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Motzkin Tunnel Polynomials Catalan Tunnel Polynomials Full Binary Trees

Motzkin paths

A Motzkin path of length n is lattice path in the plane from (0, 0)
to (n, 0) consisting of up steps U = (1, 1), down steps D = (1,−1)
and horizontal steps H = (1, 0), that never goes below the x-axis.

Mn = the set of Motzkin paths of length n.
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Motzkin polynomials

A weak tunnel in a Motzkin path p is a horizontal segment
between two lattice points of p lying always weakly below p.
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Motzkin polynomials

For every non-horizontal step S of p denote by t(S) the length of
the maximal weak tunnel ending at the initial point of S.
Note that

t(S) ≤ n − 2

where n is the length of p.

S

t(S) = 3
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Motzkin polynomials

We assign to every step S of p the weight

xt(S) if S is an up step,

yt(S) if S is a down step,

z if S is a horizontal step.

Then we associate to p the monomial m(p) in the commutative
variables x0, x1, ..., xn−2, y0, y1, ..., yn−2, z given by the product of
the weights of p.

x0

−→ x0
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We assign to every step S of p the weight

xt(S) if S is an up step,
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Motzkin polynomials

We assign to every step S of p the weight

xt(S) if S is an up step,
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Motzkin polynomials

We assign to every step S of p the weight

xt(S) if S is an up step,

yt(S) if S is a down step,

z if S is a horizontal step.

Then we associate to p the monomial m(p) in the commutative
variables x0, x1, ..., xn−2, y0, y1, ..., yn−2, z given by the product of
the weights of p.

x0

x0

z

y1

−→ x20 zy1
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Motzkin polynomials

We assign to every step S of p the weight

xt(S) if S is an up step,

yt(S) if S is a down step,

z if S is a horizontal step.

Then we associate to p the monomial m(p) in the commutative
variables x0, x1, ..., xn−2, y0, y1, ..., yn−2, z given by the product of
the weights of p.

x0

x0
x3

z

y1

−→ x20 zy1x3
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Motzkin polynomials

We assign to every step S of p the weight

xt(S) if S is an up step,

yt(S) if S is a down step,

z if S is a horizontal step.

Then we associate to p the monomial m(p) in the commutative
variables x0, x1, ..., xn−2, y0, y1, ..., yn−2, z given by the product of
the weights of p.

x0

x0
x3

z

z

x0

y1

y0

y3

y8

−→ x30x3y0y1y3y8z
2
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Motzkin polynomials

We define the n − th Motzkin Tunnel polynomial as

MTn = MTn(x0, x1, . . . , xn−2; y0, y1, . . . , yn−2; z) :=
∑

p∈Mn

m(p).

For 0 ≤ n ≤ 4,

MT0 = 1 MT1 = z MT2 = x0y0 + z2

MT3 = x0y0z + x1y0z + x0y1z + z3

MT4 = x0x2y
2
0 + x20y0y2 + x0y0z

2 + x1y0z
2+

x2y0z
2 + x0y1z

2 + x1y1z
2 + x0y2z

2 + z4
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A recurrence for the polynomials Mn

Theorem

The polynomials MTi satisfy the recurrence

MTn = z MTn−1 +
n−2∑
i=0

xi yn−2−i MTi MTn−2−i , n ≥ 1

with initial value
MT0 = 1

This is an analogue of the recurrence for Motzkin numbers.
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Symmetry of Motzkin polynomials

Let f be a polynomial in the variables x0, x1, . . . , y0, y1, . . . , z . Set

f σ(x0, x1, . . . ; y0, y1, . . . ; z) = f (y0, y1, . . . ; x0, x1, . . . ; z).

Theorem

MTn = MT σ
n

To show this we define a bijection E over the set Mn such that

m(E (p)) = mσ(p)

for all p ∈Mn.
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Symmetry of Motzkin polynomials

Inspired by a map over Dyck paths due to Deutsch, we define the
bijection E recursively as follows.

if p = Hk for k ≥ 0, E (Hk) = Hk ;

if p = p′ U p′′D Hk , with p′, p′′ ∈M,

E (p′ U p′′D Hk) = E (p′′)U E (p′)D Hk .

