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OPERADS OF DECORATED CLIQUES I:
CONSTRUCTION AND QUOTIENTS

SAMUELE GIRAUDO
ABSTRACT. We introduce a functorial construction C which takes unitary magmas
M as input and produces operads. The obtained operads involve configurationsof chords labeled by elements of M, called M-decorated cliques and generaliz-ing usual configurations of chords. By considering combinatorial subfamilies of
M-decorated cliques defined, for instance, by limiting the maximal number ofcrossing diagonals or the maximal degree of the vertices, we obtain suboper-ads and quotients of CM. This leads to a new hierarchy of operads containing,among others, operads on noncrossing configurations, Motzkin configurations,forests, dissections of polygons, and involutions. Moreover, the construction Cleads to alternative definitions of the operads of simple and double multi-tildes,and of the gravity operad.

CONTENTSIntroduction 21. Elementary definitions and tools 51.1. Nonsymmetric operads 51.2. Configurations of chords 72. From unitary magmas to operads 82.1. Operads of decorated cliques 82.2. General properties 123. Quotients and suboperads 233.1. Main substructures 233.2. Secondary substructures 313.3. Relations between substructures 344. Concrete constructions 364.1. Operads from language theory 364.2. Gravity operad 39Conclusion and perspectives 41
Date: February 2, 2021.2010 Mathematics Subject Classification. 05C76 18D50 05E99.
Key words and phrases. Configuration of chords, graph, operad.



2 SAMUELE GIRAUDOReferences 41
INTRODUCTIONConfigurations of chords on regular polygons are very classical combinatorialobjects. Up to some restrictions or enrichments, sets of these objects can be putin bijection with several combinatorial families. For instance, it is well-known thattriangulations [DLRS10], forming a particular subset of the set of all configurationsof chords, are in one-to-one correspondence with binary trees, and a lot of struc-tures and operations on binary trees translate nicely on triangulations. Indeed,among others, the rotation operation on binary trees [Knu98] is the covering rela-tion of the Tamari order [HT72] and this operation translates as a diagonal flip intriangulations. Also, noncrossing configurations [FN99] form another interestingsubfamily of such chord configurations. Natural generalizations of noncrossingconfigurations consist in allowing, with more or less restrictions, some crossingdiagonals. One of these families is formed by the multi-triangulations [CP92]wherein the number of mutually crossing diagonals is bounded. In particular, theclass of combinatorial objects in bijection with some configurations of chords islarge enough in order to contain, among others, dissections of polygons, non-crossing partitions, permutations, and involutions.On the other hand, coming historically from algebraic topology [May72,BV73],operads provide an abstraction of the notion of operators (of any arities) and theircompositions. In more concrete terms, operads are algebraic structures abstract-ing the notion of planar rooted trees and their grafting operations (see [LV12] for acomplete exposition of the theory and [Mén15] for an exposition focused on sym-metric set-operads). The modern treatment of operads in algebraic combinatoricsconsists in regarding combinatorial objects like operators endowed with gluingoperations mimicking the composition of operators. In the last years, a lot ofcombinatorial sets and combinatorial spaces have been endowed fruitfully with thestructure of an operad (see for instance [Cha08] for an exposition of known inter-actions between operads and combinatorics, focused on trees, [LMN13,GLMN16],where operads abstracting operations in language theory are introduced, [CG14]for the study of an operad involving particular noncrossing configurations, [Gir15]for a general construction of operads on many combinatorial sets, [Gir16a], whereoperads are constructed from posets, and [CHN16], where operads on variousspecies of trees are introduced). In most of the cases, this approach brings re-sults about enumeration, helps to discover new statistics, and leads to establishnew links (by morphisms) between different combinatorial sets or spaces. Wecan observe that most of the subfamilies of polygons endowed with configurationsof chords discussed above are stable for several natural composition operations.



OPERADS OF DECORATED CLIQUES I 3Even better, some of these can be described as the closure with respect to thesecomposition operations of small sets of polygons. For this reason, operads arevery promising candidates, among the modern algebraic structures, to study suchobjects under an algebraic and combinatorial flavor.The purpose of this work is twofold. First, we are concerned with endowingthe linear span of the configurations of chords with the structure of an operad.This leads to seeing these objects under a new light, stressing some of theircombinatorial and algebraic properties. Second, we would provide a generalconstruction of operads of configurations of chords rich enough so that it includessome already known operads. As a consequence, we obtain alternative definitionsof existing operads and new interpretations of these. For this aim, we workhere withM-decorated cliques (orM-cliques for short), that are complete graphswhose arcs are labeled by elements of M, where M is a unitary magma. Theseobjects are natural generalizations of configurations of chords since the arcs ofany M-clique labeled by the unit of M are considered as missing. The elementsofM different from the unit allow moreover to handle chords of different colors.For instance, each usual noncrossing configuration c can be encoded by an N2-clique p, where N2 is the cyclic additive unitary magma Z/2Z, wherein each arclabeled by 1 ∈ N2 in p denotes the presence of the same arc in c, and each arclabeled by 0 ∈ N2 in p denotes its absence in c. Our construction is materializedby a functor C from the category of unitary magmas to the category of operads.It builds, from any unitary magma M, an operad CM on M-cliques. The partialcomposition p◦i q of twoM-cliques p and q of CM consists in gluing the ith edgeof p (with respect to a precise indexation) and a special arc of q, called the base,together to form a new M-clique. The magmatic operation of M explains howto relabel the two overlapping arcs.This operad CM has a lot of properties, which can be apprehended both undera combinatorial and an algebraic point of view. First, many families of particu-lar configurations of chords form quotients or suboperads of CM. We can forinstance control the degrees of the vertices or the crossings between diagonalsto obtain new operads. We can also forbid all diagonals, or some labels for thediagonals or the edges, or all nestings of diagonals, or even all cycles formed byarcs. All these combinatorial particularities and restrictions onM-cliques behavewell algebraically. Moreover, by using the fact that the direct sum of two idealsof an operad O is still an ideal of O, these constructions can be mixed to get evenmore operads. For instance, it is well-known that Motzkin configurations, whichare polygons with disjoint noncrossing diagonals, are enumerated by Motzkinnumbers [Mot48]. Since a Motzkin configuration can be encoded by anM-cliquewhere all vertices are of degree at most 1 and no diagonal crosses another one,we obtain an operad MotM on colored Motzkin configurations which is both a



4 SAMUELE GIRAUDOquotient of Deg1M, the quotient of CM consisting in all M-cliques such that allvertices are of degree at most 1, and of Cro0M, the quotient (and suboperad)of CM consisting in all noncrossing M-cliques. We also get quotients of CMinvolving, among others, Schröder trees, forests of paths, forests of trees, dissec-tions of polygons, Lucas configurations, with colored versions for each of these.This leads to a new hierarchy of operads, wherein links between its componentsappear as surjective or injective operad morphisms. One of the most notable ofthese is built by considering the D0-cliques that have vertices of degree at most1, where D0 is the multiplicative unitary magma on {0, 1}. This is in fact thequotient Deg1 D0 of CD0 and involves involutions (or equivalently, standard Youngtableaux by the Robinson–Schensted correspondence [Lot02]). To the best of ourknowledge, Deg1 D0 is the first nontrivial operad on these objects.As an important remark at this stage, let us highlight that, if M is nontrivial,CM is not a binary operad. Indeed, all its minimal generating sets are infiniteand its generators have arbitrarily high arities. Furthermore, the constructionC maintains some links with the operad RatFct of rational functions introducedby Loday [Lod10]. In fact, provided that M satisfies some conditions, each M-clique encodes a rational function. This defines an operad morphism from CMto RatFct. Moreover, the construction C allows to construct already known op-erads in original ways. For instance, for well-chosen unitary magmas M, theoperads CM contain MT and DMT, two operads defined in [LMN13] respectivelyin [GLMN16] that involve multi-tildes and double multi-tildes, operators comingfrom formal language theory [CCM11]. The operads CM also contains Grav, thegravity operad, a symmetric operad introduced by Getzler [Get94], seen here asa nonsymmetric one [AP15].This text is organized as follows. Section 1 sets our notations, general defini-tions, and tools about nonsymmetric operads (since we deal only with nonsym-metric operads here, we call these simply operads) and configurations of chords.In Section 2, we introduce M-cliques, the construction C, and study some of itsproperties. Then Section 3 is devoted to define several suboperads and quotientsof CM. This leads to plenty of new operads on particular M-cliques. Finally, inSection 4, we use the construction C to provide alternative definitions of someknown operads.This paper is an extended version of [Gir17], containing the proofs of the pre-sented results.
Acknowledgements. The author would like to thank warmly Dan Petersen forintroducing him to the gravity operad and highlighting links between this operadand the current work. The author also thanks the anonymous reviewer for histime and his suggestions, which have greatly contributed to improving the article.



OPERADS OF DECORATED CLIQUES I 5
General notations and conventions. All the algebraic structures of this articlehave a field of characteristic zero K as ground field. For any set S, K 〈S〉 denotesthe linear span of the elements of S. For any integers a and c, [a, c] denotes theset {b ∈ N : a 6 b 6 c} and [n], the set [1, n]. The cardinality of a finite set S isdenoted by #S. If u is a word, its letters are indexed from left to right from 1 toits length |u|. If a is a letter, |u|a denotes the number of occurrences of a in u.

1. ELEMENTARY DEFINITIONS AND TOOLSWe set here our notations and recall some definitions about operads and relatedstructures. We also introduce some notations and definitions about configurationsof chords in polygons.1.1. Nonsymmetric operads. We adopt most of notations and conventions of[LV12] about operads. For the sake of completeness, we recall here the elementarynotions about operads employed thereafter.A nonsymmetric operad in the category of vector spaces, or a nonsymmetric
operad for short, is a graded vector space

O := ⊕
n>1 O(n) (1.1.1)

together with linear maps
◦i : O(n)⊗ O(m)→ O(n +m − 1), n,m > 1, i ∈ [n], (1.1.2)called partial compositions, and a distinguished element 1 ∈ O(1), the unit of O.This data has to satisfy the three relations(x ◦i y) ◦i+j−1 z = x ◦i (y ◦j z), x ∈ O(n), y ∈ O(m), z ∈ O(k), i ∈ [n], j ∈ [m],(1.1.3a)(x ◦i y) ◦j+m−1 z = (x ◦j z) ◦i y, x ∈ O(n), y ∈ O(m), z ∈ O(k), i < j ∈ [n], (1.1.3b)

1 ◦1 x = x = x ◦i 1, x ∈ O(n), i ∈ [n]. (1.1.3c)Since we consider in this paper only nonsymmetric operads, we shall call thesesimply operads. Moreover, in this work, we shall only consider operads O forwhich O(1) has dimension 1.If O is such that all O(n) have finite dimensions for all n > 1, the Hilbert seriesof O is the series HO(t) defined by
HO(t) := ∑

n>1 dimO(n) tn. (1.1.4)
If x is an element of O such that x ∈ O(n) for an n > 1, we say that n is the
arity of x and we denote it by |x|. If O1 and O2 are two operads, a linear map
φ : O1 → O2 is an operad morphism if it respects arities, sends the unit of O1to the unit of O2, and commutes with partial composition maps. We say that O2is a suboperad of O1 if O2 is a graded subspace of O1, O1 and O2 have the same



