicit
interpretation for the coefficients γi(1, q); it is also implicit in [84] (see Equations (1.4)
and (6.1) there) and is reproven by different methods in [83]. For w ∈ Sn, we set

des∗(w) :=

{
des(w), if w(1) = 1,

des(w)− 1, if w(1) > 1,

and denote by maj(w) the major index (sum of the elements of Des(w)) of w.

Theorem 2.3 (cf. [114, Section 4]). For all n ≥ 1,

(9)
∑
w∈Sn

pdes∗(w)qmaj(w)−exc(w)xexc(w) =

b(n−1)/2c∑
i=0

γn,i(p, q)x
i(1 + x)n−1−2i,

where

(10) γn,i(p, q) =
∑
w

pdes(w−1)qmaj(w−1),

and the sum runs through all permutations w ∈ Sn for which Des(w) ∈ Stab([n− 2]) has
i elements.

For further generalizations of the γ-positivity of An(x), see, for instance, [26, Section 4]
and [92, Section 4].

We close this section by discussing an interesting variant of An(x), defined as

(11) Ãn(x) := 1 + x
n∑
k=1

(
n

k

)
Ak(x)

and called a binomial Eulerian polynomial. For the first few values of n, we have

Ãn(x) =



1 + x, if n = 1,

1 + 3x+ x2, if n = 2,

1 + 7x+ 7x2 + x3, if n = 3,

1 + 15x+ 33x2 + 15x3 + x4, if n = 4,

1 + 31x+ 131x2 + 131x3 + 31x4 + x5, if n = 5,

1 + 63x+ 473x2 + 883x3 + 473x4 + 63x5 + x6, if n = 6.

This polynomial first appeared in an enumerative-geometric context in [102, Sec-
tion 10.4], where it was shown to equal the h-polynomial of the n-dimensional stellohe-
dron (see Section 3 for an explanation of these terms); its symmetry follows from this
interpretation and was rediscovered in [42].

The γ-positivity of Ãn(x) follows from a more general theorem of A. Postnikov, V. Rei-
ner and L. Williams [102, Theorem 11.6] (see also Theorem 3.11 in the sequel); for the
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first few values of n, we have

Ãn(x) =



1 + x, if n = 1,

(1 + x)2 + x, if n = 2,

(1 + x)3 + 4x(1 + x), if n = 3,

(1 + x)4 + 11x(1 + x)2 + 5x2, if n = 4,

(1 + x)5 + 26x(1 + x)3 + 43x2(1 + x), if n = 5,

(1 + x)6 + 57x(1 + x)4 + 230x2(1 + x)2 + 61x3, if n = 6.

We prefer to state a version due to Shareshian and Wachs, which is similar to Theorem 2.1
and affords a q-analog, similar to that of Theorem 2.3 for An(x).

Theorem 2.4 (Shareshian–Wachs [114, Theorem 4.5] ). For all n ≥ 1,

(12) 1 + x
n∑
k=1

(
n

k

)
q

∑
w∈Sk

qmaj(w)−exc(w)xexc(w) =

bn/2c∑
i=0

γ̃n,i(q)x
i(1 + x)n−2i,

where
(
n
k

)
q

is a q-binomial coefficient,

(13) γ̃n,i(q) =
∑
w

qmaj(w−1) =
∑
w

qinv(w),

and the sums run through all permutations w ∈ Sn for which Des(w) ∈ Stab([n− 1]) has
i elements. In particular,

(14) Ãn(x) =

bn/2c∑
i=0

γ̃n,ix
i(1 + x)n−2i,

where γ̃n,i is equal to each of the following:

• the number of w ∈ Sn for which Asc(w) ∈ Stab([n− 1]) has i elements,
• the number of w ∈ Sn for which Des(w) ∈ Stab([n− 1]) has i elements,
• the number of w ∈ Sn with i excedances and no double excedance.

Moreover,

(15) Ãn(−1) =

{
0, if n is odd,

(−1)n/2 γ̃n,n/2, if n is even,

where γ̃n,n/2 is the number of up-down permutations in Sn.

For an alternative approach to the γ-positivity of Ãn(x), see Remark 2.18.

Problem 2.5. Find a p-analog of Theorem 2.4, similar to Theorem 2.3.
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1

2

4

Figure 1. A labeled poset with four elements

2.1.2. Poset Eulerian polynomials. Given a partially ordered set (poset, for short) P with
n elements, any bijective map ω : P → [n] is called a labeling. Let us write permutations
w ∈ Sn in one-line notation (w(1), w(2), . . . , w(n)).

Definition 2.6 (Stanley [118] [127, Section 3.15.2]). Let ω : P → [n] be a labeling of a
poset P. The (P , ω)-Eulerian polynomial is defined as

AP,ω(x) =
∑

w∈L(P,ω)

xdes(w),

where L(P , ω) is the set which consists of all permutations (a1, a2, . . . , an) ∈ Sn such that
ω−1(ai) <P ω

−1(aj) implies i < j.

The polynomial AP,ω(x) plays a major role in Stanley’s theory of (P , ω)-partitions [118]
[127, Section 3.15]; it reduces to the Eulerian polynomial An(x) when P is an antichain
on n elements. For the labeled poset of Figure 2.1.2 we have L(P , ω) = {(1, 4, 2, 3),
(1, 4, 3, 2), (4, 1, 2, 3), (4, 1, 3, 2), (1, 3, 4, 2)} and AP,ω(x) = 3x + 2x2. Examples where
AP,ω(x) is not real-rooted were given by P. Brändén [25] and J. Stembridge [134] (see
also [27, Section 6]), thus disproving long-standing conjectures of J. Neggers [89] [122,
Conjecture 1] and R. Stanley [29, Conjecture 1] [32, Conjecture 3.9].

The polynomial AP,ω(x) does not depend on ω, when the latter is assumed to be order
preserving (such labelings are called natural), and is thus denoted simply by AP(x). For
example, the labeling obtained from the one of Figure 1 by swapping 2 and 4 is natural
and shows that for this poset AP(x) = 1 + 3x + x2. Moreover, as a consequence of the
reciprocity theorem [127, Theorem 3.15.10] for (P , ω)-partitions, AP(x) is symmetric if P
is graded; its unimodality in this case was first shown by V. Reiner and V. Welker [104],
whose proof relied on a deep result from algebraic geometry. Brändén [24] [26, Section 6]
gave two beautiful combinatorial proofs of the γ-positivity of AP(x) for the more general
class of sign-graded posets.

Theorem 2.7 (Brändén [24]). The polynomial AP(x) is γ-positive for every finite
graded poset P.

A generalization to finite crystallographic root systems was given by Stembridge [135].
For a different γ-positivity result for posets, due to Stembridge [133], which generalizes

the γ-positivity of An(x), see Section 2.3.
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2.1.3. Coxeter Eulerian polynomials. Let (W,S) be a Coxeter system, with Coxeter length
function `S : W → N (see [20, Chapter 1] for definitions). Assuming that W is finite, the
W -Eulerian polynomial is defined as

(16) W (x) :=
∑
w∈W

xdes(w),

where des(w) is the number of right descents (elements s ∈ S such that `S(ws) < `S(w))
of w ∈ W . The polynomial W (x) was first studied systematically by F. Brenti [31]. It
has similar properties as An(x), to which it reduces when W is the symmetric group Sn;
in particular, W (x) is easily verified to be symmetric for all finite Coxeter groups W .
The following statement combines Theorem 2.1 with results of C. Chow [39] and J. Stem-
bridge [135] (the proof that the W -Eulerian polynomials are real-rooted was completed
more recently; see [107] and references therein).

Theorem 2.8 ([39] [135, Theorem 1.2]). The W -Eulerian polynomial is γ-positive for
every finite Coxeter group W .

Problem 2.9. Find a proof which does not use the classification of finite Coxeter groups.

A common generalization of Theorems 2.7 and 2.8 is provided by [135, Corollary 7.10],
mentioned earlier.

Just as is the case for the symmetric groups and the classical Eulerian polynomial, the
corresponding γ-coefficients admit interesting combinatorial interpretations for the other
infinite families of finite Coxeter groups as well. We now describe such interpretations for
the hyperoctahedral groups Bn. Recall that Bn consists of all permutations w of the set
Ωn := {1,−1, 2,−2, . . . , n,−n} satisfying w(−a) = −w(a) for each a ∈ Ωn. These can be
viewed as signed permutations of length n (see Section 2.1.7 for the more general notion
of r-colored permutation). The total order

(17) − 1 <r −2 <r −3 <r · · · <r 0 <r 1 <r 2 <r 3 <r · · ·

of Z is convenient to use when Bn is thought of as a colored permutation (rather than as
a Coxeter) group. The Bn-Eulerian polynomial is given by

(18) Bn(x) =
∑
w∈Bn

xdesB(w) =
∑
w∈Bn

xdesB(w),

where

• desB(w) is the number of indices i ∈ {0, 1, . . . , n− 1} such that w(i) > w(i+ 1),
• desB(w) is the number of indices i ∈ {0, 1, . . . , n− 1} such that w(i) >r w(i+ 1)
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for w ∈ Bn, with w(0) := 0. For the first few values of n, we have

Bn(x) =



1 + x, if n = 1,

1 + 6x+ x2, if n = 2,

1 + 23x+ 23x2 + x3, if n = 3,

1 + 76x+ 230x2 + 76x3 + x4, if n = 4,

1 + 237x+ 1682x2 + 1682x3 + 237x4 + x5, if n = 5,

1 + 722x+ 10543x2 + 23548x3 + 10543x4 + 722x5 + x6, if n = 6.

A descending run of a permutation w ∈ Sn is any maximal string {a, a + 1, . . . , b} of
integers such that w(a) > w(a+ 1) > · · · > w(b). A left peak of w is any index i ∈ [n− 1]
such that w(i−1) < w(i) > w(i+1), where w(0) := 0 (note that 1 can be a left peak, but
n cannot). The following result combines [39, Theorem 4.7] with [94, Proposition 4.15]
and provides a Bn-analog to Theorem 2.1. The permutation obtained from w ∈ Bn by
forgetting all signs is denoted by |w|.

Theorem 2.10 ([39, 94]). For all n ≥ 1,

(19) Bn(x) =

bn/2c∑
i=0

γBn,i x
i(1 + x)n−2i,

where γBn,i is equal to each of the following:

• the number of permutations w ∈ Sn with i left peaks, multiplied by 4i,
• the number of signed permutations w ∈ Bn with desB(w) = i, such that |w| ∈ Sn

has i descending runs of size at least two.

In particular,

(20) Bn(−1) =

{
0, if n is odd,

(−1)n/2 γBn,n/2, if n is even,

for all n, where γBn,n/2 is the number of up-down permutations in Sn, multiplied by 4n/2.

For the first few values of n, the numbers γBn,i are determined from the expressions

Bn(x) =



1 + x, if n = 1,

(1 + x)2 + 4x, if n = 2,

(1 + x)3 + 20x(1 + x), if n = 3,

(1 + x)4 + 72x(1 + x)2 + 80x2, if n = 4,

(1 + x)5 + 232x(1 + x)3 + 976x2(1 + x), if n = 5,

(1 + x)6 + 716x(1 + x)4 + 7664x2(1 + x)2 + 3904x3, if n = 6.

An interesting extension of Theorem 2.8 to affine Weyl groups was found by K. Dilks,
T.K. Petersen and J. Stembridge [48]. Let (W,S) be a Coxeter system with Coxeter length
function `S : W → N, as before, and assume W is finite, crystallographic and irreducible.
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Then, W has a longest element s0 and the set of affine right descents of w ∈ W is defined
as

aDes(w) :=

{
Des(w), if `S(ws0) < `S(w),

Des(w) ∪ {s0}, if `S(ws0) > `S(w).

The affine Eulerian polynomial associated to W is defined as

(21) Wa(x) :=
∑
w∈W

xades(w),

where ades(w) is the number of affine right descents of w ∈ W .

Theorem 2.11 (Dilks–Petersen–Stembridge [48, Theorem 4.2]). The affine Euler-
ian polynomial Wa(x) is γ-positive for every finite irreducible crystallographic Coxeter
group W .

We close this section with an intriguing related problem, posed by I. Gessel in 2005
(see [26, Conjecture 10.2] [96, Conjecture 1] [97, Problem 4.12]). The two-sided Eulerian
polynomial associated to a finite Coxeter group W is defined as

(22) W (x, y) =
∑
w∈W

xdes(w)ydes(w−1).

The specialization W (x, x) appeared also in work of A. Hultman [71, Example 5.9]. The
following result was conjectured by Gessel (unpublished) for the symmetric groups and,
more generally, by Petersen [98, Conjecture 1] for finite Coxeter groups.

Theorem 2.12 (Lin [80]). Let W be a symmetric or hyperoctahedral group. Then, there
exist nonnegative integers γi,j = γi,j(W ) such that

(23) W (x, y) =
∑

2i+j≤n

γi,j(xy)i(x+ y)j(1 + xy)n−2i−j,

where n is the rank of W .

It remains an interesting open problem to find a combinatorial interpretation for the
numbers γi,j(W ), even in the symmetric group case.

2.1.4. Derangements. Counting derangements (permutations without fixed points) in Sn

by the number of excedances leads to a well-behaved analog of the Eulerian polynomial
An(x), defined by

(24) dn(x) :=
∑
w∈Dn

xexc(w),
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where Dn denotes the set of all derangements in Sn. For the first few values of n, we have

dn(x) =



0, if n = 1,

x, if n = 2,

x+ x2, if n = 3,

x+ 7x2 + x3, if n = 4,

x+ 21x2 + 21x3 + x4, if n = 5,

x+ 51x2 + 161x3 + 51x4 + x5, if n = 6,

x+ 113x2 + 813x3 + 813x4 + 113x5 + x6, if n = 7.

The polynomial dn(x) (often called the nth derangement polynomial) was first consid-
ered in a purely combinatorial context in [122, p. 530] by Stanley who, however, seems
to have been motivated by a geometric interpretation [123, Proposition 2.4] of dn(x); see
Section 3.3 for more explanation. While the symmetry of dn(x) is nearly obvious, its
unimodality was derived by Brenti [30, Corollary 1] from a more general result in the
theory of symmetric functions, although it also follows from deep results of Stanley [123]
on local h-polynomials, discussed in Section 3.2. A more elementary combinatorial proof
was later given by Stembridge [131, Section 2]. More recently, using methods discussed
in Section 4.2, M. Juhnke-Kubitzke, S. Murai and R. Sieg [73, Corollary 4.2] found the
recurrence

(25) dn(x) =
n−2∑
k=0

(
n

k

)
dk(x)(x+ x2 + · · ·+ xn−1−k),

which directly implies the unimodality of dn(x) by induction on n.
The question of γ-positivity of dn(x) arises naturally. Just as is the case with An(x), the

polynomial dn(x) turns out to be real-rooted for all n [142], so the interesting part of the
question is to find a proof of γ-positivity which provides a combinatorial interpretation
for the γ-coefficients. For the first few values of n, we have

dn(x) =



x, if n = 2,

x(1 + x), if n = 3,

x(1 + x)2 + 5x2, if n = 4,

x(1 + x)3 + 18x2(1 + x), if n = 5,

x(1 + x)4 + 47x2(1 + x)2 + 61x3, if n = 6,

x(1 + x)5 + 108x2(1 + x)3 + 479x3(1 + x), if n = 7.

For a permutation w ∈ Sn, a double descent is any index 2 ≤ i ≤ n − 1 such that
w(i − 1) > w(i) > w(i + 1); a left to right maximum is any index 1 ≤ j ≤ n such that
w(i) < w(j) for all 1 ≤ i < j.

Theorem 2.13 (cf. [10, Theorem 1.4]). We have dn(x) =
∑bn/2c

i=0 ξn,ix
i(1 + x)n−2i, where

ξn,i is equal to each of the following:

• the number of derangements w ∈ Dn with i excedances and no double excedance,
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• the number of w ∈ Sn for which Asc(w) ∈ Stab([2, n− 2]) has i− 1 elements,
• the number of w ∈ Sn for which Des(w) ∈ Stab([2, n− 2]) has i− 1 elements,
• the number of permutations w ∈ Sn with i descents and no double descent, such

that every left to right maximum of w is a descent.

In particular, dn(x) is γ-positive and

(26) dn(−1) =

{
0, if n is odd,

(−1)n/2 ξn,n/2, if n is even,

for all n, where ξn,n/2 is the number of up-down permutations in Sn.

The first three interpretations appeared (implicitly or explicitly) in various contexts in
independent works by several authors, roughly at the same time, who employed different
methods; see [10, Equations (1.3) and (3.2)] [84, Section 4] [111, Section 5] [114, Section 6]
[115] [137]. These references provide various interesting refinements, some of which are
described in the sequel. A symmetric function generalization is discussed in Section 2.5.

