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Abstract. In statistical mechanics it is well known that the coefficients of
the virial expansion for a non-ideal gas are computed using the Mayer weight
of 2-connected graphs. We study the Second Mayer weight wM (c) and the
Ree–Hoover weight wRH(c) of a 2-connected graph c which arise from the
hard-core continuum gas in one dimension. These weights are computed using
signed volumes of convex polytopes naturally associated with the graph c. Our
results are new formulas of Mayer weights and Ree–Hoover weights for special
infinite families of 2-connected graphs.

Résumé. En mécanique statistique, il est bien connu que les coefficients
du développement du viriel pour un gaz non-idéal sont calculés en utilisant
le poids de Mayer des graphes 2-connexes. Nous étudions le second poids de
Mayer wM (c) et de Ree–Hoover wRH(c) d’un graphe 2-connexe c dans le cas
d’un gaz à noyaux durs en dimension un. Ces poids sont calculés à partir des
volumes signés de polytopes convexes associés naturellement au graphe c. Nous
donnons des nouvelles formules pour le poids de Mayer et de Ree–Hoover pour
des familles spéciales infinies de graphes 2-connexes.

1. Introduction

In the present paper, we study Graph weights in the context of a non-ideal gas
in a vessel V ⊆ R

d. In this case, the Second Mayer weight wM(c) of a connected
graph c, over the set [n] = {1, 2, . . . , n} of vertices, is defined by (see [5, 8, 9, 12])

wM(c) =

∫

(Rd)n−1

∏

{i,j}∈c

f(‖−→xi −
−→xj‖) d

−→x1 · · · d
−−→xn−1,

−→xn = 0, (1)

where −→x1, . . . ,
−→xn are variables in R

d representing the positions of n particles in
V (V → ∞), the value −→xn = 0 being arbitrarily fixed, and where f = f(r) is
a real-valued function associated with the pairwise interaction potential of the
particles, see [21, 12].
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Let C[n] be the set of connected graphs over [n]. The total sum of weights of
connected graphs over [n] is denoted by

|C[n]|wM
=

∑

c∈C[n]

wM(c). (2)

The interest of this sequence in statistical mechanics comes from the fact that
the pressure P of the system is given by its exponential generating function as
follows (see [12]):

P

kT
= CwM

(z) =
∑

n≥1

|C[n]|wM

zn

n!
, (3)

where k is a constant, T is the temperature and z is a variable called the fugacity
or the activity of the system. It is known that the weight wM is multiplicative
over 2-connected components so that, in order to compute the weights wM(c) of
the connected graphs c ∈ C[n], it is sufficient to compute the weights wM(b) for
2-connected graphs b ∈ B[n] (B for blocks). These occur in the so-called virial
expansion proposed by Kamerlingh Onnes in 1901

P

kT
= ρ+ β2ρ

2 + β3ρ
3 + · · · , (4)

where ρ is the density. Indeed, it can be shown that

βn =
1− n

n!
|B[n]|wM

, (5)

where B[n] denotes the set of 2-connected graphs over [n] and |B[n]|wM
is the

total sum of weights of 2-connected graphs over [n]. In order to compute this
expansion numerically, Ree and Hoover [15] introduced a modified weight denoted
by wRH(b), for 2-connected graphs b, which greatly simplifies the computations.
It is defined by

wRH(b) =

∫

(Rd)n−1

∏

{i,j}∈b

f(‖−→xi −
−→xj‖)

∏

{i,j}/∈b

f(‖−→xi −
−→xj‖) d

−→x1 · · · d
−−→xn−1,

−→xn = 0,

(6)
where f(r) = 1 + f(r). Using this new weight, Ree and Hoover [15, 16, 17] and
later Clisby and McCoy [2, 3] have computed the virial coefficients βn, for n up
to 10, in dimensions d ≤ 8, in the case of the hard-core continuum gas, that is,
when the interaction is given by

f(r) = −χ(r < 1), f(r) = χ(r ≥ 1), (7)

where χ denotes the characteristic function (χ(P ) = 1, if P is true and 0, other-
wise).
The main goal of the present paper is to give new explicit formulas for the Mayer

and Ree–Hoover weights of certain infinite families of graphs in the context of
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the hard core continuum gas, defined by (7), in dimension d = 1. The values
wM(c) and wRH(c) for all 2-connected graphs c of size at most 8 are given in
[5, 6]. In Section 2, we give explicit linear relations expressing the Ree–Hoover
weights in terms of the Mayer weights and vice versa. The total Mayer weight
|B[n]|wM

