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1 INTRODUCTION
Noncrossing configurations of chords on regular polygons are combinatorialobjects appearing in various contexts (see for instance [FN99; CP92; DRS10; PR14]).A simple generalization of these consists in allowing several colors for the arcs ofthe configurations. This has been considered in previous work [Gir20] of the author,where the arcs are labeled by elements of a unitary magma M. More precisely,given a unitary magma M, CM is the set of regular polygons p where all possiblearcs of p are labeled by elements of M. When an arc is labeled by the unit 1M of

M, it is considered as missing, so that the notion of noncrossing configurationsmakes sense. More precisely, noncrossing configurations have no diagonalslabeled by elements different from 1M crossing another such diagonal. Theseobjects have been named noncrossing M-cliques and are the main combinatorialobjects studied in the present article.The linear span CM of all M-cliques (by relaxing the noncrossing condition)over any field of characteristic zero forms an operad with rich algebraic andcombinatorial properties, introduced and studied in [Gir20]. The operad structureadded on these objects allows one to compose two M-cliques p and q by gluinga special arc of q (called the base) onto a selected edge of p. The magmaticproduct of M encodes how to relabel some edges of the resulting M-clique. Weshowed in this previous work that the subspace NCM of CM generated by allnoncrossing M-cliques forms a suboperad of CM. The purpose of the presentpaper is to perform a complete study of this operad. A first particularity of NCMmotivating this objective is that it has a special status among all the suboperadsof CM. Indeed, if M is nontrivial, then CM is not a binary operad, and NCM isprecisely the biggest binary suboperad of CM.Let us now give an overview of the main properties of NCM and the mainresults contained in this article. First, by considering the dual trees of noncrossing
M-cliques, we can view each noncrossing M-clique of NCM as a Schröder tree(an ordered tree where all internal nodes have two or more children) with edgeslabeled by M satisfying some conditions. Under this point of view, NCM is anoperad of such Schröder trees endowed with a composition operation which isessentially a grafting operation with a relabeling of edges or a contraction of
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§ Operads of decorated cliques II S. Giraudo
edges. As a consequence of this alternative combinatorial realization of NCM,we obtain a formula for its dimensions involving Narayana numbers [Nar55]. Tocomplete the study of NCM, a natural and important question is to exhibit one ofits presentations by generators and relations. In order to compute the space ofrelations of NCM, we use techniques of rewrite systems of trees [BN98]. Thus, wedefine a convergent rewrite rule → and show that the space induced by → is thespace of relations of NCM, leading to a presentation by generators and relationsof NCM. As an important consequence, this proves that NCM is always quadratic,regardless of M. The existence of such a convergent orientation of the space ofrelations of NCM implies also by [Hof10] that this operad is Koszul.We also study some structures related with NCM. This includes the sub-operads of NCM generated by some finite families of bubbles (the latter beingnoncrossing M-cliques with no diagonals). Under some conditions on the consid-ered sets of bubbles, we can describe the Hilbert series of these suboperads ofNCM by a system of algebraic equations. We give two examples of suboperads ofNCM generated by some subsets of triangles, including one which is a suboperadof NCD0 (D0 is the multiplicative monoid on {0, 1}) isomorphic to the operadMotz of Motzkin paths defined in [Gir15]. Moreover, since NCM is a binary andquadratic operad, its Koszul dual NCM! is well-defined (cf. [GK94]). We computeits presentation, present an algebraic equation for its Hilbert series, give a formulafor its dimensions, and establish a combinatorial realization of NCM! as a gradedspace involving dual M-cliques, which are M2-cliques with some constraints forthe labels of their arcs.Furthermore, by selecting appropriate unitary magmas M, it is possible toprovide alternative constructions of already known operads as suboperads of NCM.We hence construct the operad NCT of based noncrossing trees [Cha07; Ler11],the suboperad FF4 of the operad of formal fractions FF [CHN16], and the operadof bicolored noncrossing configurations BNC [CG14]. As a consequence of thislast construction, all the suboperads of BNC can be obtained from the constructionNC. This includes for example the operad of noncrossing plants [Cha07], thedipterous operad [LR03; Zin12], and the 2-associative operad [LR06; Zin12].This text is organized as follows. Section 2 sets our notations about trees,syntax trees, rewrite rules on trees, free operads, and Koszul duality of operads.In Section 3, we perform the aforementioned study of the operad NCM and inSection 4, of NCM!. Finally, in Section 5, we use the construction NC to providealternative definitions of some known operads.This paper is an extended version of [Gir17], containing the proofs of thepresented results. It is also a sequel of [Gir20].
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§ Syntax trees Operads of decorated cliques II S. Giraudo
GENERAL NOTATIONS AND CONVENTIONS. All the algebraic structures of this articlehave a field of characteristic zero K as ground field. For a set S, K⟨S⟩ denotesthe linear span of the elements of S. For integers a and c, [a, c] denotes the set
{b ∈ N : a ⩽ b ⩽ c}, and [n] is short for the set [1, n]. The cardinality of a finiteset S is denoted by #S. For a set A, A∗ denotes the set of finite sequences, calledwords, of elements of A. For an integer n ⩾ 0, An (respectively A⩾n) is the set ofwords on A of length n (respectively at least n). The word of length 0 is the emptyword denoted by ε. If u is a word, its letters are indexed from left to right from 1to its length |u|. For i ∈ [|u|], ui is the letter of u at position i. If a is a letter and
n is a nonnegative integer, an denotes the word consisting in n occurrences of a.For a letter a, |u|a denotes the number of occurrences of a in u.

2 ELEMENTARY DEFINITIONS AND TOOLS
The main purposes of this section are to provide tools to compute presentationsand to prove Koszulity of operads. For this, it is important to have precisedefinitions about free operads, trees, and rewrite rules on trees at hand.

2.1 TREES AND REWRITE RULESUnless otherwise specified, we use in the sequel the standard terminology(i.e., node, edge, root, child, etc.) about ordered trees [Knu97]. For the sake ofcompleteness, we recall the most important definitions and set our notations.
2.1.1 TREES. Let t be an ordered tree. The arity of a node of t is its numberof children. An internal node (respectively a leaf) of t is a node with a nonzero(respectively null) arity. Internal nodes can be labeled, that is, each internal nodeof a tree is associated with an element of a certain set. Given an internal node xof t, the children of x are by definition totally ordered from left to right and arethus indexed from 1 to the arity ℓ of x. For i ∈ [ℓ], the ith subtree of t is the treerooted at the ith child of t. Similarly, the leaves of t are totally ordered from leftto right and thus are indexed from 1 to the number of its leaves. In our graphicalrepresentations, each ordered tree is depicted so that its root is the uppermostnode. Since we consider in the sequel only ordered rooted trees, we shall callthese simply trees.
2.1.2 SYNTAX TREES. Let G := ⊔n⩾1 G(n) be a graded set. The arity of an element

x of G is n provided that x ∈ G(n). A syntax tree on G is a tree such that itsinternal nodes of arity n are labeled by elements of arity n of G. The degree(respectively arity) of a syntax tree is its number of internal nodes (respectively
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§ Rewrite rules Operads of decorated cliques II S. Giraudo
leaves). For instance, if G := G(2) ⊔ G(3) with G(2) := {a, c} and G(3) := {b},

c a
b

b a (2.1.1)
is a syntax tree on G of degree 5 and arity 8. Its root is labeled by b and hasarity 3.A syntax tree s is a subtree of a syntax tree t if it is possible to fit s at a certainplace of t, by possibly superimposing leaves of s and internal nodes of t. In thiscase, we say that t admits an occurrence of (the pattern) s. Conversely, we saythat t avoids s if there is no occurrence of s in t.2.1.3 REWRITE RULES. Let S be a set of trees. A rewrite rule on S is a binaryrelation → on S which has the property that, if s→ s′ for two trees s and s′, then
s and s′ have the same number of leaves. We say that a tree t is rewritable in
one step into t′ by → if there exist two trees s and s′ satisfying s→ s′ and t has asubtree s such that, by replacing s by s′ in t, we obtain t′. We denote this propertyby t Ñ t′, so that Ñ is a binary relation on S. If t = t′ or if there exists a sequenceof trees (t1, . . . , tk−1) with k ⩾ 1 such that t Ñ t1 Ñ · · · Ñ tk−1 Ñ t′, we say that t is
rewritable by Ñ into t′, and we denote this property by t

∗Ñ t′. In other words,
∗Ñ is the reflexive and transitive closure of Ñ. We write ∗→ for the reflexiveand transitive closure of →, and we write ∗↔ (respectively ∗⇔) for the reflexive,transitive, and symmetric closure of → (respectively of Ñ). The vector space

induced by → is the subspace of the linear span K⟨S⟩ of all trees of S generatedby the family of all t − t′ such that t ∗↔ t′.For instance, let S be the set of trees where internal nodes are labeled by
{a, b, c} and consider the rewrite rule → on S satisfying

b → a a , (2.1.2a) a c → a c . (2.1.2b)
We then have the following steps of rewritings by →:

b ac b
c

Ñ a
c a

c
a b Ñ a c ac

a
b Ñ

a c ac
a

a a . (2.1.3)
We shall use the standard terminology (terminating, normal form, confluent,

convergent, etc.) about rewrite rules [BN98]. Let us recall now the most importantdefinitions. Let → be a rewrite rule on a set S of trees. We say that → is
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§ Evaluations Operads of decorated cliques II S. Giraudo
terminating if there is no infinite chain t Ñ t1 Ñ t2 Ñ · · · . In this case, any tree
t of S that cannot be rewritten by → is a normal form for →. We say that → is
confluent if for any trees t, r1, and r2 such that t ∗Ñ r1 and t

∗Ñ r2, there exists atree t′ such that r1 ∗Ñ t′ and r2 ∗Ñ t′. If → is both terminating and confluent, then
→ is convergent.2.2 FREE OPERADS AND KOSZUL DUALITYAll notations and conventions about operads come from Section 1.1 of [Gir20].
2.2.1 FREE OPERADS. Let G := ⊕n⩾1 G(n) be a graded vector space. In particular,

G is a graded set so that we can consider syntax trees on G. The free operadover G is the operad Free(G) wherein, for n ⩾ 1, Free(G)(n) is the linear spanof the syntax trees on G of arity n. The labeling of the internal nodes of thetrees of Free(G) is linear in the sense that if t is a syntax tree on G having aninternal node labeled by x + λy ∈ G, λ ∈ K, then, in Free(G), we have t = tx + λty ,where tx (respectively ty) is the tree obtained by labeling by x (respectively y) theconsidered node labeled by x + λy in t. The partial composition s ◦i t of Free(G)of two syntax trees s and t on G consists in grafting the root of t on the ith leaf of
s. The unit ⊥ of Free(G) is the tree consisting in one leaf. For instance, by setting
G := K⟨G⟩ where G is the graded set defined in the previous example, in Free(G)we have

a a b ◦3 c a + c = a a
c a

b + a a
c c

b . (2.2.1)
We denote by c : G → Free(G) the inclusion map, sending any x of G to the

corolla labeled by x, that is, the syntax tree consisting in a single internal nodelabeled by x attached to a required number of leaves. In the sequel, if requiredby the context, we shall implicitly view an element x of G as the corolla c(x) ofFree(G). For instance, given two elements x and y of G, we shall denote the syntaxtree c(x) ◦i c(y) simply by x ◦i y, for all valid integers i.Free operads satisfy a universality property. Indeed, Free(G) is the uniqueoperad (up to isomorphism) such that for an operad O and a linear map f : G → Orespecting the arities, there exists a unique operad morphism φ : Free(G) → Osuch that f = φ ◦ c.
2.2.2 EVALUATIONS AND TREELIKE EXPRESSIONS. Let us first fix a notation. If O isan operad, the complete composition map of O is the linear map

◦ : O(n) ⊗ O(m1) ⊗ · · · ⊗ O(mn) → O(m1 + · · · + mn), (2.2.2)
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§ Koszul duality Operads of decorated cliques II S. Giraudo
defined, for x ∈ O(n) and y1, . . . , yn ∈ O, by

x ◦ [y1, . . . , yn] := (. . . ((x ◦n yn) ◦n−1 yn−1) . . . ) ◦1 y1. (2.2.3)
For an operad O, by viewing O as a graded vector space, Free(O) is by definitionthe free operad on O. The evaluation map of O is the linear mapev : Free(O) → O, (2.2.4)defined recursively, for any syntax tree t on O, by

ev(t) := {1 ∈ O, if t =⊥,
x ◦ [ev (t1) , . . . , ev (tk)] , otherwise,

(2.2.5)
where x is the label of the root of t and t1, . . . , tk are, from left to right, thesubtrees of t. This map is the unique surjective operad morphism from Free(O) to
O satisfying ev(c(x)) = x for all x ∈ O. If S is a subspace of O, a treelike expressionon S of x ∈ O is a tree t of Free(O) such that ev(t) = x and all internal nodes of tare labeled by S.
2.2.3 PRESENTATIONS BY GENERATORS AND RELATIONS. Let G := ⊔

n⩾1 G(n) be agraded set. Setting G := K⟨G⟩, we denote the operad ideal of Free(G) generatedby the subspace R of Free(G) by ⟨R⟩. Given an operad O, the pair (G,R) is a
presentation of O if O is isomorphic to Free(G)/⟨R⟩. In this case, we call G the
space of generators and R the space of relations of O. We say that O is quadraticif there is a presentation (G,R) of O such that R is a homogeneous subspace ofFree(G) consisting in syntax trees of degree 2. Furthermore, we say that O is
binary if there is a presentation (G,R) of O such that G is concentrated in arity 2.Furthermore, if O admits a presentation (G,R) and → is a rewrite rule on Free(G)such that the space induced by → is R, we say that → is an orientation of R.
2.2.4 KOSZUL DUALITY AND KOSZULITY. In [GK94], Ginzburg and Kapranov ex-tended the notion of Koszul duality of quadratic associative algebras to quadraticoperads. Starting with an operad O admitting a binary and quadratic presentation(G,R) where G is finite, the Koszul dual of O is the operad O!, isomorphic to theoperad admitting the presentation (G,R⊥) where R⊥ is the annihilator of R inFree(G), G being the space K⟨G⟩, with respect to the bilinear map

⟨−, −⟩ : Free(G)(3) ⊗ Free(G)(3) → K (2.2.6)defined, for all x, x′, y, y ′ ∈ G(2), by
⟨x ◦i y, x′ ◦i′ y ′⟩ :=


1, if x = x′, y = y ′, and i = i′ = 1,
−1, if x = x′, y = y ′, and i = i′ = 2,0, otherwise.