6 SAMUELE GIRAUDOunit, and the partial compositions of O2 are the ones of O1 restricted on O2. Forany subset G of O, the operad generated by G is the smallest suboperad OG of
O containing G. If OG = O and G is minimal with respect to the inclusion amongthe subsets of G satisfying this property, G is a minimal generating set of O andits elements are generators of O. An operad ideal of O is a graded subspace I of
O such that, for any x ∈ O and y ∈ I , x ◦i y and y ◦j x are in I for all valid integers
i and j . Given an operad ideal I of O, one can define the quotient operad O/I of
O by I in the usual way.Let us recall and set some more definitions about operads. The Hadamard
product between the two operads O1 and O2 is the operad O1 ∗ O2 satisfying (O1 ∗
O2)(n) = O1(n) ⊗ O2(n), and its partial composition is defined component-wisefrom the partial compositions of O1 and O2. An element x of O(2) is associative if
x◦1x = x◦2x. An antiautomorphism of O is a graded vector space automorphism
φ of O sending the unit of O to the unit of O and such that for any x ∈ O(n), y ∈ O,and i ∈ [n], φ(x◦iy) = φ(x)◦n−i+1φ(y). A symmetry of O is either an automorphismor an antiautomorphism of O. The set of all symmetries of O forms a group forthe map composition, called the group of symmetries of O. A basis B := ⊔n>1B(n)of O is a set-operad basis if all partial compositions of elements of B belong to B.In this case, we say that O is a set-operad with respect to the basis B. Moreover,if all the maps

◦yi : B(n)→ B(n +m − 1), n,m > 1, i ∈ [n], y ∈ B(m), (1.1.5)
defined by

◦yi (x) = x ◦i y, x ∈ B(n), (1.1.6)
are injective, we say that B is a basic set-operad basis of O. This notion is aslightly modified version of the original notion of basic set-operads introduced byVallette [Val07]. Finally, O is cyclic (see [GK95]) if there is a map

ρ : O(n)→ O(n), n > 1, (1.1.7)
satisfying, for all x ∈ O(n), y ∈ O(m), and i ∈ [n],

ρ(1) = 1, (1.1.8a)
ρn+1(x) = x, (1.1.8b)

ρ(x ◦i y) = {ρ(y) ◦m ρ(x), if i = 1,
ρ(x) ◦i−1 y, otherwise. (1.1.8c)

We call such a map ρ a rotation map.



OPERADS OF DECORATED CLIQUES I 71.2. Configurations of chords. Configurations of chords are very classical com-binatorial objects defined as collections of diagonals and edges in regular poly-gons. The literature abounds of studies of various kinds of configurations. Onecan cite for instance [DLRS10] about triangulations, [FN99] about noncrossingconfigurations, and [CP92] about multi-triangulations. Combinatorial propertiesrelated with crossings and nestings in configurations of chords appear in [Jon05,CDD+07, RS10, SS12]. We provide here definitions about these objects and con-sider a generalization of configurations wherein the edges and diagonals are la-beled by a set.
1.2.1. Polygons. A polygon of size n > 1 is a directed graph p on the set of vertices[n+ 1]. An arc of p is a pair of integers (x, y) with 1 6 x < y 6 n+ 1, a diagonalis an arc (x, y) different from (x, x+ 1) and (1, n+ 1), and an edge is an arc of theform (x, x + 1) and different from (1, n + 1). We denote by Ap (respectively Dp,
Ep) the set of all arcs (respectively diagonals, edges) of p. For any i ∈ [n], the ith
edge of p is the edge (i, i + 1), and the arc (1, n + 1) is the base of p.In our graphical representations, each polygon is drawn so that its base is thebottommost segment, vertices are implicitly numbered from 1 to n+1 in clockwisedirection, and the diagonals are not drawn. For example,

p :=
1

2
3 4

5
6

(1.2.1)
is a polygon of size 5. Its set of all diagonals is

Dp = {(1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (2, 6), (3, 5), (3, 6), (4, 6)}, (1.2.2)
its set of all edges is

Ep = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}, (1.2.3)
and its set of all arcs is

Ap = Dp t Ep t {(1, 6)}. (1.2.4)
1.2.2. Configurations. For any set S, an S-configuration (or a configuration when
S is known without ambiguity) is a polygon p endowed with a partial function

φp :Ap → S. (1.2.5)
When φp((x, y)) is defined, we say that the arc (x, y) is labeled and we writesimply p(x, y) instead of φp((x, y)). If the base of p is labeled, we write simply p0for p(1, n + 1), where n is the size of p. Finally, if the ith edge of p is labeled, wewrite simply pi for p(i, i + 1).



8 SAMUELE GIRAUDOIn our graphical representations, we shall represent any S-configuration p bydrawing a polygon of the same size as the one of p following the conventionsexplained before, and by labeling its arcs accordingly. For instance
p := a

bab (1.2.6)
is an {a,b}-configuration. The arcs (1, 2) and (1, 4) of p are labeled by a, the arcs(2, 5) and (4, 5) are labeled by b, and the other arcs are unlabeled.
1.2.3. Additional definitions. Let us now provide some definitions and statisticson configurations. Let p be a configuration of size n. The skeleton of p is theundirected graph skel(p) on the set of vertices [n + 1] such that for any x < y ∈[n + 1], there is an arc {x, y} in skel(p) if (x, y) is labeled in p. The degree of avertex x of p is the number of vertices adjacent to x in skel(p). The degree degr(p)of p is the maximal degree among its vertices. Two (non-necessarily labeled)diagonals (x, y) and (x′, y ′) of p are crossing if x < x′ < y < y ′ or x′ < x < y ′ < y.The crossing number of a labeled diagonal (x, y) of p is the number of labeleddiagonals (x′, y ′) such that (x, y) and (x′, y ′) are crossing. The crossing numbercros(p) of p is the maximal crossing among its labeled diagonals. If cros(p) = 0,there are no crossing diagonals in p and in this case, p is noncrossing. A (non-necessarily labeled) arc (x′, y ′) is nested in a (non-necessarily labeled) arc (x, y)of p if x 6 x′ < y ′ 6 y. We say that p is nesting-free if for any labeled arcs (x, y)and (x′, y ′) of p such that (x′, y ′) is nested in (x, y), (x, y) = (x′, y ′). Moreover,
p is acyclic if skel(p) is acyclic, that is, there is no subset {x1, . . . , xk} of [n + 1]of cardinality k > 3 such that {xi, xi+1} and {xk, x1} are arcs in skel(p) for all
i ∈ [k − 1]. If p has no labeled edges nor labeled base, p is white. If p has nolabeled diagonals, p is a bubble. A triangle is a configuration of size 2. Obviously,all triangles are bubbles, and all bubbles are noncrossing.

2. FROM UNITARY MAGMAS TO OPERADSWe describe in this section our construction from unitary magmas to operadsand study its main algebraic and combinatorial properties.
2.1. Operads of decorated cliques. We present here our main combinatorialobjects, the decorated cliques. The construction C, which takes a unitary magmaas input and produces an operad, is defined.
2.1.1. Unitary magmas. Recall first that a unitary magma is a set endowed witha binary operation ? admitting a left and right unit 1M. For convenience, wedenote by M the set M \ {1M}. To explore some examples in this article, weshall mostly consider four sorts of unitary magmas: the additive unitary magma



OPERADS OF DECORATED CLIQUES I 9on all integers denoted by Z, the cyclic additive unitary magma on Z/`Z denotedby N` , the unitary magma
D` := {1, 0,d1, . . . ,d`}, (2.1.1)where 1 is the unit of D` , 0 is absorbing, and di ? dj = 0 for all i, j ∈ [`], and theunitary magma
E` := {1, e1, . . . , e`}, (2.1.2)where 1 is the unit of E` and ei ? ej = 1 for all i, j ∈ [`]. Observe that, sincee1 ? (e1 ? e2) = e1 ? 1 = e1 6= e2 = 1 ? e2 = (e1 ? e1) ? e2, (2.1.3)all unitary magmas E` , ` > 2, are not monoids.

2.1.2. Decorated cliques. An M-decorated clique (or an M-clique for short) isan M-configuration p such that all arcs of p have labels. If the arc (x, y) of p islabeled by an element different from 1M , we say that the arc (x, y) is solid. Byconvention, we require that the M-clique of size 1 having its base labeled by
1M is the only such object of size 1. The set of allM-cliques is denoted by CM.In our graphical representations, we shall represent anyM-clique p by follow-ing the drawing conventions of configurations explained in Section 1.2.2 with thedifference that non-solid diagonals are not drawn. For instance,

p :=
−1 2 1
−1 3 21 (2.1.4)

is a Z-clique such that, among others p(1, 2) = −1, p(1, 5) = 2, p(3, 7) = −1, p(5, 7) =1, p(2, 3) = 0 (because 0 is the unit of Z), and p(2, 6) = 0 (for the same reason).Let us now provide some definitions and statistics on M-cliques. The under-
lying configuration of p is the M-configuration p of the same size as the one of
p and such that p(x, y) := p(x, y) for all solid arcs (x, y) of p, and all other arcsof p are unlabeled. The skeleton, (respectively degree, crossing number) of pis the skeleton (respectively the degree, the crossing number) of p. Moreover,
p is nesting-free, (respectively acyclic, white, an M-bubble, an M-triangle), if pis nesting-free (respectively acyclic, white, a bubble, a triangle). The set of all
M-bubbles (respectivelyM-triangles) is denoted by BM (respectively TM).
2.1.3. Partial composition of M-cliques. From now, the arity of an M-clique pis its size and is denoted by |p|. For any unitary magmaM, we define the vectorspace CM := ⊕

n>1 CM(n) = K 〈CM〉 , (2.1.5)
where CM(n) is the linear span of all M-cliques of arity n, n > 1. The set CMforms hence a basis of CM called fundamental basis. Observe that the space



10 SAMUELE GIRAUDOCM(1) has dimension 1 since it is the linear span of theM-clique . We endowCM with partial composition maps
◦i : CM(n)⊗CM(m)→ CM(n +m − 1), n,m > 1, i ∈ [n], (2.1.6)defined linearly, in the fundamental basis, in the following way. Let p and q betwo M-cliques of respective arities n and m, and i ∈ [n] be an integer. We set

p ◦i q as the M-clique of arity n + m − 1 such that, for any arc (x, y) where1 6 x < y 6 n +m,

(p ◦i q)(x, y) :=



p(x, y), if y 6 i,
p(x, y −m + 1), if x 6 i < i +m 6 yand (x, y) 6= (i, i +m),
p(x −m + 1, y −m + 1), if i +m 6 x,
q(x − i + 1, y − i + 1), if i 6 x < y 6 i +mand (x, y) 6= (i, i +m),
pi ? q0, if (x, y) = (i, i +m),
1M, otherwise.

(2.1.7)

We recall that ? denotes the operation ofM and 1M its unit. Graphically, p ◦i q isobtained by gluing the base of q onto the ith edge of p and by labeling this arc by
pi ? q0, and by adding all required non solid diagonals on the graph thus obtainedto become a clique (see Figure 1). For example, in CZ, we have the two partial

pii i+1
p ◦i

q0
q = pii i+1

p

q0
q = i i+mpi ? q0

FIGURE 1. The partial composition of CM, described in graphical terms. Here,
p and q are two M-cliques. The arity of q is m and i is an integer between 1and |p|.

compositions
1 −2−2 1 ◦2 1

3
1 2 =

1 −2
1 11

2
1 , (2.1.8a)

1 −2−2 1 ◦2 1
2

1 2 =
1 −2

1 12
1 . (2.1.8b)



OPERADS OF DECORATED CLIQUES I 112.1.4. Functorial construction from unitary magmas to operads. IfM1 andM2are two unitary magmas and θ : M1 → M2 is a unitary magma morphism, wedefine Cθ : CM1 → CM2 (2.1.9)as the linear map sending any M1-clique p of arity n to the M2-clique (Cθ)(p) ofthe same arity such that, for any arc (x, y) where 1 6 x < y 6 n + 1,((Cθ)(p))(x, y) := θ(p(x, y)). (2.1.10)Graphically, (Cθ)(p) is the M2-clique obtained by relabeling each arc of p by theimage of its label by θ.
Theorem 2.1.1. The construction C is a functor from the category of unitary
magmas to the category of operads. Moreover, C respects injections and sur-
jections.