Three refinements of the first interpretation given in Theorem 2.13 were found by
H. Shin and J. Zeng [115, 116]. We denote by c(w) the number of cycles of w ∈ Sn

and note that the meanings of inv(w) and nest(w) have been explained earlier, before
the statement of Theorem 2.2. The result in the following theorem about nest(w) is the
specialization q = 1 of [115, Corollary 9], the one about c(w) (which also follows from the
proof of Theorem 2.13 given in [10, Section 4]) is a restatement of [115, Theorem 11] and
the one about inv(w) appears as [116, Theorem 2].

Theorem 2.14 (Shin–Zeng [115, 116]). For all positive integers n and for each of the
statistics stat(w) ∈ {c(w), inv(w), nest(w)},

(27)
∑
w∈Dn

qstat(w)xexc(w) =

bn/2c∑
i=0

bn,i(q)x
i(1 + x)n−2i,

where

(28) bn,i(q) =
∑

w∈Dn(i)

qstat(w)

and Dn(i) consists of all elements of Dn with exactly i excedances and no double excedance.

The following theorem refines the third interpretation of the γ-positivity of dn(x), given
in Theorem 2.13. This result was stated in [111, Remark 5.5] without giving an explicit
interpretation for the coefficients ξi(p, q). The combinatorial interpretation which appears
here follows from the methods used to prove the specialization p = 1 in [114, Theorem 6.1];
the proof will be sketched in Section 4.3. The special case p = 1 is also implicit in [84]
(see Equation (1.3) and Corollary 3.7 there) and is proven by different methods in [83].

Theorem 2.15 (Shareshian–Wachs [111, Remark 5.5] [114, Section 6]). For all n ≥ 1,

(29)
∑
w∈Dn

pdes(w)qmaj(w)−exc(w)xexc(w) =

bn/2c∑
i=0

ξn,i(p, q)x
i(1 + x)n−2i,
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where

(30) ξn,i(p, q) = p ·
∑
w

pdes(w−1)qmaj(w−1),

and the sum runs through all permutations w ∈ Sn for which Des(w) ∈ Stab([2, n − 2])
has i− 1 elements.

The following result, which is derived using the same methods in Section 4.3, generalizes
the specialization p = 1 of Theorem 2.15. We denote by fix(w) the number of fixed points
of w ∈ Sn.

Theorem 2.16 (Shareshian–Wachs [111, Corollary 4.6] [114, Theorem 6.1]). For all
n ≥ 1 and 0 ≤ k ≤ n,

(31)
∑

w∈Sn: fix(w)=k

qmaj(w)−exc(w)xexc(w) =

(
n

k

)
q

b(n−k)/2c∑
i=0

ξn−k,i(q)x
i(1 + x)n−k−2i,

where
(
n
k

)
q

is a q-binomial coefficient, ξn,i(q) := ξn,i(1, q) and ξn,i(p, q) is as in the state-

ment of Theorem 2.15.

Problem 2.17. Find a p-analog of Theorem 2.16 which reduces to Theorem 2.15 for
k = 0.

For a generalization of Theorem 2.13 to r-colored permutations and some related results,
see Section 2.1.7. We now briefly describe an application to the γ-positivity of binomial
Eulerian polynomials.

Remark 2.18. By the symmetry Ãn(x) = xnÃn(1/x) of the binomial Eulerian polynomial

Ãn(x), its defining equation (11) can be rewritten as

Ãn(x) =
n∑

m=0

(
n

m

)
xn−mAm(x).

Replacing Am(x) by the expression
∑m

k=0

(
m
k

)
dk(x) and changing the order of summation,

we obtain the formula

(32) Ãn(x) =
n∑
k=0

(
n

k

)
dk(x) (1 + x)n−k.

Using the γ-expansion of Theorem 2.13 for the derangement polynomials, we conclude
that (14) holds with

(33) γ̃n,i =
n∑

k=2i

(
n

k

)
ξk,i.

Because of the third interpretation for the coefficients ξn,i given in Theorem 2.13, this
formula is equivalent to the combinatorial interpretation for γ̃n,i predicted in [102]. This
approach can be generalized in the context of r-colored permutations; details will appear
elsewhere. �
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2.1.5. Involutions. Let In := {w ∈ Sn : w−1 = w} be the set of involutions in Sn and

(34) In(x) =
∑
w∈In

xdes(w)

be the polynomial defining the Eulerian distribution on In. For the first few values of n,
we have

In(x) =



1, if n = 1,

1 + x, if n = 2,

1 + 2x+ x2, if n = 3,

1 + 4x+ 4x2 + x3, if n = 4,

1 + 6x+ 12x2 + 6x3 + x4, if n = 5,

1 + 9x+ 28x2 + 28x3 + 9x4 + x5, if n = 6,

1 + 12x+ 57x2 + 92x3 + 57x4 + 12x5 + x6, if n = 7.

The polynomial In(x) seems to have first appeared in [136], where V. Strehl proved its
symmetry (conjectured by D. Dumont). Strehl’s argument uses basic properties of the
Robinson–Schensted correspondence to derive the alternative formula

(35) In(x) =
∑

Q∈SYT(n)

xdes(Q),

where SYT(n) stands for the set of all standard Young tableaux with n squares and
des(Q) is the numbers of entries (called descents) i ∈ [n − 1] such that i + 1 appears in
Q in a lower row than i, for Q ∈ SYT(n). This formula makes the symmetry of In(x)
apparent, since transposing a standard Young tableau interchanges descents with ascents
(nondescents).

Two basic results about In(x) are as follows. The proof of the second part, given in [68],
uses the first part to find recursions for the coefficients of In(x) and proceeds by induction
on n.

Theorem 2.19. (a) (Désarménien–Foata [46]) We have

(36)
∑
n≥0

In(x)

(1− x)n+1
zn =

∑
m≥0

xm

(1− z)m+1(1− z2)m(m+1)/2
,

where I0(x) := 1.

(b) (Guo–Zeng [68]) The polynomial In(x) is (symmetric and) unimodal for every
positive integer n.
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The polynomials In(x) are not real-rooted (in fact, not even log-concave [13]) for n
large enough, but the following data suggests they may be γ-positive:

In(x) =



1, if n = 1,

1 + x, if n = 2,

(1 + x)2, if n = 3,

(1 + x)3 + x(1 + x), if n = 4,

(1 + x)4 + 2x(1 + x)2 + 2x2, if n = 5,

(1 + x)5 + 4x(1 + x)3 + 6x2(1 + x), if n = 6,

(1 + x)6 + 6x(1 + x)4 + 18x2(1 + x)2, if n = 7.

Somewhat surprisingly, the following intriguing conjecture is still open (an analogous
statement for fixed-point free involutions is conjectured [68, Conjecture 4.3] for large n).

Conjecture 2.20 (Guo–Zeng [68, Conjecture 4.1]). The polynomial In(x) is γ-positive
for every positive integer n.

The previous conjecture suggests that it may be interesting to study the distribution
of the descent set Des(w) for w ∈ In. For instance, for S ⊆ [n − 1] let βn(S) denote
the number of permutations w ∈ Sn such that Des(w) = S. It is well known (see [127,
Section 1.6.3]) that βn(S) = βn([n− 1]rS) for every S ⊆ [n− 1] and that for each n ≥ 1,
when S ranges over all subsets of [n − 1], the quantity βn(S) attains its maximum for
S = {1, 3, 5, . . . } ∩ [n− 1].

Similarly, for S ⊆ [n− 1] let δn(S) denote the number of involutions w ∈ In such that
Des(w) = S. Strehl’s proof of the symmetry of In(x) shows that δn(S) = δn([n − 1]rS)
for every S ⊆ [n− 1].

Question 2.21. Is it true that for each n ≥ 1, when S ranges over all subsets of [n− 1],
the quantity δn(S) attains its maximum for S = {1, 3, 5, . . . } ∩ [n− 1]?

It is natural to consider the Bn-analog

(37) IBn (x) =
∑
w∈IBn

xdesB(w)

of In(x), where IBn := {w ∈ Bn : w−1 = w} is the set of involutions in the hyperocta-
hedral group Bn. Presumably (but not obviously), the right-hand side of the defining
equation (37) is unaffected when desB is replaced with the Coxeter group descent statistic
desB for Bn. For the first few values of n, we have

IBn (x) =



1 + x, if n = 1,

1 + 4x+ x2, if n = 2,

1 + 9x+ 92 + x3, if n = 3,

1 + 17x+ 40x2 + 17x3 + x4, if n = 4,

1 + 28x+ 127x2 + 127x3 + 28x4 + x5, if n = 5,

1 + 43x+ 331x2 + 634x3 + 331x4 + 43x5 + x6, if n = 6.
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The symmetry of IBn (x) can be demonstrated by an analog of Strehl’s argument, using
basic properties (see [1, Proposition 5.1]) of the Robinson–Schensted correspondence of
type B and replacing SYT(n) with the set of all standard Young bitableaux with a total
of n squares; see [87, Section 3.2] for the details.

The analog

(38)
∑
n≥0

IBn (x)

(1− x)n+1
zn =

∑
m≥0

xm

(1− z)2m+1(1− z2)m2 ,

of Equation (36) for IBn (x), where IB0 (x) := 1, was found by V. Moustakas [87], who also
showed that IBn (x) is unimodal for every positive integer n. As expected, the following
data suggests that IBn (x) may be γ-positive for every n:

IBn (x) =



1 + x, if n = 1,

(1 + x)2 + 2x, if n = 2,

(1 + x)3 + 6x(1 + x), if n = 3,

(1 + x)4 + 13x(1 + x)2 + 8x2, if n = 4,

(1 + x)5 + 23x(1 + x)3 + 48x2(1 + x), if n = 5,

(1 + x)6 + 37x(1 + x)4 + 168x2(1 + x)2 + 56x3, if n = 6.

The formulas in the following proposition, which seem not to have appeared in the
literature explicitly before, express In(x) and IBn (x) in terms of Eulerian polynomials of
types A and B, respectively. We sketch their proofs, which we find interesting. We recall
(see, for instance, [1, Section 2.3]) that the cycle form of elements of Bn involves positive
(paired) cycles and negative (balanced) cycles.

Proposition 2.22. For n ≥ 1,

In(x) =
1

n!

∑
w∈Sn

(1− x)n−c(w
2)Ac(w2)(x),(39)

IBn (x) =
1

2nn!

∑
w∈Bn

(1− x)n−c+(w2)Bc+(w2)(x),(40)

where c(u) stands for the number of cycles of u ∈ Sn and c+(v) stands for the number of
positive cycles of v ∈ Bn.

Proof. Recall from [125, Section 7.19] that the fundamental quasisymmetric function as-
sociated to S ⊆ [n− 1] is defined as

(41) Fn,S(x) =
∑

1≤i1≤i2≤···≤in
j∈S⇒ ij<ij+1

xi1xi2 · · ·xin ,

where x = (x1, x2, . . . ) is a sequence of commuting independent indeterminates, and that

(42)
∑
m≥1

Fn,S(1m)xm−1 =
x|S|

(1− x)n+1
.
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Applying this equality for S = Des(w), summing over all involutions w ∈ In, changing
the order of summation on the left-hand side and using the correspondence between
involutions and standard Young tableaux, we get

In(x)

(1− x)n+1
=
∑
m≥1

∑
w∈In

Fn,Des(w)(1
m)xm−1 =

∑
m≥1

∑
Q∈SYT(n)

Fn,Des(Q)(1
m)xm−1

=
∑
m≥1

∑
λ`n

∑
Q∈SYT(λ)

Fn,Des(Q)(1
m)xm−1.

By using the well known expansion [125, Theorem 7.19.7]

(43) sλ(x) =
∑

Q∈SYT(λ)

Fn,Des(Q)(x)

of the Schur function sλ(x) associated to λ ` n, our formula for In(x) may be rewritten
as

In(x)

(1− x)n+1
=
∑
m≥1

∑
λ`n

sλ(1
m)xm−1.

Expanding now sλ(x) in the power-sum basis (see [125, Theorem 7.18.5]) and changing
the order of summation, we obtain

In(x)

(1− x)n+1
=

1

n!

∑
m≥1

∑
λ`n

∑
u∈Sn

χλ(u)mc(u)xm−1 =
1

n!

∑
u∈Sn

∑
m≥1

mc(u)xm−1
∑
λ`n

χλ(u),

where χλ is the irreducible character of Sn corresponding to λ ` n. The desired expression
(39) for In(x) follows by applying Worpitzky’s identity

∑
m≥1m

kxm−1 = Ak(x)/(1−x)k+1

and the fact (see [72, p. 58]) that
∑

λ`n χ
λ(u) is equal to the number of w ∈ Sn satisfying

w2 = u, for every u ∈ Sn.
The proof of the expression (40) for IBn (x) is similar, provided one uses Poirier’s signed

quasisymmetric functions [99] to replace the functions Fn,S(x). In the sequel, we assume
some familiarity with [1, Section 2], especially with the notion of signed descent set for
signed permutations and standard Young bitableaux.

Let x = (x1, x2, . . . ) and y = (y1, y2, . . . ) be sequences of commuting independent
indeterminates. Given w ∈ Bn, let ε = (ε1, ε2, . . . , εn) ∈ {−,+}n be the vector with ith
coordinate equal to the sign of w(i), and let Des(w) be the set consisting of those indices
i ∈ [n− 1] for which either εi = + and εi+1 = −, or εi = εi+1 and |w(i)| > |w(i+ 1)|. The
signed quasisymmetric function associated (in a more general setting) to w by Poirier [99]
may be defined as

(44) Fw(x,y) =
∑

1≤i1≤i2≤···≤in
j∈Des(w)⇒ ij<ij+1

zi1zi2 · · · zin ,

where zij = xij if εj = +, and zij = yij if εj = −; see [1, Sections 2.2 and 2.4]. There is a
similar definition of FQ(x,y) for every standard Young bitableau Q; see [1, Section 2] for
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a uniform treatment of these functions. One can check that

(45)
∑
m≥1

Fw(1m, 01m−1)xm−1 =
xdesB(w)

(1− x)n+1
,

where Fw(1m, 01m−1) stands for the specialization x1 = · · · = xm = y2 = · · · = ym = 1,
y1 = 0 and xi = yi = 0 for i > m of the function Fw(x,y). Let SYB(λ, µ) denote the
set of standard Young bitableaux of shape (λ, µ). Following the proof for In(x) described
earlier and using the one-to-one correspondence between involutions in Bn and standard
Young bitableaux with a total of n squares, as well as the expansion

(46) sλ(x)sµ(y) =
∑

Q∈SYB(λ,µ)

FQ(x,y)

of [1, Proposition 4.2] instead of (43), we arrive at the equation

IBn (x)

(1− x)n+1
=
∑
m≥1

∑
(λ,µ)`n

sλ(1
m)sµ(1m−1)xm−1.

Finally, denote by χλ,µ the irreducible Bn-character associated to the bipartition (λ, µ)
of n. One uses the characteristic map [1, Equation (2.5)] for Bn to expand sλ(x)sµ(y) =
ch(χλ,µ) in the power sum basis, the type B Worpitzky identity

∑
m≥1(2m − 1)kxm−1 =

Bk(x)/(1− x)k+1 and the fact (see again [72, p. 58]) that
∑

(λ,µ)`n χ
λ,µ(v) is equal to the

number of square roots of v in Bn, for every v ∈ Bn, to reach the desired conclusion. �

Remark 2.23. Another proof of the symmetry of In(x) and IBn (x) can be inferred from
Proposition 2.22 as follows. Replacing x by 1/x in the right-hand sides of Equations (39)
and (40) and using the symmetry of the Eulerian polynomials Ak(x) and Bk(x), as well
as the fact that n− c(u2) and n− c+(v2) are even for all u ∈ Sn and v ∈ Bn, we see that
xn−1In(1/x) = In(x) and xnIBn (1/x) = IB(x), as desired. �

The polynomial In(x) affords a natural Coxeter group generalization. Given a finite
Coxeter groupW (together with a set of simple generators), let IW := {w ∈ W : w−1 = w}
be the set of involutions in W and define

(47) IW (x) :=
∑
w∈IW

xdes(w),

where, as in Equation (16), des(w) is the number of right descents of w (the notions of left
and right descents coincide for involutions). The polynomial IW (x) is equal to In(x), when
W is the symmetric group Sn, and presumably to IBn (x), when W is the hyperoctahedral
group Bn.

The symmetry of IW (x) follows from the work of Hultman [71, Section 5], who showed
(in a more general context) that IW (x) is equal to the h-polynomial of a Boolean cell
complex which is homeomorphic to a sphere. Thus, it seems natural to ask the following
question.
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Question 2.24. For which finite Coxeter groups W is IW (x) unimodal, or even γ-
positive?

Another possible generalization of In(x) is provided by the polynomial

(48) In,k(x) :=
∑

w∈Sn:wk=e

xdes(w),

defined for positive integers k, where e ∈ Sn stands for the identity permutation. This
polynomial is no longer symmetric for k ≥ 3, but it may still be worthwhile to investigate
its unimodality. Following the proof of the first part of Proposition 2.22 and using the
main result of [106], in the equivalent form stated in [1, Theorem 7.7], to evaluate the
quasisymmetric generating function of the descent set over all k-roots of e ∈ Sn, we
obtain in the generalization

(49) In,k(x) =
1

n!

