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Enumeration of polyominoes with respect to
their area is an open problem, widely believed to
be difficult.

The enumerating sequence (A(n))n≥1 begins
with 1, 2, 6, 19, 63, 216, 760, . . . (A001168).

Only 56 numbers are known (Jensen);
The nature of the generating function is not known;
The limit λ := limA(n+ 1)/A(n) exists (Madras);
Bounds: λ > 4.0025 (Barequet, Rote, Shalah),

λ < 4.6496 (Klarner, Rivest);
Conjectured: λ ≈ 4.0626.
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The perimeter p of a polyomino P is the number
of empty cells that neighbor at least one cell of P .

We denote by A(n, p) the number of polyominoes with
area n and perimeter p.
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neighboring cells in P yields a loss of 2. There are at least
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Observation:
For each polyomino of area n, we have p ≤ 2n+ 2.

Proof: Each cell has 4 neighboring grid cells. Each pair of
neighboring cells in P yields a loss of 2. There are at least
n− 1 pairs of neighbors. Therefore, p ≤ 4n− 2(n− 1).

Definition:
The (perimeter) defect of P is k := 2n+ 2− p.



A perimeter cell : a free cell that has an occupied neighbor.

An excess of a perimeter cell is the number of occupied
neighbors minus 1.

The total excess of a polyomino is the sum of excesses over
all perimeter cells.
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Small values of k (k = 2n+ 2− p, k = e+ 2f)

k = 0 ⇒
e = f = 0 ⇒
the polyomino is a “stick” ⇒
for n ≥ 2, we have A(n, 2n+ 2) = 1.

k = 1 ⇒
e = 1, f = 0 ⇒
the polyomino is a “one-bend path” ⇒
for n ≥ 3, we have A(n, 2n+ 1) = 4(n− 2).



k = 2 ⇒ e = 2, f = 0 or e = 0, f = 1



k = 2 ⇒ e = 2, f = 0 or e = 0, f = 1



k = 2 ⇒ e = 2, f = 0 or e = 0, f = 1

A(n, 2n) = a quadratic polynomial.
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k = 3: We have 18 patterns, not all of them are polynomial.

Upon addition of 18 generating functions:

· · ·
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A “correct” notion of pattern (to ensure partition).



We expect that these
will be in the same class.
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Vertical cut C:
A maximal set of consecutive
columns, Ci, . . . , Cj , such that
for C∗ = {Ci−1, . . . , Cj+1}
we have
P ∩ C∗ = {i− 1, . . . , j + 1} ×A,
where A 6= ∅ and
a, b ∈ A, a 6= b ⇒ |a− b| ≥ 3.
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x27

(1− x)2(1− x2)3(1− x3)
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3. Leaf cells (degree 1 in the dual).
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Claim 1: If a column that intersects a polyomino does not belong to a
cut, then it or at least one of its neighbors contains a special cell.
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Claim 2: The number of special cells is bounded by a constant.

k = e+ 2f

1. Each excess cells contributes directly to e.
2. Each bend cell contributes directly to e or to f .
3. |V1| ≤ |V3|+ 2|V4|+ 2, and each cell of degree 3 or 4
is a bend cell.



Claim 1: If a column that intersects a polyomino does not belong to
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Claim 1: If a column that intersects a polyomino does not belong to
a cut, then it or at least one of its neighbors contains a special cell.

Claim 2: The number of special cells is bounded by a constant.

⇒ The number of columns that do not belong to a cut,
is bounded.
⇒ All the reduced polyominoes lie in a square of a
bounded size.
⇒ There is a finite number of reduced polyominoes.
⇒ There is a finite number of patterns classes.
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Each pattern produces a rational generating function
(more precisely: its denominator is a product of
cyclotomic polynomials).

1.

The number of patterns is finite.2.

3. It remains to sum up the generating functions.

For each fiked k, the generating function of
(A(n, 2n+ 2− k))n≥k is rational.
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The multidimensional case (d-polycubes): The main
result is the same.

(The maximum perimeter is 2n(d− 1) + 2.
In the formula k = e+ 2f , f is the “circuit rank” –
the number of edges that must be removed from
the graph in order to obtain a tree. It is equal to
|E| − |V |+ 1.)



k CP

0

1

2

3

4

x− 1

(x− 1)2

(x− 1)3

(x− 1)4(x+ 1)2

(x− 1)5(x+ 1)3

5 (x− 1)6(x+ 1)4(x2 + x+ 1)