is then rewritten in terms of the weight function wRH introduced by
Ree and Hoover [15, 16]. The interest of using the Ree–Hoover weight is that it
has the value zero for many graphs. Section 3 is devoted to the special case of
the hard-core continuum gas in one dimension in which the Mayer weight turns
out to be a signed volume of a convex polytope P(c) naturally associated with
the graph c. A decomposition of the polytope P(c) into a certain number of
simplices is exploited. This method was introduced in [12] and was adapted in
[5, 9] to the context of Ree–Hoover weights and is called the method of graph
homomorphisms. The explicit computation of Mayer or Ree–Hoover weights of
particular graphs is very difficult in general and has only been made for certain
specific families of graphs (see [7, 8, 9, 10, 11, 12]). In the present paper we extend
this list to other graphs. We give new explicit formulas of the Ree–Hoover weight
of these graphs in Section 4. Section 5 is devoted to the explicit computation
of their Mayer weight. The following conventions are used in the present paper.
Each graph g is identified with its set of edges. So that, {i, j} ∈ g means that
{i, j} is an edge in g between vertex i and vertex j. The number of edges in
g is denoted by e(g). If e is an edge of g (i.e., e ∈ g), g\e denote the graph
obtained from g by removing the edge e. If b and d are graphs, b ⊆ d means that
b is a subgraph of d. The complete graph on the vertex set [n] = {1, 2, . . . , n} is
denoted by Kn. The complementary graph of a subgraph g ⊆ Kn is the graph
g = Kn\g.

2. Relations between Mayer weight and Ree–Hoover weight

An important rewriting of the virial coefficients was performed by Ree and
Hoover [15, 16] by introducing the function

f(r) = 1 + f(r) (8)

and defining a new weight (denoted here by wRH(b)) for 2-connected graphs b,
by (9)

wRH(b) =

∫

(Rd)n−1

∏

{i,j}∈b

f(‖−→xi −
−→xj‖)

∏

{i,j}/∈b

f(‖−→xi −
−→xj‖) d

−→x1 · · · d
−−→xn−1,

−→xn = 0,

(9)
and then expanding each weight wM(b) by substituting 1 = f − f for pairs of
vertices not connected by edges. Upon performing this rewriting of the Mayer
weight series, vertices in the resulting graphs will all be mutually connected by
either f bonds (solid lines) or f bonds (dotted lines). In general, using Möbius
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inversion, it is easy to state formulas linking the two weights wM and wRH . These
formulas are implicit in [16].

Proposition 1 ([9]). For a 2-connected graph b, we have

wRH(b) =
∑

b⊆d⊆Kn

wM(d), (10)

wM(b) =
∑

b⊆d⊆Kn

(−1)e(d)−e(b)wRH(d). (11)

Proof. See [9]. �

Consequently, the virial coefficient can be rewritten in the form

βn =
1− n

n!

∑

b∈B[n]

an(b)wRH(b), (12)

for appropriate coefficients an(b) called the star content of the graph b. The
importance of (12) is due to the fact that an(b) = 0 or wRH(b) = 0 for many
graphs b. This greatly simplifies the computation of βn.
Using the definition of the Ree–Hoover weight, we have

wRH(Kn) = wM(Kn), n ≥ 2. (13)

3. Hard-core continuum gas in one dimension

Consider n hard particles of diameter 1 on a line segment. The hard-core
constraint translates into the interaction potential ϕ, with ϕ(r) = ∞, if r < 1,
and ϕ(r) = 0, if r ≥ 1, and the Mayer function f and the Ree–Hoover function
f are given by (7). Hence, we can write the Mayer weight function wM(c) of a
connected graph c as

wM(c) = (−1)e(c)
∫

Rn−1

∏

{i,j}∈c

χ(|xi − xj | < 1)dx1 . . . dxn−1, xn = 0, (14)

and the Ree–Hoover’s weight function wRH(c) of a 2-connected graph c as

wRH(c) = (−1)e(c)
∫

Rn−1

∏

{i,j}∈c

χ(|xi − xj | < 1)
∏

{i,j}/∈c

χ(|xi − xj | > 1)dx1 . . . dxn−1,

(15)
with xn = 0 and where e(c) is the number of edges of c. Note that wM(c) =
(−1)e(c)Vol(P(c)), where P(c) is the polytope defined by

P(c) = {X ∈ R
n : xn = 0, |xi − xj | < 1 for all {i, j} ∈ c} ⊆ R

n−1 × {0} ⊆ R
n,
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where X = (x1, . . . , xn). Similarly, wRH(c) = (−1)e(c)Vol(PRH(c)), where PRH(c)
is the union of polytopes defined by

PRH(c) = {X ∈ R
n : xn = 0, |xi − xj | < 1 for all {i, j} ∈ c,

|xi − xj | > 1 for all {i, j} ∈ c} ⊆ R
n−1 × {0} ⊆ R

n.

3.1. Sufficient conditions for wRH = 0. When the Ree–Hoover transformation
is made, many graphs have zero star content and hence do not contribute to the
virial coefficient. In addition, some Ree–Hoover graph weights may be zero for
geometrical reasons. We found sufficient conditions for families of graphs which
guarantee the vanishing of their Ree–Hoover weights (see [5]). We introduce first
some variants of the notion of subgraph and then state an associated lemma.