∑
w∈Sn

(1− x)n−c(w
k)Ac(wk)(x)

of Equation (39).

2.1.6. Multiset permutations. Let λ = (λ1, λ2, . . . , λk) ` n be an integer partition of n.
We denote by Mλ the multiset consisting of λi copies of i for each i ∈ [k] and by S(Mλ) the
set of all permutations of Mλ, written in one-line notation. The sets of ascents, descents
and excedances of w = (a1, a2, . . . , an) ∈ S(Mλ) are defined as

• Asc(w) := {i ∈ [n− 1] : ai ≤ ai+1},
• Des(w) := {i ∈ [n− 1] : ai > ai+1},
• Exc(w) := {i ∈ [n− 1] : ai > ji},

where (j1, j2, . . . , jn) is the unique permutation of Mλ with no descents; the cardinalities
of these sets are denoted by asc(w), des(w) and exc(w), respectively. We say that w is a
Smirnov permutation of type λ if it has no two equal successive entries, and a derangement
of type λ if ai 6= ji for all indices i ∈ [n]. We denote by Sλ and Dλ the set of all Smirnov
permutations and derangements of type λ, respectively.

The following result, which is a consequence of [84, Theorem 5.1] and its proof, gener-
alizes Theorems 2.1 and 2.13 in the context of permutations of multisets.

Theorem 2.25 (Linusson–Shareshian–Wachs [84, Section 5]). For all partitions
λ ` n,

(50)
∑
w∈Sλ

xdes(w) =

b(n−1)/2c∑
i=0

γλ,ix
i(1 + x)n−1−2i

and

(51)
∑
w∈Dλ

xexc(w) =

bn/2c∑
i=0

ξλ,ix
i(1 + x)n−2i,

where
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• γλ,i is the number of permutations w ∈ S(Mλ) for which Asc(w) ∈ Stab([n − 2])
has i elements, and
• ξλ,i is the number of permutations w ∈ S(Mλ) for which Asc(w) ∈ Stab([2, n− 2])

has i− 1 elements.

2.1.7. Colored permutations. Theorem 2.13 has been generalized to the wreath product
group Zr oSn. Recall that the elements of Zr oSn can be viewed as r-colored permutations
of the form σ × z, where σ = (σ(1), σ(2), . . . , σ(n)) ∈ Sn and z = (z1, z2, . . . , zn) ∈
{0, 1, . . . , r − 1}n (the number zi is thought of as the color assigned to σ(i)). To define
the notions of descent and excedance for colored permutations, we follow [129, Section 2]
[130, Section 3.1]. A descent of σ × z ∈ Zr o Sn is any index i ∈ [n] such that either
zi > zi+1, or zi = zi+1 and σ(i) > σ(i + 1), where σ(n + 1) := n + 1 and zn+1 := 0 (in
particular, n is a descent if and only if σ(n) has nonzero color). An excedance of σ × z is
any index i ∈ [n] such that either σ(i) > i, or σ(i) = i and zi > 0. Let des(w) and exc(w)
be the number of descents and excedances, respectively, of w ∈ Zr o Sn. The Eulerian
polynomial

(52) An,r(x) :=
∑

w∈ZroSn

xdes(w) =
∑

w∈ZroSn

xexc(w)

for ZroSn (the second equality being the content of [129, Theorem 3.15] [130, Theorem 15])
was defined and studied by E. Steingŕımsson [129, 130], who showed it to be real-rooted
for all n, r; it reduces to the Eulerian polynomials An(x) and Bn(x) when r = 1 and r = 2,
respectively. The derangement polynomial for Zr oSn is defined as

(53) dn,r(x) :=
∑

w∈Dn,r

xexc(w),

where Dn,r denotes the set of all derangements (colored permutations without fixed points
of zero color) in Zr oSn. This polynomial was introduced and studied by C. Chow and
T. Mansour [41], who showed that it is real-rooted for all positive integers n, r; it reduces
to dn(x) for r = 1. For r = 2 it was first studied by W. Chen, R. Tang and A. Zhao [38]
and, independently, by C. Chow [40]. For the first few values of n, we have

dn,2(x) =



x, if n = 1,

4x+ x2, if n = 2,

8x+ 20x2 + x3, if n = 3,

16x+ 144x2 + 72x3 + x4, if n = 4,

32x+ 752x2 + 1312x3 + 232x4 + x5, if n = 5,

64x+ 3456x2 + 14576x3 + 9136x4 + 716x5 + x6, if n = 6.

Even though dn,r(x) and An,r(x) are no longer symmetric for r ≥ 2 and r ≥ 3, re-
spectively, the theory of γ-positivity is still relevant to their study. Indeed, the following
theorem shows that dn,r(x) is equal to the sum of two γ-positive, hence symmetric and uni-
modal, polynomials whose centers of symmetry differ by 1/2 and thus implies its unimodal-
ity. We denote by Des(w) the set of descents of w ∈ Zr oSn and set Asc(w) := [n]rDes(w).
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For r = 1, these notions differ from the ones already defined for permutations w ∈ Sn

only in the fact that Asc(w) is now forced to contain n. We call w ∈ Zr oSn down-up, if
Des(w) = {1, 3, 5, . . . } ∩ [n].

Theorem 2.26 (Athanasiadis [6, Theorem 1.3 and Corollary 6.1]). For all positive
integers n, r,

(54) dn,r(x) =

bn/2c∑
i=0

ξ+
n,r,i x

i(1 + x)n−2i +

b(n+1)/2c∑
i=0

ξ−n,r,i x
i(1 + x)n+1−2i,

where ξ+
n,r,i is the number of permutations w ∈ Zr o Sn for which Asc(w) ∈ Stab([2, n])

has i elements and contains n, and ξ−n,r,i is the number of permutations w ∈ Zr oSn for
which Asc(w) ∈ Stab([2, n− 1]) has i− 1 elements.

In particular, dn,r(x) is unimodal with a peak at b(n + 1)/2c. Moreover, if r ≥ 2, then

(−1)b
n+1
2
c drn(−1) is equal to the number of down-up colored permutations in Zr oSn.

The following question seems natural to ask.

Question 2.27. Is there a positive expansion for An,r(x) of the type provided by Equa-
tion (54) for dn,r(x)? Is there a (p, q)-analog which reduces to Theorem 2.3 for r = 1?

Problem 2.28. Find a (p, q)-analog of Theorem 2.26 which reduces to Theorem 2.15 for
r = 1.

The proof of Theorem 2.26 uses a general result of Linusson, Shareshian and Wachs [84,
Corollary 3.8] on the Möbius function of the Rees product for posets, which we discuss in
Section 2.4.

Problem 2.29. Find a direct combinatorial proof of Theorem 2.26.

In the case r = 2, further discussed in the sequel, a different combinatorial interpretation
for the numbers ξ+

n,2,i and ξ−n,2,i, in terms of permutations with no double excedance, was
found by Shin and Zeng [116, Section 2]. This suggests the problem to find a combinatorial
interpretation for the numbers ξ+

n,r,i and ξ−n,r,i which generalizes the first interpretation
of the numbers ξn,i, stated in Theorem 2.13, and prove directly its equivalence to the
interpretation of Theorem 2.26.

Let us denote by d+
n,r(x) and d−n,r(x) the first and second summand, respectively, in

the right-hand side of (54). A geometric interpretation of the former will be discussed in
Section 3.3. The following statement appeared as [108, Conjecture 3.7.10] in the special
case r = 2; see also [7, Question 4.11].

Conjecture 2.30. The polynomials d+
n,r(x) and d−n,r(x) are real-rooted for all positive

integers n, r.

We close our discussion with generalizations of An(x) and dn(x) to r-colored permuta-
tions which are different from, but related to (especially for r = 2), An,r(x) and dn,r(x).
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The flag excedance of a colored permutation w = σ×z ∈ Zr oSn was defined by E. Bagno
and D. Garber [12] as

(55) fexc(w) = r · exc(σ) +
n∑
i=1

zi,

where the sum of the colors zi takes place in Z. The generating polynomial of fexc over
all r-colored permutations factors nicely [11, 54] (see also [6, Proposition 2.2]) as

(56) Afexc
n,r (x) :=

∑
w∈ZroSn

xfexc(w) = (1 + x+ x2 + · · ·+ xr−1)nAn(x).

The polynomial

(57) fn,r(x) :=
∑

w∈Dn,r

xfexc(w)

was studied by P. Mongelli [86, Section 3] in the case r = 2 and by Z. Lin [79, Section 2.4.1]
and by H. Shin and J. Zeng [116] for any r ≥ 1; it reduces to dn(x) for r = 1. For r = 2
and for the first few values of n, we have

fn,2(x) =



x, if n = 1,

x+ 3x2 + x3, if n = 2,

x+ 7x2 + 13x3 + 7x4 + x5, if n = 3,

x+ 15x2 + 57x3 + 87x4 + 57x5 + 15x6 + x7, if n = 4,

x+ 31x2 + 201x3 + 551x4 + 761x5 + 551x6 + 201x7 + 31x8 + x9, if n = 5.

The symmetry of fn,r(x) is nearly obvious (see [6, Proposition 2.5]); its unimodality
was shown in [79, Theorem 2.4.11] [116, Corollary 4] (where the first reference offers a
generalization and q-analog as well). The connection between the generating polynomials
for exc and fexc, respectively, over Zr oSn and Dn,r are the formulas

An,r(x) = Ẽr(A
fexc
n,r (x)),(58)

dn,r(x) = Ẽr(fn,r(x)),(59)

where Ẽr : R[x] → R[x] is the linear operator defined by setting Ẽr(x
m) = xdm/re for

m ∈ N; see [6, Proposition 2.3] and its proof. Equation (59) implies (see [6, Section 5])
that

d+
n,r(x) =

∑
w∈(Dn,r)b

xfexc(w)/r,(60)

d−n,r(x) =
∑

w∈Dn,rr(Dn,r)b
xd

fexc(w)
r
e,(61)

where (Dn,r)b stands for the set of derangements w ∈ Dn,r such that fexc(w) is divisible
by r (colored permutations with this property are sometimes called balanced).
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The polynomial fn,r(x) is not γ-positive for r ≥ 3, the case r = 2 being more interesting.
As discussed in [6, Section 5], it follows from Equations (60) and (61) that dn,2(x) and
fn,2(x) determine one another in a simple way. The γ-positivity of fn,2(x) (which is not
real-rooted for all n) follows from the formula in [86, Proposition 3.4]

(62) fn,2(x) =
n∑
k=0

(
n

k

)
xk(1 + x)n−k dn−k(x)

and the γ-positivity of dn(x) (Mongelli [86, Conjecture 8.1] further conjectured that fn,2(x)
is log-concave for all n). The corresponding γ-coefficients for the first few values of n are
given by

fn,2(x) =



x, if n = 1,

x(1 + x)2 + x2, if n = 2,

x(1 + x)4 + 3x2(1 + x)2 + x3, if n = 3,

x(1 + x)6 + 9x2(1 + x)4 + 6x3(1 + x)2 + x4, if n = 4,

x(1 + x)8 + 23x2(1 + x)6 + 35x3(1 + x)4 + 10x4(1 + x)2 + x5, if n = 5.

The following elegant combinatorial interpretation for these coefficients was found by Shin
and Zeng [116].

Theorem 2.31 (Shin–Zeng [116, Cor. 5]). We have fn,2(x) =
∑bn/2c

i=0 ξ̂n,ix
i(1 + x)2n−2i,

where ξ̂n,i is equal to the number of permutations w ∈ Sn with i weak excedances and no
double excedance. In particular, fn,2(−1) = (−1)n for n ≥ 1.

2.2. Coxeter–Narayana polynomials. Let W be a finite Coxeter group with set of
simple generators S, and let `T : W → N be the length (known as absolute length)
function with respect to the generating set T = {wsw−1 : s ∈ S,w ∈ W} of all reflections
in W . Choose a Coxeter element c ∈ W and set

NCW = NCW (c) := {w ∈ W : `T (w) + `T (w−1c) = `T (c)}.

This set, endowed with a natural partial order which is graded by absolute length, was
introduced by D. Bessis [16] and independently by T. Brady and C. Watt [23] as the
poset of noncrossing partitions associated to W ; see [3, Chapter 2] for more information
(the isomorphism type of this poset does not depend on the choice of c). The generating
polynomial

(63) Cat(W,x) :=
∑

w∈NCW

x`T (w)

of the absolute length function over NCW admits numerous algebraic, combinatorial and
geometric interpretations and plays an important role in the subject of Catalan combi-
natorics of Coxeter groups [3, Chapter 5]. For the symmetric group Sn, its coefficients,
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known as Narayana numbers, refine the nth Catalan number; explicitly, we have:

(64) Cat(W,x) =



n∑
i=0

1

i+ 1

(
n

i

)(
n+ 1

i

)
xi, if W = Sn+1,

n∑
i=0

(
n

i

)2

xi, if W = Bn

n∑
i=0

(
n

i

)((
n− 1

i

)
+

(
n− 2

i− 2

))
xi, if W = Ben,

where (to avoid confusion with our notation for the set of derangements in Sn) Ben stands
for the group of even-signed permutations of Ωn (which is a Coxeter group of type Dn).

The symmetry of Cat(W,x) is a simple consequence of the definition. The following
result can be verified with case-by-case computations; it is due essentially to R. Simion and
D. Ullman [117, Corollary 3.1] [102, Proposition 11.14] for the group Sn, to A. Postnikov,
V. Reiner and L. Williams [102, Proposition 11.15] for the group Bn and to M. Gorsky [67]
for the group Ben (see also Remark 2.34).

Theorem 2.32. The polynomial Cat(W,x) is γ-positive for every finite Coxeter group
W . Moreover, writing

(65) Cat(W,x) =

bn/2c∑
i=0

γi(W )xi(1 + x)n−2i,

where n is the rank of W , we have the explicit formulas

(66) γi(W ) =



1

i+ 1

(
n

i, i, n− 2i

)
, if W = Sn+1,

(
n

i, i, n− 2i

)
, if W = Bn,

n− i− 1

n− 1

(
n

i, i, n− 2i

)
, if W = Ben,

for 0 ≤ i ≤ bn/2c.
For an extension of the γ-positivity of Cat(W,x) to well-generated complex reflection

groups, see [88, Theorem 1.3]. Elegant q-analogs of the γ-positivity of Cat(Sn, x) are
given in [22, Theorem 1.2] and [82, Theorem 4].

As is usual in Catalan combinatorics, the polynomial Cat(W,x) has a positive analog,
defined as

(67) Cat+(W,x) :=
∑
J⊆S

(−x)|SrJ |Cat(WJ , x),
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where WJ is the standard parabolic subgroup of W associated to J ⊆ S; we have the
explicit formulas:

(68) Cat+(W,x) =



n∑
i=0

1

i+ 1

(
n− 1

i

)(
n

i

)
xi, if W = Sn+1,

n∑
i=0

(
n− 1

i

)(
n

i

)
xi, if W = Bn,

n∑
i=0

((
n− 2

i

)(
n

i

)
+

(
n− 2

i− 2

)(
n− 1

i

))
xi, if W = Ben.

This polynomial is not symmetric, except for the case of the symmetric groups. How-
ever, the polynomial

(69) Cat++(W,x) :=
∑
J⊆S

(−1)|SrJ |Cat+(WJ , x)

turns out to be symmetric and to have nonnegative coefficients for all W . This polynomial
was first considered in an enumerative-geometric context in [10], explained in Section 3.3,
and more recently in a different context in [14], where our notation comes from. For the
symmetric and hyperoctahedral groups, the work [10] provides combinatorial interpreta-
tions for the coefficients of Cat++(W,x) and the corresponding γ-coefficients ξi(W ), in
terms of noncrossing partitions with restrictions.

Theorem 2.33 (Athanasiadis–Savvidou [10]). The polynomial Cat++(W,x) is γ-
positive for every finite Coxeter group W . Moreover, writing

(70) Cat++(W,x) =

bn/2c∑
i=0

ξi(W )xi(1 + x)n−2i,

where n is the rank of W , we have ξ0(W ) = 0 and the explicit formulas

(71) ξi(W ) =



1

n− i+ 1

(
n

i

)(
n− i− 1

i− 1

)
, if W = Sn+1,

(
n

i

)(
n− i− 1

i− 1

)
, if W = Bn,

n− 2

i

(
2i− 2

i− 1

)(
n− 2

2i− 2

)
, if W = Ben,

for 1 ≤ i ≤ bn/2c.
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Remark 2.34. Equations (67) and (69) can be inverted to give

Cat(W,x) =
∑
J⊆S

x|SrJ |Cat+(WJ , x),(72)

Cat+(W,x) =
∑
J⊆S

Cat++(WJ , x),(73)

respectively. Hence,

Cat(W,x) =
∑
J⊆S

x|SrJ |Cat+(WJ , x) =
∑
J⊆S

x|SrJ |
∑
I⊆J

Cat++(WI , x)

=
∑
I⊆S

(x+ 1)n−|I|Cat++(WI , x),

where n is the rank of W . Setting

γ(W,x) =

bn/2c∑
i=0

γi(W )xi, ξ(W,x) =

bn/2c∑
i=0

ξi(W )xi,

we see that the previous formula for Cat(W,x) translates into the equation

(74) γ(W,x) =
∑
J⊆S

ξ(WJ , x).

