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A NOTE ON: RECTANGULAR SCHRÖDER PARKING
FUNCTIONS COMBINATORICS

JEAN-CHRISTOPHE AVAL AND FRANÇOIS BERGERON

Abstract. We study Schröder paths drawn in an (m,n) rectan-
gle, for any positive integers m and n. We get explicit enumeration
formulas, closely linked to those for the corresponding (m,n)-Dyck
paths. Moreover, we study a Schröder version of (m,n)-parking
functions, and associated (q, t)-analogs.
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1. Introduction

Many objects are enumerated by Schröder numbers:

1, 2, 6, 22, 90, 394, 1806, . . . (sequence A006318 in [13]),

but the most classical are probably paths from (0, 0) to (n, n) with
steps either (1, 0), (0, 1), or (1, 1), never going below the diagonal (al-
though they may touch it). These are generalizations of Dyck paths
(for which only the first two types of steps are allowed), well-known to
be enumerated by the Catalan numbers. The aim of this work is to
investigate properties of an analogous notion for the m × n-rectangle,
rather than for the n× n-square, the latter corresponding to the clas-
sical case. Our (m,n)-Schröder paths (defined in Section 2) have the
same kind of steps, but we change the endpoint to (m,n), and use
the diagonal of the rectangle to crop the set of allowed paths. Partial
results are already known, in the case where m and n are coprime, in
particular when m = rn+1 (see [14]). We first obtain (see Corollary 2)
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a symmetric function enumeration formula for the general case (no co-
primality condition). This result, as well as the methods used to obtain
it, closely parallels the case of Dyck paths studied in [2]. Next, we con-
sider the notion of Schröder parking functions, i.e., labeled rectangular
Schröder paths, and investigate associated q-analogs and (q, t)-analogs
of our enumeration formulas; with the parameter q accounting for the
area between the path and the diagonal.

2. Schröder path enumeration

Schröder paths. Our (m,n)-Schröder paths are sequences

(0, 0) = (x0, y0), (x1, y1), . . . , (xN , yN) = (m,n)

with (xk, yk) in N× N, and such that

• (xk+1, yk+1) = (xk, yk)+(s, t), with (s, t) ∈ {(0, 1), (1, 1), (1, 0)},
• such that myk − nxk ≥ 0, for all k.

Depending on (s, t) being equal to (0, 1), (1, 1), or (1, 0) in the first
condition, we say that we have an up, diagonal, or right step. The
inequality of the second condition ensures that the paths does not go
below the diagonal.

Schröder polynomials. Recall that the enumerating polynomials for
(n, n)-Schröder paths are given by the formula

Sn(y) :=
n∑
k=0

1

n− k + 1

(
n

k

)(
2n− k
n

)
yk, (1)

with S0 = 1. These “Schröder polynomials” have a long and interesting

history. The coefficient of yk, denoted by S
(k)
n , enumerates Schröder

paths having k diagonal steps. Hence, the case k = 0 corresponds
to the usual notion of Dyck paths, well-known to be counted by the
Catalan numbers

S(0)
n =

1

n+ 1

(
2n

n

)
.

Small values of these polynomials are

S1(y) = 1 + y,

S2(y) = 2 + 3 y + y2,

S3(y) = 5 + 10 y + 6 y2 + y3,

S4(y) = 14 + 35 y + 30 y2 + 10 y3 + y4,

S5(y) = 42 + 126 y + 140 y2 + 70 y3 + 15 y4 + y5.



SCHRÖDER COMBINATORICS 3

3

6

6

4

3

4

2

1

0

Row areas

0

1

2

3

4

5

6

7

8

Row labels

Figure 1. The (12, 9)-Schröder path 000022237.

We consider here an (m,n)-rectangular analog of these polynomials, for
any pair (m,n) of positive integers. Just as for Dyck paths, the case
when m and n are coprime is somewhat simpler. To make this more
apparent notation-wise, we often write our pairs of integers in the form
(m,n) = (ac, bc), with (a, b) coprime. Hence c is the greatest common
divisor of m and n. In particular, the (a, b)-case corresponds to the
coprime situation. We recall that the number of (a, b)-Dyck paths is
simply given by the formula

Ca,b =
1

a+ b

(
a+ b

a

)
.

The general case of (m,n)-Dyck path enumeration, Cm,n giving the
number of such paths, is probably best presented in generating series
format as ∑

d≥0

Cad,bdz
d = exp

(∑
j>1

1

a

(
ja+ jb

ja

)
zj

j

)
. (2)

The proof of this formula, going back to 1954, is due to Bizley [7], who
attributes it to Grossman [10].