Proof. Let M be a unitary magma. The fact that CM endowed with the partialcomposition (2.1.7) is an operad can be established by showing that the two asso-ciativity relations (1.1.3a) and (1.1.3b) of operads are satisfied. This is a technicalbut a simple verification. Since CM(1) contains and this element is the unit forthis partial composition, (1.1.3c) holds. Moreover, let M1 and M2 be two unitarymagmas and θ : M1 → M2 be a unitary magma morphism. The fact that themap Cθ defined in (2.1.10) is an operad morphism is straightforward to check.All this implies that C is a functor. Finally, the fact that C respects injections andsurjections is also straightforward to verify. �We call the construction C the clique construction, and CM the M-clique
operad. Observe that the fundamental basis of CM is a set-operad basis of CM.Besides, if M is the trivial unitary magma {1M}, CM is the linear span of alldecorated cliques having only non-solid arcs. Thus, each space CM(n), n > 1,is of dimension 1 and it follows from the definition of the partial composition ofCM that this operad is isomorphic to the associative operad As. The next resultshows that the clique construction is compatible with the Cartesian product ofunitary magmas.
Proposition 2.1.2. LetM1 andM2 be two unitary magmas. Then C(M1 ×M2)
is isomorphic to the Hadamard product of operads (CM1) ∗ (CM2).
Proof. Let φ : (CM1)∗ (CM2)→ C(M1×M2) be the linear map defined as follows.For anyM1-clique p of CM1 and anyM2-clique q of CM2 both of arity n, φ(p⊗q)is theM1 ×M2-clique defined, for any 1 6 x < y 6 n + 1, by(φ(p⊗ q)) (x, y) := (p(x, y), q(x, y)). (2.1.11)Let the linear map ψ : C(M1 ×M2)→ (CM1) ∗ (CM2) defined, for any M1 ×M2-clique r of C(M1 ×M2) of arity n, as follows. TheM1-clique p and theM2-clique



12 SAMUELE GIRAUDO
q of arity n of the tensor p⊗ q := ψ(r) are defined, for any 1 6 x < y 6 n + 1, by
p(x, y) := a and q(x, y) := b, where (a, b) = r(x, y). Since we observe immediatelythat ψ is the inverse of φ, φ is a bijection. Moreover, it follows from the definitionof the partial composition of clique operads that φ is an operad morphism. Thestatement of the proposition follows. �2.2. General properties. We investigate here some properties of clique operads,as their dimensions, their minimal generating sets, the fact that they admit a cyclicoperad structure, and describe their partial compositions over two alternativebases.2.2.1. Binary relations. Let us start by remarking that, depending on the cardi-nality m of M, the set of all M-cliques can be interpreted as particular binaryrelations. If m > 4, let us set M = {1M, a,b, c, . . . } so that a, b, and c aredistinguished pairwise distinct elements of M different from 1M. Given an M-clique p of arity n > 2, we build a binary relation R on [n + 1] satisfying, for all
x < y ∈ [n + 1],

xRy, if p(x, y) = a,
yRx, if p(x, y) = b,

xRy and yRx, if p(x, y) = c. (2.2.1)
In particular, if m = 2 (respectively m = 3, m = 4),M = {1, c} (respectivelyM =
{1, a,b}, M = {1, a,b, c}) and the set of all M-cliques of arities n > 2 is in one-to-one correspondence with the set of all irreflexive and symmetric (respectivelyirreflexive and antisymmetric, irreflexive) binary relations on [n + 1]. Therefore,the operads CM can be interpreted as operads involving binary relations withmore or less properties.2.2.2. Dimensions and minimal generating set.

Proposition 2.2.1. LetM be a finite unitary magma. For all n > 2,dim CM(n) = m(n+12 ), (2.2.2)
where m := #M.

Proof. By definition of the clique construction and of M-cliques, the dimensionof CM(n) is the number of maps from the set {(x, y) ∈ [n + 1]2 : x < y
} to M.Therefore, if n > 2, this implies (2.2.2). �From Proposition 2.2.1, the first dimensions of CM depending on m := #Mare 1, 1, 1, 1, 1, 1, 1, 1, m = 1, (2.2.3a)1, 8, 64, 1024, 32768, 2097152, 268435456, 68719476736, m = 2, (2.2.3b)



OPERADS OF DECORATED CLIQUES I 131, 27, 729, 59049, 14348907, 10460353203, 22876792454961,150094635296999121, m = 3, (2.2.3c)
1, 64, 4096, 1048576, 1073741824, 4398046511104, 72057594037927936,4722366482869645213696, m = 4. (2.2.3d)

Except for the first terms, the second one forms Sequence A006125, the thirdone forms Sequence A047656, and the last one forms Sequence A053763 of [Slo].
Lemma 2.2.2. Let M be a unitary magma, p be an M-clique of arity n > 2,
and (x, y) be a diagonal of p. Then the following two assertions are equivalent:
(i) the diagonal (x, y) is solid and its crossing number is 0, or (x, y) is not solid;
(ii) theM-clique p can be written as p = q ◦x r, where q is anM-clique of arity
n + x − y + 1 and r is anM-clique of arity y − x.

Proof. Assume first that (i) holds. Set q as the M-clique of arity n + x − y + 1defined, for any arc (z, t) where 1 6 z < t 6 n + x − y + 2, by
q(z, t) :=


p(z, t), if t 6 x,
p(z, t + y − x − 1), if x + 1 6 t,
p(z + y − x − 1, t + y − x − 1), otherwise, (2.2.4)

and r as the M-clique of arity y − x defined, for any arc (z, t) where 1 6 z < t 6
y − x + 1, by

r(z, t) := {p(z + x − 1, t + x − 1), if (z, t) 6= (1, y − x + 1),
1M, otherwise. (2.2.5)

By following the definition of the partial composition of CM, one obtains p = q◦xr,hence (ii) holds.Assume conversely that (ii) holds. By definition of the partial composition ofCM, the fact that p = q ◦x r implies that p(x′, y ′) = 1M for any arc (x′, y ′) such that(x, y) and (x′, y ′) are crossing. Therefore, (i) holds. �

Let PM be the set of all M-cliques p of arity n > 2 that do not satisfy theproperty of the statement of Lemma 2.2.2. In other words, PM is the set of all
M-cliques such that, for any (non-necessarily solid) diagonal (x, y) of p, there is atleast one solid diagonal (x′, y ′) of p such that (x, y) and (x′, y ′) are crossing. We call
PM the set of all prime M-cliques. Observe that, according to this description,allM-triangles are prime.
Proposition 2.2.3. Let M be a unitary magma. The set PM is a minimal
generating set of CM.

http://oeis.org/A006125
http://oeis.org/A047656
http://oeis.org/A053763
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Proof. We show by induction on the arity that PM is a generating set of CM.Let p be an M-clique. If p is of arity 1, p = and hence p trivially belongs to(CM)PM (recall that this notation stands for the suboperad of CM generated by
PM). Let us assume that p is of arity n > 2. First, if p ∈ PM , then p ∈ (CM)PM .Otherwise, p is an M-clique which satisfies the description of the statement ofLemma 2.2.2. Therefore, by this lemma, there are twoM-cliques q and r and aninteger x ∈ [|p|] such that |q| < |p|, |r| < |p|, and p = q◦x r. By induction hypothesis,
q and r belong to (CM)PM and hence, p also belongs to (CM)PM .Finally, by Lemma 2.2.2, if p is a prime M-clique, p cannot be expressed asa partial composition of prime M-cliques. Moreover, since the space CM(1) istrivial, these arguments imply that PM is a minimal generating set of CM. �Computer experiments tell us that, if m := #M = 2, the first numbers of prime
M-cliques are, size by size,0, 8, 16, 352, 16448, 1380224. (2.2.6)Moreover, observe that the nth term of this sequence is divisible by mn+1 sincethe labels of the base and the edges of an M-clique p have no influence on thefact that p is prime. This gives the sequence0, 1, 1, 11, 257, 10783, (2.2.7)enumerating the first of them size by size. Besides, a primeM-clique p is minimalif anyM-clique obtained from p by replacing a solid arc by a non-solid one is notprime. Of course, all minimal primeM-cliques are white. Computer experimentsshow us that, if m := #M = 2, the numbers of minimal prime M-cliques beginby 0, 1, 1, 5, 22, 119. (2.2.8)None of these sequences appear in [Slo] at this time.
2.2.3. Associative elements.

Proposition 2.2.4. Let M be a unitary magma and f be an element of CM(2)
of the form

f := ∑
p∈TM

λpp, (2.2.9)
where the λp, p ∈ TM , are coefficients of K. Then f is associative if and only if∑

p1,q0∈M
δ=p1?q0

λ
p2p1

p0
λ

q2q1
q0

= 0, p0, p2, q1, q2 ∈ M, δ ∈ M, (2.2.10a)
∑

p1,q0∈M
p1?q0=1M

λ
p2p1

p0
λ

q2q1
q0
− λ

p1q1
p0

λ
p2q2

q0
= 0, p0, p2, q1, q2 ∈ M, (2.2.10b)
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p2,q0∈M
δ=p2?q0

λ
p2p1

p0
λ

q2q1
q0

= 0, p0, p1, q1, q2 ∈ M, δ ∈ M. (2.2.10c)
Proof. The element f defined in (2.2.9) is associative if and only if f ◦1 f− f ◦2 f = 0.Therefore, this property is equivalent to the fact that

f ◦1 f − f ◦2 f =
 ∑

p,q∈TM
δ:=p1?q0 6=1M

λpλq
q2

q1 p2
p0δ

+
 ∑

p,q∈TM
p1?q0=1M

λpλq
q2

q1 p2
p0



−

 ∑
p,q∈TM

δ:=p2?q0 6=1M
λpλq

q1
p1 q2

p0δ

−
 ∑

p,q∈TM
p2?q0=1M

λpλq
q1

p1 q2
p0



=
 ∑

p0,p2,q1,q2∈M
δ∈M

 ∑
p1,q0∈M
δ=p1?q0

λ
p2p1

p0
λ

q2q1
q0

 q2
q1 p2

p0δ


+
 ∑

p0,p2,q1,q2∈M

 ∑
p1,q0∈M
p1?q0=1M

λ
p2p1

p0
λ

q2q1
q0
− λ

p1q1
p0

λ
p2q2

q0

 q2
q1 p2

p0


−

 ∑
p0,p1,q1,q2∈M

δ∈M

 ∑
p2,q0∈M
δ=p2?q0

λ
p2p1

p0
λ

q2q1
q0

 q1
p1 q2

p0δ


= 0, (2.2.11)

and hence, is equivalent to the fact that (2.2.10a), (2.2.10b), and (2.2.10c) hold. �

For instance, by Proposition 2.2.4, the binary elements
111 , (2.2.12a)

+ 1 − 1 + 1 − 11 + 11 − 11 − 111 (2.2.12b)
of CN2 are associative, and the binary elements

00 − 000 , (2.2.13a)
0 − 00 − 00 + 000 (2.2.13b)

of CD0 are associative.



16 SAMUELE GIRAUDO2.2.4. Symmetries. Let ref : CM→ CM be the linear map sending anyM-clique
p of arity n to the M-clique ref(p) of the same arity such that, for any arc (x, y)where 1 6 x < y 6 n + 1,

(ref(p)) (x, y) := p(n − y + 2, n − x + 2). (2.2.14)
Graphically, ref(p) is the M-clique obtained by applying on p a reflection troughthe vertical line passing by its base. For instance, in CZ we have

ref 1 −2−2 1
 = 1

−2 −2
1 . (2.2.15)

Proposition 2.2.5. LetM be a unitary magma. Then the group of symmetries
of CM contains the map ref and all the maps Cθ where θ is a unitary magma
automorphisms ofM.