Alternatively, given the geometric interpretations of Cat(W,x) and Cat++(W,x) discussed
in Section 3.3, Equation (74) is a special case of [5, Corollary 5.5] [7, Equation (6)]; see
also Theorem 3.15 in the sequel.

In particular, the γ-positivity statement of Theorem 2.33 is stronger than that of The-
orem 2.32. �

The numbers γ1(W ) and ξ1(W ) are equal to the number of nonsimple reflections in W
and the number of reflections in W which do not belong to any proper standard parabolic
subgroup, respectively; see the first remark in [10, Section 5].

Problem 2.35. Find a proof of the γ-positivity of Cat(W,x) and Cat++(W,x), as well
as algebraic or combinatorial interpretations for the numbers γi(W ) and ξi(W ), which do
not depend on the classification of finite Coxeter groups.

2.3. Polynomials arising from enriched poset partitions. Let (P , ω) be a labeled
poset with n elements, as in Section 2.1.2, and recall that Ωm := {1,−1, 2,−2, . . . ,m,−m}.
For m ∈ N, denote by Ω′P,ω(m) the number of maps f : P → Ωm which are such that for
all x, y ∈ P with x <P y:

• |f(x)| ≤ |f(y)|,
• |f(x)| = |f(y)| implies f(x) ≤ f(y),
• f(x) = f(y) > 0 implies ω(x) < ω(y),
• f(x) = f(y) < 0 implies ω(x) > ω(y),
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where Ω′P,ω(0) := 0. These maps are called enriched (P , ω)-partitions ; their theory was
developed by Stembridge [133], in analogy with Stanley’s theory of (P , ω)-partitions. The
function Ω′P,ω(m), studied in [133, Section 4], turns out to be a polynomial in m of degree
at most n and hence

(75)
∑
m≥0

Ω′P,ω(m)xm =
A′P,ω(x)

(1− x)n+1

for some polynomial A′P,ω(x) of degree at most n. As pointed out by Stembridge to the
author, the more explicit formula

(76) A′P,ω(x) = x
∑

ε:P→{−1,1}

AP,εω(x)

follows from [133, Theorem 3.6], where AP,εω(x) is the ordinary (P , εω)-Eulerian polyno-
mial defined as in Section 2.1.2, with labels taken from the totally ordered set Z.

The following result is a restatement of [133, Theorem 4.1]; it appeared several years
before the work on γ-positivity of Brändén [24, 26] and Gal [61]. A peak of a permutation
w ∈ Sn is any index 2 ≤ i ≤ n− 1 such that w(i− 1) < w(i) > w(i+ 1).

Theorem 2.36 (Stembridge [133]). For every n-element labeled poset (P , ω)

(77) A′P,ω(x) =

b(n−1)/2c∑
i=0

pn,i 2
2i+1 xi+1(1 + x)n−1−2i,

where pn,i is the number of permutations w ∈ L(P , ω) (see Definition 2.6) with i peaks.
In particular, A′P,ω(x) is γ-positive.

This theorem reduces to the γ-positivity of the Eulerian polynomial An(x) when P is
the n-element antichain, since in this case A′P,ω(x) = x 2nAn(x).

2.4. Polynomials arising from poset homology. A γ-positivity theorem, due to S. Li-
nusson, J. Shareshian and M. Wachs [84], which captures as special cases some of the basic
examples we have seen so far, comes from the study of the homology of the Rees product
of posets, a construction due to A. Björner and V. Welker [21]. Given finite graded posets
P and Q with rank functions ρP and ρQ, respectively, their Rees product is defined in [21]
as P∗Q = {(p, q) ∈ P×Q : ρP(p) ≥ ρQ(q)}, partially ordered by setting (p1, q1) � (p2, q2)
if all of the following conditions are satisfied:

• p1 � p2 holds in P ,
• q1 � q2 holds in Q and
• ρP(p2)− ρP(p1) ≥ ρQ(q2)− ρQ(q1).

The poset P ∗Q is graded with rank function given by ρ(p, q) = ρP(p) for (p, q) ∈ P ∗Q.
To state the result of [84], we need to recall a few more definitions. Let P be a finite

graded poset, as before, and assume further that P is bounded, with minimum element
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0̂ and maximum element 1̂, and that it has rank n+ 1. For S ⊆ [n], we denote by aP(S)
the number of maximal chains of the rank-selected subposet

(78) PS := {p ∈ P : ρP(p) ∈ S} ∪ {0̂, 1̂}
of P , and set

(79) bP(S) :=
∑
T⊆S

(−1)|S−T | aP(T ).

The numbers aP(S) and bP(S) are important enumerative invariants of P ; see [127, Sec-
tion 3.13]. The numbers bP(S) are nonnegative, if P is Cohen–Macaulay over some field,
and afford a simple combinatorial interpretation, if P admits an R-labeling. The number
(−1)n−1bP([n]) is the Möbius number of the poset P̄ , obtained from P by removing 0̂ and
1̂; it is denoted by µ(P̄). The posets obtained from P by removing 0̂ or 1̂ are denoted by
P− or P−, respectively. The poset whose Hasse diagram is a complete x-ary tree of height
n, rooted at the minimum element, is denoted by Tx,n. For the notion of EL-shellability,
the reader is referred to [84, Section 2] and references therein. The following theorem is
a restatement of [84, Corollary 3.8].

Theorem 2.37 (Linusson–Shareshian–Wachs [84]). Let P be a finite bounded graded
poset of rank n+ 1. If P is EL-shellable, then

(80) µ ((P− ∗ Tx,n)−) =
∑

S∈Stab([n−1])

bP([n]rS)x|S|(1 + x)n−2|S|

+
∑

S∈Stab([n−2])

bP([n− 1]rS)x|S|+1(1 + x)n−1−2|S|

and

(81) µ (P̄ ∗ Tx,n−1) =
∑

S∈Stab([2,n−2])

bP([n− 1]rS)x|S|+1(1 + x)n−2−2|S|

+
∑

S∈Stab([2,n−1])

bP([n]rS)x|S|(1 + x)n−1−2|S|

for every positive integer x.

This theorem turns out to be valid without the assumption of EL-shellability; see [9].
When P− has a maximum element, the first and the second summand of the right-hand
sides of Equations (80) and (81), respectively, vanishes and hence the left-hand sides are
γ-positive polynomials in x, provided P is Cohen–Macaulay over some field.

Example 2.38. Suppose that P− is the Boolean lattice of subsets of the set [n], ordered
by inclusion. Then, the left-hand sides of Equations (80) and (81) are equal to xAn(x)
and dn(x), respectively (this is the content of [110, Equation (3.1)] in the former case,
and is implicit in [110] in the latter). The number bP(S) is known to count permutations
w ∈ Sn such that Des(w) = S [127, Corollary 3.13.2]. Thus, Theorem 2.37 reduces to
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the γ-positivity of An(x) and dn(x) (specifically, to the third interpretations given for γn,i
and ξn,i in Theorems 2.1 and 2.13, respectively) in this case. �

The p = 1 specializations of Theorems 2.3 and 2.15 can be viewed as the special case
of Theorem 2.37 in which P− is the lattice of subspaces of an n-dimensional vector space
over a field with q elements. This follows from Equations (1.3) and (1.4) in [84] and from
the known interpretation [127, Theorem 3.13.3] of bP(S) for this poset. Theorem 2.26 is
derived in [6, Section 4] from the special case of Theorem 2.37 in which P− is the set of
r-colored subsets of [n], ordered by inclusion.

Similarly, Theorem 2.25 can be viewed as the special case of Theorem 2.37 in which P−
is the product of chains whose lengths are the parts of λ; see [84, Section 5]. The proof
of Theorem 2.25 given there, however, involves a different approach and thus, it would be
interesting to prove directly that the left-hand sides of Equations (80) and (81) are equal
to those of Equations (50) and (51), respectively, in this case.

Remark 2.39. Theorem 2.25 can be applied, more generally, when P is the distributive
lattice of order ideals of an n-element poset Q, since then bP(S) counts linear extensions
of Q with descent set equal to S [127, Theorem 3.13.1]. Are there combinatorial interpre-
tations for the coefficients of the left-hand sides of Equations (80) and (81) which reduce
to those of Theorem 2.25 when Q is a disjoint union of chains of cardinalities equal to the
parts of λ? �

2.5. Polynomials arising from symmetric functions. Let x = (x1, x2, . . . ) be a se-
quence of commuting independent indeterminates (to avoid confusion with this notation,
in this section we consider polynomials in the variable t, rather than x). For integer
partitions λ, consider the polynomials Pλ(t) and Rλ(t) which are defined by the equations

(82)
(1− t)H(x; z)

H(x; tz)− tH(x; z)
=

∑
k≥0

hk(x)zk

1−
∑
k≥2

(t+ t2 + · · ·+ tk−1)hk(x)zk
=
∑
λ

Pλ(t)sλ(x) z|λ|

and

(83)
1− t

H(x; tz)− tH(x; z)
=

1

1−
∑
k≥2

(t+ t2 + · · ·+ tk−1)hk(x)zk
=
∑
λ

Rλ(t)sλ(x) z|λ|,

where H(x; z) =
∑

n≥0 hn(x)zn is the generating function for the complete homogeneous
symmetric functions in x, and λ ranges over all partitions (including the one without any
parts). The left-hand sides of Equations (82) and (83) were first considered by Stanley
[122, Propositions 12 and 13] and, since then, they have appeared in various algebraic-
geometric and combinatorial contexts; see the relevant discussions in [111, Section 7]
[84, Section 4] [113], as well as Section 5 in the sequel. Stanley [122] observed that for
λ ` n, the polynomials Pλ(t) and Rλ(t) have nonnegative and symmetric coefficients, with
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centers of symmetry (n− 1)/2 and n/2, respectively, which satisfy

(84)
∑
λ`n

fλPλ(t) = An(t)

and

(85)
∑
λ`n

fλRλ(t) = dn(t),

where fλ is the number of standard Young tableaux of shape λ. This shows that the
coefficients of zn in the functions appearing in Equations (82) and (83) correspond, via
Frobenius characteristic, to graded Sn-representations whose graded dimensions are equal
to An(t) and dn(t), respectively. Thus, the left-hand sides of Equations (82) and (83)
can be considered as representation-theoretic analogs of An(t) and dn(t), respectively.
Combinatorial interpretations for the coefficients of Pλ(t) and Rλ(t) were provided by
Stembridge [131, Section 4]; a different one for Pλ(t) can be derived as a special case of
[112, Theorem 6.3].

The unimodality of Pλ(t) and Rλ(t), which refines that of An(t) and dn(t), was proved
by Stanley [122, Proposition 12] and Brenti [30, Corollary 1], respectively. Given that
An(t) and dn(t) are γ-positive, it is natural to ask whether Pλ(t) and Rλ(t) have the same
property. An affirmative answer follows from explicit formulas which refine Theorems 2.1
and 2.13. These formulas are essentially equivalent to the following unpublished result
of Gessel, stated without proof in [84, Section 4] [111, Section 7] [114, Section 3]. We
write E(x; z) =

∑
n≥0 en(x)zn for the generating function for the elementary symmetric

functions in x. For a map w : [n] → Z>0 we set xw := xw(1)xw(2) · · ·xw(n) and, as usual,
define by Asc(w) := [n− 1]rDes(w) and Des(w) := {i ∈ [n− 1] : w(i) > w(i+ 1)} the set
of ascents and descents of w and denote by asc(w) and des(w) the cardinalities of these
sets, respectively.

Theorem 2.40 (Gessel, unpublished). We have

(1− t)H(x; z)

H(x; tz)− tH(x; z)
= 1 +

∑
n≥1

zn
∑

w : [n]→ Z>0

Des(w) ∈ Stab([n− 2])

tdes(w)(1 + t)n−1−2des(w) xw,

(86)

1− t
H(x; tz)− tH(x; z)

= 1 +
∑
n≥2

zn
∑

w : [n]→ Z>0

Des(w) ∈ Stab([2, n− 2])

tdes(w)+1(1 + t)n−2−2des(w) xw,

(87)

(1− t)E(x; z)

E(x; tz)− tE(x; z)
= 1 +

∑
n≥1

zn
∑

w : [n]→ Z>0

Asc(w) ∈ Stab([n− 2])

tasc(w)(1 + t)n−1−2asc(w) xw,

(88)
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and
(89)

1− t
E(x; tz)− tE(x; z)

= 1 +
∑
n≥2

zn
∑

w : [n]→ Z>0

Asc(w) ∈ Stab([2, n− 2])

tasc(w)+1(1 + t)n−2−2asc(w) xw.

Equations (86) and (87) can be shown to be equivalent to (88) and (89), respectively,
via an application of the standard involution ω on symmetric functions. Perhaps not
surprisingly, Equations (88) and (89) can be deduced [9, Corollary 4.1] as special cases
of an equivariant version of Theorem 2.37; see [9, Theorem 1.2] and Theorem 5.3 in the
sequel. A direct combinatorial proof of (88) will be sketched in Section 4.1.

Corollary 2.41. For λ ` n,

(90) Pλ(t) =

b(n−1)/2c∑
i=0

γλi t
i(1 + t)n−1−2i

and

(91) Rλ(t) =

bn/2c∑
i=0

ξλi t
i(1 + t)n−2i,

where

• γλi is the number of tableaux Q ∈ SYT(λ) for which Des(Q) ∈ Stab([n− 2]) has i
elements, and
• ξλi is the number of tableaux Q ∈ SYT(λ) for which Des(Q) ∈ Stab([2, n− 2]) has
i− 1 elements.

In particular, Pλ(t) and Rλ(t) are γ-positive for every partition λ.

Proof. For B ⊆ [n − 1], we consider the skew hook shape whose row lengths, read from
bottom to top, form the composition of n corresponding to B and denote by sB(x) the
skew Schur function associated to this shape. As in the proof of [114, Corollary 3.2], we
note that, because of the obvious correspondence between monomials xw and semistandard
Young tableaux of skew hook shape, Equation (86) may be rewritten as

(92)
(1− t)H(x; z)

H(x; tz)− tH(x; z)
= 1 +

∑
n≥1

zn
b(n−1)/2c∑

i=0

γn,i(x) ti(1 + t)n−1−2i,

where

(93) γn,i(x) =
∑

B ∈ Stab([n− 2])
|B| = i

sB(x).
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Expanding sB(x) by the well known rule

(94) sB(x) =
∑
λ`n

|{Q ∈ SYT(λ) : Des(Q) = B}| · sλ(x)

in the basis of Schur functions and comparing the coefficients of sλ(x) on the two sides
of (92), we obtain the desired formula for Pλ(t). A similar argument works for Rλ(t). �

The author is not aware of any results in the literature concerning the roots of Pλ(t)
and Rλ(t).

2.6. Polynomials arising from trees. This section discusses two more instances of
γ-positivity in combinatorics. For further examples, see [26, 81] and Sections 3.3 and 4.2.

A tree T on the vertex set [n] is called rooted if it has a distinguished vertex, called
root. An edge {a, b}, with a < b, of such a tree T is called a descent if the unique path in
T which connects a with the root passes through b. Let tn(x) be the polynomial in which
the coefficient of xk equals the number of rooted trees on the vertex set [n] with exactly
k descents. The following elegant x-analog

(95) tn(x) =
n−1∏
i=1

((n− i) + ix)

of Cayley’s formula, which is a specialization of results of Ö. Eğecioğlu and J. Remmel
[50], implies the γ-positivity of tn(x). Several explicit combinatorial interpretations for
the corresponding γ-coefficients were found by R. González D’León [66].

A tree T on the vertex set [n] is called alternating, or intransitive [100], if every vertex
of T is either less than all its neighbors, in which case it is called a left vertex, or greater
than all its neighbors, in which case it is called a right vertex. Let gn(x) be the polynomial
in which the coefficient of xk equals the number of alternating trees on the vertex set [n]
with exactly k left vertices. These polynomials were considered in [63, 100]; for the first
few values of n, we have

gn(x) =



1, if n = 1,

x, if n = 2,

x+ x2, if n = 3,

x+ 5x2 + x3, if n = 4,

x+ 17x2 + 17x3 + x4, if n = 5,

x+ 49x2 + 146x3 + 49x4 + x5, if n = 6,

x+ 129x2 + 922x3 + 922x4 + 129x5 + x6, if n = 7.