Sequence encoding. It will be practical to encode our paths as se-
quences α = a0a1 · · · an−1 of barred or unbarred integers, with one ai for
each up or diagonal step of the path, reading them from top to bottom.
For up steps we set ai = k, whereas diagonal steps are encoded ai = k
(barred steps). In both cases, k is equal to to the number of entire
“cells” that lie to the left of the unique up (or diagonal) step at height
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n − i. The ai are the parts of α. In this encoding, α = a0a1 · · · an−1
corresponds to an (m,n)-Schröder path if and only if

(1) a0 ≤ a1 ≤ . . . ≤ an−1, (with the order 0 < 0 < · · · < k < k),

(2) if ai = k, then necessarily ai < ai+1, and

(3) for each i, we have ai ≤ bim/nc.
Each unbarred k, between 0 and m, occurs with some multiplicity1 nk
in a path α. Removing 0-multiplicities, we obtain the (multiplicity)
composition γ(α) of the sequence α, reading these multiplicities in
increasing values of k. For example,

γ(001112444) = (1, 2, 1, 2).

Clearly γ(α) is a composition of n− k, where k stands for the number
of diagonal steps in α. The parts of γ(α) may be understood as the
lengths of risers (also called vertical runs) in the path. These are
maximal sequences of consecutive up-steps.
Any (m,n)-Schröder path may be obtained by either barring or not
the rightmost part of a given size in the analogous word encoding of
an (m,n)-Dyck path. As we will see this makes the enumeration of
Schröder paths easy, once we set up the right tools.

Symmetric function weight. As we will come to see later, it is
interesting to consider a weighted enumeration of Schröder paths, with
the weight lying in the graded ring

Λ =
⊕
d≥0

Λd

of symmetric “functions” (polynomials in a countable set of variables
x = x1, x2, x3, . . .). Recall that the degree d homogeneous component
Λd affords as a linear basis the set

{eµ(x) | µ ` d}

of elementary symmetric functions, with

eµ(x) := eµ1(x)eµ2(x) · · · eµ`(x),

for µ = µ1µ2 . . . µ` running over the set of partitions of d. In turn, each
factor ek(x) is characterized by the generating function identity∑

k≥0

ek(x)zk =
∏
i≥1

(1 + xi z).

1possibly equal to 0.
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with e0(x) := 1. It easily follows that

ek(x + y) = ek(x) + ek−1(x) y, (3)

where x + y means that we add a new variable y to those occurring in
x.
With these notions at hand, we now simply set

Sm,n(x; y) :=
∑
α

α(x) ydiag(α), with α(x) :=
∏

k∈γ(α)

ek(x), (4)

where the sum is over the set of (m,n)-Schröder paths α, with diag(α)
denoting the number of diagonal steps in α. Likewise, we denote by

S(k)
m,n(x) :=

∑
diag(α)=k

α(x),

the symmetric function enumerator of (m,n)-Schröder paths with ex-

actly k diagonal steps, so that Sm,n(x; y) =
∑

k S
(k)
m,n(x) yk. For exam-

ple, we have

S1,1(x; y) = e1(x) + y,

S2,2(x; y) = (e11(x) + e2(x)) + 3 e1(x) y + y2,

S3,3(x; y) = (e111(x) + 3 e21(x) + e3(x))

+(6 e11(x) + 4 e2(x))y + 6 e1(x)y2 + y3.

Observe that, for all r and n, we have

Srn+1,n(x; y) = Srn,n(x; y), (5)

since the last step of (rn+1, n) must necessarily be a right step, and the
coprimality of rn+ 1 and n implies that staying above the (rn+ 1, n)-
diagonal insures as well that we stay above the (rn, n)-diagonal. Hence
we get the same set of paths.
To make some expressions more compact, we shall use “plethystic no-
tation”, recalling that we have

en[mx] :=
∑
ν`n

(−1)n−`(ν)m`(ν)pν(x)

zν
, (6)

with m considered as a “constant” in the calculation of plethysm. This
means that p[mx] = mp[x]. Recall that it is usual, for any partition ν
of n, to denote its length by `(ν), and to use the notation

zν := 1d1d1!2
d2d2! . . . n

dndn!,

where di is the number of copies of the part i in ν.
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Main results. Recall from [2] that we have a Bizley-like formula for
the symmetric function enumeration

Cm,n(x) :=
∑

diag(α)=0

α(x)

of (m,n)-Dyck paths, namely∑
d≥0

Cad,bd(x) zd = exp

(∑
j≥1

ejb[jax]
zj

aj

)
, (7)

with a and j considered as constants in the plethysm. We can exploit
this formula to get one for our weighted enumeration of Schröder paths.
Indeed,