(2.2.7)
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§ Operads of cliques Operads of decorated cliques II S. Giraudo
Then, with knowledge of a presentation of O, one can compute a presentationof O!.Recall that a quadratic operad O is Koszul if its Koszul complex is acyclic [GK94;LV12]. Furthermore, if O is Koszul and admits an Hilbert series, then the Hilbertseries of O and of its Koszul dual O! are related [GK94] by

HO (−HO!(−t)) = t. (2.2.8)Relation (2.2.8) can be either used to prove that an operad is not Koszul (this isthe case when the coefficients of the hypothetical Hilbert series of the Koszul dualadmit coefficients that are not nonnegative integers) or to compute the Hilbertseries of the Koszul dual of a Koszul operad.Here, to prove the Koszulity of an operad O, we shall make use of a toolintroduced by Dotsenko and Khoroshkin [DK10] in the context of Gröbner basesfor operads, which in our context can be reformulated in the following way byusing rewrite rules.
▶ Lemma 2.2.1  Let O be an operad admitting a quadratic presentation (G,R).
If there exists an orientation → of R such that → is a convergent rewrite rule,
then O is Koszul.

If → satisfies the conditions contained in the statement of Lemma 2.2.1, thenthe set of normal forms of → forms a basis of O, called Poincaré–Birkhoff–Witt
basis. These bases arise from the work of Hoffbeck [Hof10] (see also [LV12]).2.2.5 ALGEBRAS OVER OPERADS. An operad O encodes a category of algebraswhose objects are called O-algebras. An O-algebra AO is a vector space endowedwith a linear left action

· : O(n) ⊗ A⊗n
O → AO, n ⩾ 1, (2.2.9)satisfying the relations imposed by the structure of O, which are

(x ◦i y) · (a1 ⊗ · · · ⊗ an+m−1)= x · (a1 ⊗ · · · ⊗ ai−1 ⊗ y · (ai ⊗ · · · ⊗ ai+m−1) ⊗ ai+m ⊗ · · · ⊗ an+m−1) , (2.2.10)for all x ∈ O(n), y ∈ O(m), i ∈ [n], and a1 ⊗ · · · ⊗ an+m−1 ∈ A⊗n+m−1
O .Notice that, by (2.2.10), if G is a generating set of O, it is enough to define theaction of each x ∈ G on A⊗|x|

O to wholly define ·. In other words, any element xof O of arity n plays the role of a linear operation
x : A⊗n

O → AO, (2.2.11)taking n elements of AO as inputs and computing an element of AO. By a slight butconvenient abuse of notation, for x ∈ O(n), we shall write x(a1, . . . , an), or a1 x a2if x has arity 2, for the element x · (a1 ⊗· · ·⊗an) of AO, for any a1 ⊗· · ·⊗an ∈ A⊗n
O .
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§ Operads of decorated cliques II S. Giraudo
Observe that by (2.2.10) an associative element of O gives rise to an associativeoperation on AO.3 OPERADS OF NONCROSSING DECORATEDCLIQUES

We use all the notations and definitions of Sections 1.2 and 2 of [Gir20] aboutdecorated M-cliques and the M-clique operad CM. We perform here a completestudy of the suboperad Cro0M of noncrossing M-cliques defined in Section 3.1.3of the aforementioned paper. For simplicity, this operad is denoted in the sequel asNCM and called the noncrossing M-clique operad. The process which producesfrom a unitary magma M the operad NCM is called the noncrossing clique
construction.3.1 GENERAL PROPERTIESAs shown in [Gir20], NCM is an operad defined on the linear span of allnoncrossing M-cliques and can be seen as a suboperad of CM restrained on M-cliques with 0 as crossing number. By definition of NCM, the partial composition
p ◦i q of two noncrossing M-cliques p and q in NCM is equal to the partialcomposition p◦iq in CM. Recall that the partial composition p◦iq is the noncrossing
M-clique obtained by gluing the base of q onto the ith edge of p and by relabelingthe common arcs between p and q, respectively the arcs (i, i + 1) and (1, m + 1),by pi ⋆ q0, where ⋆ is the magmatic product of M. For instance, in CZ, we have

1 −2−2 1 ◦2 13 2 =
1 −2

1 1
2

1 . (3.1.1)
We call fundamental basis of NCM the fundamental basis of CM restrictedto noncrossing M-cliques. Observe that the fundamental basis of NCM is aset-operad basis.To study NCM, we begin by establishing the fact that NCM inherits someproperties of CM. Then we shall describe a realization of NCM in terms ofdecorated Schröder trees, compute a minimal generating set of NCM, and computeits dimensions.

3.1.1 FIRST PROPERTIES.
▶ Proposition 3.1.1  Let M be a unitary magma. Then,

(i) the associative elements of NCM are the ones of CM;
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§ Treelike expressions Operads of decorated cliques II S. Giraudo
(ii) the group of symmetries of NCM contains the map ref (defined by (2.2.1.4)

in [Gir20]) and all the maps Cθ where θ are unitary magma automor-
phisms of M;

(iii) the fundamental basis of NCM is a basic set-operad basis if and only if
M is right cancelable;

(iv) the map ρ (defined by (2.2.16) in [Gir20]) is a rotation map of NCM
endowing it with a cyclic operad structure.

◀ Proof  First, since NCM is a suboperad of CM, each associative elementof NCM is an associative element of CM. Moreover, since all M-bubbles arein NCM and, as shown in [Gir20], all associative elements of CM are linearcombinations of M-bubbles, each associative element of CM belongs to NCM.This shows Item (i). Moreover, since for any noncrossing M-clique p, ref(p)(respectively ρ(p)) is still noncrossing and ref belongs to the group of symmetriesof CM (respectively ρ is a rotation map of CM), Item (ii) (respectively Item (iv))holds. Finally, again since NCM is a suboperad of CM, since the fundamentalbasis of CM is a basic set-operad basis, and since NCM(2) = CM(2), Item (iii)holds. ■

3.1.2 TREELIKE EXPRESSIONS ON BUBBLES. Let p be a noncrossing M-clique ofarity n ⩾ 2, and (x, y) be a diagonal or the base of p. Let {z1, . . . , zk} be the setof vertices of p such that x = z1 < · · · < zk = y and, for all i ∈ [k − 1], zi+1 is thegreatest vertex of p such that (zi, zi+1) is a solid diagonal or a (not necessarily solid)edge of p. The area of p adjacent to (x, y) is the M-bubble q of arity k whosebase is labeled by p(x, y) and qi = p(zi, zi+1) for all i ∈ [k]. From a geometric pointof view, q is the unique maximal component of p adjacent to the arc (x, y), withoutsolid diagonals, and bounded by solid diagonals or edges of p. For instance, forthe noncrossing Z-clique
p :=

1 1
4 12

3
1 2 1

, (3.1.2)
the path associated with the diagonal (4, 9) of p is (4, 5, 6, 8, 9). For this reason, thearea of p adjacent to (4, 9) is the Z-bubble

1
3 2

. (3.1.3)
▶ Proposition 3.1.2  Let M be a unitary magma and p be a noncrossing
M-clique of arity greater than 1. Then there is a unique M-bubble q with a
maximal arity k ⩾ 2 such that p = q ◦ [r1, . . . , rk], where each ri, i ∈ [k], is a
noncrossing M-clique with a base labeled by 1M.
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§ Operads of decorated cliques II S. Giraudo
◀ Proof  Let q′ be the area of p adjacent to its base and k′ be the arity of q′.By definition of the partial composition of NCM, for all M-cliques u, u′, u1, and
u2, if u = u′ ◦i u1 = u′ ◦i u2 and u1 and u2 have bases labeled by 1M, then u1 = u2.This implies in particular that there are unique noncrossing M-cliques r′

i, i ∈ [k′],with bases labeled by 1M such that p = q′ ◦ [r′1, . . . , r′
k′]. Finally, the fact that q′ isthe area of p adjacent to its base implies the maximality for the arity of q′. Thestatement of the proposition follows. ■Consider the linear mapbt : NCM → Free (K⟨BM⟩) (3.1.4)defined recursively by bt( ) :=⊥ and, for a noncrossing M-clique p of aritygreater than 1, by bt(p) := c(q) ◦ [bt(r1), . . . , bt(rk)] , (3.1.5)where p = q◦ [r1, . . . , rk] is the unique decomposition of p stated in Proposition 3.1.2.We call bt(p) the bubble tree of p. For instance, in NCZ,

1
2

1
4 12

3
31 2 1 bt7−Ï

1 1

1

3
4 2

211

3 2 . (3.1.6)

▶ Lemma 3.1.3  Let M be a unitary magma. For a noncrossing M-clique p,bt(p) is a treelike expression on BM of p.

◀ Proof  We proceed by induction on the arity n of p. If n = 1, since p = andbt( ) =⊥, the statement of the lemma immediately follows. Otherwise, we havebt(p) = c(q) ◦ [bt(r1), . . . , bt(rk)] where p uniquely decomposes as p = q ◦ [r1, . . . , rk]under the conditions stated by Proposition 3.1.2. By definition of area and of themap bt, q is an M-bubble. Moreover, by induction hypothesis, any bt(ri), i ∈ [k], isa treelike expression on BM of ri. Hence, bt(p) is a treelike expression on BMof p. ■

▶ Proposition 3.1.4  Let M be a unitary magma. Then the map bt is injective
and the image of bt is the linear span of all syntax trees t on BM such that

(i) the root of t is labeled by an M-bubble;
(ii) the internal nodes of t different from the root are labeled by M-bubbles

whose bases are labeled by 1M;
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§ Realization Operads of decorated cliques II S. Giraudo
(iii) if x and y are two internal nodes of t such that y is the ith child of x,

the ith edge of the bubble labeling x is solid.