Theorem 2.42 (Gessel–Griffin–Tewari [64, Theorem 5.9]). The polynomial gn(x)
is γ-positive for every positive integer n.

The proof, which uses symmetric functions, yields a combinatorial formula for the γ-
coefficients involving certain plane binary trees. An explicit combinatorial interpretation
has also been found by V. Tewari [138].
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Figure 2. A two-dimensional simplicial complex

3. Gamma-positivity in geometry

This section discusses the main geometric contexts in which γ-positivity occurs. Many
of the examples treated in Section 2 reappear here as interesting special cases of more
general phenomena. Familiarity with basic notions on simplicial complexes and their
geometric realizations is assumed; see [19] [36, Chapter 2] [77] [140, Lecture 1] for detailed
expositions. All simplicial complexes considered here are assumed to be finite. To keep
our discussion as elementary as possible, we work with triangulations of spheres and balls,
rather than with the more general classes of homology spheres and homology balls.

We first review some basic definitions and background related to the face enumeration
of simplicial complexes. For i ≥ 0 we denote by fi−1(∆) the number of (i−1)-dimensional
faces of a simplicial complex ∆, where (unless ∆ is empty) f−1(∆) := 1.

Definition 3.1. The h-polynomial of a simplicial complex ∆ of dimension n−1 is defined
as

(96) h(∆, x) :=
n∑
i=0

fi−1(∆)xi(1− x)n−i :=
n∑
i=0

hi(∆)xi.

The sequence h(∆) = (h0(∆), h1(∆), . . . , hn(∆)) is the h-vector of ∆.

The polynomial h(∆, x) can be thought of as an x-analog of the number fn−1(∆) of
facets (meaning, faces of maximum dimension n− 1) of ∆, since h(∆, 1) = fn−1(∆). We
refer the reader to [126] for the significance of the h-polynomial, as well as for important
algebraic and combinatorial interpretations which are valid for special classes of simplicial
complexes.

Example 3.2. The simplicial complex ∆ shown in Figure 2 triangulates a two-dimensional
simplex with eight vertices, fifteen edges and eight two-dimensional faces. Thus, f−1(∆) =
1, f0(∆) = 8, f1(∆) = 15 and f2(∆) = 8 and we may compute that h(∆, x) = (1− x)3 +
8x(1− x)2 + 15x2(1− x) + 8x3 = 1 + 5x+ 2x2. �

The relevance of the h-polynomial to the symmetry and unimodality of real polyno-
mials stems from the following theorem, which combines important results by V. Klee,
G. Reisner and R. Stanley [76, 105, 119, 120] in geometric combinatorics; see [126] for more
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information. The first two parts hold more generally for the classes of Cohen–Macaulay
and Eulerian, respectively, simplicial complexes.

Theorem 3.3 (Klee, Reisner, Stanley). Let ∆ be (n− 1)-dimensional.

(a) The polynomial h(∆, x) has nonnegative coefficients, i.e., we have hi(∆) ≥ 0 for
0 ≤ i ≤ n, if ∆ triangulates a ball or a sphere.

(b) The polynomial h(∆, x) is symmetric, i.e., we have hi(∆) = hn−i(∆) for 0 ≤ i ≤ n,
if ∆ triangulates a sphere.

(c) The polynomial h(∆, x) is unimodal, i.e., we have

(97) 1 = h0(∆) ≤ h1(∆) ≤ · · · ≤ hbn/2c(∆),

if ∆ is the boundary complex of a simplicial polytope.

Part (c), proved by R. Stanley [120], is known as the Generalized Lower Bound Theorem
for simplicial polytopes, since the inequalities hi(∆) ≥ hi−1(∆) impose a lower bound for
each face number fi−1(∆) in terms of the numbers fj−1(∆) for 1 ≤ j < i.

3.1. Flag triangulations of spheres. Let ∆ be an (abstract) simplicial complex on the
vertex set V . We say that ∆ is flag if we have F ∈ ∆ for every F ⊆ V for which all
two-element subsets of F belong to ∆, and refer to [4] [126, Section III.4] for a glimpse of
the combinatorial properties of this fascinating class of simplicial complexes. The complex
shown in Figure 2, for example, is flag.

The following major open problem in geometric combinatorics was posed by Ś. Gal [61]
who disproved a more optimistic conjecture, claiming that h(∆, x) is real-rooted for every
flag triangulation of a sphere.

Conjecture 3.4 (Gal [61, Conjecture 2.1.7]). The polynomial h(∆, x) is γ-positive for
every flag simplicial complex ∆ which triangulates a sphere.

This conjecture extends an earlier conjecture of R. Charney and M. Davis [37] on the
sign of h(∆,−1); it is also open for the more restrictive class of flag boundary complexes
of simplicial polytopes.

Example 3.5. Consider a triangulation ∆ of the one-dimensional sphere with m vertices
(cycle of length m). We have f−1(∆) = 1 and f0(∆) = f1(∆) = m and hence h(∆, x) =
(1− x)2 +mx(1− x) +mx2 = 1 + (m− 2)x+ x2 is γ-positive if and only if m ≥ 4. Note
that this is exactly the necessary and sufficient condition for ∆ to be flag. �

Conjecture 3.4 can be viewed as a Generalized Lower Bound Conjecture for flag trian-
gulations of spheres ∆. To be more precise, we may write

(98) h(∆, x) =

bn/2c∑
i=0

γi(∆)xi(1 + x)n−2i,

where n− 1 = dim(∆) and γ0(∆) = 1. The vector γ(∆) := (γ0(∆), γ1(∆), . . . , γbn/2c(∆))
is known as the γ-vector of ∆ and Gal’s conjecture states that γi(∆) ≥ 0 for all i. Just as
in the case of Theorem 3.3 (c), these inequalities impose a lower bound on each hi(∆) in



36 CHRISTOS ATHANASIADIS

terms of the numbers hj(∆) for 0 ≤ j < i, and hence a lower bound on each face number
fi−1(∆) in terms of the face numbers fj−1(∆) for 1 ≤ j < i.

For instance, since γ1(∆) = h1(∆) − n = f0(∆) − 2n, the inequality γ1(∆) ≥ 0 states
that every flag triangulation of the (n− 1)-dimensional sphere has at least 2n vertices, a
fact which is easy to prove by induction on n. The inequality γ2(∆) ≥ 0 already provides
a challenge. Since

γ2(∆) = h2(∆) − (n− 2)γ1(∆) −
(
n

2

)
= f1(∆) − (2n− 3)f0(∆) + 2n(n− 2),

its validity turns out to be equivalent to the following conjectural flag analog of Barnette’s
Lower Bound Theorem [15]. We recall that the suspension (simplicial join with a zero-
dimensional sphere) of a flag triangulation of a sphere is a flag triangulation of a sphere
of one dimension higher.

Conjecture 3.6. Among all flag triangulations of the (n− 1)-dimensional sphere with a
given number m of vertices, the (n− 2)-fold suspension over the one-dimensional sphere
with m− 2n+ 4 vertices has the smallest possible number of edges.

For a generalization of this statement, see [90, Conjecture 1.4]. A conjecture concern-
ing the possible vectors which can arise as γ-vectors of flag triangulations of spheres is
proposed in [91].

An edge subdivision of a simplicial complex ∆ is a stellar subdivision of ∆ on any of its
edges; we refer to [5, Section 6] [37, Section 5.3] [61, Section 2.4] for the precise definition
and Figure 3 for an example. Edge subdivisions preserve flagness and homeomorphism
type. We will denote by Σn the simplicial join of n copies of the zero-dimensional sphere
(this simplicial complex is combinatorially isomorphic to the boundary complex of the
n-dimensional cross-polytope; it satisfies h(Σn, x) = (1 + x)n or, equivalently, γ(Σn) =
(1, 0, . . . , 0)). Apart from the results on barycentric subdivisions and nested complexes,
discussed separately in the sequel, Gal’s conjecture is known to hold for flag triangulations
of spheres:

• of dimension less than five [44, Theorem 11.2.1] [61, Corollary 2.2.3],
• with at most 2n+ 3 vertices, i.e., with γ1(∆) ≤ 3 [91, Theorem 1.3],
• which can be obtained from Σn by successive edge subdivisions [61, Section 2.4],
• for other special classes of flag triangulations of spheres, discussed in Section 3.3.

Remark 3.7. The proof of the third statement above is only implicit in [61, Section 2.4].
To make it more explicit, let us denote by ∆e the edge subdivision of ∆ on its edge e ∈ ∆.
Gal observes [61, Proposition 2.4.3] that

(99) h(∆e, x) = h(∆, x) + xh(link∆(e), x),

where link∆(F ) = {GrF : G ∈ ∆, F ⊆ G} is the link of F ∈ ∆ in ∆. In particular, if
∆ and link∆(e) satisfy Gal’s conjecture, then so does ∆ [61, Corollary 2.4.7]. One can
verify that every link of a nonempty face in ∆e is combinatorially isomorphic to either the
link of a nonempty face in ∆, or to an edge subdivision or the suspension of the link of a
nonempty face in ∆. Thus, it follows by induction and Equation (99) that, if ∆ can be
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Figure 3. An edge subdivision

obtained from Σn by successive edge subdivisions, then ∆ and all links of its faces satisfy
Gal’s conjecture. �

3.1.1. Barycentric subdivisions. An important class of flag simplicial complexes is that of
order complexes [126, Section III.4]. Recall that the order complex of a poset P is defined
as the simplicial complex ∆(P) of all chains (totally ordered subsets) of P . When P is the
poset of (nonempty) faces of a regular CW-complex X, the complex ∆(P) is by definition
the (first) barycentric subdivision of X. As explained, for instance, in [61, Section 2.3], the
following result is a direct consequence of important theorems of K. Karu and R. Stanley
on the nonnegativity of the cd-index of Gorenstein* posets [74] (for introductions to the
cd-index, see [126, Section III.4] [127, Section 3.17]).

Theorem 3.8 (Karu [74], Stanley [124]; see [61, Corollary 2.3.5]). Conjecture 3.4
holds for every order complex ∆ which triangulates a sphere. In particular, it holds for
barycentric subdivisions of regular CW-spheres.

As recorded in [37, Section 7.3] [126, p. 103], the connection between the cd-index of an
Eulerian poset P and the last entry of the γ-vector of ∆(P) was observed by E. Babson.
The nonnegativity of the cd-index was proved for the augmented face posets of certain
shellable CW-spheres by Stanley [124, Theorem 2.2] and for arbitrary Gorenstein* posets
by Karu [74, Theorem 1.3] (Stanley’s result suffices to conclude the validity of Gal’s con-
jecture for barycentric subdivisions of boundary complexes of convex polytopes). For
barycentric subdivisions of Boolean complexes which triangulate a sphere, more elemen-
tary proofs of Theorem 3.8 can be found in [33, 92].

There is an interesting analog of Theorem 3.8 for triangulations of balls, rather than
spheres. As explained in [73, Section 4], the following result is a direct consequence of [51,
Theorem 2.5]. Here ∂∆ denotes the boundary of a triangulated ball ∆.

Theorem 3.9 (Ehrenborg–Karu [51]; see [73, Theorem 4.6]). The polynomial
h(∆, x) − h(∂∆, x) is γ-positive for every order complex ∆ which triangulates a ball.
In particular, this holds for barycentric subdivisions of regular CW-balls.

3.1.2. Flag nested complexes. We begin with a few definitions, following [141]. A building
set on the ground set [n] is a collection B of nonempty subsets of [n] such that:
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Figure 4. A nested complex

• B contains all singletons {i} ⊆ [n], and
• if I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B.

We denote by Bmax the set of maximal (with respect to inclusion) elements of B and say
that B is connected if [n] ∈ B. A set N ⊆ BrBmax is called nested if for all k ≥ 2 and all
I1, I2, . . . , Ik ∈ N such that none of the Ii contains another, their union I1 ∪ I2 ∪ · · · ∪ Ik
is not in B. The simplicial complex ∆B on the vertex set BrBmax, consisting of all nested
sets, is the nested complex associated to B. For example, if B consists of all nonempty
subsets of [n], then ∆B is the barycentric subdivision of the boundary of the simplex 2[n].

The nested complex ∆B is isomorphic to the boundary complex of a simplicial polytope
of dimension n − |Bmax| [52, Theorem 3.14] [101, Theorem 7.4] [141, Theorem 6.1]; the
corresponding polar-dual simple polytope is called a nestohedron. Nestohedra form an im-
portant class of Postnikov’s generalized permutohedra [101] which includes permutohedra,
graph-associahedra and other well studied simple polytopes in geometric combinatorics.
As shown in [53, Theorem 4] and explained in [102, Remark 6.6], the complex ∆B can
be constructed as follows. Assume (without loss of generality) that B is connected, and
consider the boundary ∂σ of the simplex σ on the vertex set [n]. Choose any ordering of
the nonsingleton elements of BrBmax which respects the reverse of the inclusion order.
Starting with ∂σ, and following the chosen ordering, for each nonsingleton I ∈ BrBmax

perform a stellar subdivision on the face I. The resulting simplicial complex is ∆B.

Example 3.10. For n = 4, consider the building set B consisting of {1}, {2}, {3}, {4},
{3, 4}, {2, 3, 4} and {1, 2, 3, 4}. The nested complex ∆B triangulates the boundary of the
three-dimensional simplex on the vertex set {{1}, {2}, {3}, {4}}; it has eight facets, six
of which are shown in Figure 4 (the two unlabeled vertices being {3, 4} and {2, 3, 4}).
The remaining facets are the nonvisible facets {{1}, {2}, {3}} and {{1}, {2}, {4}} of the
simplex. Note that ∆B corresponds indeed to the simplicial complex obtained by stellarly
subdividing the boundary complex of the simplex on the vertex set {1, 2, 3, 4} first on the
face {2, 3, 4} and then on {3, 4}. �
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Gal’s conjecture was verified for flag nested complexes by V. Volodin [139], who showed
that they can be obtained from the boundary complex of a cross-polytope by successive
edge subdivisions. The main result of [102] provides an explicit combinatorial interpre-
tation of the entries of the γ-vector of a large family of flag nested complexes. To state
this result, we need to introduce a few definitions from [102]. Let B be a building set on
the ground set [n]. The restriction of B to I ⊆ [n] is defined as the family of all subsets
of I which belong to B. The restrictions of B to the elements of Bmax are the connected
components of B. The building set B is called chordal if for every {i1, i2, . . . , ik} ∈ B
with i1 < i2 < · · · < ik and all indices 1 ≤ r ≤ k we have {ir, ir+1, . . . , ik} ∈ B. Nested
complexes of chordal building sets are always flag [102, Proposition 9.7]. We denote by
SB the set of all permutations w ∈ Sn such that w(i) and max{w(1), w(2), . . . , w(i)} lie
in the same connected component of the restriction of B to {w(1), w(2), . . . , w(i)}, for
every i ∈ [n]. The following result combines Corollary 9.6 with Theorem 11.6 in [102]
and, as shown in [102, Section 10], provides a common generalization for the γ-positivity

of the Eulerian and binomial Eulerian polynomials An(x) and Ãn(x) and the Narayana
polynomials Cat(W,x) for the symmetric and hyperoctahedral groups, discussed in Sec-
tion 2.

Theorem 3.11 (Postnikov–Reiner–Williams [102]). For every connected, chordal
building set B on the ground set [n]

(100) h(∆B, x) =
n∑
i=0

hB,i x
i =

bn/2c∑
i=0

γB,i x
i(1 + x)n−2i,

where

• hB,i is the number of permutations w ∈ SB with i descents, and
• γB,i is the number of permutations w ∈ SB for which Des(w) ∈ Stab([n− 2]) has
i elements.

The nested complex ∆B of Example 3.10 has eight facets. The elements of SB, written in
one-line notation, are 1234, 1243, 1342, 1432, 2341, 2431, 3421 and 4321, and h(∆B, x) =
1 + 3x+ 3x2 + x3 = (1 + x)3, in agreement with Theorem 3.11.

3.2. Flag triangulations of simplices. This section focuses on a variant of the h-
polynomial of a triangulation of a sphere, the local h-polynomial, defined for triangu-
lations of simplices (and for more general topological, rather than geometric, simplicial
subdivisions of the simplex; see [123, Part I] [5, 7]). The local h-polynomial was intro-
duced by Stanley [123] and plays a key role in his enumerative theory of triangulations
of simplicial complexes, developed in order to study their effect on the h-polynomial of a
simplicial complex.

Let V be an n-element set and Γ be a triangulation of the simplex 2V . The restriction
of Γ to the face F ⊆ V of the simplex is a triangulation of F , denoted by ΓF .
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Definition 3.12 (Stanley [123, Definition 2.1]). The local h-polynomial of Γ (with
respect to V ) is defined as

(101) `V (Γ, x) :=
∑
F⊆V

(−1)n−|F | h(ΓF , x) := `0 + `1x+ · · ·+ `nx
n.

