Motzkin and Catalan Polynomials

Niccold Castronuovo

University of Bologna

Joint work with M. Barnabei, F. Bonetti and M. Silimbani.



Outline

@ Definition and properties of Motzkin Tunnel polynomials.
@ Definition and properties of Catalan Tunnel polynomials.

@ Connections with full binary trees.
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Motzkin paths

A Motzkin path of length n is lattice path in the plane from (0, 0)
to (n,0) consisting of up steps U = (1,1), down steps D = (1, —1)
and horizontal steps H = (1, 0), that never goes below the x-axis.

M, = the set of Motzkin paths of length n.
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Motzkin polynomials

A weak tunnel in a Motzkin path p is a horizontal segment
between two lattice points of p lying always weakly below p.
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Motzkin polynomials

For every non-horizontal step S of p denote by t(S) the length of
the maximal weak tunnel ending at the initial point of S.
Note that

t(S)<n-2

where n is the length of p.
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Motzkin polynomials

We assign to every step S of p the weight
@ xys) if S is an up step,
® yys) if S is a down step,
@ z if S is a horizontal step.

Then we associate to p the monomial m(p) in the commutative

variables xg, X1, ..., Xn—2, Y0, Y1, ---, Yn—2, Z given by the product of
the weights of p.

— X0
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Motzkin polynomials

We assign to every step S of p the weight
® xys) if S is an up step,
® yys) if S is a down step,
@ z if S is a horizontal step.

Then we associate to p the monomial m(p) in the commutative

variables xg, X1, ..., Xp—2, Y0, Y1, ---, Yn—2, Z given by the product of
the weights of p.

X0

— X3z
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Motzkin polynomials

We assign to every step S of p the weight
® xys) if S is an up step,
® yys) if S is a down step,
@ z if S is a horizontal step.

Then we associate to p the monomial m(p) in the commutative

variables xg, X1, ..., Xp—2, Y0, Y1, ---, Yn—2, Z given by the product of
the weights of p.

X0
Y1

2
— X0Zy1
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Motzkin polynomials

We assign to every step S of p the weight
® xys) if S is an up step,
® yys) if S is a down step,
@ z if S is a horizontal step.

Then we associate to p the monomial m(p) in the commutative

variables xg, X1, ..., Xp—2, Y0, Y1, ---, Yn—2, Z given by the product of
the weights of p.

2
— XpZy1x3
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Motzkin polynomials

We assign to every step S of p the weight
® xys) if S is an up step,
® yys) if S is a down step,
e z if S is a horizontal step.

Then we associate to p the monomial m(p) in the commutative

variables xg, X1, ..., Xp—2, Y0, Y1, ---, Yn—2, Z given by the product of
the weights of p.

3 2
— XpX3Y0y1y3YsZ
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Motzkin polynomials

We define the n — th Motzkin Tunnel polynomial as

MTy = MTa(X0, X1, -« oy Xn—2; Y05 Y1y« -+ » Yn—2iZ) i= Z m(p).
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Motzkin polynomials

We define the n — th Motzkin Tunnel polynomial as

MTy = MTa(X0, X1, -« oy Xn—2; Y05 Y1y« -+ » Yn—2iZ) i= Z m(p).

For 0 < n <4,

MTo=1 MTi=z MT,=xoy +2°
MT3 = xo¥0z + x1y0Z + Xoy12 + 2°
MTy = xoxayg + X¢Yoy2 + Xoy02° + x1y02°+

mm£+mn¥+mn¥+mm£+f
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A recurrence for the polynomials M,

Theorem
The polynomials MT; satisfy the recurrence

n—2
MTy=2MTo1+ ) Xiyn2-iMTiMTh oy n2>1
i=0

with initial value

MTy =1

This is an analogue of the recurrence for Motzkin numbers.
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Symmetry of Motzkin polynomials

Let f be a polynomial in the variables xg, x1, ..., ¥0,¥1,--.,2. Set

FO(X0s X1y -3 Y0, Y1, -3 2) = F(Y0, Y1,y - -1 X0, X5 - - -3 Z).