◀ Proof  First of all, since by definition bt sends a basis element of NCM to abasis element of Free (K⟨BM⟩), it is sufficient to show that bt is injective as a mapfrom CM to the set of syntax trees on BM to establish that it is an injective linearmap. For this, we proceed by induction on the arity n. If n = 1, since bt( ) =⊥and NCM(1) is of dimension 1, bt is injective. Assume now that p and p′ are twononcrossing M-cliques of arity n such that bt(p) = bt(p′). Hence, p (respectively
p′) uniquely decomposes as p = q ◦ [r1, . . . , rk] (respectively p′ = q′ ◦ [r′1, . . . , r′

k]) asstated by Proposition 3.1.2 and
bt(p) = c(q) ◦ [bt(r1), . . . , bt(rk)] = c(q′) ◦

[bt(r′1), . . . , bt(r′
k)] = bt(p′). (3.1.7)

Now, because by definition of area, all bases of the ri and r′
i, i ∈ [k], are labeledby 1M, this implies that q = q′. Therefore, we have bt(ri) = bt(r′

i) for all i ∈ [k], sothat, by induction hypothesis, ri = r′
i for all i ∈ [k]. Hence, bt is injective.The definition of bt together with Proposition 3.1.2 leads to the fact that, for anoncrossing M-clique p, the syntax tree bt(p) satisfies (i), (ii), and (iii). Conversely,let t be a syntax tree satisfying (i), (ii), and (iii). We show by structural induction on

t that there is a noncrossing M-clique p such that bt(p) = t. If t =⊥, the propertyholds because bt( ) =⊥. Otherwise, we have t = s ◦ [u1, . . . , uk] where s is asyntax tree of degree 1 and the ui, i ∈ [k], are syntax trees. Since t satisfies (i), (ii),and (iii), the trees s and ui, i ∈ [k], satisfy the same three properties. Therefore, byinduction hypothesis, there are noncrossing M-cliques q and ri, i ∈ [k], such thatbt(q) = s and bt(ri) = ui. Now define p as the noncrossing M-clique q ◦ [r1, . . . , rk].By definition of the map bt and the unique decomposition stated in Proposition 3.1.2for p, one obtains that bt(p) = t. ■Observe that bt is not an operad morphism. Indeed,
bt ( ◦1 ) = ̸= = bt ( )

◦1 bt ( )
. (3.1.8)

Observe that (3.1.8) holds for all unitary magmas M since 1M is always idempotent.
3.1.3 REALIZATION IN TERMS OF DECORATED SCHRÖDER TREES. Recall that a

Schröder tree is a tree such that all internal nodes have at least two children. An
M-Schröder tree t is a Schröder tree such that each edge connecting two internalnodes is labeled by M̄, each edge connecting an internal node and a leaf is labeledby M, and the outgoing edge from the root of t is labeled by M (see (3.1.9) for anexample of a Z-Schröder tree).
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§ Operads of decorated cliques II S. Giraudo
From the description of the image of the map bt provided by Proposition 3.1.4,any bubble tree t of a noncrossing M-clique p of arity n can be encoded by an

M-Schröder tree s with n leaves. Indeed, this M-Schröder tree is obtained byconsidering each internal node x of t and by labeling the edge connecting x andits ith child by the label of the ith edge of the M-bubble labeling x. The outgoingedge from the root of s is labeled by the label of the base of the M-bubble labelingthe root of t. For instance, the bubble tree of (3.1.6) is encoded by the Z-Schrödertree
1

2
2

1

1
4
1
2 3

3
1

, (3.1.9)
where the labels of the edges are placed in their centers, and where unlabelededges are implicitly labeled by 1M. We shall use these drawing conventions inthe sequel. As a side remark, observe that the M-Schröder tree encoding anoncrossing M-clique p and the dual tree of p (in the usual meaning) have thesame underlying unlabeled tree.This encoding of noncrossing M-cliques by bubble trees is reversible, andhence one can interpret NCM as an operad on the linear span of all M-Schrödertrees. Hence, through this interpretation, if s and t are two M-Schröder trees and
i is a valid integer, the tree s ◦i t is computed by grafting the root of t to the ithleaf of s. Then, by writing b for the label of the edge adjacent to the root of tand a for the label of the edge adjacent to the ith leaf of s, we have two casesto consider, depending on the value of c := a ⋆ b. If c ̸= 1M, we label the edgeconnecting s and t by c. Otherwise, if c = 1M, we contract the edge connecting
s and t by merging the root of t and the direct ancestor of the ith leaf of s (seeFigure 1). For instance, in NCN3 we have the two partial compositions

11 212 ◦2 1 2
1 = 12 1 2

212
, (3.1.10a)

11 212 ◦3 1 2
1 = 11 112

2
. (3.1.10b)

In the sequel, we shall indifferently view NCM as an operad on noncrossing
M-cliques or on M-Schröder trees.
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s′

a

i

◦i

t1 tk

b

. . .

(A) The expression s ◦i t to com-pute. The displayed leaf is the
ith one of s.

s′

t1 tk. . .

a ⋆ b

(B) The resultingtree if a ⋆ b ̸= 1M .

s′

t1 tk. . .

(C) The resultingtree if a ⋆ b = 1M .
FIGURE 1. The partial composition of NCM realized on M-Schröder trees. Here,the two cases (b) and (c) for the computation of s ◦i t are shown, where s and t aretwo M-Schröder trees. In these drawings, the triangles denote subtrees.

3.1.4 MINIMAL GENERATING SET.
▶ Proposition 3.1.5  Let M be a unitary magma. The set TM of all M-triangles
is a minimal generating set of NCM.

◀ Proof  We start by showing by induction on the arity that the suboperad(NCM)TM of NCM generated by TM is NCM. This is immediately true in arity 1.Let p be a noncrossing M-clique of arity n ⩾ 2. Proposition 3.1.2 says in particularthat we can express p as p = q ◦ [r1, . . . , rk] where q is an M-bubble of arity k ⩾ 2and the ri, i ∈ [k], are noncrossing M-cliques. Since q is an M-bubble, it can beexpressed as
q = qk

q0 ◦1 qk−1 ◦1 · · · ◦1 q3 ◦1 q2q1 . (3.1.11)Observe that, in (3.1.11), brackets are not necessary since ◦1 is associative. Since
k ⩾ 2, the arities of each ri, i ∈ [k], are smaller than the one of p. For this reason,by induction hypothesis, each ri belongs to (NCM)TM . Moreover, since (3.1.11)shows an expression of q by partial compositions of M-triangles, q also belongs to(NCM)TM . This implies that this is also the case for p. Hence, NCM is generatedby TM.Finally, due to the fact that the partial composition of two M-triangles isan M-clique of arity 3, if p is an M-triangle, p cannot be expressed as a partial
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§ Dimensions Operads of decorated cliques II S. Giraudo
composition of M-triangles. Moreover, since the space NCM(1) is trivial, thesearguments imply that TM is a minimal generating set of NCM. ■Proposition 3.1.5 also says that NCM is the smallest suboperad of CM thatcontains all M-triangles and that NCM is the biggest binary suboperad of CM.
3.1.5 DIMENSIONS. We now use the notion of bubble trees introduced in Sec-tion 3.1.2 to compute the dimensions of NCM.

▶ Proposition 3.1.6  Let M be a finite unitary magma. The Hilbert series
HNCM(t) of NCM satisfies

t + (m3 − 2m2 + 2m − 1) t2 + (2m2t − 3mt + 2t − 1)HNCM(t)+ (m − 1) HNCM(t)2 = 0, (3.1.12)
where m := #M.

◀ Proof  By Proposition 3.1.4, the set of noncrossing M-cliques is in one-to-onecorrespondence with the set of syntax trees on BM that satisfy (i), (ii), and (iii).We call T(t) the generating series of these trees and S(t) the generating seriesof these trees with the extra condition that the roots are labeled by M-bubbleswhose bases are labeled by 1M. Immediately from its description, S(t) satisfies
S(t) = t +∑

n⩾2 ((m − 1)S(t) + t)n , (3.1.13)
and T(t) satisfies

T(t) = t + m(S(t) − t). (3.1.14)As the set of noncrossing M-cliques forms the fundamental basis of NCM, wehave HNCM(t) = T(t). We eventually obtain (3.1.12) from (3.1.13) and (3.1.14) by adirect computation. ■From Proposition 3.1.6, we deduce that the Hilbert series of NCM satisfies
HNCM(t) = 1 − (2m2 − 3m + 2)t −

√1 − 2(2m2 − m)t + m2t22(m − 1) , (3.1.15)
where m := #M ≠ 1.By using Narayana numbers, whose definition is recalled in Section 3.1.6of [Gir20], we can state the following result.
▶ Proposition 3.1.7  Let M be a finite unitary magma. For all n ⩾ 2,

dim NCM(n) = ∑
0⩽k⩽n−2 mn+k+1(m − 1)n−k−2 nar(n, k), (3.1.16)

where m := #M.
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§ Dimensions Operads of decorated cliques II S. Giraudo
◀ Proof  As shown by Proposition 3.1.4, each noncrossing M-clique p of NCM(n)can be encoded by a unique syntax tree bt(p) on BM satisfying some conditions.Moreover, Proposition 3.1.5 shows that a noncrossing M-clique can be expressed(not necessarily in a unique way) as partial compositions of several M-triangles.By combining these two results, we obtain that a noncrossing M-clique p can beencoded by a syntax tree on TM obtained from bt(p) by replacing each of itsnodes s of arity ℓ ⩾ 3 by left comb binary syntax trees s′ on TM satisfying

s′ := c (q1) ◦1 c (q2) ◦1 · · · ◦1 c (qℓ−1) , (3.1.17)
where the qi, i ∈ [ℓ −1], are the unique M-triangles such that, for every i ∈ [2, ℓ −1],the base of qi is labeled by 1M , for every j ∈ [ℓ − 2], the first edge of qj is labeledby 1M, and ev(s′) = ev(s). Observe that, in (3.1.17), brackets are not necessarysince ◦1 is associative. Therefore, p can be encoded in a unique way as a binarysyntax tree t on TM satisfying the following restrictions:(i) the M-triangles labeling the internal nodes of t which are not the root havebases labeled by 1M;(ii) if x and y are two internal nodes of t such that y is the right child of x, thesecond edge of the bubble labeling x is solid.To establish (3.1.16), since the set of noncrossing M-cliques forms the fun-damental basis of NCM, we now have to count these binary trees. Consider abinary tree t of arity n ⩾ 2 with exactly k ∈ [0, n − 2] internal nodes having aninternal node as a left child. There are m ways to label the base of the M-trianglelabeling the root of t, mk ways to label the first edges of the M-triangles labelingthe internal nodes of t that have an internal node as left child, mn ways to label thefirst (respectively second) edges of the M-triangles labeling the internal nodes of thaving a leaf as left (respectively right) child, and, since there are exactly n − k − 2internal nodes of t having an internal node as a right child, there are (m − 1)n−k−2ways to label the second edges of the M-triangles labeling these internal nodes.Now, since nar(n, k) counts the binary trees with n leaves and exactly k internalnodes having an internal node as a left child, and a binary tree with n leaves canhave at most n − 2 internal nodes having an internal node as left child, (3.1.16)follows. ■We can use Proposition 3.1.7 to compute the first dimensions of NCM. Forinstance, depending on m := #M, we have the following sequences of dimensions:

1, 1, 1, 1, 1, 1, 1, 1, m = 1, (3.1.18a)
1, 8, 48, 352, 2880, 25216, 231168, 2190848, m = 2, (3.1.18b)

1, 27, 405, 7533, 156735, 349263, 81520425, 1967414265, m = 3, (3.1.18c)
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§ Space of relations Operads of decorated cliques II S. Giraudo
1, 64, 1792, 62464, 2437120, 101859328, 4459528192, 201889939456. m = 4,(3.1.18d)The second one forms, except for the first terms, Sequence A054726 of [Slo]. Thelast two sequences are not listed in [Slo] at this time.3.2 PRESENTATION AND KOSZULITYThe aim of this section is to establish a presentation by generators and relationsof NCM. For this, we will define an adequate rewrite rule on the set of syntaxtrees on TM and prove that it admits the required properties.3.2.1 SPACE OF RELATIONS. Let RNCM be the subspace of Free (K⟨TM⟩) (3) gener-ated by the elements

c( p2p1
p0
)

◦1 c ( q2q1
q0
)

− c( p2r1
p0
)

◦1 c ( q2q1
r0
)

, if p1 ⋆ q0 = r1 ⋆ r0 ̸= 1M, (3.2.1a)
c( p2p1

p0
)

◦1 c ( q2q1
q0
)

− c( r2q1
p0
)

◦2 c ( p2q2
r0
)

, if p1 ⋆ q0 = r2 ⋆ r0 = 1M, (3.2.1b)
c( p2p1

p0
)

◦2 c ( q2q1
q0
)

− c( r2p1
p0
)

◦2 c ( q2q1
r0
)

, if p2 ⋆ q0 = r2 ⋆ r0 ̸= 1M, (3.2.1c)
where p, q, and r are M-triangles.
▶ Lemma 3.2.1  Let M be a unitary magma, and s and t be two syntax trees
of arity 3 on TM. Then s − t belongs to RNCM if and only if ev(s) = ev(t).
◀ Proof  Assume first that s−t belongs to RNCM. Then s−t is a linear combinationof elements of the form (3.2.1a), (3.2.1b), and (3.2.1c). Now, observe that, if p, q,and r are three M-triangles,(a) if δ := p1 ⋆ q0 = r1 ⋆ r0 ̸= 1M , we have

ev(c( p2p1
p0
)

◦1 c ( q2q1
q0
)) = q2

q1 p2
p0δ = ev(c( p2r1

p0
)

◦1 c ( q2q1
r0
))

, (3.2.2)
(b) if p1 ⋆ q0 = r2 ⋆ r0 = 1M , we have

ev(c( p2p1
p0
)

◦1 c ( q2q1
q0
)) = q2

q1 p2
p0 = ev(c( r2q1

p0
)

◦2 c ( p2q2
r0
))

, (3.2.3)
(c) if δ := p2 ⋆ q0 = r2 ⋆ r0 ̸= 1M , we have

ev(c( p2p1
p0
)

◦2 c ( q2q1
q0
)) = q1

p1 q2
p0δ = ev(c( r2p1

p0
)

◦2 c ( q2q1
r0
))

. (3.2.4)
This shows that all evaluations in NCM of (3.2.1a), (3.2.1b), and (3.2.1c) are equalto zero. Therefore, ev(s − t) = 0, and hence we have ev(s) − ev(t) = 0 and, asexpected, ev(s) = ev(t).
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§ Space of relations Operads of decorated cliques II S. Giraudo
We now assume that ev(s) = ev(t) and let r := ev(s). As s is of arity 3, r also isof arity 3 and thus,

r ∈
{

q2
q1 p2

p0δ ,
q2

q1 p2
p0 ,

q1
p1 q2

p0δ : p, q ∈ TM, δ ∈ M̄
}

. (3.2.5)
Now, by definition of the partial composition of NCM, if r has the form of the first(respectively second, third) noncrossing M-clique appearing in (3.2.5), s and t areof the form of the first and second syntax trees of (3.2.1a) (respectively (3.2.1b),(3.2.1c)). Hence, in all cases, s − t is in RNCM. ■

▶ Proposition 3.2.2  Let M be a finite unitary magma. Then the dimension
of the space RNCM satisfiesdimRNCM = 2m6 − 2m5 + m4, (3.2.6)
where m := #M.