Definition 2. Let g be a simple graph on the vertex set U and g′ be a subgraph
of g on the vertex set U ′ ⊆ U. The graph g′ is said to be induced by g if

g′ = g ∩KU ′ , (16)

where KU ′ is the complete graph on U ′. If a graph h is isomorphic to an induced
subgraph of g, we write h ⊆ g.

Proposition 3 ([9]). Let g and h be two 2-connected graphs. In the case of
hard-core continuum gas in one dimension, we have

h ⊆ g and wRH(h) = 0 imply wRH(g) = 0. (17)

Proof. See [9]. �

Theorem 4 ([9]). The Ree–Hoover weight of a 2-connected graph g of size n is
zero if g satisfies one of the following conditions:

g is chordal : Ck ⊆ g, k ≥ 4, (18)

or g is claw-free : S3 ⊆ g, (19)

where S3 is the 3-star graph (see Figure 1) and Ck is the cycle on k elements.

3

1

n

2

Figure 1. The graph S3

Proof. See [9]. �
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3.2. Graph homomorphisms. The method of graph homomorphisms was in-
troduced by Labelle, Leroux and Ducharme [12] for the exact computation of the
Mayer weight wM(b) of an arbitrary 2-connected graph b in the context of hard-
core continuum gas in one dimension and was adapted by Kaouche and Leroux
[5, 9] to the context of Ree–Hoover weights. Since wM(b) = (−1)e(b)Vol(P(b)),
the computation of wM(b) is reduced to the computation of the volume of the
polytope P(b) associated with b. In order to evaluate this volume, the polytope
P(b) is decomposed into ν(b) simplices which are all of volume 1/(n− 1)!. This
yields Vol(P(b)) = ν(b)/(n − 1)!. The simplices are encoded by a diagram asso-
ciated with the integral parts and the relative positions of the fractional parts of
the coordinates x1, . . . , xn of points X ∈ P(b).
More precisely, with each real number x, they associate an ordered pair (ξx, hx),

called the fractional representation of x, where hx = ⌊x⌋ is the integral part of
x and ξx = x − hx is the (positive) fractional part of x, so that x = ξx + hx.
Then, for x 6= y, the condition |x−y| < 1 translates into “assuming ξx < ξy, then
hx = hy or hx = hy+1”. Geometrically, the slope of the line segment between the
points (ξx, hx) and (ξy, hy) in the plane should be either zero or negative. Now
consider a 2-connected graph b with vertex set V = [n] = {1, 2, . . . , n}, and let
X = (x1, . . . , xn) be a point in the polytope P(b). Let us write (ξi, hi) for the
fractional representation of the coordinate xi of X , i = 1, . . . , n. For xn = 0, it
will be convenient to use the special representation ξn = 1.0 and hn = −1. The
volume of P(b) is not changed by removing all hyperplanes {xi − xj = k}, for
k ∈ Z. Hence, we can assume that all the fractional parts ξi are distinct. We form
a subpolytope of P(b) by keeping the “heights” h1, h2, . . . , hn fixed as well as the
relative positions (total order) of the fractional parts ξ1, ξ2, . . . , ξn. Let h : V → Z

denotes the height function i 7→ hi and β : V → [n] be the permutation of [n]
for which β(i) gives the rank of ξi in this total order. Note that β(n) = n. The
corresponding simplex will be denoted by P(h, β). Explicitly, each simplex can
be written as

P(h, β) = {(h1+ξ1, . . . , hn−1+ξn−1, 0) : 0 < ξβ−1(1) < · · · < ξβ−1(n−1) < 1}, (20)

and it is shown in [12] (see also [5] for more details) that each such simplex is
affine-equivalent (with Jacobian 1) to the standard simplex

P(0, id) = {(ξ1, ξ2, . . . , ξn−1, 0) : 0 < ξ1 < ξ2 < · · · < ξn−1 < 1}

in R
n−1 × {0}, of volume 1/(n− 1)!.

Note that the simplices (20) are disjoint and each such simplex can be charac-
terized by its centre of gravity

Xh,β = (h1 +
β(1)

n
, h2 +

β(2)

n
, . . . , hn−1 +

β(n− 1)

n
, 0) ∈ R

n−1 × {0}.
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Note also that, when there are no restrictions on h and β, the union of the closed
simplices P(h, β) coincides with the whole configuration space R

n−1 × {0}.
Using the fractional coordinates to represent the centre of gravity Xh,β of the

simplex P(h, β), and drawing a line segment connecting xi = (hi, ξi) and xj =
(hj, ξj) for each edge {i, j} of the graph b, we obtain a configuration in the plane
which can be seen as an homomorphic image of b which characterizes the subpoly-
tope P(h, β). For example, take n = 6 and b = {{1, 3}, {1, 5}, {1, 6}, {2, 3}, {2, 4},
{5, 6}}. Figure 2 illustrates the corresponding configuration, where the homo-
morphic image of b appears clearly. The next proposition summarizes the above
discussion.