MT, = MT?
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Symmetry of Motzkin polynomials

Let f be a polynomial in the variables xg, x1, ..., ¥0,¥1,--.,2. Set

FO(X0s X1y -3 Y0, Y1, -3 2) = F(Y0, Y1,y - -1 X0, X5 - - -3 Z).

MT, = MT?

To show this we define a bijection E over the set M, such that

for all p € M,.
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Symmetry of Motzkin polynomials

Inspired by a map over Dyck paths due to Deutsch, we define the
bijection E recursively as follows.

o if p= H* for k >0, E(Hk) = Hk,
o if p=p' Up" DHk, with p, p" € M,

E(p' Up" D H*) = E(p") UE(p) D HX.
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Symmetry of Motzkin polynomials

As an example consider the following Motzkin path

P—._/\/ R

Since
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Symmetry of Motzkin polynomials

The path

VAV ERNS

and the path

E(p) = M

have associated monomials

m(p) = x2xixsyoy1yayaz®,

m(E(p)) = xox1xexayiy1ysz*.
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Trivial specializations

a. MTp(1,1,...,1,1,...,1) is the n-th Motzkin number.

b. MTp(1,1,...;1,1,...;2) is the number of Motzkin paths of
length n where horizontal steps have two possible colors. This
number equals the (n + 1)-th Catalan number.

c. The coefficient of Z/ in MT,(1,1,...;1,1,...; z) is the
number of Motzkin paths of length n with j horizontal steps.
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Less trivial specializations

A down step has weight yy <= it is preceded by an up step, that
is, it is the down step of a peak.

= the coefficient of y{ in MT,(1,1,...;y0,1,...;1) is the number
of Motzkin paths of length n with j peaks.

A down step has weight y; <= it is preceded by a UH.

= the coefficient of yJ in MT,(1,1,...;1,y1,1,...;1) is the
number of Motzkin paths of length n with j occurences of UHD.

3.2 3.2 3
m(P) = XpX2X3X14Y0 Y1 Ys5Y10Z
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Less trivial Specializations

The area A(p) of the path p is defined to be the area of the
trapezoid under the path and above the x-axis.

The coefficient of ¢/ in MT,(1,1,...;q,9>,...;1) is the number
of Motzkin paths of length n of area j.
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Less trivial Specializations

In fact, the label of every down step D is the area of the trapezoid
lying between the maximal weak tunnels ending at the initial and
final point of D, minus one.
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Less trivial Specializations

In fact, the label of every down step D is the area of the trapezoid
lying between the maximal weak tunnels ending at the initial and
final point of D, minus one.

The Motzkin path has area 2+1+44+9=16.
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A joint distribution

Consider the polynomials
Th=Tn(g,z,x0,x1) = MT,,(qu,xqu, q3, gt .. 1,1, 1 2)

which take into account the area, the peaks, the occurrences of
UHD, and the number of horizontal steps.
Let
F(w)=F(q,z,w,xp,x1) = Z Tow"
n>0

be the corresponding generating function.
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A joint distribution

F(w) admits a continued fraction expansion.

1+ ag(w)w —

1 —
+ a1 (w)w T aa(w)w — -

where

a,-(w) _ —zqi + q2i+1W(1 _ XO) + Zq3i+2w2(1 _ Xl) bi — q2i—1

y

The proof is an immediate consequence of the recurrence relation
for the polynomials MT,,.
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Catalan Tunnel polynomials

Dyck path <= Motzkin path without H steps

ST
= MT,(1,1,..;1,1,...;0) = “ I " !S even
0 if nis odd

¢, = n-th Catalan number.
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Catalan Tunnel polynomials

In a Dyck path every weak tunnel has even length.
We assign to every step S of p the weight

® Ay(s)2 if Sis an up step,
® p(s)/2 if S is a down step,

and associate to p the monomial m(p) = the product of the
weights of p.
We define the n-th Catalan Tunnel polynomial

CThn = CTa(Noy A1y oo An—1; [0, 1y -y fon—1)

as

CTh= Y M(p)

PECH

%, = the set of Dyck paths of semilength n.
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A recurrence for the polynomials CT,

The polynomials CT; satisfy the recurrence

n—1
CT,= Z Aipin—1—i CT; CT_1_j, n>1
i=0

with initial value

CTp=1.
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A recurrence for the polynomials CT,

Theorem
The polynomials CT; satisfy the recurrence

n—1
CT,= Z Aipin—1—i CT; CT_1_j, n>1
i=0

with initial value

CTp=1.