◀ Proof  For x ∈ M, let f (x) be the number of ordered pairs (y, z) ∈ M2 suchthat x = y ⋆ z. Since M is finite, f : M → N is a well-defined map.Let ≡ be the equivalence relation on the set of syntax trees on TM of arity3 satisfying s ≡ t if s and t are two such syntax trees satisfying ev(s) = ev(t). Letalso C be the set of noncrossing M-cliques of arity 3. For r ∈ C, we denote theset of syntax trees s satisfying ev(s) = r by [r]≡. Proposition 3.1.5 says in particularthat any r ∈ C can be obtained by a partial composition of two M-triangles, andhence all [r]≡ are nonempty sets and thus, are ≡-equivalence classes.Moreover, by Lemma 3.2.1, for syntax trees s and t, we have s ≡ t if and onlyif s − t is in RNCM. For this reason, the dimension of RNCM is linked with thecardinalities of all ≡-equivalence classes bydimRNCM =∑
r∈C

(#[r]≡ − 1). (3.2.7)
We now compute (3.2.7) by enumerating each ≡-equivalence class [r]≡.Observe that, since r is of arity 3, it can be of three different forms accordingto the presence of a solid diagonal.(a) If

r = q2
q1 p2

p0δ (3.2.8)
for some p0, p2, q1, q2 ∈ M and δ ∈ M̄, to have s ∈ [r]≡, we necessarily have

s = c( p2p1
p0
)

◦1 c ( q2q1
q0
) (3.2.9)

where p1, q0 ∈ M and p1 ⋆ q0 = δ. Hence, #[r]≡ = f (δ).
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(b) If

r = q2
q1 p2

p0 (3.2.10)
for some p0, p2, q1, q2 ∈ M, to have s ∈ [r]≡, we necessarily have

s ∈
{c( p2p1

p0
)

◦1 c ( q2q1
q0
)

, c( r2q1
p0
)

◦2 c ( p2q2
r0
)} (3.2.11)

where p1, q0, r0, r2 ∈ M, p1 ⋆ q0 = 1M , and r2 ⋆ r0 = 1M. Hence, #[r]≡ = 2f (1M).(c) Otherwise,
r = q1

p1 q2
p0δ (3.2.12)

for some p0, p1, q1, q2 ∈ M and δ ∈ M̄, and to have s ∈ [r]≡, we necessarily have
s = c( p2p1

p0
)

◦2 c ( q2q1
q0
) (3.2.13)

where p2, q0 ∈ M and p2 ⋆ q0 = δ. Hence, #[r]≡ = f (δ).Therefore, by using the fact that ∑
δ∈M

f (δ) = m2, (3.2.14)
from (3.2.7) we obtaindimRNCM = ∑

p0,p2,q1,q2∈M
δ∈M̄

(f (δ) − 1) + ∑
p0,p2,q1,q2∈M

(2f (1M) − 1) + ∑
p0,p1,q1,q2∈M

δ∈M̄

(f (δ) − 1)
= m4

2∑
δ∈M̄

(f (δ) − 1) + 2f (1M) − 1
= 2m6 − 2m5 + m4, (3.2.15)establishing the statement of the proposition. ■Observe that, by Proposition 3.2.2, the dimension of RNCM only depends onthe cardinality of M and not on its operation ⋆.

3.2.2 REWRITE RULE. Let → be the rewrite rule on the set of syntax trees on TMsatisfying
c( p2p1

p0
)

◦1 c ( q2q1
q0
)

→ c( p2δ
p0
)

◦1 c ( q2q1
)

, if q0 ̸= 1M, where δ := p1 ⋆ q0,(3.2.16a)c( p2p1
p0
)

◦1 c ( q2q1
q0
)

→ c( q1
p0
)

◦2 c ( p2q2
)

, if p1 ⋆ q0 = 1M, (3.2.16b)
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c( p2p1

p0
)

◦2 c ( q2q1
q0
)

→ c( δp1
p0
)

◦2 c ( q2q1
)

, if q0 ̸= 1M, where δ := p2 ⋆ q0,(3.2.16c)where p and q are M-triangles.
▶ Lemma 3.2.3  Let M be a unitary magma. Then the vector space induced
by the rewrite rule → is RNCM.

◀ Proof  Let s and t be two syntax trees on TM such that s→ t. We have threecases to consider depending on the form of s and t.(a) if s (respectively t) is of the form described by the left (respectively right) sideof (3.2.16a), we have ev(s) = q2
q1 p2

p0δ = ev(t), (3.2.17)
where δ := p1 ⋆ q0.(b) If s (respectively t) is of the form described by the left (respectively right) sideof (3.2.16b), we have ev(s) = q2

q1 p2
p0 = ev(t). (3.2.18)

(c) Otherwise, s (respectively t) is of the form described by the left (respectivelyright) side of (3.2.16c). We have
ev(s) = q1

p1 q2
p0δ = ev(t), (3.2.19)

where δ := p2 ⋆ q0.Therefore, by Lemma 3.2.1 we have s − t ∈ RNCM for each case. This leads to thefact that s ∗↔ t implies s − t ∈ RNCM, and shows that the space induced by → is asubspace of RNCM.We now assume that s and t are two syntax trees on TM such that s − t is agenerator of RNCM among (3.2.1a), (3.2.1b), and (3.2.1c).(a) If s (respectively t) is of the form described by the left (respectively right) sideof (3.2.1a), we have by (3.2.16a),
s

∗→c( p2δ
p0
)

◦1 c ( q2q1
) and t

∗→c( p2δ′
p0
)

◦1 c ( q2q1
)

, (3.2.20)
where δ := p1 ⋆ q0 and δ′ := r1 ⋆ r0. Since, by (3.2.1a), we have δ = δ′, we obtain that
s

∗↔ t.(b) If s (respectively t) is of the form described by the left (respectively right) sideof (3.2.1b), we have by (3.2.16b) and by (3.2.16c),
s→ c( q1

p0
)

◦2 c ( p2q2
) and t

∗→c( q1
p0
)

◦2 c ( p2q2
)

. (3.2.21)
20/46



§ Rewrite rule Operads of decorated cliques II S. Giraudo
We obtain that s ∗↔ t.(c) Otherwise, s (respectively t) is of the form described by the left (respectivelyright) side of (3.2.1c). We have by (3.2.16c),

s
∗→c( δp1

p0
)

◦2 c ( q2q1
) and t

∗→c( δ′p1
p0
)

◦2 c ( q2q1
)

, (3.2.22)
where δ := p2 ⋆ q0 and δ′ := r2 ⋆ r0. Since by (3.2.1c), δ = δ′, we obtain that s ∗↔ t.Hence, for each case, we have s

∗↔ t. This shows that RNCM is a subspace of thespace induced by →. The statement of the lemma follows. ■

▶ Lemma 3.2.4  For a unitary magma M, the rewrite rule → is terminating.

◀ Proof  Writing Tn for the set of syntax trees on TM of arity n, let φ : Tn → N2be the map defined in the following way. For a syntax tree t of Tn, φ(t) := (α, β),where α is the sum of the number of internal nodes in the left subtree of x takenover all internal nodes x of t, and β is the number of internal nodes of t labeledby an M-triangle whose base is not labeled by 1M. Let s and t be two syntax treesof T3 such that s→ t. Due to the definition of →, we have three configurations toexplore. In what follows, η : M → N is the map satisfying η(a) := 0 if a = 1M and
η(a) := 1 otherwise.(a) If s (respectively t) is of the form described by the left (respectively right) sideof (3.2.16a), writing ⩽ for the lexicographic order on N2, we have

φ
(c( p2p1

p0
)

◦1 c ( q2q1
q0
)) = (1, η(p0) + 1)

> (1, η(p0)) = φ
(c( p2δ

p0
)

◦1 c ( q2q1
))

,
(3.2.23)

where δ := p1 ⋆ q0.(b) If s (respectively t) is of the form described by the left (respectively right) sideof (3.2.16b), we have
φ
(c( p2p1

p0
)

◦1 c ( q2q1
q0
)) = (1, η(p0) + η(q0))

> (0, η(p0)) = φ
(c( q1

p0
)

◦2 c ( p2q2
))

.
(3.2.24)

(c) Otherwise, s (respectively t) is of the form described by the left (respectivelyright) side of (3.2.16c). We have
φ
(c( p2p1

p0
)

◦2 c ( q2q1
q0
)) = (0, η(p0) + 1)

> (0, η(p0)) = φ
(c( δp1

p0
)

◦2 c ( q2q1
))

,
(3.2.25)
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where δ := p2 ⋆ q0.Therefore, for all syntax trees s and t such that s→ t, φ(s) > φ(t). This implies that,for all syntax trees s and t such that s ̸= t and s

∗→t, we have φ(s) > φ(t). Since(0, 0) is the smallest element of N2 with respect to the lexicographic order ⩽, thestatement of the lemma follows. ■

▶ Lemma 3.2.5  Let M be a unitary magma. The set of normal forms of the
rewrite rule → is the set of syntax trees t on TM such that, for any internal
nodes x and y of t where y is a child of x,

(i) the base of the M-triangle labeling y is labeled by 1M;
(ii) if y is a left child of x, the first edge of the M-triangle labeling x is not

labeled by 1M.

◀ Proof  By Lemma 3.2.4, → is terminating. Therefore, → admits normal forms,which are by definition the syntax trees on TM that cannot be rewritten by →.Let t be a normal form of →. The fact that t satisfies (i) is an immedi-ate consequence of the fact that t avoids the patterns appearing as left sidesof (3.2.16a) and (3.2.16c). Moreover, since t avoids the patterns appearing as leftsides of (3.2.16b), one cannot have p1 ⋆q0 = 1M , where p (respectively q) is the labelof x (respectively y). Since, by (i), we have q0 = 1M, we necessarily get p1 ̸= 1M.Hence, t satisfies (ii).Conversely, if t is a syntax tree on TM satisfying (i) and (ii), a direct inspectionshows that one cannot rewrite t by →. Therefore, t is a normal form of →. ■

▶ Lemma 3.2.6  Let M be a finite unitary magma. The generating series of
the normal forms of the rewrite rule → is the Hilbert series HNCM(t) of NCM.

◀ Proof  First, since by Lemma 3.2.4, → is terminating, and since for n ⩾ 1, dueto the finiteness of M, there are finitely many syntax trees on TM of arity n, thegenerating series T(t) of the normal forms of → is well-defined.Let S(t) be the generating series of the normal forms of → such that the basesof the M-triangles labeling the roots are labeled by 1M. From the description ofthe normal forms of → provided by Lemma 3.2.5, we obtain that S(t) satisfies
S(t) = t + mtS(t) + (m − 1)mS(t)2. (3.2.26)Again by Lemma 3.2.5, we have

T(t) = t + m(S(t) − t). (3.2.27)A direct computation shows that T(t) satisfies the algebraic equation
t + (m3 − 2m2 + 2m − 1) t2 + (2m2t − 3mt + 2t − 1)T(t) + (m − 1) T(t)2 = 0.(3.2.28)
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Hence, by Proposition 3.1.6, we observe that T(t) = HNCM(t). ■

▶ Lemma 3.2.7  For a finite unitary magma M, the rewrite rule → is confluent.