E7−→
p′′

p′

E7−→

E (p′)

E (p′′)
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Symmetry of Motzkin polynomials

As an example consider the following Motzkin path

p =

Since
E−→

E−→

the path E (p) is

E (p) =
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Symmetry of Motzkin polynomials

The path

p =

and the path

E (p) =

have associated monomials

m(p) = x20x1x5y0y1y2y4z
4,

m(E (p)) = x0x1x2x4y
2
0 y1y5z

4.
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Trivial specializations

a. MTn(1, 1, . . . , 1, 1, . . . , 1) is the n-th Motzkin number.

b. MTn(1, 1, . . . ; 1, 1, . . . ; 2) is the number of Motzkin paths of
length n where horizontal steps have two possible colors. This
number equals the (n + 1)-th Catalan number.

c. The coefficient of z j in MTn(1, 1, . . . ; 1, 1, . . . ; z) is the
number of Motzkin paths of length n with j horizontal steps.
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Less trivial specializations

A down step has weight y0 ⇐⇒ it is preceded by an up step, that
is, it is the down step of a peak.
⇒ the coefficient of y j0 in MTn(1, 1, . . . ; y0, 1, . . . ; 1) is the number
of Motzkin paths of length n with j peaks.
A down step has weight y1 ⇐⇒ it is preceded by a UH.
⇒ the coefficient of y j1 in MTn(1, 1, . . . ; 1, y1, 1, . . . ; 1) is the
number of Motzkin paths of length n with j occurences of UHD.

x0 y0
x2

x0
x3

z
z

x0

y1

y0 x3 y0

y5

y10
x14

z
y1

m(p) = x30x2x
2
3x14y

3
0 y

2
1 y5y10z

3
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Less trivial Specializations

The area A(p) of the path p is defined to be the area of the
trapezoid under the path and above the x-axis.
The coefficient of qj in MTn(1, 1, . . . ; q, q2, . . . ; 1) is the number
of Motzkin paths of length n of area j .
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Less trivial Specializations

In fact, the label of every down step D is the area of the trapezoid
lying between the maximal weak tunnels ending at the initial and
final point of D, minus one.

y3
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Less trivial Specializations

In fact, the label of every down step D is the area of the trapezoid
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Less trivial Specializations

In fact, the label of every down step D is the area of the trapezoid
lying between the maximal weak tunnels ending at the initial and
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Less trivial Specializations

In fact, the label of every down step D is the area of the trapezoid
lying between the maximal weak tunnels ending at the initial and
final point of D, minus one.

q4
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Less trivial Specializations

In fact, the label of every down step D is the area of the trapezoid
lying between the maximal weak tunnels ending at the initial and
final point of D, minus one.

q4q2
q

q9

The Motzkin path has area 2+1+4+9=16.
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A joint distribution

Consider the polynomials

Tn = Tn(q, z , x0, x1) = MTn(x0q, x1q
2, q3, q4, . . . ; 1, 1, . . . ; z)

which take into account the area, the peaks, the occurrences of
UHD, and the number of horizontal steps.
Let

F (w) = F (q, z ,w , x0, x1) =
∑
n≥0

Tnw
n

be the corresponding generating function.
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A joint distribution

F (w) admits a continued fraction expansion.

Theorem

F (w) =
1

1 + a0(w)w −
b1w

2

1 + a1(w)w −
b2w

2

1 + a2(w)w − · · ·

,

where

ai (w) = −zqi + q2i+1w(1− x0) + zq3i+2w2(1− x1) bi = q2i−1

The proof is an immediate consequence of the recurrence relation
for the polynomials MTn.
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Catalan Tunnel polynomials

Dyck path ⇐⇒ Motzkin path without H steps

⇒ MTn(1, 1, ...; 1, 1, ...; 0) =

{
c n

2
if n is even

0 if n is odd

cn = n-th Catalan number.
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Catalan Tunnel polynomials

In a Dyck path every weak tunnel has even length.
We assign to every step S of p the weight

λt(S)/2 if S is an up step,

µt(S)/2 if S is a down step,

and associate to p the monomial m̂(p) = the product of the
weights of p.
We define the n-th Catalan Tunnel polynomial

CTn = CTn(λ0, λ1, ...λn−1;µ0, µ1, ..., µn−1)

as
CTn =

∑
p∈Cn

m̂(p)

Cn = the set of Dyck paths of semilength n.
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A recurrence for the polynomials CTn

Theorem

The polynomials CTi satisfy the recurrence

CTn =
n−1∑
i=0

λi µn−1−i CTi CTn−1−i , n ≥ 1

with initial value
CT0 = 1.

