
Lattice paths with catastrophes

Lattice paths with catastrophes
SLC 77, Strobl – 12.09.2016

Cyril Banderier and Michael Wallner

Laboratoire d’Informatique de Paris Nord, Université Paris Nord, France
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What is a lattice path?

Definition

Step set: S = {(1, b1), . . . , (1, bm)} ⊂ Z2

n-step lattice path: Sequence of vectors (v1, . . . , vn) ∈ Sn

Weights

For S = {−c , . . . , d} define Π = {p−c , . . . , pd}
Jump polynomial: P(u) =

∑d
i=−c piu

i

Drift: δ = P ′(1)

Examples

Dyck path/Random walk: P(u) = p−1u
−1 + p1u

1

Motzkin walk: P(u) = p−1u
−1 + p0 + p1u

1
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Lattice paths with Catastrophes

[Chang & Krinik & Swift: Birth-multiple catastrophe processes, 2007]
[Krinik & Rubino: The Single Server Restart Queueing Model, 2013]

Catastrophe

A catastrophe is a jump j /∈ S to altitude 0.

−6 −7
−4
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Motivation

Questions from queuing theorists

1 Can you do exact enumeration for the Bernoulli walk, for which one also
allows at any time some catastrophe (=unbounded jump from anywhere
directly to 0)?

2 What are typical properties of such walks, distribution of patterns?

3 How to generate them?

Caveat: The limiting object is not a Brownian motion (infinite negative drift!).

Applications

financial mathematics (catastrophe = bankrupt)

evolution of the queue of a printer (catastrophe = reset)

population genetics (species extinctions by pandemic)

Cyril Banderier, Michael Wallner | Paris Nord and TU Wien | 12.09.2016 5 / 24



Lattice paths with catastrophes | Introduction

Terminology of directed paths

ending anywhere ending at 0

unconstrained
(on Z)

walk/path bridge

W (z , u) =
∑

n,k wn,kz
nuk B(z) =

∑
n bnz

n

constrained
(on Z+)

meander excursion

M(z , u) =
∑

n,k mn,kz
nuk M0(z) =

∑
n mn,0z

n

Known algebraic objects: [Banderier–Flajolet02]
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Generating functions

−6 −7
−4

Q Q Q E

Following results stated for Dyck paths with catastrophes.

Theorem (Generating functions for lattice paths with catastrophes)

Let fn,k be the number of catastrophe-walks of length n from altitude 0 to
altitude k, then F (z , u) =

∑
k≥0 Fk(z)uk =

∑
n,k≥0 fn,ku

kzn is algebraic and

F (z , u) = D(z)M(z , u) Fk(z) = D(z)Mk(z) for k ≥ 0,

where D(z) = 1
1−Q(z) is the generating function of excursions ending with a

catastrophe, Q(z) = zq (M(z)− E (z)−M1(z))

Proof: Walk = Sequence(Arches ending with a catastrophe) × Meander.
Arches ending with cat = meander ending at > 1, followed by a catastrophe:
Q(z) = zq(M(z)− E (z)−M1(z)) .
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Dyck paths with catastrophes

Jumps and weights: P(u) = u−1 + u1, and q = 1.

Corollary (Generating functions for Dyck paths with catastrophes)

1 mn := # Dyck meanders with catastrophes of length n starting from 0.

F (z , 1) =
∑
n≥0

mnz
n =

z(u1(z)− 1)

z2 + (z2 + z − 1)u1(z)
= 1 + z + 2z2 + 4z3 + O(z4),

where u1(z) = 1−
√

1−4z2

2z .

2 en := # Dyck excursions with catastrophes of length n ending at 0.

F0(z) =
∑
n≥0

enz
n =

(2z − 1)u1(z)

z2 + (z2 + z − 1)u1(z)
= 1 + z2 + z3 + 3z4 + O(z5).

Moreover, e2n is also the number of Dumont permutations of the first kind
of length 2n avoiding the patterns 1423 and 4132. [Burstein05].
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Bijection with Motzkin paths

1 Dyck paths with catastrophes are Dyck paths with the additional option of
jumping to the x-axis from any altitude h > 0; and

2 1-horizontal Dyck paths are Dyck paths with the additional allowed
horizontal step (1, 0) at altitude 1.

−6

Dyck arch with catastrophe

1

1-horizontal Dyck arch

(solving conjectures by Alois P. Heinz, R. J. Mathar, and other contributors in the
On-Line-Encyclopedia of Integer Sequences)
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Excursions

Theorem (Bijection for Dyck paths with catastrophes)

The number en of Dyck paths with catastrophes of length n is equal to the
number hn of 1-horizontal Dyck paths of length n.