The sequence `V (Γ) = (`0, `1, . . . , `n) is the local h-vector of Γ (with respect to V ).

For example, the complex of Figure 2 is naturally a triangulation Γ of a two-dimensional
simplex 2V . Since h(Γ, x) = 1 + 5x + 2x2 and the restrictions of Γ on the three edges of
the simplex have h-polynomials 1, 1 + x and 1 + 2x, we have `V (Γ, x) = (1 + 5x+ 2x2)−
1− (1 + x)− (1 + 2x) + 1 + 1 + 1− 1 = 2x+ 2x2.

The following theorem shows that the local h-polynomial has properties similar to those
of the h-polynomial of a triangulation of the sphere, stated in Theorem 3.3. For the notion
of a regular triangulation, we refer to [45, Chapter 5] [123, Definition 5.1].

Theorem 3.13 (Stanley [123]). Let Γ be a triangulation of an (n − 1)-dimensional
simplex 2V and set `V (Γ, x) = `0 + `1x+ · · ·+ `nx

n.

(a) The polynomial `V (Γ, x) has nonnegative coefficients.
(b) The polynomial `V (Γ, x) is symmetric, i.e., we have `i = `n−i for 0 ≤ i ≤ n.
(c) The polynomial `V (Γ, x) is unimodal, i.e., we have `0 ≤ `1 ≤ · · · ≤ `bd/2c, if Γ is

regular.

The following analog of Conjecture 3.4 may come as no surprise to some readers; it is
stated more generally in [5, Conjecture 5.4] for a class of topological simplicial subdivisions
which models combinatorially geometric subdivisions.

Conjecture 3.14 (Athanasiadis [5]). The polynomial `V (Γ, x) is γ-positive for every
flag triangulation Γ of the simplex 2V .

Since `V (Γ, x) is symmetric, with center of symmetry n/2, we may write

(102) `V (Γ, x) =

bn/2c∑
i=0

ξi(Γ)xi(1 + x)n−2i.

The sequence ξ(Γ) := (ξ0(Γ), ξ1(Γ), . . . , ξbn/2c(Γ)) is termed in [5] as the local γ-vector of

Γ (with respect to V ) and the polynomial ξV (Γ, x) :=
∑bn/2c

i=0 ξi(Γ)xi as the corresponding
local γ-polynomial. Thus, Conjecture 3.14 claims that ξi(Γ) ≥ 0 for all 0 ≤ i ≤ bn/2c and
every flag triangulation Γ of the simplex 2V . Apart from results on barycentric subdivi-
sions, discussed in the sequel, Conjecture 3.14 has been verified for flag triangulations of
simplices:

• of dimension less than four [5, Proposition 5.7],
• which can be obtained from the trivial triangulation by successive edge subdivi-

sions [5, Proposition 6.1],
• for other special classes of flag triangulations of simplices, discussed in Section 3.3.
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The connection between γ-vectors and their local counterparts is explained by the
following result. We recall that Σn stands for the boundary complex of the n-dimensional
cross-polytope and refer to [5] [7, Section 2] for the precise definitions of the more general
notions of simplicial subdivision which appear there.

Theorem 3.15 (Athanasiadis [5] [7, Theorem 3.7]). Every flag triangulation ∆ of
the (n− 1)-dimensional sphere is a vertex-induced simplicial homology subdivision of Σn.
Moreover,

(103) γ(∆, x) =
∑
F∈Σn

ξF (∆F , x).

The version of Conjecture 3.14 stated as [5, Conjecture 5.4] applies to the summands
in the right-hand side of (103). As a result, [5, Conjecture 5.4] implies Gal’s conjecture,
as well as its stronger version [61, Conjecture 2.1.7] for flag homology spheres. Moreover,
as explained at the end of [8, Section 1], the validity of Conjecture 3.14 for regular flag
triangulations of simplices implies Gal’s conjecture for flag boundary complexes of convex
polytopes.

The following statement is a direct consequence of Theorem 3.15 and Stanley’s mono-
tonicity theorem [123, Theorem 4.10] (in the form of [7, Corollary 2.9]) for h-vectors of
subdivisions of simplicial complexes; it was proved more generally for flag doubly Cohen–
Macaulay complexes, using different methods, in [4, Theorem 1.3].

Corollary 3.16. Every flag triangulation ∆ of the (n− 1)-dimensional sphere satisfies

(104) hi(∆) ≥
(
n

i

)
for 0 ≤ i ≤ n.

3.2.1. Barycentric subdivisions. Barycentric subdivisions of polyhedral subdivisions of the
simplex form a natural class of its flag triangulations. The question of the validity of
Conjecture 3.14 for them was raised in [5, Question 6.2] [7, Problem 3.8] and answered in
the affirmative by Juhnke-Kubitzke, Murai and Sieg [73, Theorem 1.3]. The last statement
in the following theorem is a consequence of Equation (105), Theorem 3.9 and the γ-
positivity of the derangement polynomials dn(x).

Theorem 3.17 (Kubitzke–Murai–Sieg [73]). For every triangulation Γ of an (n−1)-
dimensional simplex 2V ,

(105) `V (Γ, x) =
∑
F⊆V

(h(ΓF , x)− h(∂(ΓF ), x)) dn−|F |(x).

In particular, Conjecture 3.14 holds for barycentric subdivisions of regular CW-complexes
which subdivide the simplex.
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3.2.2. Nested subdivisions. Let B be a connected building set on the ground set [n]. We
denote by ΓB the cone of the nested complex ∆B. Alternatively, ΓB is the simplicial
complex on the vertex set B, consisting of all nested subsets of B (rather than BrBmax),
defined by the condition described in Section 3.1.2. Since ∆B triangulates the boundary
of an (n− 1)-dimensional simplex, the complex ΓB is a triangulation of this simplex (for
example, it is the barycentric subdivision, if B consists of all nonempty subsets of [n]).
We call ΓB the nested subdivision associated to B.

No doubt, just as is the case with ∆B, one can show that whenever ΓB is a flag complex,
it can be obtained from the trivial subdivision of the (n − 1)-dimensional simplex by
successive edge subdivisions. Thus, the γ-positivity of the local h-polynomial of ΓB follows
from [5, Proposition 6.1]. In view of Theorem 3.11, it seems natural to pose the following
problem.

Problem 3.18. Find a combinatorial interpretation for the local γ-polynomial of ΓB, for
any connected chordal building set B.

3.3. Examples. This section discusses further examples of flag triangulations of spheres
or simplices, which appear naturally in algebraic-geometric contexts, and the γ-positivity
of their h-polynomials or local h-polynomials. These examples provide algebraic-geometric
interpretations for several of the γ-positive polynomials discussed in Section 2.

3.3.1. Barycentric and edgewise subdivisions. As noted in Section 3.1.1, the barycentric
subdivision of a regular CW-complexX, denoted here by sd(X), is defined as the simplicial
complex of all chains in the poset of nonempty faces of X.

Let V be an n-element set, and consider the barycentric subdivision sd(2V ) of the
simplex 2V . The facets of sd(2V ) are in one-to-one correspondence with the permutations
of V . Thus, the h-polynomial of sd(2V ) is an x-analog of the number n!; it is well known,
in fact, that

(106) h(sd(2V ), x) = An(x).

Since coning a simplicial complex does not affect its h-polynomial, An(x) is also equal
to the h-polynomial of the barycentric subdivision sd(∂(2V )) of the boundary complex of
2V . Moreover, given that sd(2V ) restricts to the barycentric subdivision sd(2F ) for every
F ⊆ V , Stanley [123, Proposition 2.4] showed that

(107) `V (sd(2V ), x) =
n∑
k=0

(−1)n−k
(
n

k

)
Ak(x) =

∑
w∈Dn

xexc(w) = dn(x).

Consequently, the unimodality of An(x) and dn(x) follows from parts (c) of Theorems 3.3
and 3.13, and their γ-positivity is an instance of Conjectures 3.4 and 3.14, respectively.
A part of the barycentric subdivision of the boundary complex of the three-dimensional
simplex is shown in Figure 5. The restrictions on the facets of the simplex are barycentric
subdivisions of two-dimensional simplices.

The r-fold edgewise subdivision, denoted here by esdr(∆), is another elegant (but not
as well known as barycentric subdivision) triangulation of a simplicial complex ∆ with
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Figure 5. Two Coxeter complexes

Figure 6. An edgewise subdivision

a long history in mathematics; see [8, Section 1] and references therein. To describe it
in a geometrically intuitive way, consider positive integers n, r and the geometric simplex
σn,r = {(x1, x2, . . . , xn−1) ∈ Rn−1 : 0 ≤ xn−1 ≤ · · · ≤ x2 ≤ x1 ≤ r}. The r-fold edgewise
subdivision esdr(2

V ) of an (n− 1)-dimensional simplex 2V is realized as the triangulation
of σn,r whose facets are the (n− 1)-dimensional simplices into which σn,r is dissected by
the affine hyperplanes in Rn−1 with equations

• xi = k, where 1 ≤ i ≤ n− 1,
• xi − xj = k, where 1 ≤ i < j ≤ n− 1

for k ∈ {1, 2, . . . , r−1}. This triangulation has exactly rn−1 facets; it is shown in Figure 6
for n = 3 and r = 4. For an arbitrary simplicial complex ∆, the r-fold edgewise subdivision
esdr(∆) restricts to esdr(2

F ) for every F ∈ ∆; for a formal definition, see, for instance,
[6, Section 4] [34, Section 4].

The triangulation esdr(∆) is flag for every flag simplicial complex ∆; in particular,
esdr(2

V ) is a flag triangulation of the simplex. Combinatorial interpretations for its local
h-vector and local γ-vector can be given as follows. Let us denote by W(n, r) the set
of sequences w = (w0, w1, . . . , wn) ∈ {0, 1, . . . , r − 1}n+1 satisfying w0 = wn = 0, and
by S(n, r) the set of those elements of W(n, r) (known as Smirnov words) having no two
consecutive entries equal. As usual, we call i ∈ {0, 1, . . . , n−1} an ascent of w ∈ W(n, r) if
wi ≤ wi+1 and i ∈ [n−1] a double ascent if wi−1 ≤ wi ≤ wi+1 (descents and double descents
are defined similarly, using strict inequalities). We also denote by Er the linear operator on
the space R[x] of polynomials in x with real coefficients defined by setting Er(x

m) = xm/r,
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Figure 7. The triangulation K3

if m is divisible by r, and Er(x
m) = 0 otherwise. For the second interpretation of ξn,r,i

which appears in the following result (but not in [7, 8]), see Remark 4.1.

Theorem 3.19 (Athanasiadis [7, Theorem 4.6] [8]). The local h-polynomial of the r-
fold edgewise subdivision esdr(2

V ) of the (n− 1)-dimensional simplex on the vertex set V
can be expressed as

`V (esdr(2
V ), x) = Er (x+ x2 + · · ·+ xr−1)n =

∑
w∈S(n,r)

xasc(w)

=

bn/2c∑
i=0

ξn,r,i x
i(1 + x)n−2i,

where asc(w) is the number of ascents of w ∈ S(n, r) and ξn,r,i equals each of the following:

• the number of sequences w = (w0, w1, . . . , wn) ∈ S(n, r) with exactly i ascents
which have the following property: for every double ascent k of w there exists a
double descent ` > k such that wk = w` and wk ≤ wj for all k < j < `,
• the number of w ∈ W(n, r) for which Asc(w) ∈ Stab([n−2]) has i elements, where

Asc(w) is the set of ascents of w.

The interpretations of the polynomials An(x) and dn(x), described in this section, have
interesting hyperoctahedral group analogs. Let Cn denote the boundary complex of the
standard n-dimensional unit cube. The facets of the barycentric subdivision sd(Cn) are
in one-to-one correspondence with the signed permutations w ∈ Bn. As a result, the
h-polynomial of sd(Cn) is an x-analog of the number 2nn! and, in fact (see our discussion
in Section 3.3.2),

(108) h(sd(Cn), x) = Bn(x),

where Bn(x) is the Bn-Eulerian polynomial, discussed in Section 2.1.3. Consider now the
cubical barycentric subdivision of an (n − 1)-dimensional simplex 2V . This is a cubi-
cal complex whose face poset is isomorphic to the set of nonempty closed intervals in the
poset of nonempty subsets of V , partially ordered by inclusion. Its (simplicial) barycentric
subdivision, denoted by Kn, is a triangulation of 2V with exactly 2n−1n! facets. Figure 7
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Figure 8. Barycentric and edgewise subdivisions

shows these subdivisions for n = 3 (note that K3 is combinatorially isomorphic to the vis-
ible part of the complex sd(C3) which is shown in Figure 5). We then have [7, Remark 4.5]
[108, Theorem 3.1.4]

(109) `V (Kn, x) = d+
n,2(x),

where dn,2(x) = d+
n,2(x) + d−n,2(x) is the decomposition of the derangement polynomial for

Bn discussed in Section 2.1.7. Thus, the γ-positivity of Bn(x) and d+
n,2(x), discussed in

Section 2, are again instances of Conjectures 3.4 and 3.14, respectively.
The problem to interpret the polynomial d+

n,r(x), discussed in Section 2.1.7, as a local
h-polynomial for all r ≥ 1 was studied in [6] and provided much of the motivation for that
paper. It is not clear how to generalize the triangulation Kn for this purpose. However,
one can show directly (see [7, Remark 4.5]) that `V (Kn, x) = `V (esd2(sd(2V )). Thus, the
r-fold edgewise subdivision esdr(sd(2V )) of the barycentric subdivision of the simplex 2V

is a reasonable candidate to replace Kn and, indeed, [6, Theorem 1.2] shows that

(110) `V (esdr(sd(2V )), x) = d+
n,r(x).

The barycentric subdivision of the two-dimensional simplex and its 2-fold edgewise subdi-
vision are shown in Figure 8. Further examples of barycentric and edgewise subdivisions
appear in Section 4.2.

3.3.2. Coxeter complexes. Let W be a finite Coxeter group. Then W can be realized as
a reflection group in an n-dimensional Euclidean space, where n is the rank of W . The
reflecting hyperplanes form a simplicial arrangement, known as the Coxeter arrangement,
whose face poset is isomorphic to that of a simplicial complex Cox(W ), called the Coxeter
complex. This complex is combinatorially isomorphic to the barycentric subdivision of
the boundary complex of the n-dimensional simplex or cube (see Figure 5 for two three-
dimensional pictures), when W is the symmetric group Sn+1 or the hyperoctahedral group
Bn, respectively.

The facets of Cox(W ) are in a natural one-to-one correspondence with the elements of
W . Thus, the h-polynomial of Cox(W ) is an x-analog of the order of the group W and,
in fact, as was essentially shown by A. Björner [18] (see [31, Theorem 2.3]), we have

(111) h(Cox(W ), x) = W (x),
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where W (x) is the W -Eulerian polynomial, discussed in Section 2.1.3.
Clearly, Cox(W ) is a triangulation of the (n− 1)-dimensional sphere and, as explained

in [97, Section 8.5], this triangulation is flag. Thus, the γ-positivity of W (x) (Theorem 2.8)
verifies Gal’s conjecture in a special case.

3.3.3. Cluster complexes. Let W be a finite Coxeter group of rank n, viewed as a reflection
group in an n-dimensional Euclidean space. Consider the root system Φ defined by the
Coxeter arrangement associated to W and a choice Φ+ of a positive system, along with
corresponding simple system Π. The cluster complex ∆W is a flag simplicial complex on
the vertex set Φ+ ∪ (−Π), defined by S. Fomin and A. Zelevinsky [60]; we refer to [59] for
an overview of the relevant theory and its connections to cluster algebras. This complex
triangulates the (n−1)-dimensional sphere; its restriction on the vertex set Φ+ is naturally
a flag triangulation of the simplex 2Π, termed in [10] as the cluster subdivision. One then
has [59, Theorem 5.9]

(112) h(∆W , x) = Cat(W,x)

and [10, Section 1.1]

(113) `Π(ΓW , x) = Cat++(W,x),

where Cat(W,x) and Cat++(W,x) were defined in Section 2.2. Thus, the γ-positivity of
these polynomials (Theorems 2.32 and 2.33) verifies Conjectures 3.4 and 3.14, respectively,
in special cases.