This is an analogue of the recurrence for Catalan numbers.
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Specializations

CTn(1, 1, . . . ; 1, 1, . . .) is the n-th Catalan number.

CTn(1, 1, . . . ;µ0, 1, 1, 1, . . .) =
∑

k≥0Nn,kµ
k
0 where Nn,k is

the {n, k}-th Narayana number.

The coefficient of λi0 in CTn(λ0, 1, 1, . . . ; 1, 1, 1, . . .) is the
number of Dyck paths of semilength n with i − 1 double rises.

λ0

λ0

λ0

λ0
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Specializations

The coefficient of µi1 in CTn(1, 1, . . . ; 1, µ1, 1, 1, 1, . . .)) is the
number of Dyck paths of semilength n with i occurrences of
UUDD.

CTn(1, 1, . . . ; 2, 1, 1, . . .) is the n-th large Schröder number.
More generally, CTn(1, 1, . . . ; k , 1, 1, . . .) counts large
Schröder paths from (0, 0) to (0, 2n) where double horizontal
steps may have k − 1 colors.
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Specializations

The normalized area Ã(d) of a Dyck path d is equal to

Ã(d) =
A(d)− n

2
,

where A(d) is the area between the path d and the x-axis.
⇒ the coefficient of qk in CTn(1, 1, . . . ; 1, q, q2, . . .) is the number
of Dyck paths of semilength n with normalized area equal to k.
⇒ the polynomial CTn(1, 1, . . . ; 1, q, q2, . . .) is nothing but the
Carlitz-Riordan q-analogue of Catalan numbers.

q0
q0

q1

q3

→ Ã(d) = 4
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Specializations

Consider the polynomials
Tn(q, µ0, µ1) = CTn(1, 1, . . . ;µ0, µ1q, q

2, . . .) which take into
account the distribution of normalized area, peaks and occurrences
of UUDD.

Theorem

If
G (w) =

∑
n≥0

Tn(q, µ0, µ1)wn

ai (w) = −µ0qi + qi + µ0q
2i+1w(1− µ1), bi = qi−1, then:

G (w) =
1

1 + a0(w)w −
b1w

1 + a1(w)w −
b2w

1 + a2(w)w −
b3w

· · ·
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Full binary trees

A full binary tree is a tree each of whose node has exactly zero or
two children.
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Full binary trees

A bijection Φ between Dyck paths of semilength n and full binary
trees with n internal nodes can be defined as follows. Let t be a
full binary tree and let tl and tr be the left and right subtree of the
root. Then the image of the tree t is defined recursively as

Φ(t) =

{
the empty path if t is the empty tree

Φ(tr )UΦ(tl)D otherwise

←→
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Full binary trees

Associate to each internal node v a pair of integers (al(v), ar (v))
where al(v) is the number of internal nodes in the left subtree of v
an ar (v) is the number of internal node in the right subtree of v .

(4,1)

(3,0)

(1,1)

(0,0) (0,0)

(0,0)
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Full binary trees

Theorem

Let t be a full binary tree t. The monomial associated to the path
Φ(t) is ∏

v∈IntNodes(t)

λar (v)µal (v).

(4,1)

(3,0)

(1,1)

(0,0) (0,0)

(0,0)

−→
λ0 µ0

λ1

λ0

λ0
µ0

λ1

λ0
µ0

µ1

µ3

µ4
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Full binary trees

For every full binary tree t, the (internal) path length l(t) is
defined to be the sum of the length of the paths from the root to
each internal node.
For every full binary tree t,

l(t) =
∑

v∈IntNodes(t)

al(v) + ar (v)

Theorem

The coefficient of qk in CTn(1, q, q2, . . . , 1, q, q2, . . .) is the
number of full binary trees with n internal nodes and path length k .
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THANK YOU!
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