This is an analogue of the recurrence for Catalan numbers.
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Specializations

e CTp(1,1,...;1,1,...) is the n-th Catalan number.
o CTo(1,1,...;p0,1,1,1,...) = Y50 Nnkpu§ where Ny is
the {n, k}-th Narayana number.

o The coefficient of ) in CT,(Xo,1,1,...;1,1,1,...) is the
number of Dyck paths of semilength n with / — 1 double rises.

Ao
Ao
Ao
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Specializations

@ The coefficient of uf in CT,(1,1,...;1,1,1,1,1,...)) is the
number of Dyck paths of semilength n with i occurrences of
UuDD.

e CT,(1,1,...;2,1,1,...) is the n-th large Schroder number.
More generally, CT,(1,1,...;k,1,1,...) counts large
Schroder paths from (0,0) to (0,2n) where double horizontal
steps may have k — 1 colors.

m
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Specializations

The normalized area A(d) of a Dyck path d is equal to

~ A(d) —n

2 b

where A(d) is the area between the path d and the x-axis.

= the coefficient of ¢ in CT,(1,1,...;1,q9,4>,...) is the number
of Dyck paths of semilength n with normalized area equal to k.

= the polynomial CT,(1,1,...;1,q,4?%,...) is nothing but the
Carlitz-Riordan g-analogue of Catalan numbers.
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Specializations

Consider the polynomials
Ta(q, po, 1) = CTa(1,1,...; po, 19, g°, . . .) which take into
account the distribution of normalized area, peaks and occurrences

of UUDD.
If
G(w) = Ta(q, o, p1)w”
n>0
ai(w) = —p0q" + q' + pog® tw(l — ),  bj=g'"t, then:
1
G(w) = 5
W
1+ ag(w)w — ™
w
1+ a1(w)w —
bsw
1+ a(w)w — —
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Full binary trees

A full binary tree is a tree each of whose node has exactly zero or
two children.
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Full binary trees

A bijection ® between Dyck paths of semilength n and full binary
trees with n internal nodes can be defined as follows. Let t be a
full binary tree and let t; and t, be the left and right subtree of the
root. Then the image of the tree t is defined recursively as

(t) = the empty path  if t is the empty tree
o(t, ) UP(t))D otherwise

L8 AN
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Full binary trees

Associate to each internal node v a pair of integers (a;(v), a,(v))
where aj(v) is the number of internal nodes in the left subtree of v
an a,(v) is the number of internal node in the right subtree of v.
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Full binary trees

Let t be a full binary tree t. The monomial associated to the path

d(t) is
H )‘a,(v),u’a,(v)'

vEintNodes(t)
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Full binary trees

For every full binary tree t, the (internal) path length /(t) is
defined to be the sum of the length of the paths from the root to
each internal node.
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Full binary trees

For every full binary tree t, the (internal) path length /(t) is
defined to be the sum of the length of the paths from the root to

each internal node.
For every full binary tree t,

()= Y a(v)+al(v)

vEintNodes(t)



Full Binary Trees
ooooe

Full binary trees

For every full binary tree t, the (internal) path length /(t) is
defined to be the sum of the length of the paths from the root to
each internal node.

For every full binary tree t,

()= Y a(v)+al(v)

vEintNodes(t)

The coefficient of g¥ in CT,(1,q,4%,...,1,9,4°,...) is the
number of full binary trees with n internal nodes and path length k.
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