Proof. When θ is a unitary magma automorphism ofM, since by Theorem 2.1.1 Cis a functor respecting bijections, Cθ is an operad automorphism of CM. Hence,Cθ belongs to the group of symmetries of CM. Moreover, the fact that refbelongs to the group of symmetries of CM can be established by showing thatthis map is an antiautomorphism of CM, directly from the definition of the partialcomposition of CM and that of ref. �

2.2.5. Basic set-operad basis. A unitary magmaM is right cancelable if for any
x, y, z ∈ M, y ? x = z ? x implies y = z.
Proposition 2.2.6. LetM be a unitary magma. The fundamental basis of CM
is a basic set-operad basis if and only ifM is right cancelable.

Proof. Assume first that M is right cancelable. Let n > 1, i ∈ [n], and p, p′, and
q be three M-cliques such that p and p′ are of arity n. If ◦qi (p) = ◦qi (p′), we have
p ◦i q = p′ ◦i q. By definition of the partial composition map of CM, we have
p(x, y) = p′(x, y) for all arcs (x, y) where 1 6 x < y 6 n + 1 and (x, y) 6= (i, i + 1).Moreover, we have pi ? q0 = p′i ? q0. Since M is right cancelable, this implies that
pi = p′i, and hence, p = p′. This shows that the maps ◦qi are injective and thus, thatthe fundamental basis of CM is a basic set-operad basis.Conversely, assume that the fundamental basis of CM is a basic set-operadbasis. Then, in particular, for all n > 1 and all M-cliques p, p′, and q such that pand p′ are of arity n, ◦q1(p) = ◦q1(p′) implies p = p′. This is equivalent to the statementthat p1 ? q0 = p′1 ? q0 implies p1 = p′1. This amount exactly to the statement thatMis right cancelable. �



OPERADS OF DECORATED CLIQUES I 172.2.6. Cyclic operad structure. Let ρ : CM → CM be the linear map sendinganyM-clique p of arity n to theM-clique ρ(p) of the same arity such that, for anyarc (x, y) where 1 6 x < y 6 n + 1,
(ρ(p))(x, y) := {p(x + 1, y + 1), if y 6 n,

p(1, x + 1), otherwise (y = n + 1). (2.2.16)
Graphically, ρ(p) is the M-clique obtained by applying a rotation of one step of pin counterclockwise direction. For instance, in CZ we have

ρ

 1 −2−2 1
 =

−2 1
1−2 . (2.2.17)

Proposition 2.2.7. Let M be a unitary magma. The map ρ is a rotation map
of CM, endowing this operad with a cyclic operad structure.

Proof. The fact that ρ is a rotation map for CM follows from a technical butstraightforward verification of the fact that Relations (1.1.8a), (1.1.8b), and (1.1.8c)hold. �2.2.7. Alternative bases. If p and q are twoM-cliques of the same arity, the Ham-
ming distance h(p, q) between p and q is the number of arcs (x, y) such that
p(x, y) 6= q(x, y). Let �be be the partial order relation on the set of all M-cliques,where, for any M-cliques p and q, one has p �be q if q can be obtained from pby replacing some labels 1M of its edges or its base by other labels ofM. In thesame way, let �d be the partial order on the same set, where p �d q if q can beobtained from p by replacing some labels 1M of its diagonals by other labels of
M.For allM-cliques p, let us introduce the elements of CM defined byHp := ∑

p′∈CM
p′�bep

p′, (2.2.18a)
and Kp := ∑

p′∈CM
p′�dp

(−1)h(p′,p)p′. (2.2.18b)
For instance, in CZ,

H 1 122 = 1 2 + 1 22 + 1 12 + 1 122 , (2.2.19a)
K 1 122 = 1 122 −

122 − 1 12 + 12 . (2.2.19b)



18 SAMUELE GIRAUDOSince, by Möbius inversion, for anyM-clique p we have∑
p′∈CM
p′�bep

(−1)h(p′,p)Hp′ = p = ∑
p′∈CM
p′�dp

Kp′ (2.2.20)
by triangularity, the family of all the Hp (respectively Kp) forms a basis of CMcalled the H-basis (respectively the K-basis).If p is anM-clique, d0(p) (respectively di(p)) is theM-clique obtained by replac-ing the label of the base (respectively ith edge) of p by 1M.
Proposition 2.2.8. LetM be a unitary magma. The partial composition of CM
can be expressed in terms of the H-basis, for any M-cliques p and q different
from and any valid integer i, by

Hp ◦i Hq =


Hp◦iq + Hdi(p)◦iq + Hp◦id0(q) + Hdi(p)◦id0(q), if pi 6= 1M and q0 6= 1M,Hp◦iq + Hdi(p)◦iq, if pi 6= 1M and q0 = 1M,Hp◦iq + Hp◦id0(q), if pi = 1M and q0 6= 1M,Hp◦iq, otherwise.

(2.2.21)
Proof. From the definition of the H-basis, we haveHp ◦i Hq = ∑

p′,q′∈CM
p′�bep
q′�beq

p′ ◦i q′

= ∑
p′,q′∈CM
p′�bep
q′�beq
p′i 6=1M
q′0 6=1M

p′ ◦i q′ + ∑
p′,q′∈CM
p′�bep
q′�beq
p′i 6=1M
q′0=1M

p′ ◦i q′ + ∑
p′,q′∈CM
p′�bep
q′�beq
p′i=1M
q′0 6=1M

p′ ◦i q′ + ∑
p′,q′∈CM
p′�bep
q′�beq
p′i=1M
q′0=1M

p′ ◦i q′. (2.2.22)

Let s1 (respectively s2, s3, s4) be the first (respectively second, third, fourth) sum-mand of the right-hand side of (2.2.22). There are four cases to explore dependingon whether the ith edge of p and the base of q are solid or not. From the definitionof the H-basis and of the partial order relation �be, we have(a) if pi 6= 1M and q0 6= 1M , s1 = Hp◦iq, s2 = Hp◦id0(q), s3 = Hdi(p)◦iq, and s4 = Hdi(p)◦id0(q);(b) if pi 6= 1M and q0 = 1M , s1 = 0, s2 = Hp◦iq, s3 = 0, and s4 = Hdi(p)◦iq;(c) if pi = 1M and q0 6= 1M , s1 = 0, s2 = 0, s3 = Hp◦iq, and s4 = Hp◦id0(q);(d) and if pi = 1M and q0 = 1M , s1 = 0, s2 = 0, s3 = 0, and s4 = Hp◦iq.By assembling these cases together, we obtain the stated result. �

Proposition 2.2.9. LetM be a unitary magma. The partial composition of CM
can be expressed in terms of the K-basis, for any M-cliques p and q different
from and any valid integer i, by

Kp ◦i Kq = {Kp◦iq, if pi ? q0 = 1M,Kp◦iq + Kdi(p)◦id0(q), otherwise.
(2.2.23)
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Proof. Let m be the arity of q. From the definition of the K-basis and of thepartial order relation �d, we have

Kp ◦i Kq = ∑
p′,q′∈CM
p′�dp
q′�dq

(−1)h(p′,p)+h(q′,q)p′ ◦i q′

= ∑
p′,q′∈CM

p′◦iq′�dp◦iq
p′i=pi
q′0=q0

(−1)h(p′,p)+h(q′,q)p′ ◦i q′

= ∑
r∈CM
r�dp◦iq

r(i,i+m−1)=pi?q0

(−1)h(r,p◦iq)r.

(2.2.24)

If pi ? q0 = 1M , (2.2.24) is equal to Kp◦iq. Otherwise, if pi ? q0 6= 1M , we have∑
r∈CM
r�dp◦iq

r(i,i+m−1)=pi?q0

(−1)h(r,p◦iq)r = ∑
r∈CM
r�dp◦iq

(−1)h(r,p◦iq)r − ∑
r∈CM
r�dp◦iq

r(i,i+m−1)6=pi?q0

(−1)h(r,p◦iq)r

= Kp◦iq −
∑
r∈CM

r�ddi(p)◦id0(q)
(−1)h(r,p◦iq)r

= Kp◦iq −
∑
r∈CM

r�ddi(p)◦id0(q)
(−1)1+h(r,di(p)◦id0(q))r

= Kp◦iq + Kdi(p)◦id0(q).This proves the claimed formula for the partial composition of CM over theK-basis. �

For instance, in CZ,
H 1 ◦2 H 1 = H + 2 H 1 + H 2 , (2.2.25a)

K 1 ◦2 K 1 = K + K 2 , (2.2.25b)
H 2 1 ◦3 H 122 = H 2 12

+ H 2 11 2
+ H 2 12 2

+ H 2 13 2
, (2.2.25c)

K 2 1 ◦3 K 122 = K 2 12
+ K 2 13 2

, (2.2.25d)



20 SAMUELE GIRAUDOH −12 1 ◦2 H
−11
1 = H

−1
−12
1

1
+ 2 H

−12
1

1
+ H

−112
1

1
, (2.2.25e)

K −12 1 ◦2 K
−11
1 = K

−12
1

1
, (2.2.25f)

and in D1, H 0d1 0 ◦2 H 00
0 = 3 H 00d1

0
0

+ H 0d1
0

0
, (2.2.26a)

K 0d1 0 ◦2 K 00
0 = K 00d1

0
0

+ K 0d1
0

0
. (2.2.26b)

2.2.8. Rational functions. The graded vector space of all commutative rationalfunctions K(U), where U is the infinite commutative alphabet {u1, u2, . . . }, hasthe structure of an operad RatFct introduced by Loday [Lod10] and is defined asfollows. Let RatFct(n) be the subspace K(u1, . . . , un) of K(U) andRatFct := ⊕
n>1 RatFct(n). (2.2.27)

Observe that, since RatFct is a graded space, each rational function has an arity.Hence, by setting f1(u1) := 1 and f2(u1, u2) := 1, f1 is of arity 1 while f2 is of arity2, so that f1 and f2 are considered as different rational functions. The partialcomposition of two rational functions f ∈ RatFct(n) and g ∈ RatFct(m) is definedby
f ◦i g := f (u1, . . . , ui−1, ui + · · ·+ ui+m−1, ui+m, . . . , un+m−1) g (ui, . . . , ui+m−1) .(2.2.28)The rational function f of RatFct(1) defined by f (u1) := 1 is the unit of RatFct.As shown by Loday, this operad is (nontrivially) isomorphic to the operad Mouldintroduced by Chapoton [Cha07].Let us assume thatM is a Z-graded unitary magma, that is, a unitary magmasuch that there exists a unitary magma morphism θ :M→ Z. We say that θ is a

rank function ofM. In this context, letFθ : CM→ RatFct (2.2.29)be the linear map defined, for anyM-clique p, byFθ(p) := ∏
(x,y)∈Ap

(ux + · · ·+ uy−1)θ(p(x,y)) . (2.2.30)



OPERADS OF DECORATED CLIQUES I 21For instance, by considering the unitary magma Z together with its identity mapId as rank function, we have
FId

−1 2 1
−2 3

−1
 = (u1 + u2 + u3 + u4)2 (u1 + u2 + u3 + u4 + u5 + u6)u34

u1 (u3 + u4 + u5 + u6)2 (u5 + u6) . (2.2.31)
Theorem 2.2.10. LetM be a Z-graded unitary magma and θ be a rank function
ofM. The map Fθ is an operad morphism from CM to RatFct.
Proof. For the sake of brevity of notation, for all positive integers x < y, we denoteby Ux,y the sums ux + · · ·+uy−1. Let p and q be twoM-cliques of respective arities
n and m, and i ∈ [n] be an integer. From the definition of the partial compositionof CM, the one (see (2.2.28)) of RatFct, and the fact that θ is a unitary magmamorphism, we haveFθ(p) ◦i Fθ(q) = (Fθ(p)) (u1, . . . , ui−1,Ui,i+m, ui+m, . . . , un+m−1) (Fθ(q)) (ui, . . . , ui+m−1)