Proposition 1. For all m and n, we have

Sm,n(x; y) = Cm,n(x + y). (8)

Proof. Let us fix the dimensions m,n of the rectangular box. Recall

that, for any given k ≥ 0, S
(k)
m,n stands for the set of (m,n)-Schröder

paths with exactly k diagonal steps. We denote by Cm,n the set S
(0)
m,n

of (m,n)-Dyck paths.
For β ∈ Cm,n, let us denote by γ(β) = (γ1, . . . , γj) the composition
giving the lengths of the vertical runs of β. In view of (4) and (3), we
may write

Cm,n[x + y] =
∑

β∈Cm,n

∏
γi∈γ(β)

eγi [x + y]

=
∑

β∈Cm,n

∏
γi∈γ(β)

(eγi [x] + y eγi−1[x])

=
∑

β∈Cm,n

∑
k≥0

yk
∑
δ

eδ[y], (9)

where the last sum is over all possible compositions δ obtained by
reducing exactly k of the parts of γ(β) by 1.
Let us now consider the projection

π : S(k)
m,n −→ Cm,n

which replaces any diagonal step by a North step followed by an East
step, i.e., an (outer) corner. For a Dyck path β, let us denote by

S
(k)
m,n(β) := π−1(β) the inverse image of β under π. It is clear that the

sets S
(k)
m,n(β), for β running over Cm,n, are the blocks of a partition of
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S
(k)
m,n. We may thus rewrite the inner sum in (9) as∑

δ

eδ[y] =
∑

α∈S(k)
m,n(β)

eγ(α)[x],

and get

Cm,n[x + y] =
∑

β∈Cm,n

∑
k≥0

yk
∑

α∈S(k)
m,n(β)

eγ(α)[x]

=
∑
k≥0

yk
∑

α∈S(k)
m,n

eγ(α)[x] = Sm,n(x; y)

as announced. �

From Equation (7), we may derive the following reformulation of Propo-
sition 1.

Corollary 2. The generating function of rectangular Schröder polyno-
mials is ∑

d≥0

Sad,bd(x) zd = exp

(∑
j≥1

ejb[ja (x + y)]
zj

aj

)
. (10)

For example, for any a and b coprime, we get

Sa,b(x + y) =
1

a
eb[a (x + y)],

S2a,2b(x + y) =
1

2a
e2b[2a (x + y)] +

1

2a2
eb[a (x + y)]2,

S3a,3b(x + y) =
1

3a
e3b[3a (x + y)] +

1

2a2
eb[a (x + y)] e2b[2a (x + y)]

+
1

6a3
eb[a (x + y)]3.

Recall the following well-known expansion2 of (6) in terms of elemen-
tary symmetric functions:

en[mx] =
∑
ν`n

(
m

`(ν)

)(
`(ν)

dν

)
eν(x),

where
(
`(ν)
dν

)
stands for the multinomial coefficient(

`(ν)

dν

)
:=

(
`(ν)

d1, d2, . . . , dn

)
,

2This is essentially an instance of the dual Cauchy formula.
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with each di equal to the multiplicity of the part i in ν. Using this
formula, we get

Sa,b(x; y) =
1

a
eb[a (x + y)]

=
1

a

b∑
k=0

eb−k[ax] ek[a y]

=
1

a

b∑
k=0

(
a

k

)
eb−k[ax] yk

=
1

a

∑
k

yk
∑
ν`b−k

(
a

k

)(
a

`(ν)

)(
`(ν)

dν

)
eν(x). (11)

Moreover, we may write the coefficient of yk in (11) as the following
integer coefficient linear combination of the eν(x):

S
(k)
a,b (x) =

∑
ν`b−k

1

a

(
a

k

)(
a

`(ν)

)(
`(ν)

dν

)
eν(x).

Since 〈eµ(x),
∑

j≥0 ej(x)〉 = 1 for all partition µ, we immediately get

S
(k)
a,b =

〈
S
(k)
a,b (x),

∑
j≥0

ej(x)
〉
,

where 〈−,−〉 stands for the usual scalar product on symmetric func-
tion3. Otherwise stated, for a and b coprime,

S
(k)
a,b =

∑
ν`b−k

1

a

(
a

k

)(
a

`(ν)

)(
`(ν)

dν

)
.

In particular, in view of (5), this covers the classical case (m = n) as
well as the generalized version (m = rn) of [14]. One also deduces from
Proposition 1 the following generalization of a result of Haglund [9].