Proposition 5 ([12]). Let b be a 2-connected graph with vertex set V = [n], and
consider a function h : V → Z and a bijection β : V → [n] satisfying β(n) = n.
Then the simplex P(h, β) corresponding to the pair (h, β) is contained in the
polytope P(β) if and only if the following condition is satisfied:

for any edge {i, j} of b, β(i) < β(j) implies hi = hj or hi = hj + 1. (21)

3

2

1

0

−1
x5 x6

x4

x2

x3x1

ξ4 < ξ1 < ξ2 < ξ5 < ξ3 < ξ6

32

4

56

h1 = 0

1

h5 = −1

h2 = 1

h3 = 0

h4 = 2

h6 = −1

Figure 2. Fractional representation of a simplicial subpolytope of
a graph b

Corollary 6 ([12]). Let b be a 2-connected graph and let ν(b) be the number
of pairs (h, β) such that the condition (21) is satisfied. Then the volume of the
polytope P(b) is given by

Vol(P(b)) = ν(b)/(n− 1)!. (22)
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Proposition 6 can be used to compute the weight of some families of graphs,
since wM(b) = (−1)e(b)Vol(P(b)).
In a similar fashion we can adapt the above configurations to the context of

the Ree–Hoover weight.

Proposition 7 ([9]). Let b be a 2-connected graph with vertex set V = [n], and
consider a function h : V → Z and a bijection β : V → [n] satisfying β(n) = n.
Then the simplex P(h, β) corresponding to the pair (h, β) is contained in the
polytope PRH(b) if and only if the following conditions are satisfied:

for any edge {i, j} of b, β(i) < β(j) implies hi = hj or hi = hj + 1, (23)

for any edge {i, j} of b, β(i) < β(j) implies hi ≤ hj − 1 or hi ≥ hj + 2. (24)

Proof. See [9]. �

Proposition 8 ([9]). Let b be a 2-connected graph and let νRH(b) be the number
of pairs (h, β) such that conditions (23) and (24) are satisfied. Then the volume
of PRH(b) is given by

Vol(PRH(b)) = νRH(b)/(n− 1)!. (25)

Proof. See [9]. �

Proposition 8 can be used to compute the weight of some families of graphs,
since wRH(b) = (−1)e(b)Vol(PRH(b)).

4. Ree–Hoover weight of some infinite families of graphs

Here are some of our results concerning new explicit formulas for the Ree–
Hoover weight of certain infinite families of graphs. These were first conjectured
from numerical values using Ehrhart polynomials. Their proofs use the techniques
of graph homomorphism and Theorem 4. The weights of 2-connected graphs b
are given in absolute value |w(b)|, the sign being always equal to (−1)e(b).

Lemma 9. Suppose that g is a graph over [n] and i, j ∈ [n − 1] are such that g
does not contain the edge {n, i} but contains the edges {i, j} and {n, j}. In this
case, any RH-configuration (h, β) (with hn = −1, β(n) = n) satisfies one of the
following conditions:

(1) hi = 1, hj = 0 and β(i) < β(j),
(2) hi = −2, hj = −1 and β(i) > β(j).
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4.1. The Ree–Hoover weight of the graph Kn\Ck. Let Ck denote the cycle
on k elements. For the special case k = 4 corresponding to the graph Kn\C4 the
proof is different from the one corresponding to the case k ≥ 5.

Proposition 10 ([9]). For n ≥ 6, we have

|wRH(Kn\C4)| =
8

(n− 1)(n− 2)(n− 3)
, (26)

where C4 is the unoriented cycle with 4 vertices (see Figure 3).

Figure 3. The graph C4

Proposition 11. For k ≥ 5, n ≥ k + 1, we have

wRH(Kn\Ck) = 0. (27)

Proof. Equation (27) is a consequence of Theorem 4. Indeed, C4 ⊆ Kn\Ck, for
k ≥ 5, n ≥ k + 1 and we conclude using (18). �

4.2. The Ree–Hoover weight of the graph Kn\(Sj ·C4 ·Sk). Let (Sj ·C4 ·Sk)
denote the graph obtained by joining with an edge of the graph C4 the centres of
a j-star and of a k-star. See Figure 4 for an example.

Figure 4. The graph S3 · C4 · S4

Let us start with the simple case S2 · C4 · S1.
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Proposition 12. For n ≥ 8, we have

|wRH(Kn\(S2 · C4 · S1))| =
4

(n− 1)(n− 2) · · · (n− 6)
. (28)

Proof. We can assume that the missing edges are {1, n}, {2, n}, {4, n}, {1, 3},
{1, 5}, {1, 7} and {2, 3} (see Figure 5).

1

3 2

n

4

5

7

Figure 5. The graph S2 · C4 · S1

According to Lemma 9 there are two possibilities for h:

• h1 = h2 = h4 = 1 and hn = −1 and all other hi = 0, so that (β(1), β(2),
β(3), β(4)) must be (6, 3, 2, 1) and (β(5), β(7)) must be a permutation of
{4, 5},

• h1 = h2 = h4 = −2 and all other hi = −1, so that (β(1), β(2), β(3), β(4))
must be (n−6, n−3, n−2, n−1) and (β(5), β(7)) must be a permutation
of {n− 4, n− 5}.