=  ∏
16x<y6i−1U

θ(p(x,y))
x,y

 ∏
i+16x<y6n+1U

θ(p(x,y))
x+m−1,y+m−1

Uθ(pi)
i,i+m

×

 ∏
16x<y6m+1U

θ(q(x,y))
x+i−1,y+i−1


=  ∏

16x<y6i−1U
θ(p(x,y))
x,y

 ∏
i+16x<y6n+1U

θ(p(x,y))
x+m−1,y+m−1

Uθ(pi)+θ(q0)
i,i+m

×

 ∏
16x<y6m+1(x,y)6=(1,m+1)

Uθ(q(x,y))
x+i−1,y+i−1


=  ∏

16x<y6i−1U
θ(p(x,y))
x,y

 ∏
i+16x<y6n+1U

θ(p(x,y))
x+m−1,y+m−1

Uθ(pi?q0)
i,i+m

×

 ∏
16x<y6m+1(x,y)6=(1,m+1)

Uθ(q(x,y))
x+i−1,y+i−1


= ∏

(x,y)∈Ap◦iq

Uθ((p◦iq)(x,y))
x,y

= Fθ(p ◦i q).Moreover, since θ(1M) = 0, we have Fθ ( ) = 1, so that Fθ sends the unit of CMto the unit of RatFct. Therefore, Fθ is an operad morphism. �



22 SAMUELE GIRAUDOThe operad morphism Fθ is not injective. Indeed, by considering the magma
Z together with its identity map Id as rank function, we have for instance

FId
(

1 − 1 − 1 ) = (u1 + u2)− u1 − u2 = 0, (2.2.32a)
FId
(

−1
−1 − −1−1 − −1

−1
) = 1

u2u3 −
1(u2 + u3)u3 −

1
u2(u2 + u3) = 0. (2.2.32b)

Proposition 2.2.11. The subspace of RatFct of all Laurent polynomials on U is
the image by FId : CZ → RatFct of the subspace of CZ consisting in the linear
span of all Z-bubbles.

Proof. First, by Theorem 2.2.10, FId is a well-defined operad morphism from CZto RatFct. Let uα11 . . . uαnn be a Laurent monomial, where α1, . . . , αn ∈ Z and n > 1.Consider also the Z-clique pα of arity n + 1 satisfying
pα(x, y) := {αx, if y = x + 1,0, otherwise. (2.2.33)

Observe that pα is a Z-bubble. By definition of FId, we have FId(pα) = uα11 . . . uαnn .Now, since a Laurent polynomial is a linear combination of some Laurent mono-mials, by the linearity of FId, the statement of the proposition follows. �For any n > 1, let
? : CM(n)⊗CM(n)→ CM(n) (2.2.34)be the product defined for allM-cliques p and q by(p ? q)(x, y) := p(x, y) ? q(x, y), (2.2.35)where (x, y) is any arc such that 1 6 x < y 6 n + 1, and then extended linearly.For instance, in CZ,
2
−1

1
−2 ?

3 1
−1
1

2 = 3 3
−1
2
−1 . (2.2.36)

Proposition 2.2.12. Let M be a Z-graded unitary magma and θ be a rank
function of M. For any homogeneous elements f and g of CM of the same
arity, Fθ(f )Fθ(g) = Fθ(f ? g). (2.2.37)
Proof. Let p and q be two M-cliques of CM of arity n. By definition of theoperation ? on CM(n) and the fact that θ is a unitary magma morphism,

Fθ(p)Fθ(q) =  ∏
(x,y)∈Ap

(ux + · · ·+ uy−1)θ(p(x,y))
 ∏

(x,y)∈Aq

(ux + · · ·+ uy−1)θ(q(x,y))
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= ∏

16x<y6n+1 (ux + · · ·+ uy−1)θ(p(x,y))+θ(q(x,y))
= ∏

16x<y6n+1 (ux + · · ·+ uy−1)θ(p(x,y)∗q(x,y))
= Fθ(p ? q).

By the linearity of Fθ and of ?, (2.2.37) follows. �

Proposition 2.2.13. Let p be anM-clique of CZ. Then

1FId(p) = FId((Cη)(p)), (2.2.38)
where η : Z→ Z is the unitary magma morphism defined by η(x) := −x for all
x ∈ Z.

Proof. Observe that (Cη)(p) is theM-clique obtained by relabeling each arc (x, y)of p by −p(x, y). Hence, since η is a unitary magma morphism, we have
FId((Cη)(p)) = ∏

(x,y)∈Ap

(ux + · · ·+ uy−1)θ(−p(x,y))

= ∏
(x,y)∈Ap

(ux + · · ·+ uy−1)−θ(p(x,y))

= 1FId(p)
as expected. �

3. QUOTIENTS AND SUBOPERADSWe define here quotients and suboperads of CM, leading to the construction ofsome new operads involving various combinatorial objects which are, basically,
M-cliques with some restrictions.
3.1. Main substructures. Most of the natural subfamilies of M-cliques that canbe described by simple combinatorial properties as M-cliques with restrainedlabels for the bases, edges, and diagonals, whiteM-cliques,M-cliques with a fixedmaximal crossing number,M-bubbles,M-cliques with a fixed maximal value fortheir degrees, nesting-free M-cliques, and acyclic M-cliques inherit from thealgebraic structure of operad of CM and form quotients and suboperads of CM(see Table 1). We construct and briefly study here these main substructuresof CM.
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Operad Objects Status with respect to CM

LabB,E,DM M-cliques with restricted labels SuboperadWhiM WhiteM-cliques SuboperadCrokM M-cliques of crossings at most k Suboperad and quotientBubM M-bubbles QuotientDegkM M-cliques of degree at most k QuotientNesM Nesting-freeM-cliques QuotientAcyM AcyclicM-cliques QuotientTABLE 1. Operads constructed as suboperads or quotients of CM. All theseoperads depend on a unitary magmaM which has, in some cases, to satisfy someprecise conditions. Some of these operads depend also on a nonnegative integer kor subsets B, E, and D ofM.
3.1.1. Restricting the labels. In what follows, if X and Y are two subsets of M,
X ? Y denotes the set {x ? y : x ∈ X and y ∈ Y}.Let B, E, and D be three subsets ofM and LabB,E,DM be the subspace of CMgenerated by all M-cliques p such that the bases of p are labeled by B, all edgesof p are labeled by E, and all diagonals of p are labeled by D.
Proposition 3.1.1. LetM be a unitary magma and B, E, and D be three subsets
ofM. If 1M ∈ B, 1M ∈ D, and E ? B ⊆ D, LabB,E,DM is a suboperad of CM.

Proof. First, since 1M ∈ B, the unit of CM belongs to LabB,E,DM. Considernow twoM-cliques p and q of LabB,E,DM and a partial composition r := p ◦i q fora valid integer i. By the definition of the partial composition of CM, the base of
r has the same label as the base of p, and all edges of r have labels coming fromthe ones of p and q. Moreover, all diagonals of r are either non-solid, or comefrom diagonals of p and q, or are the diagonal r(i, i+ |q|) which is labeled by pi ?q0.Since 1M ∈ D, pi ∈ E, q0 ∈ B, and E ? B ⊆ D, all the labels of these diagonalsare in D. For these reasons, r is in LabB,E,DM. This implies the statement of theproposition. �

Proposition 3.1.2. LetM be a unitary magma and B, E, and D be three finite
subsets ofM. For all n > 2,dim LabB,E,DM(n) = bend(n+1)(n−2)/2, (3.1.1)
where b := #B, e := #E, and d := #D.

Proof. By Proposition 2.2.1, there are m(n+12 ) M-cliques of arity n, where m :=#M. Hence, there are m(n+12 )/mn+1 M-cliques of arity n with all edges and the
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base labeled by 1M. This also says that there are d(n+12 )/dn+1 M-cliques of arity nwith all diagonals labeled by D and all edges and the base labeled by 1M. SinceanM-clique of LabB,E,DM(n) has its n edges labeled by E and its base labeled by
B, (3.1.1) follows. �3.1.2. White cliques. Let WhiM be the subspace of CM generated by all white
M-cliques. Since, by definition of whiteM-cliques,WhiM = Lab{1M},{1M},MM, (3.1.2)by Proposition 3.1.1, WhiM is a suboperad of CM. It follows from Proposi-tion 3.1.2 that, ifM is finite, the dimensions of WhiM satisfy, for any n > 2,dim WhiM(n) = m(n+1)(n−2)/2, (3.1.3)where m := #M.3.1.3. Restricting the crossings. Let k > 0 be an integer and RCrokM be the sub-space of CM generated by allM-cliques p such that cros(p) > k+1. As a quotientof graded vector spaces, CrokM := CM/RCrokM (3.1.4)is the linear span of allM-cliques p such that cros(p) 6 k.
Proposition 3.1.3. Let M be a unitary magma and k > 0 be an integer. Then
the space CrokM is a quotient operad of CM and is isomorphic to the subop-
erad of CM restricted to the subspace generated by allM-cliques with crossing
numbers no greater than k.

Proof. We first prove that CrokM is a quotient of CM. For this, observe that, if
p and q are twoM-cliques,cros(p ◦i q) = max{cros(p), cros(q)} (3.1.5)for any valid integer i. For this reason, if p is an M-clique of RCrokM , eachclique obtained by a partial composition involving p and other M-cliques is stillin RCrokM. This proves that RCrokM is an operad ideal of CM and hence, thatCrokM is a quotient of CM.To prove the second part of the statement, consider two M-cliques p and q ofCrokM. By (3.1.5), all M-cliques p ◦i q are still in CrokM, for all valid integers
i. Moreover, the unit of CM belongs to CrokM. This implies the desiredproperty. �For instance, in the operad Cro2 Z, we have

2
1213 ◦3 2 1 = 1

2
2 13

21 . (3.1.6)



26 SAMUELE GIRAUDOIf 0 6 k′ 6 k are integers, by Proposition 3.1.3, CrokM and Crok′M are bothquotients and suboperads of CM. First, since anyM-clique of Crok′M is also an
M-clique of CrokM, Crok′M is a suboperad of CrokM. Second, since RCrokMis a subspace of RCrok′M , Crok′M is a quotient of CrokM.Observe that Cro0M is the linear span of all noncrossing M-cliques. We cansee these objects as noncrossing configurations [FN99], where the edges andbases are colored by elements of M and the diagonals by elements of M. Theoperad Cro0M has a lot of combinatorial and algebraic properties and will bestudied in detail in [Gir18].3.1.4. Bubbles. Let RBubM be the subspace of CM generated by all M-cliquesthat are not bubbles. As a quotient of graded vector spaces,BubM := CM/RBubM (3.1.7)is the linear span of allM-bubbles.
Proposition 3.1.4. Let M be a unitary magma. Then the space BubM is a
quotient operad of CM.

Proof. If p and q are twoM-cliques, all solid diagonals of p and q appear in p ◦i q,for any valid integer i. For this reason, if p is an M-clique of RBubM , each M-clique obtained by a partial composition involving p and other M-cliques is stillin RBubM. This proves that RBubM is an operad ideal of CM and implies thestatement of the proposition. �For instance, in the operad BubZ, we have
12 ◦2 1 = 1 12 , (3.1.8a)
−12 ◦3 11 = 12 , (3.1.8b)

12 ◦3 1 = 0, (3.1.8c)
12 ◦2 12 = 0. (3.1.8d)

IfM is finite, the dimensions of BubM satisfy, for any n > 2,dim BubM(n) = mn+1, (3.1.9)where m := #M.3.1.5. Restricting the degrees. Let k > 0 be an integer and RDegkM be the sub-space of CM generated by allM-cliques p such that degr(p) > k+1. As a quotientof graded vector spaces, DegkM := CM/RDegkM (3.1.10)is the linear span of allM-cliques p such that degr(p) 6 k.
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Proposition 3.1.5. LetM be a unitary magma without nontrivial unit divisors
and k > 0 be an integer. Then the space DegkM is a quotient operad of CM.

