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Graphs

For us graphs are finite, connected, simple, undirected.

Let G := (V ,E ), where
V := {v1, v2, v3, v4, v5} and
E := {{v1, v2}, {v1, v5},
{v2, v3}, {v2, v4}, {v2, v5},
{v3, v4}, {v4, v5}}.
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Sandpile model I (Bak, Tang and Wiesenfeld 1987)

A configuration on a graph G = (V ,E ) is simply u ∈ ZV ≡ Z|V |.

The toppling of the vertex vi is u  u −∆i where
∆i = divi −

∑
v∼vi v ∈ ZV and di is the degree of vi .
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Sandpile model I (Bak, Tang and Wiesenfeld 1987)

A configuration on a graph G = (V ,E ) is simply u ∈ ZV ≡ Z|V |.

The toppling of the vertex vi is u  u −∆i where
∆i = divi −

∑
v∼vi v ∈ ZV and di is the degree of vi .

Let G := (V ,E ), where
V := {v1, v2, v3, v4, v5}, so
ZV ≡ Z5.
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Sandpile model I (Bak, Tang and Wiesenfeld 1987)

A configuration on a graph G = (V ,E ) is simply u ∈ ZV ≡ Z|V |.

The toppling of the vertex vi is u  u −∆i where
∆i = divi −

∑
v∼vi v ∈ ZV and di is the degree of vi .

Let G := (V ,E ), where
V := {v1, v2, v3, v4, v5}, so
ZV ≡ Z5. Consider
u = (3,−1, 0, 2, 2) ∈ Z5.
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Sandpile model I (Bak, Tang and Wiesenfeld 1987)

A configuration on a graph G = (V ,E ) is simply u ∈ ZV ≡ Z|V |.
The toppling of the vertex vi is u  u −∆i where
∆i = divi −

∑
v∼vi v ∈ ZV and di is the degree of vi .

Let G := (V ,E ), where
V := {v1, v2, v3, v4, v5}, so
ZV ≡ Z5. Consider
u = (3,−1, 0, 2, 2) ∈ Z5. Here
∆4 = (0,−1,−1, 3,−1) and
u −∆4 = (3, 0, 1,−1, 3).
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Sandpile model I (Bak, Tang and Wiesenfeld 1987)
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Observe that
∑

i ∆i = 0 ∈ ZV .
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Sandpile model II

Let ∆ := 〈∆1,∆2, . . . 〉 ≤ ZV . The group ZV /∆ is called the
sandpile group of the graph G.

Two configurations u, u′ ∈ ZV are toppling equivalent, denoted
u ∼ u′, if u − u′ ∈ ∆.

Fix a vertex q ∈ V which we call the sink.

A configuration u ∈ ZV is stable (w.r.t. the sink q) if
0 ≤ u(vi ) < di for all vi ∈ V \ {q}, where di is the degree of vi .

Proposition (Dhar 1990)

Every configuration u ∈ ZV is toppling equivalent to a stable
configuration.
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Sandpile model III: Dhar’s algorithm

A stable u ∈ ZV is recurrent (w.r.t. the sink q) if for every
∅ 6= A ⊆ V \ {q} the configuration u +

∑
vi∈A ∆i is not stable.
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Sandpile model III: Dhar’s algorithm

A stable u ∈ ZV is recurrent (w.r.t. the sink q) if for every
∅ 6= A ⊆ V \ {q} the configuration u +

∑
vi∈A ∆i is not stable.

Let G := (V ,E ), where
V := {v1, v2, v3, v4, v5}, and let
v5 be the sink. We start with
the stable u = (0, 3, 0, 0, 2).

0 3 0
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Sandpile model III: Dhar’s algorithm

A stable u ∈ ZV is recurrent (w.r.t. the sink q) if for every
∅ 6= A ⊆ V \ {q} the configuration u +

∑
vi∈A ∆i is not stable.

Let G := (V ,E ), where
V := {v1, v2, v3, v4, v5}, and let
v5 be the sink. We start with
the stable u = (0, 3, 0, 0, 2).

1 4 0

1-1
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Sandpile model III: Dhar’s algorithm

A stable u ∈ ZV is recurrent (w.r.t. the sink q) if for every
∅ 6= A ⊆ V \ {q} the configuration u +

∑
vi∈A ∆i is not stable.

Let G := (V ,E ), where
V := {v1, v2, v3, v4, v5}, and let
v5 be the sink. We start with
the stable u = (0, 3, 0, 0, 2).

2 0 1
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And now we got the stable
u′ = (0, 1, 1, 2, 1).
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Sandpile model III: Dhar’s algorithm

A stable u ∈ ZV is recurrent (w.r.t. the sink q) if for every
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Sandpile model III: Dhar’s algorithm

A stable u ∈ ZV is recurrent (w.r.t. the sink q) if for every
∅ 6= A ⊆ V \ {q} the configuration u +

∑
vi∈A ∆i is not stable.