In each case β can be extended in (n − 7)! ways, giving the possible relative
positions of the (n − 7) xi (see Figure 6). So, there are 2 · 2! (n − 7)! RH-
configurations (h, β).
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−1

0 −1

0

−2

1

xn

x7

x2 x4

x3

x4

xn

xi

x1

x7x5

x2

x3 xi

x1

x5

1

1

Figure 6. Fractional representation of a simplicial subpolytope of
PRH(Kn\(S2 · C4 · S1))

�

In the general case we have the following result.

Proposition 13. For j ≥ k ≥ 1, n ≥ k + j + 5, we have

|wRH(Kn\(Sj · C4 · Sk))| =
2k! j!

(n− 1)(n− 2) · · · (n− (k + j + 3))
. (29)

Proof. We can assume that the missing edges are {2, n}, {4, n}, {6, n}, . . . , {2k+
2, n} and {1, 3}, {1, 5}, {1, 7}, . . . , {2j + 3, n} and {1, n}, {2, 3} (see Figure 7,
for the case of S2 · C4 · S2).

1

3 2

4

n

6

5

7

Figure 7. The graph S2 · C4 · S2

According to Lemma 9 there are two possibilities for h:
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• h1 = h2 = h4 · · · = h2k+2 = 1 and hn = −1 and all other hi = 0, so that
(β(4), β(6), . . . , β(2k + 2)) must be a permutation of {1, 2, . . . , k} and
(β(5), β(7), . . . , β(2j+3)) must be a permutation of {k+3, k+4, . . . , k+
j + 2} and β(3) = k + 1 and β(2) = k + 2 and β(1) = k + j + 3,

• h1 = h2 = h4 · · · = h2k+2 = −2 and all other hi = −1, so that (β(4), β(6),
. . . , β(2k + 2)) must be a permutation of {n − 1, n − 2, . . . , n − k} and
(β(5), β(7), . . . , β(2j + 3)) must be a permutation of {n− k − 3, n− k −
4, . . . , n − k − j − 2} and β(3) = n − k − 1 and β(2) = n − k − 2 and
β(1) = n− k − j − 3.

In each case β can be extended in (n − (k + j + 4))! ways, giving the possible
relative positions of the (n−(k+j+4)) xi (see Figure 8, for the case of S2 ·C4 ·S2).
So, there are 2 · k! j! (n− (k + j + 4))! RH-configurations (h, β).

1

−1

0 −1

−2

0

x6

xi

x2

x7

xn

xnx3

x1

x1

x5

x6

x7

x5

x2

x4

x4

xi
x3

1

1

Figure 8. Fractional representation of a simplicial subpolytope of
PRH(Kn\(S2 · C4 · S2))

�

4.3. The Ree–Hoover weight of the graph Kn\(Sk ·K3). Let Sk ·K3 denote
the graph obtained by identifying one vertex of the graph K3 with the centre
of a k-star. See Figure 9 for an example. wRH(Kn\(Sk · K3)) = 0, for k ≥ 0,
n ≥ k+5, which is a consequence of Theorem 4. Note that the special case k = 0
corresponding to the graph Kn\K3.

4.4. The Ree–Hoover weight of the graph Kn\(Sk ·Cp). Let Sk ·Cp denote
the graph obtained by identifying one vertex of the graph Cp with the centre of
a k-star. See Figure 10 for an example. wRH(Kn\(Sk ·Cp)) = 0, for p ≥ 5, k ≥ 1,
n ≥ k + p, which is a consequence of Theorem 4.
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Figure 9. The graph S4 ·K3

Figure 10. The graph S4 · C5

4.5. The Ree–Hoover weight of the graph Kn\kS1. For k ≥ 2, n ≥ 2k, let
Kn\kS1 denote the complete graph on n vertices from which k separate edges
have been removed, with S1 = e is the graph with only one edge. See Figure
11 for an example. Then we have wRH(Kn\kS1) = wRH(Kn\ke) = 0, which is a
consequence of Theorem 4.

Figure 11. The graph 3S1

Note that, for k = 1, we have the following result.

Proposition 14 ([9]). For n ≥ 3, let Kn\e denote the complete graph on n
vertices from which an arbitrary edge has been removed. Then we have

|wRH(Kn\e)| = |wRH(Kn\S1)| =
2

(n− 1)
· (30)
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Proof. See [9]. �

Note that the formula (30) is a special case of (31).

4.6. The Ree–Hoover weight of the graph Kn\(Sj ·K3 ·Sk). Let (Sj ·K3 ·Sk)
denote the graph obtained by joining with an edge of the graph K3 the centres of
a j-star and of a k-star. See Figure 12 for an example. wRH(Kn\(Sj ·K3 ·Sk)) = 0,
for j ≥ k ≥ 1, n ≥ k + j + 4, which is a consequence of Theorem 4.