Proof (Generating functions):
A first proof consists in using the continued fraction point of view (each level k + 1
of the continued fraction encodes the jumps allowed at altitude k). Then,

H(z) =
∑
n≥0

hnz
n =

1

1− z2

1− z − z2

1− z2

1− . . .

=
1

1− z2

1− z − z2C (z)

= F0(z),

Where C (z) = 1
1−zC(z) = 1−

√
1−4z2

2z2 .
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Excursions

Theorem (Bijection for Dyck paths with catastrophes)

The number en of Dyck paths with catastrophes of length n is equal to the
number hn of 1-horizontal Dyck paths of length n.

Proof (Bijection): Decomposition into a sequence of arches:

−6 −7
−4

Acat Anocat Acat Acat Anocat

Bijection between Dyck arches with catastrophes and 1-horizontal Dyck arches:

−6

Dyck arch with catastrophe

1

1-horizontal Dyck arch
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Asymptotics and limit laws

Proposition (Asymptotics of Dyck paths with catastrophes)

The number of Dyck paths with catastrophes en, and Dyck meanders with
catastrophes mn is asymptotically equal to

en = Ceρ
−n
(

1 +O
(

1

n

))
, mn = Cmρ

−n
(

1 +O
(

1

n

))
,

where ρ ≈ 0.46557 is the unique positive root of ρ3 + 2ρ2 + ρ− 1,
Ce ≈ 0.10381 is the unique positive root of 31C 3

e − 62C 2
e + 35Ce − 3,

Cm ≈ 0.32679 is the unique positive root of 31C 3
m − 31C 2

m + 16Cm − 3.

Proof: Singularity analysis: simple pole at

ρ = 1
6

(
116 + 12

√
93
)1/3

+ 2
3

(
116 + 12

√
93
)−1/3 − 2

3 ≈ 0.46557 which is strictly
smaller than 1/2 which is the dominant singularity of u1(z):

F0(z) =
C

1− z/ρ
+O(1), for z → ρ.
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Supercritical composition

Variant of the supercritical composition scheme [Proposition IX.6
Flajolet–Sedgewick09], where a perturbation function q(z) is added.

Proposition (Perturbed supercritical composition)

If F (z, u) = q(z)g(uh(z)) where g(z) and h(z) satisfy the supercriticality
condition h(ρh) > ρg , that g is analytic in |z | < R for some R > ρg , with a
unique dominant singularity at ρg , which is a simple pole, and that h is
aperiodic. Furthermore, let q(z) be analytic for |z | < ρh. Then the number χ of
H-components in a random Fn-structure, corresponding to the probability
distribution [ukzn]F (z , u)/[zn]F (z , 1) has a mean and variance that are
asymptotically proportional to n; after standardization, the parameter χ satisfies
a limiting Gaussian distribution, with speed of convergence O(1/

√
n).

Proof: As q(z) is analytic at the dominant singularity, it contributes only a
constant factor.
+Hwang’s quasi-powers theorem on F (z , u) = g(uh(z)).
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Supercritical sequences

Proposition (Perturbed supercritical sequences)

For a schema F (z , u) = q(z)
1−uh(z) such that h(ρh) > 1,

(with q(z) analytic for |z | < ρ, where ρ is the positive root of h(ρ) = 1),
the number Xn of H-components in a random Fn-structure of large size n is,
asymptotically Gaussian with

E(Xn) ∼ n

ρh′(ρ)
, V(Xn) ∼ n

ρh′′(ρ) + h′(ρ)− ρh′(ρ)2

ρ2h′(ρ)3
.

Proof: previous Prop with g(z) = (1− z)−1 and ρg replaced by 1. The second
part results from the bivariate generating function

F (z , u) =
q(z)

1− (u − 1)hmzm − h(z)
,

and from the fact, that u close to 1 induces a smooth perturbation of the pole of
F (z , 1) at ρ, corresponding to u = 1.
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Analytic properties

Generating function of excursions ending with a catastrophe

D(z) =
1

1− Q(z)
, Q(z) = zq (M(z)− E (z)−M1(z)) .