Proof. SinceM has no nontrivial unit divisors, for anyM-cliques p and q of CM,each solid arc of p (respectively q) gives rise to a solid arc in p ◦i q, for any validinteger i. Hence, degr(p ◦i q) > max{degr(p),degr(q)}, (3.1.11)and then, if p is an M-clique of RDegkM , each M-clique obtained by a partialcomposition involving p and other M-cliques is still in RDegkM. This proves that
RDegkM is an operad ideal of CM and implies the statement of the proposition. �For instance, in the operad Deg3 D2 (observe that D2 is a unitary magma withoutnontrivial unit divisors), we have

d1 00d1 ◦2 0 0d1 = d1 0
0d10 , (3.1.12a) d1 00d1 ◦3 0 0d1 = 0. (3.1.12b)

If 0 6 k′ 6 k are integers, by Proposition 3.1.5, DegkM and Degk′M areboth quotient operads of CM. Moreover, since RDegkM is a subspace of RDegk′M ,Degk′M is a quotient operad of DegkM.Observe that Deg0M is the linear span of all M-cliques without solid arcs. If
p and q are suchM-cliques, all partial compositions p ◦i q are equal to the unique
M-clique without solid arcs of arity |p| + |q| − 1. For this reason, Deg0M is theassociative operad As.Any skeleton of an M-clique of arity n of Deg1M can be seen as a partitionof the set [n + 1] into singletons or pairs. Therefore, Deg1M can be seen asan operad on such colored partitions, where each pair of the partitions has onecolor from the setM. In the operad Deg1 D0 (observe that D0 is the only unitarymagma without nontrivial unit divisors on two elements), we have for instance

0 ◦2 0 0 = 00 0
, (3.1.13a) 0 ◦3 0 0 = 0. (3.1.13b)

By seeing each solid arc (x, y) of an M-clique p of Deg1 D0 of arity n as thetransposition exchanging the letter x and the letter y, we can interpret p as aninvolution of Sn+1 made of the product of these transpositions. Hence, Deg1 D0can be seen as an operad on involutions. Under this point of view, the partialcompositions (3.1.13a) and (3.1.13b) translate on permutations as
42315 ◦2 3412 = 6452317, (3.1.14a) 42315 ◦3 3412 = 0. (3.1.14b)



28 SAMUELE GIRAUDOEquivalently, by the Robinson–Schensted correspondence (see for instance[Lot02]), Deg1 D0 is an operad on standard Young tableaux. The dimensions ofthe operad Deg1 D0 begin by1, 4, 10, 26, 76, 232, 764, 2620, (3.1.15)and form, except for the first terms, Sequence A000085 of [Slo]. Moreover, if#M = 3, the dimensions of Deg1M begin by1, 7, 25, 81, 331, 1303, 5937, 26785, (3.1.16)and form, except for the first terms, Sequence A047974 of [Slo].Besides, any skeleton of anM-clique of Deg2M can be seen as a thunderstorm
graph, i.e., a graph where connected components are cycles or paths. Therefore,Deg2M can be seen as an operad on such colored graphs, where the arcs of thegraphs have one color from the setM. If #M = 2, the dimensions of this operadbegin by 1, 8, 41, 253, 1858, 15796, 152219, 1638323, (3.1.17)and form, except for the first terms, Sequence A136281 of [Slo].3.1.6. Nesting-free cliques. Let RNesM be the subspace of CM generated by all
M-cliques that are not nesting-free. As a quotient of graded vector spaces,NesM := CM/RNesM (3.1.18)is the linear span of all nesting-freeM-cliques.
Proposition 3.1.6. LetM be a unitary magma without nontrivial unit divisors.
Then the space NesM is a quotient operad of CM.

Proof. SinceM has no nontrivial unit divisors, for anyM-cliques p and q of CM,each solid arc of p (respectively q) gives rise to a solid arc in p ◦i q, for any validinteger i. For this reason, if p is an M-clique of RNesM , p is not nesting-free andeachM-clique obtained by a partial composition involving p and otherM-cliquesis still not nesting-free and thus, belongs to RNesM. This proves that RNesM is anoperad ideal of CM and implies the statement of the proposition. �For instance, in the operad NesD2,
0 d1 ◦4 d1 0 = d1 00

d1
, (3.1.19a) 0 d1 ◦3 d2 0 = 0. (3.1.19b)

Observe that in the same way as consideringM-cliques of crossing numbers kor less leads to quotients CrokM of CM (see Section 3.1.3), it is possible to defineanalogous quotients NeskM spanned by M-cliques having solid arcs that nest atmost k other ones.

http://oeis.org/A000085
http://oeis.org/A047974
http://oeis.org/A136281


OPERADS OF DECORATED CLIQUES I 29Recall that a Dyck path of size n is a word u on {a,b} of length 2n such that
|u|a = |u|b and, for each prefix v of u, |v|a > |v|b.
Lemma 3.1.7. Let M be a finite unitary magma without nontrivial unit di-
visors. For all n > 2, the set of all M-cliques of NesM(n) is in one-to-one
correspondence with the set of all Dyck paths of size n+ 1 wherein letters a at
even positions are colored byM. Moreover, there is a correspondence between
these two sets that sends anyM-clique of NesM(n) with k solid edges to a Dyck
path with exactly k letters a at even positions, for any 0 6 k 6 n.

Proof. In this proof, we denote by ac the letter a of a Dyck path colored by c ∈ M.Given anM-clique p of NesM(n), we decorate each vertex x of p by(1) aac if x has one outcoming arc and no incoming arc, where c is the label ofthe outcoming arc from x;(2) bb if x has no outcoming arc and one incoming arc;(3) bac if x has both one outcoming arc and one incoming arc, where c is thelabel of the outcoming arc from x;(4) ab otherwise.Let φ be the map sending p to the word obtained by concatenating the decorationsof the vertices of p thus described, read from 1 to n + 1.We show that φ is a bijection between the two sets of the statement of thelemma. First, observe that, since p is nesting-free, for each vertex y of p, there isat most one incoming arc to y and one outcoming arc from y. For this reason,for any vertex y of p, the total number of incoming arcs to vertices x 6 y of pis smaller than or equal to the total number of outcoming arcs to vertices x 6 yof p, and the total number of vertices having an incoming arc is equal to thetotal number of vertices having an outcoming arc in p. Thus, by forgetting thecolorings of its letters, the word φ(p) is a Dyck path.Besides, given a Dyck path u of size n + 1 wherein letters a at even positionsare colored by M, one can build a unique M-clique p of NesM(n) such that
φ(p) = u. Indeed, by reading the letters of u two by two, we know the number ofoutcoming and incoming arcs for each vertex of p. Since p is nesting-free, thereis one unique way to connect these vertices by solid diagonals without creatingnestings of arcs. Moreover, by (1), (2), (3), and (4), the colors of the letters a ateven positions allow to label the solid arcs of p. Hence φ is a bijection as claimed.Finally, by definition of φ, we observe that, if p has exactly k solid arcs, theDyck path φ(p) has exactly k occurrences of the letter a at even positions. Thisimplies the complete statement of the lemma. �Let nar(n, k) be the Narayana number [Nar55] defined for all 0 6 k 6 n− 2 by

nar(n, k) := 1
k + 1

(
n − 2
k

)(
n − 1
k

)
. (3.1.20)



30 SAMUELE GIRAUDOThe number of Dyck paths of size n − 1 and exactly k occurrences of the factorab is nar(n, k). Equivalently, this is also the number of binary trees with n leavesand exactly k internal nodes having an internal node as a left child.
Proposition 3.1.8. Let M be a finite unitary magma without nontrivial unit
divisors. For all n > 2,dim NesM(n) = ∑

06k6n(m − 1)k nar(n + 2, k), (3.1.21)
where m := #M.

Proof. It is known from [Sul98] that the number of Dyck paths of size n+1 with koccurrences of the letter a at even positions is the Narayana number nar(n+2, k).Hence, by using this property together with Lemma 3.1.7, we obtain that thenumber of nesting-freeM-cliques of size n with k solid arcs is (m−1)k nar(n+2, k).Therefore, since a nesting-freeM-clique of arity n can have at most n solid arcs,(3.1.21) holds. �The skeletons of theM-cliques of NesM of arities greater than 1 are the graphssuch that, if {x, y} and {x′, y ′} are two arcs such that x 6 x′ < y ′ 6 y, then x = x′and y = y ′. Therefore, NesM can be seen as an operad on such colored graphs,where the arcs of the graphs have one color from the set M. Equivalently, asLemma 3.1.7 shows, NesM can be seen as an operad of Dyck paths where lettersa at even positions are colored byM.By Proposition 3.1.8, if #M = 2, the dimensions of NesM begin by1, 5, 14, 42, 132, 429, 1430, 4862, (3.1.22)and form, except for the first terms, Sequence A000108 of [Slo]. If #M = 3, thedimensions of NesM begin by1, 11, 45, 197, 903, 4279, 20793, 103049, (3.1.23)and form, except for the first terms, Sequence A001003 of [Slo]. If #M = 4, thedimensions of NesM begin by1, 19, 100, 562, 3304, 20071, 124996, 793774, (3.1.24)and form, except for the first terms, Sequence A007564 of [Slo].3.1.7. Acyclic decorated cliques. Let RAcyM be the subspace of CM generated byallM-cliques that are not acyclic. As a quotient of graded vector spaces,AcyM := CM/RAcyM (3.1.25)is the linear span of all acyclicM-cliques.
Proposition 3.1.9. LetM be a unitary magma without nontrivial unit divisors.
Then the space AcyM is a quotient operad of CM.

http://oeis.org/A000108
http://oeis.org/A001003
http://oeis.org/A007564
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Proof. SinceM has no nontrivial unit divisors, for anyM-cliques p and q of CM,each solid arc of p (respectively q) gives rise to a solid arc in p ◦i q, for any validinteger i. For this reason, if p is an M-clique of RAcyM , p is not acyclic and each
M-clique obtained by a partial composition involving p and other M-cliques isstill not acyclic and thus, belongs to RAcyM. This proves that RAcyM is an operadideal of CM and implies the statement of the proposition. �For instance, in the operad AcyD2,

0 0 d1 0 ◦1 d1d1
= d1 00

0 d1 , (3.1.26a) 0 0 d1 0 ◦3 d2d1
= 0. (3.1.26b)