4. Methods

A remarkable variety of methods has been employed to prove γ-positivity and often to
describe the γ-coefficients in some explicit way. This section reviews in some detail three
such methods, namely valley hopping, methods of geometric combinatorics stemming from
Stanley’s seminal work [123], and (quasi)symmetric function methods. Although it seems
difficult to provide an exhaustive list, or attempt some kind of classification, the author is
aware of the following methodological approaches which have been followed successfully
to prove the γ-positivity of a polynomial f(x):

• Combinatorial decompositions : Assuming f(x) enumerates a set of combinatorial
objects according to some statistic, one may try to combinatorially decompose
this set into parts, each contributing a binomial xi(1 +x)n−2i to this enumeration.
One instance of this approach is valley hopping (see Section 4.1), and another is
symmetric Boolean decompositions of posets [88, 95, 117]. Other instances appear
in [10, Section 3] [48] [135, Appendix A] (see also [97, Section 13.2]).
• Explicit combinatorial formulas : One may try to express f(x) explicitly as a sum

of products of polynomials known to be γ-positive, all products having the same
center of symmetry, using direct combinatorial arguments, generating functions,
continued fraction expansions, and so on. The prototypical example of this ap-
proach is Brändén’s [24] beautiful proof of Theorem 2.7; see also [39, 115, 116, 135].
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• The theory of the cd-index of an Eulerian poset : see Section 3.1.1 and [48] [135,
Appendix A] for related approaches.
• Poset shellability and homology methods : The prototypical example is the use of

shellability of Rees products of posets in [84], leading to Theorem 2.37 and related
results discussed in Section 2.4; see also Theorem 5.3 in the sequel.
• Geometric methods : Apart from those discussed in Section 4.2, geometric methods

are employed in [2, 91], where the γ-positivity of f(x) is proved by constructing a
simplicial complex whose f -vector is shown to equal the γ-vector of f(x).
• Recursive methods : One can prove positivity of the γ-coefficients via recursions,

without providing any explicit interpretations or formulas. This is the case with
the proof of Theorem 2.12 in [80] and the γ-positivity of the restricted Eulerian
polynomials of [92, Section 4].
• Symmetric and quasisymmetric function methods : see Section 4.3.

4.1. Valley hopping. The idea of valley hopping is due to D. Foata and V. Strehl [57, 58],
who used it to interpret combinatorially the γ-coefficients for the Eulerian polynomials
(see Theorem 2.1). It was rediscovered by L. Shapiro, W. Woan and S. Getu [109] and has
found numerous applications to the enumeration of classes of permutations [10, Section 4]
[26, 83] [102, Section 11] [137] and related combinatorial objects [8, Section 3].

To explain this idea, let w = (w1, w2, . . . , wn) ∈ Sn, where wi = w(i) for 1 ≤ i ≤ n,
be a permutation and set w0 = wn+1 = ∞ and w̃ = (w0, w1, . . . , wn+1). Given a double
ascent or double descent i of w̃ (meaning, an index i ∈ [n] such that wi−1 < wi < wi+1

or wi−1 > wi > wi+1, respectively), we define the permutation ψi(w) ∈ Sn as follows: If
i is a double ascent of w̃, then ψi(w) is the permutation obtained from w̃ by deleting wi
and inserting it between wj and wj+1, where j is the largest index satisfying 0 ≤ j < i
and wj > wi. Similarly, if i is a double descent of w̃, then ψi(w) is the permutation
obtained from w̃ by deleting wi and inserting it between wj and wj+1, where j is the
smallest index satisfying i < j ≤ n and wi < wj+1. For the example of Figure 9 we have
ψ1(w) = (3, 2, 5, 4, 7, 8, 1, 6) and ψ8(w) = (7, 3, 2, 5, 4, 8, 6, 1).

We call two permutations in Sn equivalent if one can be obtained from the other by
a sequence of moves of the form w 7→ ψi(w). We leave to the reader to verify that this
defines an equivalence relation on Sn, each equivalence class of which contains a unique
permutation u such that ũ has no double ascent. Moreover, if ũ has k double descents
for such u ∈ Sn, then the equivalence class O(u) of u has 2k elements and exactly

(
k
j

)
of

them have j ascents more than u. Therefore,

(114)
∑

w∈O(u)

xasc(w) = xasc(u)(1 + x)k = xasc(u)(1 + x)n−1−2asc(u).

Summing over all equivalence classes, we obtain the first combinatorial interpretation for
γn,i, given in Theorem 2.1.
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Figure 9. Valley hopping for w = (7, 3, 2, 5, 4, 8, 1, 6)

To illustrate the power of this method, let us modify it to prove Gessel’s identity (88).
We will use Stanley’s interpretation (see [111, Theorem 7.2])

(115)
(1− t)E(x; z)

E(x; tz)− tE(x; z)
= 1 +

∑
n≥1

zn
∑

w∈S(n)

tasc(w) xw

of the left-hand side of (88), where we have used notation of Section 2.5 and S(n) stands
for the set of maps w : [n]→ Z>0 satisfying w(i) 6= w(i+ 1) for every i ∈ [n− 1].

Proof of Equation (88). Given Equation (115), it suffices to show that

(116)
∑

w∈S(n)

tasc(w) xw =
∑

u : [n]→ Z>0

Asc(u) ∈ Stab([n− 2])

tasc(u)(1 + t)n−1−2asc(u) xu

for all n ≥ 1. For w ∈ S(n) we write w = (w1, w2, . . . , wn) and define w̃, as we did for
permutations. For a double ascent i of w̃, we denote by ψi(w) the sequence obtained
from w̃ by deleting wi and inserting it between positions j and j + 1, where j is the
largest index satisfying 0 ≤ j < i and wj > wi. We define ψi(w) in a similar way for
double descents i of w̃ and say that a move w 7→ ψi(w) is valid if i is a double ascent
or descent of w̃ and ψi(w) ∈ S(n). For the example of Figure 10 we have ψ4(w) =
(3, 2, 3, 2, 4, 3, 2, 1, 2), ψ6(w) = (2, 3, 2, 3, 4, 2, 1, 2, 3), ψ7(w) = (2, 3, 2, 3, 4, 3, 1, 2, 2) and
ψ9(w) = (2, 3, 2, 3, 4, 3, 2, 2, 1). The move w 7→ ψi(w) is valid for i ∈ {4, 6} and invalid for
i ∈ {7, 9}.

We call two elements of S(n) equivalent if one can be obtained from the other by a
sequence of valid moves of the form w 7→ ψi(w). We leave again to the reader to verify
that this defines an equivalence relation on S(n), each equivalence class of which contains
a unique element v, call it the minimal representative, such that ṽ has a minimum number
of double ascents. For example, the minimal representative of the equivalence class of the
sequence shown in Figure 10 is ψ4(w). The reasoning which led to Equation (114) also
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Figure 10. Valley hopping for w = (2, 3, 2, 3, 4, 3, 2, 1, 2)

shows that the equivalence class O(v) of a minimal representative v satisfies

(117)
∑

w∈O(v)

tasc(w) xw = xasc(v)(1 + x)n−1−2asc(v) xv.

Summing over all equivalence classes, we get

(118)
∑

w∈S(n)

tasc(w) xw =
∑

tasc(v)(1 + t)n−1−2asc(v) xv,

where the sum on the right-hand side runs over all minimal representatives v of equivalence
classes. Application of all possible invalid moves to such an element v which shift entries
to the left (the order not making a difference) results in a map u = f(v) : [n]→ Z>0 such
that Asc(u) ∈ Stab([n − 2]) and xu = xv. Moreover, the map f is a bijection from the
set of minimal representatives v to the set of such maps u which preserves the weight xv
and the proof follows. �

Remark 4.1. The variant of valley hopping which was employed in the previous proof
appeared in [8, Section 3] to derive the first interpretation for ξn,r,i, given in Theorem 3.19.
The last part of the argument in this proof yields the second interpretation. �

4.2. Methods of geometric combinatorics. The enumerative theory of [123, Part I],
developed by Stanley in order to study h-vectors of triangulations of simplicial complexes,
together with recent developments [5], provides a powerful method to prove γ-positivity
of polynomials which can often be defined purely in combinatorial terms. This point
of view, which is implicit in [7, Section 4] [108, Chapter 3], is further explained in this
section. Familiarity with basic definitions from Section 3 is assumed.

The following statement explains the significance of the concept of local h-vector in the
theory of [123].

Theorem 4.2 (Stanley [123, Theorem 3.2]). For every triangulation ∆′ of a pure
simplicial complex ∆,

(119) h(∆′, x) =
∑
F∈∆

`F (∆′F , x)h(link∆(F ), x).



50 CHRISTOS ATHANASIADIS

This result implies that h(∆′, x) is γ-positive (as a sum of γ-positive polynomials with
the same center of symmetry), if so are `F (∆′F , x) and h(link∆(F ), x) for every F ∈ ∆.
For instance, we have the following statement.

Corollary 4.3. Suppose ∆ is either:

• the simplicial join Σn of n copies of the zero-dimensional sphere, or
• the barycentric subdivision of the boundary of a simplex.

Then, h(∆′, x) is γ-positive for every triangulation ∆′ of ∆ for which `F (∆′F , x) is γ-
positive for every F ∈ ∆.

Proof. As already discussed, it suffices to confirm that h(link∆(F ), x) is γ-positive for all
F ∈ ∆. This is obvious if ∆ = Σn, since then link∆(F ) is isomorphic to Σn−|F | and hence

h(link∆(F ), x) = (1 + x)n−|F | for every F ∈ ∆.
Suppose now that ∆ = sd(∂(2V )) is the barycentric subdivision of the boundary com-

plex of an n-dimensional simplex 2V . Then, faces of ∆ have the form F = {S1, S2, . . . , Sk},
where S1 ⊂ S2 ⊂ · · · ⊂ Sk are nonempty proper subsets of V . Setting S0 := ∅ and
Sk+1 := V , we have that link∆(F ) is the simplicial join of the complexes sd(∂(2SirSi−1))
for i ∈ [k + 1] and hence

(120) h(link∆(F ), x) =
k+1∏
i=1

Ani(x),

where ni = |SirSi−1| for i ∈ [k+ 1]. This polynomial is indeed γ-positive, as a product of
γ-positive polynomials. Alternatively, h(link∆(F ), x) can be shown to be γ-positive for the
barycentric subdivision ∆ of any regular CW-sphere by a stronger version of Theorem 3.8
(applying to Gorenstein* order complexes). �

Example 4.4. The following explicit formula for the h-polynomial of the r-fold edge-
wise subdivision of an (n− 1)-dimensional simplicial complex ∆ is a consequence of [34,
Corollary 1.2] and [35, Corollary 6.8]:

(121) h(esdr(∆), x) = Er

(
(1 + x+ x2 + · · ·+ xr−1)n h(∆, x)

)
,

where the linear operator Er : R[x] → R[x] was defined before Theorem 3.19. Thus,
Corollary 4.3, combined with Theorem 3.19, implies the γ-positivity of

(122) h(esdr(Σn), x) = Er

(
(1 + x+ x2 + · · ·+ xr−1)n (1 + x)n

)
and

(123) h(esdr(sd(∂(2V ))), x) = Er

(
(1 + x+ x2 + · · ·+ xr−1)nAn+1(x)

)
,

where 2V is an n-dimensional simplex. It would be interesting to find explicit combinato-
rial interpretations for the coefficients of the right-hand sides of Equations (122) and (123)
and their corresponding γ-polynomials. Similar remarks apply to the second barycentric
subdivision of the boundary complex of a simplex. �

We now consider the following generalization of the concept of local h-polynomial. Let
V be an n-element set, Γ be a triangulation of the simplex 2V and E ∈ Γ.
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Definition 4.5 (Athanasiadis [5, Remark 3.7] [7, Definition 2.14], Nill–Schep-
ers [93, Section 3]). The relative local h-polynomial of Γ (with respect to V ) at E ∈ Γ is
defined as

`V (Γ, E, x) =
∑

σ(E)⊆F⊆V

(−1)n−|F | h(linkΓF (E), x),

where σ(E) is the smallest face of 2V containing E.

This polynomial, which reduces to `V (Γ, x) for E = ∅, has properties similar to those
of `V (Γ, x). Specifically, it has nonnegative and symmetric coefficients, with center of
symmetry (n − |E|)/2 (see [7, Theorem 2.15]) and, moreover, it is unimodal if Γ is a
regular triangulation [75, Remark 6.5] (see [7, Section 2.3] for more information). The
significance of the relative local h-polynomial for us stems from the following statement.
Note that, if Γ is a triangulation of the simplex 2V , then every triangulation Γ′ of Γ
induces a triangulation of 2V whose local h-polynomial is denoted by `V (Γ′, x).

Proposition 4.6 (Athanasiadis [5, Section 3] [7, Proposition 2.15 (a)]). For every
triangulation Γ of the simplex 2V and every triangulation Γ′ of Γ,

(124) `V (Γ′, x) =
∑
E∈Γ

`E(Γ′E, x) `V (Γ, E, x).

As a result, `V (Γ′, x) is γ-positive if so are `E(Γ′E, x) and `V (Γ, E, x) for every E ∈ Γ.
Using an argument similar to the one employed in the proof of Equation (120), one can
show (see [108, Example 3.5.2]) that

(125) `V (sd(2V ), E, x) = dn0(x) ·
k∏
i=1

Ani(x),

where E = {S1, S2, . . . , Sk} with ∅ ⊂ S1 ⊂ S2 ⊂ · · · ⊂ Sk ⊆ V is a face of sd(2V ), dn0(x)
is a derangement polynomial, n0 = |VrSk| and ni = |SirSi−1| for 1 ≤ i ≤ k (with the
convention that S0 = ∅).

Corollary 4.7. The polynomial `V (Γ′, x) is γ-positive for every triangulation Γ′ of sd(2V )
for which `E(Γ′E, x) is γ-positive for every E ∈ sd(2V ).

The special case for which Γ′ is the r-fold edgewise subdivision proves the γ-positivity
of the polynomial d+

n,r(x) discussed in Section 2.1.7; see [7, Example 4.8]. We give another
interesting application.

Example 4.8. Suppose that Γ′ is the barycentric subdivision of sd(2V ) and that V is an
n-element set. Then, the induced triangulation of 2V is the second barycentric subdivision
sd(2)(2V ). An explicit, but rather complicated, formula for `V (sd(2)(2V ), x) can be derived
from the definition of local h-polynomial and [33, Theorem 1]. Proposition 4.6, combined
with Equations (107) and (125), implies that

(126) `V (sd(2)(2V ), x) =
∑(

n

n0, n1, . . . , nk

)
dk(x) dn0(x)An1(x) · · ·Ank(x),
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where the sum ranges over all k ≥ 0 and over all sequences (n0, n1, . . . , nk) of integers
which satisfy n0 ≥ 0, n1, . . . , nk ≥ 1 and sum to n. The γ-positivity of the polynomial
`V (sd(2)(2V ), x) follows from this formula (equivalently, from Corollary 4.7).

Using the principle of inclusion-exclusion, one can show that the sum of the coefficients
of `V (sd(2)(2V ), x) equals the number of pairs of permutations u, v ∈ Sn which have no
common fixed point. The problem to interpret combinatorially the coefficients of this
polynomial and its corresponding local γ-polynomial was posed in [7, Problem 4.12]. �

4.3. Symmetric/quasisymmetric function methods. Symmetric and quasisymmet-
ric functions provide standard tools for enumeration problems; see, for instance, [17, 85]
[125, Chapter 7]. Given a polynomial f(t), to be shown to be γ-positive, one may at-
tempt to find a (quasi)symmetric function which gives f(t) via appropriate specialization.
Expansion of this function in some basis of (quasi)symmetric functions may lead to a dif-
ferent formula for f(t) for which γ-positivity is easier to prove. The first instance of this
approach seems to be Stembridge’s proof of Theorem 2.36 (although a more direct proof,
based on Equation (76), is also possible), where the role of the basis of quasisymmetric
functions is played by Gessel’s basis of fundamental quasisymmetric functions (41).

To illustrate this approach, we sketch proofs of Theorems 2.3, 2.15 and 2.16 which
derive these statements from the main result on Eulerian quasisymmetric functions [111]
of Shareshian and Wachs, following the reasoning of [114, Section 4]. We use the notation
introduced in the beginning of the proof of Proposition 2.22 and set

(127) F ∗n,S(x) := Fn,n−S(x) =
∑

i1≥i2≥···≥in≥1
j∈S⇒ ij>ij+1

xi1xi2 · · ·xin

for S ⊆ [n − 1]. The principal specializations of this function are given by the formula
(see [65, Lemma 5.2])

(128)
∑
m≥1

F ∗n,S(1, q, . . . , qm−1)pm−1 =
p|S|qsum(S)

(1− p)(1− pq) · · · (1− pqn)

which refines Equation (42), where sum(S) stands for the sum of the elements of S. We
also recall the formula (see [125, Proposition 7.19.12])

(129)
∑
m≥1

sλ(1, q, . . . , q
m−1)pm−1 =

fλ(p, q)

(1− p)(1− pq) · · · (1− pqn)

for the principal specializations of sλ(x), where

(130) fλ(p, q) :=
∑

P∈SYT(λ)

pdes(P )qmaj(P )

and maj(P ) := sum(Des(P )) is the major index of P .