Let G := (V ,E ), where
V := {v1, v2, v3, v4, v5}, and let
v5 be the sink. We start with
the stable u = (0, 3, 0, 0, 2).
And now we got the stable
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Sandpile model III: Dhar’s algorithm

A stable u ∈ ZV is recurrent (w.r.t. the sink q) if for every
∅ 6= A ⊆ V \ {q} the configuration u +

∑
vi∈A ∆i is not stable.

Let G := (V ,E ), where
V := {v1, v2, v3, v4, v5}, and let
v5 be the sink. We start with
the stable u = (0, 3, 0, 0, 2).
And now we got the stable
u′ = (0, 1, 1, 2, 1).
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Sandpile model III: Dhar’s algorithm
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Theorem (Dhar)

Every configuration is equivalent to a unique recurrent
configuration.
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Sandpile model IV: parking configurations

A stable u ∈ ZV is parking (w.r.t. the sink q) if for every
∅ 6= A ⊆ V \ {q} the configuration u −

∑
vi∈A ∆i is not stable.

Theorem

Every configuration is equivalent to a unique parking configuration.

The degree of a configuration u ∈ ZV is simply
∑

v∈V u(v) ∈ Z.
Notice that degree(∆i ) = 0.

Theorem

The number of recurrent (parking) configurations of a given degree
on G is equal to the number of spanning trees of G.
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Sandpile on Km,n: sorted configurations

Let Km,n = (V ,E ) with V := A t B, A = {a1, a2, . . . , am},
B = {b1, b2, . . . , bn}, E all possible edges between A and B, am be
the sink.
A configuration u =

(ua1 ,ua2 ,...,uam−1 ;uam
ub1

,ub2
,...,ubn

)
on Km,n is sorted if

ua1 ≤ ua2 ≤ · · · ≤ uam−1 and ub1 ≤ ub2 ≤ · · · ≤ ubn .

The diagram of the stable
sorted configuration
u =

(0,0,0,2,2,2;∗
0,0,4,4,4

)
of K7,5.
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Sandpile on Km,n: recurrent and parking configurations

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of Km,n are the parallelogram
polyominoes with bounding box m × n.

Theorem (Aval-D-Dukes-Le Borgne 2016)

The parking sorted configurations of Km,n are the stable ones
without two cells in the same row in the intersection area.
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Theorem (Aval-D-Dukes-Le Borgne 2016)

The parking sorted configurations of Km,n are the stable ones
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Sandpile on Km,n: recurrent and parking configurations

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of Km,n are the parallelogram
polyominoes with bounding box m × n.

The diagram of the recurrent
sorted configuration
u =

(1,1,1,2,4,4;∗
3,4,4,4,6

)
of K7,5.

Theorem (Aval-D-Dukes-Le Borgne 2016)

The parking sorted configurations of Km,n are the stable ones
without two cells in the same row in the intersection area.
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Sandpile on Km,n: recurrent and parking configurations

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of Km,n are the parallelogram
polyominoes with bounding box m × n.

Theorem (Aval-D-Dukes-Le Borgne 2016)

The parking sorted configurations of Km,n are the stable ones
without two cells in the same row in the intersection area.

The diagram of the parking
sorted configuration
u =

(0,0,0,3,3,3;∗
0,0,0,3,3

)
of K7,5.
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Sandpile model on Km,n: Cyclic Lemma

Consider the stable sorted configuration u =
(0,0,0,2,2,2;∗

1,1,5,5,5

)
.
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Sandpile model V: rank of configurations

A configuration u is non-negative (u ≥ 0) if u(v) ≥ 0 for all v ∈ V .
A configuration u is effective if u is toppling equivalent to a
non-negative configuration.
The rank of a configuration u is defined as
rank(u) := −1+min{degree(f ) | f ≥ 0 and u − f is non-effective}.
Observe that u ∼ u′ implies rank(u) = rank(u′).
The motivation is a Riemann-Roch theorem:

Theorem (Baker-Norine 2007)

For any configuration u on a graph G = (V ,E ) we have

rank(u)− rank(K − u) = degree(u) + 1− g

where K =
∑

i (di − 2)vi and g = |E | − |V |+ 1.
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Sandpile model VI: rank computation
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Sandpile model VI: rank computation

The rank of a configuration u is defined as
rank(u) := −1+min{degree(f ) | f ≥ 0 and u − f is non-effective}.
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Sandpile model VI: rank computation

The rank of a configuration u is defined as
rank(u) := −1+min{degree(f ) | f ≥ 0 and u − f is non-effective}.
How to compute it?
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Sandpile model VI: rank computation

The rank of a configuration u is defined as
rank(u) := −1+min{degree(f ) | f ≥ 0 and u − f is non-effective}.
How to compute it?

Proposition (Baker-Norine 2007)

A configuration u is effective if and only if park(u) ≥ 0.
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Sandpile model VI: rank computation

The rank of a configuration u is defined as
rank(u) := −1+min{degree(f ) | f ≥ 0 and u − f is non-effective}.
How to compute it?

Proposition (Baker-Norine 2007)

A configuration u is effective if and only if park(u) ≥ 0.