◀ Proof  Arguing by contradiction, assume that → is not confluent. Sinceby Lemma 3.2.4, → is terminating, there is an integer n ⩾ 1 and two normalforms t and t′ of → of arity n such that t ̸= t′ and t
∗⇔ t′. Now, Lemma 3.2.1together with Lemma 3.2.3 implies that ev(t) = ev(t′). By Proposition 3.1.5, themap ev : Free (K⟨TM⟩) → NCM is surjective, leading to the fact that the numberof normal forms of → of arity n is greater than the number of noncrossing

M-cliques of arity n. However, by Lemma 3.2.6, there are as many normal formsof → of arity n as noncrossing M-cliques of arity n. This leads to a contradictionand proves the statement of the lemma. ■

3.2.3 PRESENTATION AND KOSZULITY. The results of Sections 3.2.1 and 3.2.2 arefinally used here to provide a presentation of NCM and prove that NCM is aKoszul operad.
▶ Theorem 3.2.8  Let M be a finite unitary magma. Then NCM admits the
presentation (TM,RNCM).
◀ Proof  First, since by Lemmas 3.2.4 and 3.2.7, → is a convergent rewrite rule,and since by Lemma 3.2.3, the space induced by → is RNCM, we can regard theunderlying space of the quotient operad

O := Free (K⟨TM⟩) /⟨RNCM⟩ (3.2.29)as the linear span of all normal forms of →. Moreover, as a consequence ofLemma 3.2.1, the linear map φ : O → NCM defined for any normal form t of →by φ(t) := ev(t) is an operad morphism. Now, by Proposition 3.1.5, φ is surjective.Moreover, by Lemma 3.2.6, the dimensions of the spaces O(n), n ⩾ 1 are theones of NCM(n). Hence, φ is an operad isomorphism and the statement of thetheorem follows. ■We use Theorem 3.2.8 to express the presentations of the operads NCN2 andNCD0, where N2 is the cyclic monoid Z/2Z and D0 is the multiplicative monoid on
{0, 1}. The operad NCN2 is generated by

TN2 = { , 1 , 1 , 11 , 1 , 11 , 11 , 111
}

, (3.2.30)
and these generators satisfies only the nontrivial relations

b3
a

◦1 b2b11 = b31
a

◦1 b2b1 , a, b1, b2, b3 ∈ N2, (3.2.31a)
b31

a
◦1 b2b11 = b3

a
◦1 b2b1 = b1

a
◦2 b3b2 = 1b1

a
◦2 b3b21 , a, b1, b2, b3 ∈ N2,(3.2.31b)
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b1

a
◦2 b3b21 = 1b1

a
◦2 b3b2 , a, b1, b2, b3 ∈ N2. (3.2.31c)On the other hand, the operad NCD0 is generated by

TD0 = { , 0 , 0 , 00 , 0 , 00 , 00 , 000
}

, (3.2.32)
and these generators satisfies only the nontrivial relations

b3
a

◦1 b2b10 = b30
a

◦1 b2b10 = b30
a

◦1 b2b1 , a, b1, b2, b3 ∈ D0, (3.2.33a)
b3

a
◦1 b2b1 = b1

a
◦2 b3b2 , a, b1, b2, b3 ∈ D0, (3.2.33b)

b1
a

◦2 b3b20 = 0b1
a

◦2 b3b20 = 0b1
a

◦2 b3b2 , a, b1, b2, b3 ∈ D0. (3.2.33c)
▶ Theorem 3.2.9  For a finite unitary magma M, NCM is Koszul and the set
of normal forms of → forms a Poincaré–Birkhoff–Witt basis of NCM.

◀ Proof  By Lemma 3.2.3 and Theorem 3.2.8, the rewrite rule → is an orientationof the space of relations RNCM of NCM. Moreover, by Lemmas 3.2.4 and 3.2.7,this rewrite rule is convergent. Therefore, by Lemma 2.2.1, NCM is Koszul.Finally, the set of normal forms of → described by Lemma 3.2.5 is, by definition,a Poincaré–Birkhoff–Witt basis of NCM. ■3.3 SUBOPERADS GENERATED BY BUBBLESIn this section, we consider suboperads of NCM generated by finite sets of
M-bubbles. We assume here that M is endowed with an arbitrary total order sothat M = {x0, x1, . . . } with x0 = 1M.If p is an M-clique, the border of p is the word bor(p) of length n such that,for i ∈ [n], we have bor(p)i = pi.3.3.1 TREELIKE EXPRESSIONS ON BUBBLES. Let B and E be two subsets of M. Wewrite BB,E

M for the set of M-bubbles p such that the bases of p are labeled by B andall edges of p are labeled by E. Moreover, we say that M is (E, B)-quasi-injectiveif for all x, x′ ∈ E and y, y ′ ∈ B, x ⋆ y = x′ ⋆ y ′ ̸= 1M implies x = x′ and y = y ′.
▶ Lemma 3.3.1  Let M be a unitary magma, and B and E be two subsets of
M. If M is (E, B)-quasi-injective, then any M-clique admits at most one treelike
expression on BB,E

M of minimal degree.

◀ Proof  Assume that p is an M-clique admitting a treelike expression on BB,E
M .This implies that the base of p is labeled by B, all solid diagonals of p are labeledby B ⋆E, and all edges of p are labeled by E. By Proposition 3.1.2 and Lemma 3.1.3,the tree t := bt(p) is a treelike expression of p on BM of minimal degree. Now,observe that t is not necessarily a syntax tree on BB,E

M as required since some of
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its internal nodes may be labeled by bubbles that do not belong to BB,E

M . Since
M is (E, B)-quasi-injective, there is a unique way to relabel the internal nodes of
t by bubbles of BB,E

M to obtain a syntax tree on BB,E
M such that ev(t′) = ev(t). Byconstruction, t′ satisfies the properties of the statement of the lemma. ■

3.3.2 DIMENSIONS. Let G be a set of M-bubbles and Ξ := {ξx0 , ξx1 , . . . } be a setof noncommutative variables. Given xi ∈ M, let Bxi be the series of N⟨⟨Ξ⟩⟩ definedby Bxi (ξx0 , ξx1, . . . ) := ∑
p∈BG

M
p̸=

∏
i∈[|p|] ξpi , (3.3.1)

where BG
M is the set of M-bubbles that can be obtained by partial compositionsof elements of G. Observe from (3.3.1) that a noncommutative monomial u ∈ Ξ⩾2appears in Bxi with 1 as coefficient if and only if there is an M-bubble with a baselabeled by xi and with u as border in the suboperad of NCM generated by G.Moreover, for xi ∈ M, let the series Fxi of N⟨⟨t⟩⟩ defined byFxi(t) := Bxi

(
t + F̄x0(t), t + F̄x1(t), . . .

)
, (3.3.2)where, for xi ∈ M, F̄xi(t) := ∑

xj∈M
xi⋆xj ̸=1M

Fxj (t). (3.3.3)
▶ Proposition 3.3.2  Let M be a unitary magma and G be a finite set of
M-bubbles such that, writing B (respectively E) for the set of labels of the bases
(respectively edges) of the elements of G, M is (E, B)-quasi-injective. Then the
Hilbert series H(NCM)G (t) of the suboperad of NCM generated by G satisfies

H(NCM)G (t) = t + ∑
xi∈M

Fxi(t). (3.3.4)
◀ Proof  By Lemma 3.3.1, an M-clique of (NCM)G admits exactly one treelikeexpression on M-bubbles of (NCM)G of minimal degree. For this reason, and asa consequence of the definition (3.3.3) of the series F̄xi(t), xi ∈ M, the series Fxi(t)is the generating series of all M-cliques of (NCM)G different from and with abase labeled by xi ∈ M. Therefore, the expression (3.3.4) for the Hilbert series of(NCM)G follows. ■As a side remark, Proposition 3.3.2 can be proved by using the notion of bubbledecompositions of operads developed in [CG14]. This result provides a practicalmethod to compute the dimensions of some suboperads (NCM)G of NCM bydescribing the series (3.3.1) of bubbles of BG

M. If G satisfies the requirement ofProposition 3.3.2, this result also implies that the Hilbert series of (NCM)G isalgebraic.
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3.3.3 FIRST EXAMPLE : A CUBIC SUBOPERAD. Consider the suboperad of NCE2generated by

G := { e1e1 , e2e2
}

. (3.3.5)Computer experiments show that the generators of (NCE2)G do not satisfy anynontrivial quadratic relation and that they satisfy the only four nontrivial cubicrelations e1e1 ◦2 ( e1e1 ◦2 e1e1
) = e1e1 ◦2 ( e2e2 ◦2 e1e1

)
, (3.3.6a)

e1e1 ◦2 ( e1e1 ◦2 e2e2
) = e1e1 ◦2 ( e2e2 ◦2 e2e2

)
, (3.3.6b)

e2e2 ◦2 ( e1e1 ◦2 e1e1
) = e2e2 ◦2 ( e2e2 ◦2 e1e1

)
, (3.3.6c)

e2e2 ◦2 ( e1e1 ◦2 e2e2
) = e2e2 ◦2 ( e2e2 ◦2 e2e2

)
. (3.3.6d)Hence, (NCE2)G is not a quadratic operad. Moreover, it is possible to prove thatthis operad does not admit any other nontrivial relations between its generators.This can be performed by defining a rewrite rule on the syntax trees on G,consisting in rewriting the left patterns of (3.3.6a), (3.3.6b), (3.3.6c), and (3.3.6d)into their respective right patterns, and by checking that this rewrite rule admitsthe required properties (like the ones establishing the presentation of NCM byTheorem 3.2.8). The existence of this nonquadratic operad shows that NCMcontains nonquadratic suboperads even if it is quadratic.One can prove by induction on the arity that the set of bubbles of (NCE2)G isthe set B1 ⊔ B2 where B1 (respectively B2) is the set of bubbles whose bases arelabeled by e1 (respectively e2) and the border is 1e1 (respectively 1e2), or 111∗e1,or 111∗e2. Hence, we obtain B1 (ξ1, ξe1, ξe2) = 0, (3.3.7a)

Be1 (ξ1, ξe1 , ξe2) = ξ11 − ξ1
(ξe1 + ξ1ξe2) = Be2 (ξ1, ξe2 , ξe1) , (3.3.7b)

Moreover, one can check that G satisfies the conditions required by Proposi-tion 3.3.2. We hence have
F̄1(t) = Fe1(t) + Fe2(t), (3.3.8a) F̄e1(t) = F1(t) = F̄e2(t), (3.3.8b)

and F1(t) = 0, (3.3.9a)Fe1(t) = Be1(t + Fe1(t) + Fe2(t), t, t) = Be2(t + Fe1(t) + Fe2(t), t, t) = Fe2(t), (3.3.9b)By Proposition 3.3.2, the Hilbert series of (NCE2)G satisfies
H(NCE2)G (t) = t + F1(t) + Fe1(t) + Fe2(t) = t + 2Fe1(t), (3.3.10)
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and, by a straightforward computation, we obtain that this series satisfies thealgebraic equation

t + (t − 1)H(NCE2)G (t) + (2t + 1)H(NCE2)G (t)2 = 0. (3.3.11)The first dimensions of (NCE2)G are1, 2, 8, 36, 180, 956, 5300, 30316, (3.3.12)and form Sequence A129148 of [Slo].3.3.4 SECOND EXAMPLE : A SUBOPERAD OF MOTZKIN PATHS. Consider the subop-erad of NCD0 generated by
G := { ,

0 }
. (3.3.13)

Computer experiments show that the generators of (NCD0)G satisfy the only fournontrivial quadratic relations
◦1 = ◦2 , (3.3.14a)

0
◦1 = ◦2 0

, (3.3.14b)
◦1 0 = 0

◦2 , (3.3.14c)
0

◦1 0 = 0
◦3 0

. (3.3.14d)It is possible to prove that this operad does not admit any other nontrivial relationsbetween its generators. This can be performed by defining a rewrite rule on thesyntax trees on G, consisting in rewriting the left patterns of (3.3.14a), (3.3.14b),(3.3.14c), and (3.3.14d) into their respective right patterns, and by checking thatthis rewrite rule admits the required properties (like the ones establishing thepresentation of NCM by Theorem 3.2.8).One can prove by induction on the arity that the set of bubbles of (NCD0)G isthe set of bubbles whose bases are labeled by 1 and borders are words of {1, 0}⩾2such that each occurrence of 0 has a 1 immediately to its left and a 1 immediatelyto its right. Hence, we obtain
B1 (ξ1, ξ0) = 11 − ξ1 − ξ1ξ0 ξ1 − ξ1,(3.3.15a) B0 (ξ1, ξ0) = 0. (3.3.15b)

Moreover, one can check that G satisfies the conditions required by Proposi-tion 3.3.2. We hence have
F̄1(t) = F0(t), (3.3.16a) F̄0(t) = F1(t) + F0(t), (3.3.16b)
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and

F1(t) = B1 (t, t + F1(t)) , (3.3.17a) F0(t) = 0. (3.3.17b)
By Proposition 3.3.2, the Hilbert series of (NCD0)G satisfies

H(NCD0)G (t) = t + F1(t), (3.3.18)and, by a straightforward computation, we obtain that this series satisfies thealgebraic equation
t + (t − 1)H(NCD0)G (t) + tH(NCD0)G (t)2 = 0. (3.3.19)The first dimensions of (NCD0)G are1, 1, 2, 4, 9, 21, 51, 127, (3.3.20)and form Sequence A001006 of [Slo]. The operad (NCD0)G has the same pre-sentation by generators and relations (and thus, the same Hilbert series) as theoperad Motz defined in [Gir15], involving Motzkin paths. Hence, (NCD0)G andMotz are two isomorphic operads. Note in passing that these two operads arenot isomorphic to the operad MotD0 constructed in Section 3.2.4 of [Gir20] andinvolving Motzkin configurations. Indeed, the sequence of the dimensions of thislast operad is a shifted version of the one of (NCD0)G and Motz.3.4 ALGEBRAS OVER THE NONCROSSING CLIQUE OPERADSWe begin by briefly describing NCM-algebras in terms of relations betweentheir operations and the free NCM-algebras over one generator. We continue thissection by providing two ways to construct (not necessarily free) NCM-algebras.The first one takes as input an associative algebra endowed with endofunctionssatisfying some conditions, and the second one takes as input a monoid.3.4.1 RELATIONS. From the presentation of NCM established by Theorem 3.2.8,any NCM-algebra is a vector space A endowed with binary linear operations

p2p1
p0 : A ⊗ A → A, p ∈ TM, (3.4.1)satisfying, for all a1, a2, a3 ∈ A, the relations(

a1 q2q1
q0 a2) p2p1

p0 a3 = (a1 q2q1
r0 a2) p2r1

p0 a3, if p1 ⋆ q0 = r1 ⋆ r0 ̸= 1M, (3.4.2a)(
a1 q2q1

q0 a2) p2p1
p0 a3 = a1 r2q1

p0
(

a2 p2q2
r0 a3) , if p1 ⋆ q0 = r2 ⋆ r0 = 1M, (3.4.2b)

a1 p2p1
p0
(

a2 q2q1
q0 a3) = a1 r2p1

p0
(

a2 q2q1
r0 a3) , if p2 ⋆ q0 = r2 ⋆ r0 ̸= 1M, (3.4.2c)where p, q, and r are M-triangles. Observe that M has to be finite becauseTheorem 3.2.8 requires this property as premise.
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3.4.2 FREE ALGEBRAS OVER ONE GENERATOR. From the realization of NCM comingfrom its definition as a suboperad of CM, the free NCM-algebra over onegenerator is the linear span NCM of all noncrossing M-cliques endowed with thelinear operations

p2p1
p0 : NCM(n) ⊗ NCM(m) → NCM(n + m), p ∈ TM, n, m ⩾ 1, (3.4.3)defined, for noncrossing M-cliques q and r, by

q p2p1
p0 r := ( p2p1

p0 ◦2 r
)