The skeletons of the M-cliques of AcyM of arities greater than 1 are acyclicgraphs or equivalently, forests of non-rooted trees. Therefore, AcyM can beseen as an operad on colored forests of trees, where the edges of the trees ofthe forests have one color from the setM. If #M = 2, the dimensions of AcyMbegin by 1, 7, 38, 291, 2932, 36961, 561948, 10026505, (3.1.27)and form, except for the first terms, Sequence A001858 of [Slo].3.2. Secondary substructures. Some more substructures of CM are constructedand briefly studied here. They are constructed by mixing some of the construc-tions of the seven main substructures of CM defined in Section 3.1 in the follow-ing sense.For any operad O and operad ideals R1 and R2 of O, the space R1 +R2 is still anoperad ideal of O, and O/ (R1 + R2) is a quotient of both O/R1 and O/R2. Moreover,if O′ is a suboperad of O and R is an operad ideal of O, the space R ∩ O′ is anoperad ideal of O′, and O′/ (R ∩ O′) is a quotient of O′ and a suboperad of O/R. Forthese reasons (straightforwardly provable), we can combine the constructions ofthe previous section to build plenty new suboperads and quotients of CM (seeTable 2).3.2.1. Colored white noncrossing configurations. IfM is a unitary magma, letWNCM := WhiM/RCro0M ∩WhiM. (3.2.1)TheM-cliques of WNCM are white noncrossingM-cliques.If #M = 2, the dimensions of WNCM begin by1, 1, 3, 11, 45, 197, 903, 4279, (3.2.2)and form Sequence A001003 of [Slo]. If #M = 3, the dimensions of WNCMbegin by 1, 1, 5, 31, 215, 1597, 12425, 99955, (3.2.3)

http://oeis.org/A001858
http://oeis.org/A001003
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Operad Objects Ideal of CM
WNCM White noncrossing cliques RCro0M ∩WhiMPatM Forests of paths RDeg2M + RAcyMForM Forests RCro0M + RAcyMMotM Motzkin configurations RCro0M + RDeg1MDisM Dissections of polygons (

RCro0M + RDeg1M
)
∩WhiMLucM Lucas configurations RBubM + RDeg1MTABLE 2. Operads obtained as quotients of CM by mixing certain ideals of CM.All these operads depend on a unitary magma M which has, in some cases, tosatisfy some precise conditions.

and form Sequence A269730 of [Slo]. Observe that these dimensions are shiftedversions the ones of the γ-polytridendriform operads TDendrγ [Gir16b] with γ :=#M− 1.
3.2.2. Colored forests of paths. If M is a unitary magma without nontrivial unitdivisors, let PatM := CM/

(
RDeg2M + RAcyM) . (3.2.4)The skeletons of theM-cliques of PatM are forests of non-rooted trees that arepaths. Therefore, PatM can be seen as an operad on such colored graphs, wherethe arcs of the graphs have one color from the setM.If #M = 2, the dimensions of PatM begin by

1, 7, 34, 206, 1486, 12412, 117692, 1248004, (3.2.5)
an form, except for the first terms, Sequence A011800 of [Slo].
3.2.3. Colored forests. If M is a unitary magma without nontrivial unit divisors,let ForM := CM/ (RCro0M + RAcyM) . (3.2.6)The skeletons of the M-cliques of ForM are forests of rooted trees having noarcs {x, y} and {x′, y ′} satisfying x < x′ < y < y ′. Therefore, ForM can be seenas an operad on such colored forests, where the edges of the forests have onecolor from the setM. If #M = 2, the dimensions of ForM begin by

1, 7, 33, 81, 1083, 6854, 45111, 305629, (3.2.7)
and form, except for the first terms, Sequence A054727, of [Slo].

http://oeis.org/A269730
http://oeis.org/A011800
http://oeis.org/A054727


OPERADS OF DECORATED CLIQUES I 333.2.4. Colored Motzkin configurations. IfM is a unitary magma without nontriv-ial unit divisors, let
MotM := CM/

(
RCro0M + RDeg1M

)
. (3.2.8)

The skeletons of the M-cliques of MotM are configurations of non-intersectingchords on a circle. Equivalently, these objects are graphs of involutions (seeSection 3.1.5) having no arcs {x, y} and {x′, y ′} satisfying x < x′ < y < y ′. Theseobjects are enumerated by Motzkin numbers [Mot48]. Therefore, MotM can beseen as an operad on such colored graphs, where the arcs of the graphs haveone color from the setM. If #M = 2, the dimensions of MotM begin by
1, 4, 9, 21, 51, 127, 323, 835, (3.2.9)

and form, except for the first terms, Sequence A001006, of [Slo].
3.2.5. Colored dissections of polygons. IfM is a unitary magma without nontriv-ial unit divisors, let

DisM := WhiM/
((
RCro0M + RDeg1M

)
∩WhiM) . (3.2.10)

The skeletons of the M-cliques of DisM are strict dissections of polygons, thatare graphs of Motzkin configurations with no arcs of the form {x, x + 1} or
{1, n+ 1}, where n+ 1 is the number of vertices of the graphs. Therefore, DisMcan be seen as an operad on such colored graphs, where the arcs of the graphshave one color from the setM. If #M = 2, the dimensions of DisM begin by

1, 1, 3, 6, 13, 29, 65, 148, (3.2.11)
and form, except for the first terms, Sequence A093128 of [Slo].
3.2.6. Colored Lucas configurations. IfM is a unitary magma without nontrivialunit divisors, let LucM := CM/

(
RBubM + RDeg1M

)
. (3.2.12)The skeletons of the M-cliques of LucM are graphs such that all vertices areof degree at most 1 and all arcs are of the form {x, x + 1} or {1, n + 1}, where

n + 1 is the number of vertices of the graphs. Therefore, LucM can be seen asan operad on such colored graphs, where the arcs of the graphs have one colorfrom the setM. If #M = 2, the dimensions of LucM begin by
1, 4, 7, 11, 18, 29, 47, 76, (3.2.13)

and form, except for the first terms, Sequence A000032 of [Slo].

http://oeis.org/A001006
http://oeis.org/A093128
http://oeis.org/A000032


34 SAMUELE GIRAUDO3.3. Relations between substructures. The suboperads and quotients of CMconstructed in Sections 3.1 and 3.2 are linked by injective or surjective operadmorphisms. To establish these, we begin with the following lemma.
Lemma 3.3.1. LetM be a unitary magma. Then:

(i) the space RAcyM is a subspace of RDeg1M;
(ii) the spaces RNesM and RBubM are subspaces of RDeg0M;
(iii) the spaces RCro0M and RDeg2M are subspaces of RBubM;
(iv) the spaces RDeg2M and RAcyM are subspaces of RNesM.

Proof. All the spaces appearing in the statement of the lemma are subspacesof CM generated by some subfamilies of M-cliques. Therefore, to prove theassertions of the lemma, we shall prove inclusions of adequate subfamilies ofsuch objects.If p is an M-clique of RAcyM , by definition, p has a cycle formed by solid arcs.Hence, p has in particular a solid arc and a vertex of degree 2 or more. For thisreason, since RDeg1M is the linear span of allM-cliques of degree 2 or more, p isin RDeg1M. This implies (i).If p is anM-clique of RNesM or RBubM , by definition, p has in particular a solidarc. Hence, since RDeg0M is the linear span of all M-cliques with at least onevertex with a positive degree, p is in RDeg0M. This implies (ii).If p is an M-clique of RCro0M or RDeg2M , p has in particular a solid diagonal.Indeed, if p is in RCro0M this property is immediate. If p is in RDeg2M , since p hasa vertex x of degree 3 or more, the skeleton of p has three arcs {x, y1}, {x, y2},and {x, y3} with yi 6= x − 1, yi 6= x + 1, and yi 6= |p|+ 1 for at least one i ∈ [3], sothat the arc (min{x, yi},max{x, yi}) is a solid diagonal of p. For this reason, since
RBubM is the linear span of all M-cliques with at least one solid diagonal, p is in
RBubM. This implies (iii).If p is an M-clique of RDeg2M or RAcyM , p has in particular a solid arc nestedin another one. Indeed, if p is in RDeg2M , since p has a vertex x of a degree 3or more, the skeleton of p has three arcs {x, y1}, {x, y2}, and {x, y3}. One cancheck that, for all relative orders between the vertices x, y1, y2, and y3, one ofthese arcs is nested in another one, so that p is not nesting-free. If p is in RAcyM ,
p contains a cycle formed by solid arcs. Let x1, x2, . . . , xk, k > 3, be the verticesof p that form this cycle. We can assume without loss of generality that x1 6 xifor all i ∈ [k] and thus, that (x1, x2) and (x1, xk) are solid arcs of p being part ofthe cycle. Then, if x2 < xk, since x1 6 x1 < x2 6 xk, the arc (x1, x2) is nested in(x1, xk). Otherwise, xk < x2, and since x1 6 x1 < xk 6 x2, the arc (x1, xk) is nestedin (x1, x2). For these reasons, since RNesM is the linear span of allM-cliques thatare non nesting-free, p is in RNesM. This implies (iv). �



OPERADS OF DECORATED CLIQUES I 353.3.1. Relations between the main substructures. Here we list and explain themorphisms between the main substructures of CM. First, Lemma 3.3.1 impliesthat there are surjective operad morphisms from AcyM to Deg1M, from NesMto Deg0M, from BubM to Deg0M, from Cro0M to BubM, from Deg2M toBubM, from Deg2M to NesM, and from AcyM to NesM. Second, if B, E,and D are subsets of M such that 1M ∈ B, 1M ∈ E, and E ? B ⊆ D, WhiMis a suboperad of LabB,E,DM. Finally, there is a surjective operad morphismfrom WhiM to the associative operad As sending any M-clique p of WhiM tothe unique basis element of As of the same arity as the one of p. The relationsbetween the main suboperads and quotients of CM built here are summarizedin the diagram of operad morphisms of Figure 2.
CM

AcyM DegkM CrokM LabB,E,DM

Deg2M Cro0M

NesM Deg1M BubM WhiM

Deg0MFIGURE 2. The diagram of the main suboperads and quotients of CM. Arrows�(respectively �) are injective (respectively surjective) operad morphisms. Here,
M is a unitary magma without nontrivial unit divisors, k is a positive integer, and
B, E, and D are subsets ofM such that 1M ∈ B, 1M ∈ E, and E ? B ⊆ D.

3.3.2. Relations between the secondary and main substructures. Here we listand explain the morphisms between the secondary and main substructures ofCM. First, immediately from their definitions, WNCM is a suboperad of Cro0Mand a quotient of WhiM, PatM is both a quotient of Deg2M and AcyM, ForMis both a quotient of Cro0M and AcyM, MotM is both a quotient of Cro0M andDeg1M, DisM is a suboperad of MotM and a quotient of WNCM, and LucM isboth a quotient of BubM and Deg1M. Moreover, since by Lemma 3.3.1, RAcyM isa subspace of RDeg1M , RDeg2M and RAcyM are subspaces of RNesM , and RCro0M is asubspace of RBubM , we have that RDeg2M+RAcyM is a subspace of both RDeg1M and
RNesM , RCro0M + RAcyM is a subspace of RCro0M + RDeg1M , and RCro0M + RDeg1Mis a subspace of RBubM + RDeg1M. For these reasons, there are surjective operad



36 SAMUELE GIRAUDOmorphisms from PatM to Deg1M, from PatM to NesM, from ForM to MotM,and from MotM to LucM. The relations between the secondary suboperads andquotients of CM built here are summarized in the diagram of operad morphismsof Figure 3.
CM

Deg0M

Cro0MWhiM AcyM Deg2M

WNCM ForM PatM BubM
Deg1M NesM

MotM
DisM

LucM

FIGURE 3. The diagram of the secondary suboperads and quotients of CM to-gether with some of their related main suboperads and quotients of CM. Ar-rows� (respectively�) are injective (respectively surjective) operad morphisms.Here,M is a unitary magma without nontrival unit divisors.
4. CONCRETE CONSTRUCTIONSThe clique construction provides alternative definitions of known operads. Weexplore here the cases of the operads MT and DMT of multi-tildes and doublemulti-tildes, and the gravity operad Grav.

4.1. Operads from language theory. We provide constructions of two operadscoming from formal language theory by using the clique construction.
4.1.1. Multi-tildes. Multi-tildes are operators introduced in [CCM11] in the con-text of formal language theory as a convenient way to express regular languages.Let, for any n > 1, Pn be the set

Pn := {(x, y) ∈ [n]2 : x 6 y} . (4.1.1)
A multi-tilde is a pair (n, s), where n is a positive integer and s is a subset of Pn.The arity of the multi-tilde (n, s) is n.