Figure 12. The graph S3 ·K3 · S4

4.7. The Ree–Hoover weight of the graph Kn\(Sj ·Cp ·Sk). Let (Sj ·Cp ·Sk)
denote the graph obtained by joining with an edge of the graph Cp the centres of
a j-star and of a k-star. See Figure 13 for an example. wRH(Kn\(Sj ·Cp ·Sk)) = 0,
for p ≥ 5, j ≥ k ≥ 1, n ≥ k + j + p+ 1, which is a consequence of Theorem 4.

Figure 13. The graph S2 · C6 · S4

We need to use Propositions 15–17 to prove Mayer’s weight formulas that will
be presented in Section 5.
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4.8. The Ree–Hoover weight of the graph Kn\Sk. Let Sk denote the k-star
graph with vertex set [k + 1] and edge set {{1, 2}, {1, 3}, . . . , {1, k + 1}}, (see
Figure 14, for the case of S3).

3

1

n

2

Figure 14. The graph S3

Proposition 15 ([9]). For k ≥ 1, n ≥ k + 3, we have

|wRH(Kn\Sk)| =
2k!

(n− 1)(n− 2) · · · (n− k)
. (31)

4.9. The Ree–Hoover weight of the graph Kn\(Sj–Sk). Let Sj–Sk denote
the graph obtained by joining with a new edge the centres of a j-star and of a
k-star. See Figure 15 for an example.

Figure 15. The graph S3–S4

Proposition 16 ([9]). For j ≥ k ≥ 1, n ≥ k + j + 3, we have

|wRH(Kn\(Sj − Sk))| =
2k! j!

(n− 1)(n− 2) · · · (n− (k + j + 1))
. (32)

4.10. The Ree–Hoover weight of the graph Kn\(C4 ·Sk). Let C4 ·Sk denote
the graph obtained by identifying one vertex of the graph C4 with the centre of
a k-star. See Figure 16 for an example.

Proposition 17 ([9]). For k ≥ 1, n ≥ k + 5, we have

|wRH(Kn\(C4 · Sk))| =
4k!

(n− 1)(n− 2) · · · (n− (k + 3))
. (33)

Note that the formula (33) is not a special case of (29).
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Figure 16. The graph C4 · S4

5. Mayer weight of some infinite families of graphs

In this section, we give explicit formulas for the Mayer weight of the above
infinite families of graphs. In order to do so, we use the formula

|wM(b)| =
∑

b⊆d⊆Kn

|wRH(d)|, (34)

which is a consequence of (11) since |wM(b)| = (−1)e(b)wM(b) and |wRH(d)| =
(−1)e(d)wRH(d) in the case of hard-core continuum gas in one dimension. Substi-
tuting Kn\g and Kn\k for b and d in (34), we have

|wM(Kn\g)| =
∑

k⊆g

|wRH(Kn\k)|

=
∑

h̃⊆g̃

m(h̃, g̃)|wRH(Kn\h)|, (35)

where g̃ denotes the unlabelled graph corresponding to g, h̃ runs through the

unlabelled subgraphs of g̃, and m(h̃, g̃) is the number of ways of obtaining h̃

by removing some edges in h̃. In the following propositions, these multiplicities

m(h̃, g̃) are obtainable in each case by direct combinatorial arguments.

5.1. The Mayer weight of the graph Kn\Ck.

Proposition 18 ([9]). For k = 4, n ≥ 6, we have

|wM(Kn\C4)| = n+
8

n− 1
+

16

(n− 1)(n− 2)
+

16

(n− 1)(n− 2)(n− 3)
. (36)

Proposition 19. For n ≥ k ≥ 5 we have

|wM(Kn\Ck)| = n +
2k

n− 1
+

4k

(n− 1)(n− 2)
+

2k

(n− 1)(n− 2)(n− 3)
. (37)



GRAPH WEIGHTS ARISING FROM STATISTICAL MECHANICS 17

Proof. The supergraphs of Kn\Ck, k ≥ 5, whose Ree–Hoover weight is not zero
are up to isomorphism of the form Kn\S1, Kn\S2, Kn\(S1–S1) and Kn. Their
multiplicities are given by the formula

|wM(Kn\Ck)| = |wRH(Kn)| +

2∑

l=1

k|wRH(Kn\Sl)| + k|wRH(Kn\(S1 − S1))|.

We conclude using Propositions 15 and 16. �

Note that the formula (36) is not a special case of (37).

5.2. The Mayer weight of the graph Kn\(Sj · C4 · Sk).

Proposition 20. For j ≥ k ≥ 1, n ≥ k+j+5, we have, with the usual convention(
k+1
ℓ

)
= 0 if ℓ > k + 1,

|wM(Kn\(Sj · C4 · Sk))| = n+

j+2∑

l=1

2

[(
j + 2

l

)
+

(
k + 2

l

)]
l!