Proof of Theorems 2.3 and 2.15. Let us denote by An(p, q, t) the left-hand side of Equa-
tion (9). Combining the special case r = 1 of [111, Theorem 1.2] with Equation (82) and
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extracting the coefficient of zn, we see that

(131)
∑
w∈Sn

Fn,DEX(w)(x) texc(w) =
∑
λ`n

Pλ(t)sλ(x)

for n ≥ 1. We refer to [111, Section 2] for the definition of DEX(w); the only properties
of this set which are essential here are the facts that |DEX(w)| = des∗(w) and that
sum(DEX(w)) = maj(w) − exc(w) for w ∈ Sn; see [111, Lemma 2.2]. Thus, taking the
generating function of the principal specialization of order m on both sides of (131) and
using Equations (128) and (129), we arrive at the identity

(132) An(p, q, t) =
∑
λ`n

Pλ(t)f
λ(p, q).

By the γ-expansion of Pλ(t), given in Corollary 2.41, and the definition of fλ(p, q), this
formula implies that

(133) An(p, q, t) =
∑
λ`n

∑
P,Q ∈ SYT(λ)

Des(Q) ∈ Stab([n− 2])

pdes(P )qmaj(P ) tdes(Q)(1 + t)n−1−des(Q).

Use of the Robinson–Schensted correspondence and its properties [125, Lemma 7.23.1] to
replace the pair (P,Q) of standard Young tableaux of the same shape with a permutation
w ∈ Sn shows that the right-hand sides of Equations (133) and (9) are equal and the
proof of Theorem 2.3 follows.

To prove Theorem 2.15, one combines the special case r = 0 of [111, Theorem 1.2] with
Equation (83) instead to show that

(134)
∑
w∈Dn

Fn,DEX(w)(x) texc(w) =
∑
λ`n

Rλ(t)sλ(x)

and then takes principal specialization, as before. �

For the proof of Theorem 2.16 we need the formulas (see [125, Section 7.19]) for the
stable principal specializations

(135) F ∗n,S(1, q, q2, . . . ) =
qsum(S)

(1− q)(1− q2) · · · (1− qn)

and

(136) sλ(1, q, q
2, . . . ) =

fλ(q)

(1− q)(1− q2) · · · (1− qn)
,

where fλ(q) := fλ(1, q) =
∑

P∈SYT(λ) q
maj(P ).

Proof of Theorem 2.16. Let us denote by An,k(q, t) the left-hand side of Equation (31).
Comparing the coefficients of rkzn on both sides of [111, Equation (1.3)] and applying
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Equation (83), we get∑
w∈Sn: fix(w)=k

Fn,DEX(w)(x) texc(w) = hk(x) [zn−k]
1− t

H(x; tz)− tH(x; z)

= hk(x)
∑
λ`n−k

Rλ(t)sλ(x).

Taking stable principal specialization, we get

An,k(q, t)

(1− q)(1− q2) · · · (1− qn)
=

1

(1− q) · · · (1− qk)
∑
λ`n−k

Rλ(t)
fλ(q)

(1− q) · · · (1− qn−k)
.

Finally, we solve for An,k(q, t) and specialize to p = 1 the expression already obtained for
the sum

∑
λ`n−k Rλ(t)f

λ(p, q) in the proof of Theorem 2.15 and the proof follows. �

For other instances of the use of symmetric functions in γ-positivity, see the proof of
Theorem 2.42 in [64] and [66, Section 4].

5. Generalizations

This section discusses three possible generalizations of γ-positivity, namely nonsymmet-
ric γ-positivity, equivariant γ-positivity and q-γ-positivity, which may provide interesting
directions for future research.

5.1. Nonsymmetric γ-positivity. Nonsymmetric polynomials which can be written as
a sum of two γ-positive polynomials, whose centers of symmetry differ by 1/2, have
appeared in Section 2. We formalize this situation here as follows.

A nonzero polynomial f(x) ∈ R[x] is said to have center (i+j)/2, where i (respectively,
j) is the smallest (respectively, largest) integer k for which the coefficient of xk in f(x) is
nonzero. One can verify that, if f(x) has center n/2, then it can be written uniquely as
a sum

(137) f(x) = f+
α (x) + f−α (x)

of two symmetric polynomials f+
α (x), f−α (x) with centers of symmetry (n− 1)/2 and n/2,

respectively. Similarly, f(x) can be written uniquely as a sum

(138) f(x) = f+
β (x) + f−β (x)

of two symmetric polynomials f+
β (x), f−β (x) with centers of symmetry (n+ 1)/2 and n/2,

respectively. We call f(x) left γ-positive (respectively, right γ-positive) if both f+
α (x) and

f−α (x) (respectively, f+
β (x) and f−β (x)) are γ-positive. We leave it to the reader to verify

that f(x) is γ-positive if and only if it is both left and right γ-positive. Clearly, every left
γ-positive or right γ-positive polynomial is unimodal, with a peak at its center n/2, or
at (n± 1)/2. The derangement polynomials dn,r(x) are left γ-positive by Theorem 2.26,
while the left-hand sides of Equations (80) and (81) and h-polynomials of order complexes
which triangulate a ball are right γ-positive by Theorems 2.37 and 3.9, respectively. It
would be interesting to find other classes of nonsymmetric γ-positive polynomials.
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5.2. Equivariant γ-positivity. Let f(t) =
∑

i ait
i ∈ N[t] be a γ-positive polynomial. It

often happens that ai = dimC(Ai) for some non-virtual representations Ai of a finite group
G (all representations considered in this section are finite dimensional and defined over the
field of complex numbers). Then, it is natural to consider the polynomial F (t) :=

∑
iAit

i,
whose coefficients belong to the representation ring of G, as an equivariant analog of f(t)
and ask whether

(139) F (t) =

bn/2c∑
i=0

Γi t
i(1 + t)n−2i

for some non-virtual G-representations Γi, where n/2 is the center of symmetry of f(t).
We then say that F (t) is γ-positive. For the symmetric group Sn, this concept reduces,
via the Frobenius characteristic map, to that of Schur γ-positivity [114, Section 3].

Especially interesting is the case where f(t) is the h-polynomial of a flag triangulation of
the sphere, or the local h-polynomial of a flag triangulation of the simplex, as pointed out
by Shareshian and Wachs [114, Sections 5–6]. The following general discussion assumes
familiarity with face rings of simplicial complexes [126, Chapter II] and local face modules
of triangulations of simplices [123, Section 4] [126, Section III.10] and avoids technicalities:

• Let ∆ be a flag triangulation of the (n− 1)-dimensional sphere, on which a finite
group G acts simplicially. Suppose that Θ is a linear system of parameters for the
face ring C[∆] such that the linear span of the elements of Θ is G-invariant. Then
G acts on each homogeneous component of the graded vector space

(140) C(∆) := C[∆]/〈Θ〉 =
n⊕
i=0

C(∆)i,

whose graded dimension is equal to the h-vector of ∆. The pair (∆, G) exhibits the
equivariant Gal phenomenon if there exists Θ for which

∑n
i=0 C(∆)i t

i is γ-positive.
• Let Γ be a flag triangulation of the (n − 1)-dimensional simplex 2V , on which a

subgroup G of the automorphism group of 2V acts simplicially. Suppose that Θ is
a special linear system of parameters, in the sense of [123, Definition 4.2], for the
face ring of Γ such that the linear span of the elements of Θ is G-invariant. Then
G acts on each homogeneous component of the local face module

(141) LV (Γ) =
n⊕
i=0

LV (Γ)i

defined by Θ, whose graded dimension is equal to the local h-vector of Γ. The pair
(Γ, G) exhibits the local equivariant Gal phenomenon if there exists Θ for which∑n

i=0 LV (Γ)i t
i is γ-positive.

When ∆ is the boundary complex of an n-dimensional simplicial polytope (more gen-
erally, the simplicial complex associated to a complete simplicial fan in Rn), there exists
Θ for which (140) is isomorphic to the cohomology ring of the projective toric variety as-
sociated to ∆, as a graded G-representation [43, Section 10]. Shareshian and Wachs [114,
Section 5] speculate that, in interesting situations (but not in general) in which ∆ is
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flag, the pair (∆, G) exhibits the equivariant Gal phenomenon for such linear system of
parameters. For example, as pointed out by these authors, and in view of results of
C. Procesi [103] and R. Stanley [122, Proposition 12] [123, Proposition 4.20], the Schur
γ-positivity of the coefficient of zn in the left-hand sides of Equations (82) and (83), al-
ready discussed in Section 2.5, are instances of the equivariant Gal phenomenon and its
local analog, with corresponding flag triangulations the barycentric subdivisions of the
boundary of the (n− 1)-dimensional simplex and the simplex itself. Another instance of
the equivariant Gal phenomenon is the Schur γ-positivity of the coefficient of zn in

(142)
(1− t)H(x; z)H(x; tz)

H(x; tz)− tH(x; z)
,

established in [114, Theorem 3.4], with corresponding flag triangulation the boundary
complex of the n-dimensional simplicial stellohedron. This result provides an equivariant
analog for the γ-positivity of the binomial Eulerian polynomials, discussed in Section 2.1.

A very interesting example is the Coxeter complex Cox(W ), discussed in Section 3.3.2,
on which the finite Coxeter group W acts. When W is crystallographic, its representa-
tion on the cohomology of the projective toric variety associated to Cox(W ) was studied
by C. Procesi [103], R. Stanley [122, p. 529], I. Dolgachev and V. Lunts [49], J. Stem-
bridge [132], G. Lehrer [78] and A. Stapledon [128, Section 8]. Given the evidence pro-
vided in the sequel, it is expected that the following conjectural equivariant analog of
Theorem 2.8 can be shown using the classification of finite Coxeter groups (a proof which
does not use the classification is certainly more desirable).

Conjecture 5.1. The pair (Cox(W ),W ) exhibits the equivariant Gal phenomenon for
every finite crystallographic Coxeter group W .

As mentioned earlier, in the symmetric group case the conjecture follows from the γ-
positivity of the polynomials Pλ(t), shown in Corollary 2.41. In the case of the hyperocta-
hedral group Bn, by [49, Theorem 6.3] or [132, Theorem 7.6], the Frobenius characteristic
of the graded Bn-representation on the (even degree) cohomology of the projective toric
variety associated to Cox(Bn) is equal to the coefficient of zn in

(143)
(1− t)H(x; z)H(x; tz)

H(x,y; tz)− tH(x,y; z)
,

where y = (y1, y2, . . . ) is another sequence of commuting independent indeterminates and
H(x,y; z) =

∑
n≥0 hn(x,y)zn = H(x; z)H(y; z) is the generating function of the complete

homogeneous symmetric functions hn(x,y) in the variable z. Thus, Conjecture 5.1 in this
case is implied by the following result (the proof, which uses Theorem 5.3 stated in the
sequel, will appear in the final version of [9] or elsewhere).

Proposition 5.2. The coefficient of zn in (143) is Schur γ-positive for every n ∈ N.

For example, writing

(1− t)H(x; z)H(x; tz)

H(x,y; tz)− tH(x,y; z)
= 1 +

∑
n≥1

zn
bn/2c∑
i=0

γBn,i(x,y) ti(1 + t)n−2i,
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we have

γB1,0(x,y) = s(1)(x),

γB2,0(x,y) = s(2)(x),

γB2,1(x,y) = s(1,1)(x) + s(1)(x)s(1)(y) + s(2)(y),

γB3,0(x,y) = s(3)(x),

γB3,1(x,y) = 2s(2,1)(x) + s(1,1)(x)s(1)(y) + 2s(2)(x)s(1)(y) + 2s(1)(x)s(2)(y) + s(3)(y).

At present, a combinatorial interpretation of the coefficients of the functions γBn,i(x,y) in
the Schur basis is lacking.

Other evidence for the validity of Conjecture 5.1 is provided by the computation of the
graded multiplicity of the trivial [132, Section 3] and of the sign [78, Theorem 3.5 (iii)]
and reflection representation [78, Section 4] of W in the cohomology of the toric variety
associated to Cox(W ); see also [128, Remark 8.3].

A general result on equivariant (nonsymmetric) γ-positivity is the following equivariant
version of Theorem 2.37. Let P be a finite graded poset, as in Section 2.4, and assume that
a finite group G acts on P by order preserving bijections. Then G defines a permutation
representation αP(S), induced by its action on the set of maximal chains of the rank-
selected subposet PS, for every S ⊆ [n]. One can consider the virtual G-representation

(144) βP(S) =
∑
T⊆S

(−1)|S−T | αP(T ),

introduced by Stanley [121]. When P is Cohen–Macaulay over C, βP(S) coincides with
the non-virtual G-representation induced on the top homology group of P̄S (see [121] [140,
Section 3.4]); the dimensions of αP(S) and βP(S) are equal to the numerical invariants
aP(S) and bP(S), respectively, defined in Section 2.4.

Theorem 5.3 (Athanasiadis [9, Theorem 1.2]). Let G be a finite group acting on a
finite bounded graded poset P of rank n+ 1 by order preserving bijections. If P is Cohen–
Macaulay over C, then

(145) H̃n−1((P− ∗ Tt,n)−;C) ∼=G

∑
S∈Stab([n−1])

βP([n]rS) t|S|(1 + t)n−2|S|

+
∑

S∈Stab([n−2])

βP([n− 1]rS) t|S|+1(1 + t)n−1−2|S|

and

(146) H̃n−1(P̄ ∗ Tt,n−1;C) ∼=G

∑
S∈Stab([2,n−2])

βP([n− 1]rS) t|S|+1(1 + t)n−2−2|S|

+
∑

S∈Stab([2,n−1])

βP([n]rS) t|S|(1 + t)n−1−2|S|

for every positive integer t, where ∼=G denotes isomorphism of G-representations.
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In particular, the left-hand sides of (145) and (146) are right γ-positive.

As shown in [9, Corollary 4.1], the Schur γ-positivity of the coefficients of the left-hand
sides of Equations (86) and (87) follows from the special case of Theorem 5.3 in which
P− is the Boolean lattice of subsets of [n]. Two more applications, establishing the Schur
γ-positivity of the coefficients of two close relatives to (143), are given in [9, Section 4].
We state these results here in a form similar to that of Gessel’s identities (86)–(89) as
follows (a more elementary proof should be possible). For a map w : [n] → Zr{0} we
write zw := zw(1)zw(2) · · · zw(n), where zw(i) = xw(i) if w(i) > 0 and zw(i) = yw(i) otherwise,
and define AscB(w) as the set of indices i ∈ [n] such that w(i) >r w(i + 1) in the total
order (17), where w(n+ 1) := 0.

Theorem 5.4 (cf. [9, Corollaries 4.4 and 4.7]). We have

(1− t)E(x; z)E(x; tz)E(y; tz)

E(x,y; tz)− tE(x,y; z)
= 1 +

∑
n≥1

zn
∑
w

tasc(w)(1 + t)n+1−2asc(w) zw(147)

+
∑
n≥1

zn
∑
w

tasc(w)(1 + t)n−2asc(w) zw,

where, in the two sums, w : [n] → Zr{0} runs through all maps for which AscB(w) ∈
Stab([n]) contains (respectively, does not contain) n, and

(1− t)E(x; z)

E(x,y; tz)− tE(x,y; z)
= 1 +

∑
n≥1

zn
∑
w

tasc(w)(1 + t)n−2asc(w) zw(148)

+
∑
n≥1

zn
∑
w

tasc(w)(1 + t)n−1−2asc(w) zw,

where, in the two sums, w : [n] → Zr{0} runs through all maps for which AscB(w) ∈
Stab([2, n]) contains (respectively, does not contain) n.

5.3. q-γ-positivity. Let a, b ∈ N. A polynomial f(q, x) ∈ R[q, x] is called q-γ-positive of
type (a, b) if

(149) f(q, x) =

bn/2c∑
i=0

γi(q)x
i

n−1−i∏
k=i

(1 + xqka+b)

for some polynomials γi(q) ∈ R[q] with nonnegative coefficients. This concept, which
reduces to that of γ-positivity for q = 1, was formally introduced by K. Dilks [47, Chap-
ter 4] and, in more restrictive form, by C. Krattenthaler and M. Wachs (unpublished),
after such expansions were found for certain q-analogs of the Eulerian polynomials for
symmetric and hyperoctahedral groups by G. Han, F. Jouhet and J. Zeng [70]. Other
polynomials which admit q-analogs which are q-γ-positive include binomials and Narayana
polynomials for symmetric and hyperoctahedral groups; see [47, Chapter 4].
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Note added in revision. Conjecture 2.30 has been proven by P. Brändén and L. So-
lus [28, Section 3.3] and, independently, by N. Gustafsson and L. Solus [69, Section 5.1].
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variées, Bull. Soc. Math. France 113 (1985), 3–22.



GAMMA-POSITIVITY IN COMBINATORICS AND GEOMETRY 61

[47] K. Dilks, Involutions on Baxter objects, and q-gamma nonnegativity, Ph.D. thesis, University of
Minnesota, 2015.

[48] K. Dilks, T.K. Petersen and J.R. Stembridge, Affine descents and the Steinberg torus, Adv. Appl.
Math. 42 (2009), 423–444.

[49] I. Dolgachev and V. Lunts, A character formula for the representation of a Weyl in the cohomology
of the associated toric variety, J. Algebra 168 (1994), 741–772.
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