Theorem (Kiss-Tóthmérész 2015)

Computing the rank for a general (even eulerian) graph
G = (V ,E ) is NP-hard in |V |.
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Sandpile model VI: rank computation

The rank of a configuration u is defined as
rank(u) := −1+min{degree(f ) | f ≥ 0 and u − f is non-effective}.
How to compute it?

Proposition (Baker-Norine 2007)

A configuration u is effective if and only if park(u) ≥ 0.

Theorem (Kiss-Tóthmérész 2015)

Computing the rank for a general (even eulerian) graph
G = (V ,E ) is NP-hard in |V |.

Theorem (Cori-Le Borgne 2016)

There is an algorithm to compute the rank on Kn of linear
complexity in n.
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Rank on Km,n: algorithm

Theorem (D-Le Borgne)

The following algorithm computes the rank of a configuration u on
Km,n.

d e f compute rank (u ) :
u = park (u )
rank = −1
f = 0 # f i s th e 0 c o n f i g u r a t i o n
w h i l e u(am) >= 0 :

l e t i be such t h a t u(bi ) = 0
u = park (u − bi )
f = f + bi
rank = rank + 1

r e t u r n ( rank , f )

Michele D’Adderio ULB

The sandpile model on complete bipartite graphs



Sandpile on graphs Sandpile on Km,n Rank on Km,n : algorithm Rank on Km,n : enumeration

Rank on Km,n: algorithm

Theorem (D-Le Borgne)

The following algorithm computes the rank of a configuration u on
Km,n.

d e f compute rank (u ) :
u = park (u )
rank = −1
f = 0 # f i s th e 0 c o n f i g u r a t i o n
w h i l e u(am) >= 0 :
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Rank on Km,n: cylindric diagram

Consider the parking sorted configuration u =
(0,0,0,3,3,3;21

0,0,0,3,3

)
.
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Rank on Km,n: cylindric diagram

Consider the parking sorted configuration u =
(0,0,0,3,3,3;21
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Theorem (D-Le Borgne)

The rank of a parking sorted configuration u on Km,n is equal to
−1 plus the number of red labels in its cylindric diagram.
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Rank on Km,n: cylindric diagram

Consider the parking sorted configuration u =
(0,0,0,3,3,3;21
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Theorem (D-Le Borgne)

The rank of a parking sorted configuration u on Km,n is equal to
−1 plus the number of red labels in its cylindric diagram.

Theorem (D-Le Borgne)

There is an algorithm to compute the rank on Km,n of linear
complexity in n + m.
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Sandpile on Km,n: enumeration

Consider the generating function
K̃m,n(d , r) :=

∑
u parking sorted on Km,n

ddegree(u)r rank(u).
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Sandpile on Km,n: enumeration

Consider the generating function
K̃m,n(d , r) :=

∑
u parking sorted on Km,n

ddegree(u)r rank(u).

This is a partial
table of the
coefficients of
K̃5,3(d , r)
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Sandpile on Km,n: enumeration

Consider the generating function
K̃m,n(d , r) :=

∑
u parking sorted on Km,n

ddegree(u)r rank(u).

This suggests the change of variables
xpara(u) := (m − 1)(n − 1) + rank(u)− degree(u)
ypara(u) := rank(u) + 1.
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Sandpile on Km,n: enumeration

Consider the generating function
K̃m,n(d , r) :=

∑
u parking sorted on Km,n

ddegree(u)r rank(u).

This suggests the change of variables
xpara(u) := (m − 1)(n − 1) + rank(u)− degree(u)
ypara(u) := rank(u) + 1.

So we consider instead
Km,n(x , y) :=

∑
u parking sorted on Km,n

xxpara(u)y ypara(u)

= x (m−1)(n−1)yK̃m,n(x−1, xy).
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Sandpile on Km,n: enumeration

Consider the generating function
K̃m,n(d , r) :=

∑
u parking sorted on Km,n

ddegree(u)r rank(u).

This suggests the change of variables
xpara(u) := (m − 1)(n − 1) + rank(u)− degree(u)
ypara(u) := rank(u) + 1.

So we consider instead
Km,n(x , y) :=

∑
u parking sorted on Km,n

xxpara(u)y ypara(u)

= x (m−1)(n−1)yK̃m,n(x−1, xy).

Theorem (D-Le Borgne)

We have Km,n(x , y) = Km,n(y , x).
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Sandpile on Km,n: enumeration

Consider the generating function
F(x , y ,w , h) :=

∑
n≥1,m≥1 Km,n(x , y)wmhn.
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Sandpile on Km,n: enumeration

Consider the generating function
F(x , y ,w , h) :=

∑
n≥1,m≥1 Km,n(x , y)wmhn.

Theorem (D-Le Borgne)

We have F(x , y ,w , h) = (1−xy)(hw−P(x ;w ,h)P(y ;w ,h))
(1−x)(1−y)(1−h−w−P(x ;w ,h)−P(y ;w ,h))

where P(q;w , h) := qwh
L(qw , qh)

L(w , h)
,

L(w , h) :=
∑

n≥0,m≥0

(−1)m+nhnwmq(m+n+1
2 )

(q)n(q)m

and (a)n :=
n−1∏
i=0

(1− qia).
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THE END
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THE END

THANKS!
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