◦1 q. (3.4.4)
In terms of M-Schröder trees (see Section 3.1.3), (3.4.4) is the M-Schröder treeobtained by grafting the M-Schröder trees of q and r as left and right children ofa binary corolla having its edge adjacent to the root labeled by p0, its first edgelabeled by p1 ⋆ q0, and second edge labeled by p2 ⋆ r0, and by contracting each ofthese two edges when labeled by 1M. For instance, in the free NCN3-algebra, wehave

1 2
112 121 12 2 = 1 1

2
1 2211 1

1
, (3.4.5a)

1 2
112 111 12 2 = 1 1

2
2

1
1 1

2

1
, (3.4.5b)

1 2
112 021 12 2 = 1 1 22211 11 , (3.4.5c)

1 2
112 011 12 2 = 1 22

1
1 1

2
1

. (3.4.5d)
3.4.3 NCM-ALGEBRAS FROM ASSOCIATIVE ALGEBRAS. Let A be an associativealgebra with associative product denoted by ⊙, and

ωx : A → A, x ∈ M, (3.4.6)be a family of linear maps, not necessarily associative algebra morphisms, indexedby the elements of M. We say that A together with this family (3.4.6) of maps is
M-compatible if

ω1M = IdA (3.4.7)
29/46



§ Associative algebras Operads of decorated cliques II S. Giraudo
where IdA is the identity map on A, and

ωx ◦ ωy = ωx⋆y, (3.4.8)
for all x, y ∈ M. We now use M-compatible associative algebras to constructNCM-algebras.
▶ Theorem 3.4.1  Let M be a finite unitary magma and A be an M-compatible
associative algebra. The vector space A endowed with the binary linear
operations

p2p1
p0 : A ⊗ A → A, p ∈ TM, (3.4.9)

defined for each M-triangle p and a1, a2 ∈ A by

a1 p2p1
p0 a2 := ωp0 (ωp1 (a1) ⊙ ωp2 (a2)) , (3.4.10)

is an NCM-algebra.

◀ Proof  We prove that the operations (3.4.9) satisfy Relations (3.4.2a), (3.4.2b),and (3.4.2c) of NCM-algebras. Since M is finite, this amounts to showing thatthese operations endow A with an NCM-algebra structure. For this, let a1, a2,and a3 be three elements of A, and p, q, and r be three M-triangles.(a) If p1 ⋆ q0 = r1 ⋆ r0 ̸= 1M, then, since by (3.4.8) we have ωp1 ◦ ωq0 = ωr1 ◦ ωr0 , weobtain (
a1 q2q1

q0 a2) p2p1
p0 a3 = ωq0(ωq1(a1) ⊙ ωq2(a2)) p2p1

p0 a3= ωp0(ωp1(ωq0(ωq1(a1) ⊙ ωq2(a2))) ⊙ ωp2(a3))= ωp0(ωr1(ωr0(ωq1(a1) ⊙ ωq2(a2))) ⊙ ωp2(a3))= (a1 q2q1
r0 a2) p2r1

p0 a3.
(3.4.11)

Hence (3.4.2a) holds.(b) If p1 ⋆ q0 = r2 ⋆ r0 = 1M , then, since by (3.4.7) we have ωp1 ◦ ωq0 = ωr2 ◦ ωr0 = IdAand since ⊙ is associative, we get(
a1 q2q1

q0 a2) p2p1
p0 a3 = ωq0(ωq1(a1) ⊙ ωq2(a2)) p2p1

p0 a3= ωp0((ωp1(ωq0(ωq1(a1) ⊙ ωq2(a2)))) ⊙ ωp2(a3))= ωp0(ωq1(a1) ⊙ ωq2(a2) ⊙ ωp2(a3))= ωp0(ωq1(a1) ⊙ (ωq2(a2) ⊙ ωp2(a3)))= ωp0(ωq1(a1) ⊙ ωr2(ωr0(ωq2(a2) ⊙ ωp2(a3))))= a1 r2q1
p0
(

a2 p2q2
r0 a3) .

(3.4.12)

Hence (3.4.2b) holds.
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(c) If p2 ⋆ q0 = r2 ⋆ r0 ̸= 1M, then, since by (3.4.8) we have ωp2 ◦ ωq0 = ωr2 ◦ ωr0 , weobtain

a1 p2p1
p0
(

a2 q2q1
q0 a3) = a1 p2p1

p0 ωq0(ωq1(a2) ⊙ ωq2(a3))= ωp0(ωp1(a1) ⊙ ωp2(ωq0(ωq1(a2) ⊙ ωq2(a3))))= ωp0(ωp1(a1) ⊙ ωr2(ωr0(ωq1(a2) ⊙ ωq2(a3))))= a1 r2p1
p0
(

a2 q2q1
r0 a3) .

(3.4.13)
Hence (3.4.2c) holds.Consequently, A is an NCM-algebra. ■By Theorem 3.4.1, A has the structure of an NCM-algebra. Hence, there is aleft action · of the operad NCM on the tensor algebra of A of the form

· : NCM(n) ⊗ A⊗n → A, n ⩾ 1, (3.4.14)
whose definition comes from the ones of the operations (3.4.9) and Relation (2.2.10).We describe here an algorithm to compute the action of an element of NCM ofarity n on tensors a1 ⊗ · · · ⊗ an of A⊗n. First, if b is an M-bubble of arity n,

b · (a1 ⊗ · · · ⊗ an) = ωb0
∏

i∈[n] ωbi (ai)
 , (3.4.15)

where the product of (3.4.15) denotes the iterated version of the associative product
⊙ of A. If p is a noncrossing M-clique of arity n, then p acts recursively on
a1 ⊗ · · · ⊗ an as follows. We have

p · a1 = a1 (3.4.16)
if p = , and
p · (a1 ⊗ · · · ⊗ an)= b ·

((
r1 ·
(
a1 ⊗ · · · ⊗ a|r1|

))
⊗ · · · ⊗

(
rk ·
(
a|r1|+···+|rk−1|+1 ⊗ · · · ⊗ an

)))
, (3.4.17)

where, by setting t as the bubble tree bt(p) of p (see Section 3.1.2), b and r1,. . . , rk are the unique M-bubble and noncrossing M-cliques such that t = c(b) ◦[bt(r1), . . . , bt(rk)].Here are a few examples of the construction provided by Theorem 3.4.1.
Noncommutative polynomials and selected concatenation: Let us consider theunitary magma Sℓ of the subsets of [ℓ] with the union as product. Let A := {aj : j ∈[ℓ]} be an alphabet of noncommutative letters. On the associative algebra K⟨A⟩ ofpolynomials on A, we define the linear maps

ωS : K⟨A⟩ → K⟨A⟩, S ∈ Sℓ , (3.4.18)
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as follows. For u ∈ A∗ and S ∈ Sℓ , we set

ωS(u) := {u, if |u|aj ⩾ 1 for all j ∈ S,0, otherwise.
(3.4.19)

Since, for all u ∈ A∗, ω∅(u) = u and (ωS ◦ ωS′)(u) = ωS∪S′(u), and ∅ is the unit of
Sℓ , we obtain from Theorem 3.4.1 that the operations (3.4.9) endow K⟨A⟩ with anNCSℓ-algebra structure. For instance, with ℓ := 3 we have

(a1 + a1a3 + a2a2) {2}{1}
{2, 3}

(1 + a3 + a2a1) = a1a3a2a1, (3.4.20a)
(a1 + a1a3 + a2a2) ∅{1}

{1, 3}
(1 + a3 + a2a1) = 2 a1a3 + a1a3a3 + a1a3a2a1. (3.4.20b)

Moreover, to compute the action

{1}
{1}

{1}
{2} {1, 2}

{2}
{3}

{1, 2}
· (f ⊗ f ⊗ f ⊗ f ⊗ f ⊗ f ⊗ f ⊗ f ), (3.4.21)

where f := a1 + a2 + a3, we use the above algorithm and (3.4.15) and (3.4.17).By presenting the computation on the bubble tree of the noncrossing S3-cliqueof (3.4.21), we obtain

{1}{2}

{1} {1, 2}

{3}

{2}

{1}{1, 2}

f

f

f

(a1 + a2 + a3)2

fa1a2

f

(a1 + a2 + a3)a1a2a2a1a3

f

a2(a1 + a2 + a3

f

f

(a1 + a2 + a3)a1a2a2a1a3(a1a2 + a2a1)

, (3.4.22)

so that (3.4.21) is equal to the polynomial (a1 + a2 + a3)a1a2a2a1a3(a1a2 + a2a1).
Noncommutative polynomials and constant term product: Let us nowconsider the unitary magma D0. Let A := {a1, a2, . . . } be an infinite alphabetof noncommutative letters. On the associative algebra K⟨A⟩ of polynomials on A,we define the linear maps

ω1, ω0 : K⟨A⟩ → K⟨A⟩, (3.4.23)
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as follows. For u ∈ A∗, we set ω1(u) := u, and

ω0(u) := {1, if u = ε,0, otherwise.
(3.4.24)

In other terms, ω0(f ) is the constant term, denoted by f (0), of the polynomial
f ∈ K⟨A⟩. Since ω1 is the identity map on K⟨A⟩ and, for all u ∈ A∗,(ω0 ◦ ω0)(f ) = (f (0))(0) = f (0) = ω0(f ), (3.4.25)we obtain from Theorem 3.4.1 that the operations (3.4.9) endow K⟨A⟩ with anNCD0-algebra structure. For instance, for all polynomials f1 and f2 of K⟨A⟩, wehave

f1 11
1

f2 = f1f2, (3.4.26a)
f1 110 f2 = (f1f2)(0) = f1(0) f2(0),(3.4.26b)

f1 10
1

f2 = f1(0) f2, (3.4.26c)
f1 01

1
f2 = f1 (f2(0)). (3.4.26d)

If f1(0) = 1 = f2(0), we obtain from (3.4.26c) and (3.4.26d) that
f1 ( 10

1
+ 01

1

)
f2 = f1(0) f2 + f1 (f2(0)) = f1 + f2. (3.4.27)

3.4.4 NCM-ALGEBRAS FROM MONOIDS. If M is a monoid, with binary associativeoperation ⋆ and unit 1M, we write K⟨M∗⟩ for the space of all noncommutativepolynomials on M, viewed as an alphabet, with coefficients in K. This space canbe endowed with an NCM-algebra structure as follows.For x ∈ M and a word w = w1 . . . w|w| ∈ M∗, let
x ∗ w := (x ⋆ w1) . . . (x ⋆ w|w|). (3.4.28)This operation ∗ is linearly extended on the right to K⟨M∗⟩.

▶ Proposition 3.4.2  Let M be a finite monoid. The vector space K⟨M∗⟩
endowed with the binary linear operations

p2p1
p0 : K⟨M∗⟩ ⊗ K⟨M∗⟩ → K⟨M∗⟩, p ∈ TM, (3.4.29)

defined for each M-triangle p and f1, f2 ∈ K⟨M∗⟩ by

f1 p2p1
p0 f2 := p0 ∗ ((p1 ∗ f1) (p2 ∗ f2)) , (3.4.30)

is an NCM-algebra.