Proposition 3. For all m and n, we have

S(k)
m,n =

〈
Cm,n(x), en−k(x)hk(x)

〉
.

Proof. We start by recalling the symmetric function identity

f(x + y) =
∑
k≥0

yk h⊥k f(x), (12)

where h⊥k stands for the dual of the operator of multiplication by hk(x)
with respect to the symmetric function scalar product. Equation (12)

3For which 〈pµ, pν〉 = zµ δµ,ν
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may be checked by computation for the basis element f = eλ for λ a
partition λ = (λ1, . . . , λt), by using the classical fact that

h⊥k (eλ) =
∑
|ρ|=k

t∏
i=1

eλi−ρi ,

where the sum is over sequences ρ such that 0 ≤ ρi ≤ 1.
It follows directly from (8) that∑

k

S(k)
m,n y

k =
〈
Cm,n(x + y),

∑
k≥0

ek(x)
〉
,

=
〈∑
k≥0

yk h⊥k Cm,n(x),
∑
j≥0

ej(x)
〉
,

=
〈
Cm,n(x),

∑
k≥0

ykhk(x)
∑
j≥0

ej(x)
〉
,

=
∑
k≥0

〈
Cm,n(x), hk(x)en−k(x)

〉
yk.

The last equality comes from the fact that Cm,n(x) is homogeneous
of degree n, hence all terms of the wrong degree vanish in the scalar
product. Evidently we get the announced result by comparing powers
of y of the same degree in both sides of the identity obtained. �

Area enumerator. The ith row area of a path α in S(r)
n is the integer

areai(α) := bim/nc − |ai|,
where we set |k| := k. Summing over all indices i between 1 and n, we
get the area of α:

area(α) :=
n−1∑
i=0

areai(α).

This generalizes a notion of area on Schröder paths introduced for
the case m = n in [8] (and further studied in [3]) to (m,n)-Schröder
paths. Following the presentation of [9], this may also be understood
as the number of “upper” triangles lying below the path and above the
diagonal line (as illustrated in Figure 1). These triangles are also called
area triangles. We have the area q-enumerator symmetric function

Sm,n(x; y, q) :=
∑
α

α(x) qarea(α)ydiag(α).

Keeping up with our previous notational conventions, we also set

S(k)
m,n(q) :=

∑
diag(α)=k

qarea(α),
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and

Cm,n(x; q) :=
∑

diag(α)=0

α(x) qarea(α).

Proposition 4. For all m and n, we have

Sm,n(x; y, q) = Cm,n(x + y; q), (13)

and

S(k)
m,n(q) =

〈
Cm,n(x; q), en−k(x)hk(x)

〉
. (14)

Proof. This comes easily from the fact that the projection π in the
proof of Proposition 1 preserves the area. �

From a result of [11], it follows that Crn+1,n(x; q) = Crn,n(x; q) =
∇r(en)

∣∣
t=1

, where ∇ is a Macdonald “eigenoperator” introduced in [5].
By this, we mean that its eigenfunctions are the (combinatorial) q, t-
Macdonald polynomials. Thus, a special instance of (14) may be for-
mulated as

S(k)
rn,n(q) =

〈
∇r(en)

∣∣
t=1
, en−k(x)hk(x)

〉
. (15)

In this way, we get back the case t = 1 of Proposition 1 in [9].

3. Constant term formula

The following constant term formula adds an extra parameter to our
story. We conjecture that it corresponds to a (q, t)-enumeration of
(m,n)-Schröder parking functions, with t accounting for a “dinv”-
statistic, still to be defined.

Conjecture 5. We have

Sm,n(x; y, q, t) =

CTzm,...,z0

(
1

zm,n

m∏
i=1

zi(1 + y zi)

zi − q zi+1

Ω′(x; zi)
m∏

j=i+1

(zi − zj)(zi − qt zj)
(zi − qzj)(zi − tzj)

)
,

where Ω′(x; z) :=
∑

k≥0 ek(x) zk, and zm,n :=
∏n−1

i=0 zbim/nc.

We recall that some care must be used in evaluating multivariate con-
stant term expressions. Indeed, the order in which successive constant
terms are taken does have an impact on the overall result. This is why,
in the above formula, the indices appearing after “CT” specify that
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this should be done starting with zm, and then going down to z0. For
example, we have

S2,2(x; y, q, t) = (s2 + (q + t) s11)+(q + t+ 1) s1 y + y2,

S2,3(x; y, q, t) = (s21 + (q + t) s111)+(s2 + (q + t+ 1)s11) y + s1 y
2,

S2,4(x; y, q, t) = (s22 + (q + t) s211 + (q2 + qt+ t2) s1111)

+((q + t+ 1) s21 + (q2 + qt+ t2 + q + t) s111) y

+(s2 + (q + t) s11) y
2.