OPERADS OF DECORATED CLIQUES I 37As shown in [LMN13], the graded (by the arity) collection of all multi-tildesadmits a very natural structure of an operad. This operad, denoted by MT, isdefined as follows. The partial composition (n, s) ◦i (m, t), i ∈ [n], of two multi-tildes (n, s) and (m, t) is defined by
(n, s) ◦i (m, t) := (n +m − 1, {shm

i (x, y) : (x, y) ∈ s} ∪
{shi0(x, y) : (x, y) ∈ t

})
,(4.1.2)where

shp
j (x, y) :=


(x, y), if y 6 i − 1,(x, y + p − 1), if x 6 i 6 y,(x + p − 1, y + p − 1), otherwise. (4.1.3)

For instance, we have
(5, {(1, 5), (2, 4), (4, 5)}) ◦4 (6, {(2, 2), (4, 6)}) = (10, {(1, 10), (2, 9), (4, 10), (5, 5), (7, 9)}),(4.1.4a)
(5, {(1, 5), (2, 4), (4, 5)}) ◦5 (6, {(2, 2), (4, 6)}) = (10, {(1, 10), (2, 4), (4, 10), (6, 6), (8, 10)}).(4.1.4b)Observe that the multi-tilde (1, ∅) is the unit of MT.Let φMT : MT → CD0 be the linear map defined as follows. For any multi-tilde(n, s) different from (1, {(1, 1)}), φMT((n, s)) is the D0-clique of arity n defined, forany 1 6 x < y 6 n + 1, by

φMT((n, s))(x, y) := {0, if (x, y − 1) ∈ s,
1, otherwise. (4.1.5)

For instance,
φMT((5, {(1, 5), (2, 4), (4, 5)})) = 00 0

. (4.1.6)
Proposition 4.1.1. The operad CD0 is isomorphic to the suboperad of MT con-
sisting in the linear span of all multi-tildes except the nontrivial multi-tilde(1, {(1, 1)}) of arity 1. Moreover, φMT is an isomorphism between these two
operads.

Proof. A direct consequence of the definition (4.1.5) of φMT is that this map is anisomorphism of vector spaces. Moreover, it follows from the definitions of thepartial compositions of MT and CD0 that φMT is an operad morphism. �



38 SAMUELE GIRAUDOBy Proposition 4.1.1, we can interpret the partial compositions (4.1.4a) and(4.1.4b) of multi-tildes as partial compositions of D0-cliques. This yields

00 0
◦4 0 0 =

00 0
0

0 , (4.1.7a)

00 0
◦5 0 0 =

0
0 0

0
0 . (4.1.7b)

4.1.2. Double multi-tildes. Double multi-tildes are natural generalizations ofmulti-tildes, introduced in [GLMN16]. A double multi-tilde is a triple (n, s, t),where (n, t) and (n, s) are both multi-tildes of the same arity n. The arity ofthe double multi-tilde (n, s, t) is n. As shown in [GLMN16], the linear span ofall double multi-tildes admits a structure of an operad. This operad, denoted byDMT, is defined as follows. For any n > 1, DMT(n) is the linear span of all doublemulti-tildes of arity n and the partial composition (n, s, t) ◦i (m, u, v), i ∈ [n], of twodouble multi-tildes (n, s, t) and (m, u, v) is defined linearly by
(n, s, t) ◦i (m, u, v) := (n, s ◦i u, t ◦i v), (4.1.8)

where the two partial compositions ◦i of the right member of (4.1.8) are theones of MT. We can observe that DMT is isomorphic to the Hadamard productMT ∗MT. For instance, we have
(3, {(2, 2)}, {(1, 2), (1, 3)}) ◦2 (2, {(1, 1)}, {(1, 2)})= (4, {(2, 2), (2, 3)}, {(1, 3), (1, 4), (2, 3)}). (4.1.9)

The unit of DMT is (1, ∅, ∅).Consider now the operad CD20 and let φDMT : DMT → CD20 be the linear mapdefined as follows. The image by φDMT of (1, ∅, ∅) is the unit of CD20 and, for anydouble multi-tilde (n, s, t) of arity n > 2, φDMT((n, s, t)) is the D20-clique of arity ndefined, for any 1 6 x < y 6 n + 1, by
φDMT((n, s, t))(x, y) :=


(0,1), if (x, y − 1) ∈ s and (x, y − 1) /∈ t,(1, 0), if (x, y − 1) /∈ s and (x, y − 1) ∈ t,(0, 0), if (x, y − 1) ∈ s and (x, y − 1) ∈ t,(1,1), otherwise.

(4.1.10)



OPERADS OF DECORATED CLIQUES I 39For instance,
φDMT((4, {(2, 2), (2, 3)}, {(1, 3), (1, 4), (2, 3)})) = (1, 0)

(1, 0)
(0,1)(0, 0) . (4.1.11)

Proposition 4.1.2. The operad CD20 is isomorphic to the suboperad of DMT
consisting in the linear span of all double multi-tildes except the three nontriv-
ial double multi-tildes of arity 1. Moreover, φDMT is an isomorphism between
these two operads.

Proof. There are two ways to prove the first assertion of the statement of theproposition. On the one hand, this property follows from Proposition 2.1.2 andProposition 4.1.1. On the other hand, the whole statement of the proposition is adirect consequence of the definition (4.1.10) of φDMT, showing that φDMT is an iso-morphism of vector spaces, and, from the definitions of the partial compositionsof DMT and CD20 showing that φDMT is an operad morphism. �By Proposition 4.1.2, we can interpret the partial composition (4.1.9) of doublemulti-tildes as a partial composition of D20-cliques. This gives
(1, 0)(1, 0)
(0,1)

◦2 (0,1)(1, 0) = (1, 0)
(1, 0)

(0,1)(0, 0) . (4.1.12)
4.2. Gravity operad. The operad of gravity chord diagrams Grav is an operaddefined in [AP15]. This operad is the nonsymmetric version (obtained by for-getting the actions of the symmetric groups) of the gravity operad, a symmetricoperad introduced by Getzler [Get94]. Let us describe this operad.A gravity chord diagram is a {?}-configuration c, where ? is any symbol, sat-isfying the following conditions. By denoting by n the size of c, all the edges andthe base of c are labeled (by ?), and if (x, y) and (x′, y ′) are two labeled crossingdiagonals of c such that x < x′, the arc (x′, y) is not labeled. In other words, thequadrilateral formed by the vertices x, x′, y, and y ′ of c is such that its side (x′, y)is unlabeled. For instance,

(4.2.1)
is a gravity chord diagram of arity 7 having four labeled diagonals (observe inparticular that, as required, the arc (3, 5) is not labeled). For any n > 2, Grav(n)is the linear span of all gravity chord diagrams of size n. Moreover, Grav(1) isthe linear span of the singleton containing the only polygon of size 1 where itsonly arc is not labeled. The partial composition of Grav is defined graphically as



40 SAMUELE GIRAUDOfollows. For any gravity chord diagrams c and d of respective arities n and m,and i ∈ [n], the gravity chord diagram c ◦i d is obtained by gluing the base of donto the ith edge of c, so that the arc (i, i +m) of c ◦i d is labeled. For example,
◦3 = . (4.2.2)

Let φGrav : Grav→ CD0 be the linear map defined in the following way. For anygravity chord diagram c, φGrav(c) is the D0-clique of CD0 obtained by replacing alllabeled arcs of c by arcs labeled by 0 and all unlabeled arcs by arcs labeled by 1.For instance,
φGrav

  = 0 00
0 0

0 000 0 00 . (4.2.3)
Let us say that anM-clique p satisfies the gravity condition if p = , or p hasonly solid edges and bases, and for all crossing diagonals (x, y) and (x′, y ′) of psuch that x < x′, p(x, y) 6= 1M 6= p(x′, y ′) implies p(x′, y) = 1M.

Proposition 4.2.1. The linear span of all D0-cliques satisfying the gravity con-
dition forms a suboperad of CD0 isomorphic to Grav. Moreover, φGrav is an
isomorphism between these two operads.

Proof. Let us denote by OGrav the subspace of CD0 described in the statement ofthe proposition. First of all, it follows from the definition of the partial compositionof CD0 that OGrav is closed under the partial composition operation (this propertycan be also seen as a consequence of the fact that the partial composition of twogravity chord diagrams is still a gravity chord diagram [AP15]). Hence, and since
OGrav contains the unit of CD0, OGrav is an operad. Second, observe that the imageof φGrav is the underlying space of OGrav and, from the definition of the partialcomposition of Grav, one can check that φGrav is an operad morphism. Finally,since φGrav is a bijection from Grav to OGrav, the statement of the propositionfollows. �Proposition 4.2.1 shows hence that the operad Grav can be built through theclique construction. Moreover, as explained in [AP15], Grav contains the nonsym-metric version of the Lie operad, the symmetric operad describing the categoryof Lie algebras. This nonsymmetric version of the Lie operad as been introducedin [ST09]. Since Lie is contained in Grav as the subspace of all gravity chorddiagrams having the maximal number of labeled diagonals for each arity, Lie canbe built through the clique construction as the suboperad of CD0 containing allthe D0-cliques that are images by φGrav of such maximal gravity chord diagrams.Besides, this alternative construction of Grav leads to the following generaliza-tion for any unitary magma M of the gravity operad. Let GravM be the linear



OPERADS OF DECORATED CLIQUES I 41span of all M-cliques satisfying the gravity condition. It follows from the def-inition of the partial composition of CM that GravM is an operad. Moreover,observe that, ifM has nontrivial unit divisors, GravM is not a free operad.
CONCLUSION AND PERSPECTIVESThis work presents and studies the clique construction C, producing operadsfrom unitary magmas. We have seen that C has many both algebraic and com-binatorial properties. Among its most notable ones, CM admits several quotientsinvolving combinatorial families of decorated cliques, and contains some alreadystudied operads. Let us address here some open questions.First, we have for the time being no formula to enumerate prime (respectivelywhite prime, minimal prime)M-cliques (see (2.2.6) (respectively (2.2.7), (2.2.8)) for#M = 2). Obtaining these forms a first combinatorial question.If M is a Z-graded unitary magma, a link between CM and the operad ofrational functions RatFct has been developed in Section 2.2.8 by means of a mor-phism Fθ between these two operads. We have observed that Fθ is not injective(see (2.2.32a) and (2.2.32b)). A description of the kernel of Fθ , even if M is theunitary magma Z, seems not easy to obtain. Trying to obtain this description is asecond perspective of this work.Here is a third perspective. In Section 3, we have defined and briefly studiedsome quotients and suboperads of CM. In particular, we have considered thequotient Deg1M of CM, involvingM-cliques of degree at most 1. As mentioned,Deg1 D0 is an operad defined on the linear span of involutions (except the nontriv-ial involution of S2). A complete study of this operad seems worth considering,including a description of a minimal generating set, a presentation by generatorsand relations, a description of its partial composition on the H-basis and on theK-basis, and a realization of this operad in terms of standard Young tableaux.
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Electron. J. Combin., 17(1):Paper 120, 19 pp., 2010. 7[Slo] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. https://oeis.org/.13, 14, 28, 30, 31, 32, 33[SS12] L. Serrano and C. Stump. Maximal fillings of moon polyominoes, simplicial complexes,and Schubert polynomials. Electron. J. Combin., 19(1):Paper 16, 18 pp., 2012. 7[ST09] P. Salvatore and R. Tauraso. The operad Lie is free. J. Pure Appl. Algebra, 213(2):224–230, 2009. 40[Sul98] R. A. Sulanke. Catalan path statistics having the Narayana distribution. Discrete Math.,180(1-3):369–389, 1998. 30[Val07] B. Vallette. Homology of generalized partition posets. J. Pure Appl. Algebra, 208(2):699–725, 2007. 6
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