Lemma

The equation 1− Q(z) = 0 has at most one solution ρ0 > 0 for |z | ≤ ρ.
For δ ≥ 0 this solution always exists and ρ0 < ρ.
For δ < 0 it depends on the value Q(ρ):

ρ0 < ρ, for Q(ρ) > 1,

ρ0 = ρ, for Q(ρ) = 1,

6 ∃ρ0, for Q(ρ) < 1.

And Q(z) satisfies the expansion for z → ρ with η > 0

Q(z) = Q(ρ)− η
√

1− z/ρ+O(1− z/ρ).

Cyril Banderier, Michael Wallner | Paris Nord and TU Wien | 12.09.2016 15 / 24



Lattice paths with catastrophes | Asymptotics and limit laws

Number of catastrophes

−6 −7
−4

Q Q Q E

Let dn,k be the number of excursions ending with a catastrophe of length n with k
catastrophes, then

D(z , v) :=
∑
n,k≥0

dn,kz
nvk =

1

1− vQ(z)
.

Let cn,k be the number of excursions with k catastrophes. Then, we get

C (z , v) :=
∑
n,k≥0

cn,kz
nvk =

1

1− vQ(z)
E (z).

Let Xn be the random variable, representing paths of length n consisting of k
catastrophes. In other words the probability is defined as

P (Xn = k) =
[znvk ]C (z , v)

[zn]C (z , 1)
.
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Average number of catastrophes

Theorem

1 In the case of ρ0 < ρ the standardized random variable

Xn − µn
σ
√
n

, µ =
1

ρ0Q ′(ρ0)
, σ2 =

ρ0Q
′′(ρ0) + Q ′(ρ0)− ρ0Q

′(ρ0)2

ρ2
0Q
′(ρ0)3

,

converges in law to a Gaussian variable N (0, 1).

2 In the case of ρ0 = ρ the normalized random variable

Xn

ϑ
√
n
, ϑ =

√
2

η
,

converges in law to a Rayleigh distribution (density: xe−x
2/2).

3 In the case that ρ0 does not exist, the limit distribution is a discrete one:

P (Xn = k) =
(nη/λ+ C/τ)λn

ηD(ρ)2 + C/τD(ρ)

(
1 +O

(
1

n

))
, λ = Q(ρ),

with C =
√

2 P(τ)
P′′(τ) , and τ > 0 the unique positive real root of P ′(u) = 0.

In particular Xn converges to the random variable given by the law of
ηNegBinom(2, λ) + C

τ
NegBinom(1, λ).
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Average number of catastrophes – Dyck

Corollary

The number of catastrophes of a random Dyck path with catastrophes of
length n is normally distributed. The standardized version of Xn,

Xn − µn
σ
√
n

, µ ≈ 0.0708358118, σ2 ≈ 0.05078979113,

where µ is the unique positive real root of 31µ3 + 31µ2 + 40µ− 3, and σ2 is the
unique positive real root of 29791σ6 − 59582σ4 + 60579σ2 − 2927, converges in
law to a Gaussian variable N (0, 1) :

lim
n→∞

P
(
Xn − µn
σ
√
n
≤ x

)
=

1√
2π

∫ x

−∞
e−y

2/2 dy .
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Number of returns to zero
Definition

An arch is an excursion of size > 0
whose only contact with the x-axis is at
its end points.

A return to zero is a vertex of a path of
altitude 0 whose abscissa is positive.

Figure: An excursion with 3 returns
to zero

Generating function

A(z) = 1− 1

F0(z)
,

G (z , v) =
1

1− vA(z)
.

Excursion of length n having k returns to zero

P(Yn = k) = P(size = n, #returns to zero = k) =
[zn]A(z)k

[zn]E (z)
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Average number of returns to zero

Theorem

1 In the case of ρ0 < ρ the standardized random variable

Yn − µn
σ
√
n

, µ =
1

ρ0A′(ρ0)
, σ2 =

ρ0A
′′(ρ0) + A′(ρ0)− ρ0A

′(ρ0)2

ρ2
0A
′(ρ0)3

,

converges in law to a Gaussian variable N (0, 1).

2 In the case of ρ0 = ρ the normalized random variable

Yn

ϑ
√
n
, ϑ =

√
2
E (ρ)

η
,

converges in law to a Rayleigh distribution defined by the density xe−x
2/2.