(n− 1) · · · (n− l)

+
8

(n− 1) (n− 2)
+

10

(n− 1) (n− 2) (n− 3)

+

j∑

l=1

4

[(
j

l

)
+

(
k

l

)]
l!

(n− 1) · · · (n− l − 3)

+

j∑

m=1

k∑

l=1

2

(
j

m

)(
k

l

)
m! l!

(n− 1) · · · (n−m− l − 3)

+

j+1∑

l=1

2

[(
j + 1

l

)
+

(
k + 1

l

)]
l!

(n− 1) · · · (n− l − 2)

+

j+1∑

m=1

k+1∑

l=1

2

(
j + 1

m

)(
k + 1

l

)
m! l!

(n− 1) · · · (n−m− l − 1)
.

Proof. The supergraphs of Kn\(Sj ·C4 ·Sk) whose Ree–Hoover weight is not zero
are up to isomorphism of the form Kn\Sl, 1 ≤ l ≤ j + 2, Kn\(C4 · Sl), 1 ≤ l ≤ j,
Kn\(Sm–Sl), 1 ≤ m ≤ j+1, 1 ≤ l ≤ k+1, Kn\(Sm ·C4 ·Sl) 1 ≤ m ≤ j, 1 ≤ l ≤ k,
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C4 and Kn. Their multiplicities are given by the formula

|wM(Kn\(Sj · C4 · Sk))| = |wRH(Kn)|+

j+2∑

l=1

[(
j + 2

l

)
+

(
k + 2

l

)]
|wRH(Kn\Sl)|

+ 2|wRH(Kn\S2)|+ |wRH(Kn\C4)|+ |wRH(Kn\S1 − S1)|

+

j∑

l=1

[(
j

l

)
+

(
k

l

)]
|wRH(Kn\C4 · Sl)|

+

j∑

m=1

k∑

l=1

(
j

m

)(
k

l

)
|wRH(Kn\Sm · C4 · Sl)|

+

j+1∑

l=1

[(
j + 1

l

)
+

(
k + 1

l

)]
|wRH(Kn\(S1 − Sl))|

+

j+1∑

m=1

k+1∑

l=1

(
j + 1

m

)(
k + 1

l

)
|wRH(Kn\(Sm − Sl))|.

We conclude using Propositions 10 and 13–17. �

5.3. The Mayer weight of the graph Kn\(Sk ·K3).

Proposition 21. For k ≥ 0, n ≥ k + 5, we have

|wM(Kn\(Sk ·K3)| = n+
k+2∑

l=1

2

(
k + 2

l

)
l!

(n− 1) · · · (n− l)

+

k∑

l=1

4

(
k

l

)
l!

(n− 1) · · · (n− l − 2)

+
2

(n− 1)
+

8

(n− 1)(n− 2)
.

Proof. The supergraphs of Kn\(Sk ·K3) whose Ree–Hoover weight is not zero are
up to isomorphism of the form Kn\Sl, 1 ≤ l ≤ k + 2, Kn\(S1–Sl), 1 ≤ l ≤ k and
Kn. Their multiplicities are given by the formula

|wM(Kn\(Sk ·K3))| = |wRH(Kn)|+
k+2∑

l=1

(
k + 2

l

)
|wRH(Kn\Sl)|

+

k∑

l=1

2

(
k

l

)
|wRH(Kn\(S1 − Sl))|

+ |wRH(Kn\S1)|+ 2|wRH(Kn\S2)|.
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We conclude using Propositions 15 and 16. �

For the special case k = 0, n ≥ 5, we have

|wM(Kn\K3)| = n +
6

(n− 1)
+

12

(n− 1)(n− 2)
. (38)

5.4. The Mayer weight of the graph Kn\(Sk · Cp).

Proposition 22. For p ≥ 5, k ≥ 1, n ≥ k + p, we have

|wM(Kn\(Sk · Cp)| = n+
k+2∑

l=1

2

(
k + 2

l

)
l!

(n− 1) · · · (n− l)

+

k+1∑

l=1

4

[(
k

l − 1

)
+

(
k

l

)]
l!

(n− 1) · · · (n− l − 2)

+
2(p− 2)

(n− 1)
+

4(p− 1)

(n− 1)(n− 2)
+

2p

(n− 1)(n− 2)(n− 3)
.

Proof. The supergraphs of Kn\(Sk ·Cp) whose Ree–Hoover weight is not zero are
up to isomorphism of the form Kn\Sl, 1 ≤ l ≤ k + 2, Kn\(S1–Sl), 1 ≤ l ≤ k + 1
and Kn. Their multiplicities are given by the formula

|wM(Kn\(Sk · Cp))| = |wRH(Kn)|+

k+2∑

l=1

(
k + 2

l

)
|wRH(Kn\Sl)|

+
k+1∑

l=1

2

[(
k

l − 1

)
+

(
k

l

)]
|wRH(Kn\(S1 − Sl))|

+ (p− 2)|wRH(Kn\S1)|+ (p− 1)|wRH(Kn\S2)|

+ p|wRH(Kn\(S1 − S1))|.