We underline that Conjecture 5 is simply the evaluation at x + y of
a similar formula conjectured in [12] in relation with (m,n)-parking
functions. More precisely, it is conjectured in the mentioned paper,
that

Conjecture 6 (Negut). We have

Cm,n(x; q, t)

= CTzm,...,z0

(
1

zm,n

m∏
i=1

zi
zi − q zi+1

Ω′(x; zi)
m∏

j=i+1

(zi − zj)(zi − qt zj)
(zi − qzj)(zi − tzj)

)
.

From this identity it is clear that Conjecture 5 follows, using the equal-
ity Ω′(x + y; zi) = (1 + y zi) Ω′(x; zi). One may readily show that the
specialization at t = 1 of the right-hand side of Conjecture 5 does in-
deed give back our previous Cm,n(x + y; q) = Sm,n(x; y, q), since the
relevant constant term formula is shown to hold in [6].
This, together with the results and conjectures that appear in [6], opens
up many new avenues of exploration. In particular, we may obtain ex-
plicit candidates for the (q, t)-enumeration of special families of (m,n)-
Schröder paths (say with return conditions to the diagonal), by the
simple device of evaluating analogous symmetric function formulas for
(m,n)-Dyck paths at x + y. Several questions regarding this are ex-
plored in [4].

4. Schröder parking functions

An (m,n)-Schröder parking function is a bijective labeling of the
up steps of an (m,n)-Schröder path α by the elements of {1, 2, . . . , n−
diag(α)}. One further imposes the condition that consecutive up steps
of same x-coordinate have decreasing labels reading them from top to
bottom. The path involved in this description is said to be the shape
of the parking function. For α an (m,n)-Schröder path, we denote by
P(α) the set of parking functions having shape α. When diag(α) = 0,
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Figure 2. A Schröder parking function.

we get the “usual” notion of parking functions of shape α (an (m,n)-
Dyck path). The (m,n)-Schröder parking functions may be understood
as preference functions, with some of the parking places being closed to
parking (these correspond to diagonal steps). For f ∈ P(α), we denote
the row area for the ith row of the shape of f by areai(f). Figure 2
gives an example of a parking function of shape 000011223.
As we did for paths, we consider the (m,n)-Schröder parking function
polynomial

Pm,n(y, q) =
∑
k

P (k)
m,n y

k :=
∑
α

|P(α)| qarea(α)ydiag(α).

It is easy to derive the following fact from Corollary 4.

Corollary 7. For all m and n, we have

Pm,n(y, q) =

〈
Cm,n(x + y; q),

1

1− p1(x)

〉
.

Equivalently, for all k, we have

P (k)
m,n(q) =

〈
Cm,n(x; q), p1(x)n−khk(x)

〉
,

It follows from this, and the observation preceding (15), that

P (k)
rn,n(q) =

〈
∇r(en)

∣∣
t=1
, p1(x)n−khk(x)

〉
.

Also, for a and b coprime, we have P
(k)
a,b =

(
a
k

)
ab−k−1, which in the case

k = 0 reduces to a formula obtained in [1] for the number of parking
functions in the special case of Dyck paths, and a and b coprime.
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Numbers Arising from Combinatorial Statistics on Lattice Paths, J. Statist.
Plann. Inference 34 (1993), 35–55. 9

[9] E. S. Egge, J. Haglund, K. Killpatrick, D. Kremer, A Schröder Gen-
eralization of Haglund’s Statistic on Catalan Paths, Electron. J. Combin. 10
(2003), Article #R16, 21 pp. 8, 9, 10

[10] H. D. Grossman, Fun with Lattice Points: Paths in a Lattice Triangle,
Scripta Math. 16 (1950), 207–212. 3

[11] M. Haiman, Combinatorics, Symmetric functions and Hilbert Schemes, in:
CDM 2002: Current Developments in Mathematics in Honor of Wilfried
Schmid & George Lusztig, International Press Books, 2003, pp. 39–112. 10

[12] A. Negut, The Shuffle Algebra Revisited, Int. Math. Res. Notices (2014) (22):
6242–6275. doi: 10.1093/imrn/rnt156 arXiv:1209.3349, (2012). 11

[13] N.J.A Sloane, The On-Line Encyclopedia of Integer Sequences,
http://oeis.org.
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