3 In the case of ρ0 does not exist, the limit distribution is NegBinom(2, λ):

P (Yn = k) =
nλn

(1− A(ρ))2

(
1 +O

(
1

n

))
, λ = A(ρ).
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Average number of returns to zero – Dyck

Corollary

The number of returns to zero of a random Dyck path with catastrophes of
length n is normally distributed. The standardized version of Yn,

Yn − µn
σ
√
n

, µ ≈ 0.1038149281, σ2 ≈ 0.1198688826,

where µ is the unique positive root of 31µ3 − 62µ2 + 35µ− 3, and σ2 is the
unique positive root of 29791σ6 + 231σ2 − 79, converges in law to N (0, 1).

Compare

The number of catastrophes of a random Dyck path with catastrophes of
length n is normally distributed.

Xn − µn
σ
√
n

, µ ≈ 0.0708358118, σ2 ≈ 0.05078979113.
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Final altitude limit law

Theorem

The final altitude of a random lattice path with catastrophes of length n admits
a discrete limit distribution:

lim
n→∞

P (Zn = k) = [uk ]ω(u), where ω(u) =


1−v1(ρ0)
u−v1(ρ0) , for ρ0 ≤ ρ,
ηD(ρ)+ C

τ−u

ηD(ρ)+ C
τ−1

1−v1(ρ)
u−v1(ρ) , for 6 ∃ρ0.

Corollary

The final altitude of a random Dyck path with catastrophes of length n admits a
geometric limit distribution with parameter λ = v1(ρ)−1 ≈ 0.6823278:

P (Zn = k) ∼ (1− λ)λk .
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Final altitude

Figure: The limit law for the final altitude in the case of a jump polynomial
P(u) = u40 + 10u3 + 2u−1. The picture shows a period 40 behavior, which is explained
by a sum of 40 geometric-like basic limit laws.
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Conclusion

−6 −7
−4

Generalized Dyck paths with unbounded jumps can be exactly enumerated
and asymptotically analyzed.

Universality of the Gaussian limit law.

Not Brownian limit objects: some more tricky ”fractal periodic geometrically
amortized” limit laws (and also Gaussian laws).

Uniform random generation algorithm.

Thank you for your attention!
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Backup

Backup slides
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Final altitude limit law (proof)

Let us now fix u ∈ (0, 1) and treat is henceforth as a parameter. The probability
generating function of Xn is

pn(u) =
[zn]D(z)M(z , u)

[zn]D(z)M(z , 1)
.

By [Banderier–Flajolet02], M(z , u) and M(z , 1) are singular at z = 1/2 > ρ (ρ is
the singularity of D(z)). By [Flajolet–Sedgewick09]:

pn(u) ∼ M(ρ, u)[zn]D(z)

M(ρ, 1)[zn]D(z)
=

M(ρ, u)

M(ρ, 1)
.

The branches allow us to factor the kernel equation into
u(1− zP(u)) = −zp1(u − u1(z))(u − v1(z)). Thus,

M(ρ, u) =
1

ρp−1(v1(ρ)− u)
,

the limit probability generating function of a geometric distribution.
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Uniform random generation

Generalized Dyck paths (meanders and excursions) can be generated by
pushdown-automata/context-free grammars.

dynamic programming approach, O(n2) time and O(n3) bits in memory.

[Hickey and Cohen83]: context-free grammars.

[Flajolet–Zimmermann–Van Cutsem94]: the recursive method, a wide
generalization to combinatorial structures, so such paths of length n can be
generated in O(n ln n) average-time.

[Goldwurm95] proved that this can be done with the same time-complexity,
with only O(n) memory.

[Duchon–Flajolet–Louchard–Schaeffer04] : Boltzmann method. Linear
average-time random generator for paths of length [(1− ε)n, (1 + ε)n].

[Banderier-Wallner16] :
generating trees+holonomy theory → O(n3/2) time, O(1) memory.
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Uniform random generation (generating tree+holonomy)

Each transition is computed via

P
({jump j when at altitude k , and length m,

ending at 0 at length n

)
=

f 0
m,k f

k+j
n−(m+1),0

f 0
n,0

.

Then, for each pair (i , k), theory of D-finite functions applied to our algebraic
functions gives the recurrence for fm (computable in O(

√
m) via an algorithm of

[Chudnovsky & Chudnovsky 86] for P-recursive sequence). Possible win on the
space complexity and bit complexity: computing the fm’s in floating point
arithmetic, instead of rational numbers (although all the fm are integers, it is often
the case that the leading term of the P-recursive recurrence is not 1, and thus it
then implies rational number computations, and time loss in gcd computations).
Global cost

∑n
m=1 O(

√
m)O(

√
n −m) = O(n2) & O(1) memory is enough to

output the n jumps of the lattice path, step after step, as a stream.
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