◀ Proof  This follows from Theorem 3.4.1 as a particular case of the generalconstruction it provides. Indeed, K⟨M∗⟩ is an associative algebra for the concate-nation product of words. Moreover, by defining linear maps ωx : K⟨M∗⟩ → K⟨M∗⟩,
x ∈ M, by ωx(u) := x ∗ u for a word u ∈ M∗, we obtain, since M is a monoid, thatthis family of maps satisfies (3.4.7) and (3.4.8). Now, since the definition (3.4.30) is
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the specialization of the definition (3.4.10) in this particular case, the statement ofthe proposition follows. ■Here are a few examples of the construction provided by Proposition 3.4.2.
Words and double shifted concatenation: Consider the monoid Nℓ := Z/ℓZ foran ℓ ⩾ 1. By Proposition 3.4.2, the operations (3.4.29) endow K ⟨N∗

ℓ ⟩ with thestructure of an NCNℓ-algebra. For instance, in K ⟨N∗4⟩ we have0211 021 312 = 3100023. (3.4.31)
Words and erasing concatenation: Consider here the monoid Dℓ for an ℓ ⩾ 0defined in [Gir20]. By Proposition 3.4.2, the operations (3.4.29) endow K⟨D∗

ℓ ⟩ withthe structure of an NCDℓ-algebra. For instance, for all words u and v of D∗
ℓ , wehave

u 11
1

v = uv, (3.4.32a)
u 11di

v = (uv)di , (3.4.32b) u 110 v = 0|u|+|v|, (3.4.32c)
u djdi

1
v = udi vdj , (3.4.32d)

where, for a word w of D∗
ℓ and an element dj of Dℓ , j ∈ [ℓ], wdj is the word obtainedfrom w by replacing each occurrence of 1 by dj and each occurrence of di, i ∈ [ℓ],by 0. 4 KOSZUL DUAL

Since, by Theorem 3.2.8, the operad NCM is binary and quadratic, this operadadmits a Koszul dual NCM!. We end the study of NCM by collecting the mainproperties of NCM!.4.1 PRESENTATIONLet R!NCM be the subspace of Free (K⟨TM⟩) (3) generated by the elements∑
p1,q0∈M
p1⋆q0=δ

c( p2p1
p0
)

◦1 c ( q2q1
q0
)

, p0, p2, q1, q2 ∈ M, δ ∈ M̄, (4.1.1a)
∑

p1,q0∈M
p1⋆q0=1M

(c( p2p1
p0
)

◦1 c ( q2q1
q0
)

− c( p1q1
p0
)

◦2 c ( p2q2
q0
))

, p0, p2, q1, q2 ∈ M,

(4.1.1b)∑
p2,q0∈M
p2⋆q0=δ

c( p2p1
p0
)

◦2 c ( q2q1
q0
)

, p0, p1, q1, q2 ∈ M, δ ∈ M̄, (4.1.1c)
where p and q are M-triangles.
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▶ Proposition 4.1.1  Let M be a finite unitary magma. Then the Koszul dualNCM! of NCM admits the presentation

(
TM,R!NCM

)
.

◀ Proof  Let
f :=∑

t∈T3
λtt (4.1.2)

be a generic element of R!NCM, where T3 is the set of all syntax trees on TM ofarity 3 and the λt are coefficients of K. By definition of Koszul duality of operads,
⟨r, f⟩ = 0 for all r ∈ RNCM, where ⟨−, −⟩ is the scalar product defined in (2.2.7).Then, since RNCM is the subspace of Free (K⟨TM⟩) (3) generated by (3.2.1a), (3.2.1b),and (3.2.1c), we have

λc( p2p1
p0

)
◦1c( q2q1

q0
) − λc( p2r1

p0
)

◦1c( q2q1
r0

) = 0, p1 ⋆ q0 = r1 ⋆ r0 ̸= 1M, (4.1.3a)
λc( p2p1

p0
)

◦1c( q2q1
q0

) + λc( r2q1
p0

)
◦2c( p2q2

r0
) = 0, p1 ⋆ q0 = r2 ⋆ r0 = 1M, (4.1.3b)

λc( p2p1
p0

)
◦2c( q2q1

q0
) − λc( r2p1

p0
)

◦2c( q2q1
r0

) = 0, p2 ⋆ q0 = r2 ⋆ r0 ̸= 1M, (4.1.3c)
where p, q, and r are M-triangles. This implies that f is of the form

f = ∑
p0,p2,q1,q2∈M

δ∈M̄

λ(1)
p0,p2,q1,q2,δ

∑
p1,q0∈M
p1⋆q0=δ

c( p2p1
p0
)

◦1 c ( q2q1
q0
)

+ ∑
p0,p2,q1,q2∈M

λ(2)
p0,p2,q1,q2

∑
p1,q0∈M
p1⋆q0=1M

(c( p2p1
p0
)

◦1 c ( q2q1
q0
)

− c( p1q1
p0
)

◦2 c ( p2q2
q0
))

+ ∑
p0,p1,q1,q2∈M

δ∈M̄

λ(3)
p0,p1,q1,q2,δ

∑
p2,q0∈M
p2⋆q0=δ

c( p2p1
p0
)

◦2 c ( q2q1
q0
)

,

(4.1.4)
where, for M-triangles p and q and δ ∈ M̄, the λ(1)

p0,p2,q1,q0,δ , λ(2)
p0,p2,q1,q2 , and λ(3)

p1,p0,q1,q2,δare coefficients of K. Therefore, f belongs to the space generated by (4.1.1a),(4.1.1b), and (4.1.1c). Finally, since the coefficients of each of these relationssatisfy (4.1.3a), (4.1.3b), and (4.1.3c), the statement of the proposition follows. ■We use Proposition 4.1.1 to express the presentations of the operads NCN!2and NCD!0. The operad NCN!2 is generated by
TN2 = { , 1 , 1 , 11 , 1 , 11 , 11 , 111

}
, (4.1.5)

and these generators satisfy only the nontrivial relations
b3

a
◦1 b2b11 + b31

a
◦1 b2b1 = 0, a, b1, b2, b3 ∈ N2, (4.1.6a)
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b31

a
◦1 b2b11 + b3

a
◦1 b2b1 = b1

a
◦2 b3b2 + 1b1

a
◦2 b3b21 , a, b1, b2, b3 ∈ N2, (4.1.6b)

b1
a

◦2 b3b21 + 1b1
a

◦2 b3b2 = 0, a, b1, b2, b3 ∈ N2. (4.1.6c)On the other hand, the operad NCD!0 is generated by
TD0 = { , 0 , 0 , 00 , 0 , 00 , 00 , 000

}
, (4.1.7)

and these generators satisfies only the nontrivial relations
b3

a
◦1 b2b10 + b30

a
◦1 b2b10 + b30

a
◦1 b2b1 = 0, a, b1, b2, b3 ∈ D0, (4.1.8a)

b3
a

◦1 b2b1 = b1
a

◦2 b3b2 , a, b1, b2, b3 ∈ D0, (4.1.8b)
b1

a
◦2 b3b20 + 0b1

a
◦2 b3b20 + 0b1

a
◦2 b3b2 = 0, a, b1, b2, b3 ∈ D0. (4.1.8c)

▶ Proposition 4.1.2  Let M be a finite unitary magma. Then the dimension
of the space R!NCM is given bydimR!NCM = 2m5 − m4, (4.1.9)
where m := #M.

◀ Proof  To compute the dimension of the space of relations R!NCM of NCM!,we consider the presentation of NCM! provided by Proposition 4.1.1. Considerthe space R1 generated by the family consisting in the elements (4.1.1a). Sincethis family is linearly independent and each of its element is totally specified by atuple (p0, p2, q1, q2, δ) ∈ M4 × M̄, we obtaindimR1 = m4(m − 1). (4.1.10)For the same reason, the dimension of the space R3 generated by the ele-ments (4.1.1c) satisfies dimR3 = dimR1. Now, let R2 be the space generatedby the elements (4.1.1b). Since this family is linearly independent and each of itselements is totally specified by a tuple (p0, p2, q1, q2) ∈ M4, we obtaindimR2 = m4. (4.1.11)Therefore, since
R!NCM = R1 ⊕ R2 ⊕ R3, (4.1.12)we obtain the stated formula (4.1.9) by summing the dimensions of R1, R2, and

R3. ■Observe that, by Propositions 3.2.2 and 4.1.2, we havedimRNCM + dimR!NCM = 2m6 − 2m5 + m4 + 2m5 − m4
= 2m6
= dimFree (K⟨TM⟩) (3), (4.1.13)
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as expected by Koszul duality, where m := #M.4.2 HILBERT SERIES AND DIMENSIONSAn algebraic equation for the Hilbert series of NCM! is described and aformula involving Narayana numbers to compute its coefficients is provided.
▶ Proposition 4.2.1  Let M be a finite unitary magma. The Hilbert series
HNCM!(t) of NCM! satisfies

t + (m − 1)t2 + (2m2t − 3mt + 2t − 1)HNCM!(t)+ (m3 − 2m2 + 2m − 1)HNCM!(t)2 = 0, (4.2.1)
where m := #M.

◀ Proof  Let G(t) be the generating series such that G(−t) satisfies (4.2.1).Therefore, G(t) satisfies
−t + (m − 1)t2 + (−2m2t + 3mt − 2t − 1)G(t) + (m3 − 2m2 + 2m − 1)G(t)2 = 0,(4.2.2)and, by solving (4.2.2) as a quadratic equation where t is the unknown, we obtain

t = 1 + (2m2 − 3m + 2)G(t) −
√1 + 2(2m2 − m)G(t) + m2G(t)22(m − 1) . (4.2.3)

Moreover, by Proposition 3.1.6 and (3.1.15), by setting F (t) := HNCM(−t), we have
F (G(t)) = 1 + (2m2 − 3m + 2)G(t) −

√1 + 2(2m2 − m)G(t) + m2G(t)22(m − 1) = t, (4.2.4)
showing that F (t) and G(t) are the inverses of each other for series composition.Now, since by Theorem 3.2.9, NCM is a Koszul operad, the Hilbert series ofNCM and NCM! satisfy (2.2.8). Therefore, (4.2.4) implies that the Hilbert seriesof NCM! is the series HNCM!(t), satisfying the stated relation (4.2.1). ■From Proposition 4.2.1 we deduce that the Hilbert series of NCM! satisfies

HNCM!(t) = 1 − (2m2 − 3m + 2)t −
√1 − 2(2m3 − 2m2 + m)t + m2t22(m3 − 2m2 + 2m − 1) , (4.2.5)

where m := #M ≠ 1.
▶ Proposition 4.2.2  Let M be a finite unitary magma. For all n ⩾ 2,dim NCM!(n) = ∑

0⩽k⩽n−2 mn+1(m(m − 1) + 1)k(m(m − 1))n−k−2 nar(n, k). (4.2.6)
◀ Proof  The proof consists in enumerating dual M-cliques, introduced in theupcoming Section 4.3. Indeed, by Proposition 4.3.1, dim NCM!(n) is equal to thenumber of dual M-cliques of arity n. The expression for dim NCM!(n) claimed
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by (4.2.6) can be proved by using similar arguments as the ones intervening inthe proof of Proposition 3.1.7 for the expression (3.1.16) of dim NCM(n). ■We can use Proposition 4.2.2 to compute the first dimensions of NCM!. Forinstance, depending on m := #M, we have the following sequences of dimensions:

1, 1, 1, 1, 1, 1, 1, 1, m = 1, (4.2.7a)1, 8, 80, 992, 13760, 204416, 3180800, 51176960, m = 2, (4.2.7b)1, 27, 1053, 51273, 2795715, 163318599, 9994719033, 632496651597, m = 3,(4.2.7c)
1, 64, 6400, 799744, 111923200, 16782082048, 2636161024000, 428208345579520,

m = 4. (4.2.7d)The second one is Sequence A234596 of [Slo]. The last two sequences are notlisted in [Slo] at this time. It is worthwhile to observe that the dimensions ofNCM! for #M = 2 are the ones of the operad BNC of bicolored noncrossingconfigurations (see Section 5.2).4.3 COMBINATORIAL BASISTo describe a basis of NCM!, we introduce the following sort of M-decoratedcliques. A dual M-clique is an M2-clique such that its base and its edges arelabeled by pairs (a, a) ∈ M2, and all solid diagonals are labeled by pairs (a, b) ∈ M2with a ̸= b. Observe that a non-solid diagonal of a dual M-clique is labeled by(1M,1M). All definitions about M-cliques given in [Gir20] remain valid for dual
M-cliques. For example,

(1, 1) (0, 2)(2, 1) (2, 2) (4.3.1)
is a noncrossing dual N3-clique.
▶ Proposition 4.3.1  Let M be a finite unitary magma. The underlying graded
vector space of NCM! is the linear span of all noncrossing dual M-cliques.