We conclude using Propositions 15 and 16. �

5.5. The Mayer weight of the graph Kn\(Sj ·K3 · Sk).
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Proposition 23. For j ≥ k ≥ 1, n ≥ k+j+4, we have, with the usual convention(
k
ℓ

)
= 0 if ℓ > k,

|wM(Kn\(Sj ·K3 · Sk))| = n+

j+2∑

l=1

2

[(
j + 2

l

)
+

(
k + 2

l

)]
l!

(n− 1) · · · (n− l)

−
2

(n− 1)
+

4

(n− 1) (n− 2)

+

j∑

l=1

4

[(
j

l

)
+

(
k

l

)]
l!

(n− 1) · · · (n− l − 2)

+

j+1∑

m=1

j∑

l=1

2

[(
j

m

)(
k

l

)
+

(
j

m− 1

)(
k

l

)
+

(
j

l

)(
k

m− 1

)]

·
m! l!

(n− 1) · · · (n−m− l − 1)
.

Proof. The supergraphs of Kn\(Sj · K3 · Sk) whose Ree–Hoover weight is not
zero are up to isomorphism of the form Kn\Sl, 1 ≤ l ≤ j + 2, Kn\(Sm–Sl),
1 ≤ m ≤ j + 1, 1 ≤ l ≤ k + 1 and Kn. Their multiplicities are given by the
formula

|wM(Kn\(Sj ·K3 · Sk))| = |wRH(Kn)|+

j+2∑

l=1

[(
j + 2

l

)
+

(
k + 2

l

)]
|wRH(Kn\Sl)|

− |wRH(Kn\S1)|+ |wRH(Kn\S2)|

+

j∑

l=1

2

[(
j

l

)
+

(
k

l

)]
|wRH(Kn\(S1 − Sl))|

+

j+1∑

m=1

j∑

l=1

[(
j

m

)(
k

l

)
+

(
j

m− 1

)(
k

l

)
+

(
j

l

)(
k

m− 1

)]

· |wRH(Kn\(Sm − Sl))|.

We conclude using Propositions 15 and 16. �

5.6. The Mayer weight of the graph Kn\(Sj · Cp · Sk).
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Proposition 24. For p ≥ 5, j ≥ k ≥ 1, n ≥ k + j + p + 1, we have, with the
usual convention

(
k
ℓ

)
= 0 if ℓ > k,

|wM(Kn\(Sj · Cp · Sk))| = n+

j+2∑

l=1

2

[(
j + 2

l

)
+

(
k + 2

l

)]
l!

(n− 1) · · · (n− l)

+
2(p− 4)

(n− 1)
+

4(p− 2)

(n− 1) (n− 2)
+

2(p− 3)

(n− 1) (n− 2) (n− 3)

+

j+1∑

l=1

2

[(
j + 1

l

)
+

(
k + 1

l

)]
l!

(n− 1) · · · (n− l − 2)

+

j+1∑

m=1

k+1∑

l=1

2

(
j + 1

m

)(
k + 1

l

)
m! l!

(n− 1) · · · (n−m− l − 1)
.

Proof. The supergraphs of Kn\(Sj · Cp · Sk) whose Ree–Hoover weight is not
zero are up to isomorphism of the form Kn\Sl, 1 ≤ l ≤ j + 2, Kn\(Sm–Sl),
1 ≤ m ≤ j + 1, 1 ≤ l ≤ k + 1 and Kn. Their multiplicities are given by the
formula

|wM(Kn\(Sj · Cp · Sk))| = |wRH(Kn)|+

j+2∑

l=1

[(
j + 2

l

)
+

(
k + 2

l

)]
|wRH(Kn\Sl)|

+

j+1∑

l=1

[(
j + 1

l

)
+

(
k + 1

l

)]
|wRH(Kn\(S1 − Sl))|

+

j+1∑

m=1

k+1∑

l=1

2

(
j + 1

m

)(
k + 1

l

)
|wRH(Kn\(Sm − Sl))|

+ (p− 4)|wRH(Kn\S1)|+ (p− 2)|wRH(Kn\S2)|

+ (p− 3)|wRH(Kn\(S1 − S1))|.

We conclude using Propositions 15 and 16. �

5.7. The Mayer weight of the graph Kn\kS1.

Proposition 25. For k ≥ 1, n ≥ 2k, we have

|wM(Kn\kS1)| = n +
2k

(n− 1)
.

Proof. The supergraphs of Kn\kS1, k ≥ 1, whose Ree–Hoover weight is not zero
are up to isomorphism of the form Kn\S1 and Kn. Their multiplicities are given
by the formula

|wM(Kn\kS1)| = |wRH(Kn)|+ k|wRH(Kn\S1)|.
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We conclude using Proposition 15. �
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