◀ Proof  The statement of the proposition is equivalent to the fact that thegenerating series of noncrossing dual M-cliques is the Hilbert series HNCM!(t)of NCM!. From the definition of dual M-cliques, we obtain that the set of dual
M-cliques of arity n, n ⩾ 1, is in bijection with the set of M2-Schröder treesof arity n having the outgoing edges from the root and the edges connectinginternal nodes with leaves labeled by pairs (a, a) ∈ M2, and the edges connectingtwo internal nodes labeled by pairs (a, b) ∈ M2 with a ̸= b. The map bt definedin Section 3.1.2 (see also Section 3.1.3) realizes such a bijection. Let T(t) be the
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generating series of these M2-Schröder trees, and let S(t) be the generating seriesof the M2-Schröder trees of arities greater than 1 and such that the outgoingedges from the roots and the edges connecting two internal nodes are labeled bypairs (a, b) ∈ M2 with a ̸= b, and the edges connecting internal nodes with leavesare labeled by pairs (a, a) ∈ M2. From the description of these trees, we have

S(t) = m(m − 1)(mt + S(t))21 − mt − S , (4.3.2)
where m := #M. Moreover, for m ̸= 1, T(t) satisfies

T(t) = t + S(t)
m − 1 , (4.3.3)

and we obtain that T(t) admits (4.2.5) as solution. Then, by Proposition 4.2.1,for m ̸= 1, this implies the statement of the proposition. If m = 1, it followsfrom Proposition 4.1.1 that NCM! is isomorphic to the associative operad As(see for instance [LV12] for the definition of this operad). Hence, in this case,dim NCM!(n) = 1 for all n ⩾ 1. Since there is exactly one dual M-clique of arity
n for n ⩾ 1, the statement of the proposition is satisfied. ■Proposition 4.3.1 gives a combinatorial description of the elements of NCM!.Nevertheless, for the time being we do not know a partial composition on thelinear span of these elements providing a realization of NCM!.5 CONCRETE CONSTRUCTIONS

The clique construction provides alternative definitions of known operads.We explore here the cases of the operad NCT of based noncrossing trees, theoperad FF4 of formal fractions, and the operad BNC of bicolored noncrossingconfigurations.5.1 RATIONAL FUNCTIONS AND RELATED OPERADSWe use here the noncrossing clique construction to interpret a few operadsrelated to the operad RatFct of rational functions of Loday [Lod10] (see alsoSection 2.2.8 of [Gir20]).5.1.1 DENDRIFORM AND BASED NONCROSSING TREE OPERADS. The operad of based
noncrossing trees NCT is an operad introduced in [Cha07]. This operad isgenerated by two binary elements ≺ and ≻ satisfying one nontrivial quadraticrelation. The algebras over NCT are L-algebras and have been studied in [Ler11].We do not describe NCT in detail here because this is not essential for thesequel. We just explain how to construct NCT through the clique constructionand interpret a known link between NCT and the dendriform operad through therational functions associated with Z-cliques (see Section 2.2.8 of [Gir20]).
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Let ONCT be the suboperad of CZ generated by{

−1 , −1} . (5.1.1)
By using Proposition 3.3.2, we find that the Hilbert series HONCT(t) of ONCT satisfies

t − HONCT(t) + 2HONCT(t)2 − HONCT(t)3 = 0. (5.1.2)
The first dimensions of O are

1, 2, 7, 30, 143, 728, 3876, 21318, (5.1.3)
and form Sequence A006013 of [Slo]. Moreover, one can see that

−1 ◦1 −1 = −1 ◦2 −1, (5.1.4)
is the only nontrivial relation of degree 2 between the generators of ONCT.
▶ Proposition 5.1.1  The operad ONCT is isomorphic to the operad NCT.

◀ Proof  Let φNCT : ONCT(2) → NCT(2) be the linear map satisfying
φNCT ( −1) = ≺, (5.1.5a) φNCT (−1 ) = ≻, (5.1.5b)

where ≺ and ≻ are the two binary generators of NCT. In [Cha07], a presentationof NCT is described wherein its generators satisfy one nontrivial relation of degree2. This relation can be obtained by replacing each Z-clique appearing in (5.1.4) byits image by φNCT. For this reason, φNCT uniquely extends to an operad morphism.Moreover, because the image of φNCT contains all the generators of NCT, thismorphism is surjective. Finally, the Hilbert series of NCT satisfies (5.1.2), sothat ONCT and NCT have the same dimensions. Therefore, φNCT is an operadisomorphism. ■Loday as shown in [Lod10] that the suboperad of RatFct generated by therational functions f1(u1, u2) := u−11 and f2(u1, u2) := u−12 is isomorphic to thedendriform operad Dendr [Lod01]. This operad is generated by two binaryelements ≺ and ≻ satisfying three nontrivial quadratic relations. An isomorphismbetween Dendr and the suboperad of RatFct generated by f1 and f2 sends ≺ to f2and ≻ to f1. The map FId introduced in [Gir20] is an operad morphism from CZto RatFct. Hence, the restriction of FId on ONCT is also an operad morphism from
ONCT to RatFct. Moreover, since

FId (−1 ) = 1
u1 = f1, (5.1.6a) FId ( −1) = 1

u2 = f2, (5.1.6b)
the map FId is a surjective operad morphism from ONCT to Dendr.
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5.1.2 OPERAD OF FORMAL FRACTIONS. The operad of formal fractions FF is anoperad introduced in [CHN16]. Its elements of arity n ⩾ 1 are fractions whosenumerators and denominators are formal products of subsets of [n]. For instance,

{1, 3, 4}{2}{4, 6}
{2, 3, 5}{4} (5.1.7)

is an element of arity 6 of FF. We do not describe the partial composition of thisoperad since its knowledge is not essential for the sequel. The operad FF admitsa suboperad FF4, defined as the binary suboperad of FF generated by{ 1
{1}{1, 2}, 1

{2}{1, 2}, 1
{1, 2}, 1

{1}{2}

}
. (5.1.8)

We explain here how to construct FF4 through the clique construction.Let OFF4 be the suboperad of CZ generated by{ 1−1
−1 , −11

−1 , 11
−1 , −1−11

}
. (5.1.9)

By using Proposition 3.3.2, we find that the Hilbert series HOFF4 (t) of OFF4 satisfies
t + (2t − 1)HOFF4 (t) + 2HOFF4 (t)2 = 0. (5.1.10)The first dimensions of OFF4 are1, 4, 24, 176, 1440, 12608, 115584, 1095424, (5.1.11)and form Sequence A156017 of [Slo]. Moreover, by computer exploration, weobtain the list

−11
−1 ◦1 1−1

−1 = 1−1
−1 ◦2 −11

−1 , (5.1.12a)
11

−1 ◦1 11
−1 = 11

−1 ◦2 11
−1 , (5.1.12b)

11
−1 ◦1 1−1

−1 = 1−1
−1 ◦2 11

−1 , (5.1.12c)
11

−1 ◦1 −11
−1 = 11

−1 ◦2 1−1
−1 , (5.1.12d)

−11
−1 ◦1 11

−1 = 11
−1 ◦2 −11

−1 , (5.1.12e)
−1−11 ◦1 −1−11 = −1−11 ◦2 −1−11 , (5.1.12f)
−11

−1 ◦1 −11
−1 = −11

−1 ◦2 −1−11 , (5.1.12g)
1−1

−1 ◦1 −1−11 = 1−1
−1 ◦2 1−1

−1 , (5.1.12h)
of all nontrivial relations of degree 2 between the generators of OFF4 .
▶ Proposition 5.1.2  The operad OFF4 is isomorphic to the operad FF4.
◀ Proof  Let φFF4 : OFF4(2) → FF4(2) be the linear map satisfying

φFF4
( 1−1

−1
) = 1

{1}{1, 2}, (5.1.13a)
φFF4

(
−11

−1
) = 1

{2}{1, 2}, (5.1.13b)
φFF4

( 11
−1
) = 1

{1, 2}, (5.1.13c)
φFF4

(
−1−11
) = 1

{1}{2}. (5.1.13d)
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In [CHN16], a presentation of FF4 is described wherein its generators satisfy eightnontrivial relations of degree 2. These relations can be obtained by replacing each
Z-clique appearing in (5.1.12a)–(5.1.12h) by its image by φFF4 . For this reason,
φFF4 uniquely extends to an operad morphism. Moreover, because the imageof φFF4 contains all the generators of FF4, this morphism is surjective. Finally,again by [CHN16], the Hilbert series of FF4 satisfies (5.1.10), so that OFF4 and
FF4 have the same dimensions. Therefore, φFF4 is an operad isomorphism. ■Hence, Proposition 5.1.2 shows that the operad FF4 can be built throughthe construction C. Observe also that, as a consequence of Proposition 5.1.2, allsuboperads of FF4 defined in [CHN16] that are generated by a subset of (5.1.8)can be constructed by the clique construction.5.2 OPERAD OF BICOLORED NONCROSSING CONFIGURA-TIONSThe operad of bicolored noncrossing configurations BNC is an operad definedin [CG14]. Let us describe this operad.A bicolored noncrossing configuration is a noncrossing configuration c whereeach labeled arc is either thick (drawn as a thick line) of dotted (drawn as a dottedline) and such that all dotted arcs are diagonals. For instance,

(5.2.1)
is a bicolored noncrossing configuration of size 9. For n ⩾ 2, BNC(n) is the linearspan of all bicolored noncrossing configurations of size n. Moreover, BNC(1) isthe linear span of the singleton containing the only polygon of size 1 where itsonly arc is unlabeled. The partial composition of BNC is defined graphically asfollows. For bicolored noncrossing configurations c and d of respective arities nand m, and i ∈ [n], the bicolored noncrossing configuration c ◦i d is obtained bygluing the base of d onto the ith edge of c, and then,(a) if the base of d and the ith edge of c are both unlabeled, the arc (i, i + m)of c ◦i d becomes dotted;(b) if the base of d and the ith edge of c are both thick, the arc (i, i + m) of

c ◦i d becomes thick;(c) otherwise, the arc (i, i + m) of c ◦i d is unlabeled.For example,
◦3 = , (5.2.2a)
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◦5 = , (5.2.2b)
◦3 = . (5.2.2c)

We now consider the unitary magma MBNC := {1, a, b} wherein operation ⋆is defined by the Cayley table
⋆ 1 a b
1 1 a ba a a 1b b 1 b

. (5.2.3)

In other words, MBNC is the unitary magma wherein a and b are idempotent, anda ⋆ b = 1 = b ⋆ a. Observe that MBNC is a commutative unitary magma, but, since(b ⋆ a) ⋆ a = 1 ⋆ a = a ̸= b = b ⋆ 1 = b ⋆ (a ⋆ a), (5.2.4)the operation ⋆ is not associative.Let φBNC : BNC → NCMBNC be the linear map defined in the following way.For a bicolored noncrossing configuration c, φBNC(c) is the noncrossing MBNC-clique of NCMBNC obtained by replacing all thick arcs of c by arcs labeled by a,all dotted diagonals of c by diagonals labeled by b, all unlabeled edges and basesof c by edges labeled by b, and all unlabeled diagonals of c by diagonals labeled by
1. For instance,

φBNC
( ) = b

a b bbab
a . (5.2.5)

▶ Proposition 5.2.1  The linear span of together with all noncrossing
MBNC-cliques without edges nor bases labeled by 1 forms a suboperad ofNCMBNC isomorphic to BNC. Moreover, φBNC is an isomorphism between these
two operads.

◀ Proof  We denote the subspace of NCMBNC described in the statementof the proposition by OBNC. First of all, it follows from the definition of thepartial composition of NCMBNC that OBNC is closed under the partial compositionoperation. Hence, and since OBNC contains the unit of NCMBNC, OBNC is an operad.Second, observe that the image of φBNC is the underlying space of OBNC and,from the definition of the partial composition of BNC, one can check that φBNCis an operad morphism. Finally, since φBNC is a bijection from BNC to OBNC, thestatement of the proposition follows. ■
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Hence, Proposition 5.2.1 shows that the operad BNC can be built through thenoncrossing clique construction. Moreover, observe that, in [CG14], an automor-phism of BNC called complement is considered. The complement of a bicolorednoncrossing configuration is an involution acting by modifying the labels of someof its arcs. Under our setting, this automorphism translates simply into the mapCθ : OBNC → OBNC where OBNC is the operad isomorphic to BNC described inthe statement of Proposition 5.2.1 and θ : MBNC → MBNC is the unitary magmaautomorphism of MBNC satisfying θ(1) = 1, θ(a) = b, and θ(b) = a.Moreover, it is shown in [CG14] that the set of bicolored noncrossing configu-rations of arity 2 is a minimal generating set of BNC. Thus, by Proposition 5.2.1,the set { aaa , baa , aba , bba , aab , bab , abb , bbb

} (5.2.6)is a minimal generating set of the suboperad OBNC of NCMBNC isomorphic to BNC.As a consequence, all the suboperads of BNC defined in [CG14] which are generatedby a subset of the set of generators of BNC can be constructed by the noncrossingclique construction. This includes, among others, the magmatic operad, the freeoperad on two binary generators, the operad of noncrossing plants [Cha07], thedipterous operad [LR03; Zin12], and the 2-associative operad [LR06; Zin12].6 CONCLUSION AND PERSPECTIVES
In this article we have completed the study of the clique construction in-troduced in [Gir20] by focusing on the suboperad NCM of CM of noncrossing

M-cliques. As noticed in the previous sections, NCM has a particular statusamong the suboperads of CM because NCM is the smallest suboperad of CMthat contains all elements of arity 2 (the M-triangles) and is the biggest binarysuboperad of CM. This operad is also a Koszul operad when M is a finite unitarymagma.An open question concerns the Koszul dual NCM! of NCM. Section 4 containsresults about this operad, such as a description of its presentation and a formulafor its dimensions. We have also established the fact that, as graded vector space,NCM! is isomorphic to the linear span of all noncrossing dual M-cliques. Toobtain a realization of NCM!, it is now enough to endow this last space with anadequate partial composition. Finding such a composition is worth to obtain.REFERENCES
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