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Graphs

For us graphs are finite, connected, simple, undirected.
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Sandpile on graphs

Graphs

For us graphs are finite, connected, simple, undirected.

Let G := (V, E), where

V= {vi, v, v3,v4, s} and v v
E:={{v1, v}, {v1, 5},
{va, v3}, {v2, w4}, {v2, v},
{va,va}, {va, vs}}.
v, v, Vs
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Sandpile model | (Bak, Tang and Wiesenfeld 1987)

A configuration on a graph G = (V, E) is simply u € ZV = ZIVI.
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Sandpile model | (Bak, Tang and Wiesenfeld 1987)

A configuration on a graph G = (V, E) is simply u € ZV = ZIVI.

Vs 2
Let G := (V, E), where
V= {v1,v2,v3,v4, v5}, so
7V =175,
A v, V3
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Sandpile model | (Bak, Tang and Wiesenfeld 1987)

A configuration on a graph G = (V, E) is simply u € ZV = ZIVI.

Let G := (V, E), where Vs 2 Vg 2
V= {vi, v, v3,v4, 5}, so

ZV = 75. Consider

u=(3,-1,0,2,2) € Z5.
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Sandpile model | (Bak, Tang and Wiesenfeld 1987)

A configuration on a graph G = (V, E) is simply u € ZV = ZIVI.

Let G := (V, E), where 2 2
V= {vi, v, v3,v4, 5}, so

ZV = 75. Consider
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Sandpile model | (Bak, Tang and Wiesenfeld 1987)

A configuration on a graph G = (V, E) is simply u € ZV = ZIVI.
The toppling of the vertex v; is u ~» u— A; where
A =djv; — va,- v € ZY and d; is the degree of v;.

Let G := (V, E), where 2 2
V= {vi, v, v3,v4, 5}, so

ZV = 75. Consider

u=(3,-1,0,2,2) € Z5.
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Sandpile model | (Bak, Tang and Wiesenfeld 1987)

A configuration on a graph G = (V, E) is simply u € ZV = ZIVI.
The toppling of the vertex v; is u ~» u— A; where
A =djv; — va,- v € ZY and d; is the degree of v;.

Let G :=(V, E), where
V = {vi, v, v3,vs, 5}, SO 2 2
7V = 75. Consider
u=(3,-1,0,2,2) € Z°. Here
Ay, =(0,-1,-1,3,—1) and
u— A4 =(3,0,1,-1,3).
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Sandpile model | (Bak, Tang and Wiesenfeld 1987)

A configuration on a graph G = (V, E) is simply u € ZV = ZIVI.
The toppling of the vertex v; is u ~» u— A; where
A =djv; — va,- v € ZY and d; is the degree of v;.

Let G :=(V, E), where
V = {vi, v, v3,vs, 5}, SO 3 -1
7V = 75. Consider
u=(3,-1,0,2,2) € Z°. Here
Ay, =(0,-1,-1,3,—1) and
u— A4 =(3,0,1,-1,3).
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Sandpile model | (Bak, Tang and Wiesenfeld 1987)

A configuration on a graph G = (V, E) is simply u € ZV = ZIVI.

The toppling of the vertex v; is u ~» u— A; where
A =djv; — va,- v € ZY and d; is the degree of v;.

Let G :=(V, E), where
V = {vi, v, v3,vs, 5}, SO 3 -1
7V = 75. Consider
u=(3,-1,0,2,2) € Z°. Here
Ay, =(0,-1,-1,3,—1) and
u— A4 =(3,0,1,-1,3).

Observe that >, A; =0€ ZY.
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Sandpile model Il

Let A := (A1,A,...) <ZV. The group Z" /A is called the
sandpile group of the graph G.
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Sandpile model Il

Let A := (A1,A,...) <ZV. The group Z" /A is called the
sandpile group of the graph G.

Two configurations u, v’ € ZV are toppling equivalent, denoted
u~U, ifu—u e,
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Sandpile model Il

Let A := (A1,A,...) <ZV. The group Z" /A is called the
sandpile group of the graph G.

Two configurations u, v’ € ZV are toppling equivalent, denoted
u~U, ifu—u e,

Fix a vertex g € V which we call the sink.
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Sandpile model Il

Let A := (A1,A,...) <ZV. The group Z" /A is called the
sandpile group of the graph G.

Two configurations u, v’ € ZV are toppling equivalent, denoted
u~U, ifu—u e,

Fix a vertex g € V which we call the sink.

A configuration u € ZV is stable (w.r.t. the sink q) if
0 < u(v;) < d; for all v; € V' \ {q}, where d; is the degree of v;.
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Sandpile model Il

Let A := (A1,A,...) <ZV. The group Z" /A is called the
sandpile group of the graph G.

Two configurations u, v’ € ZV are toppling equivalent, denoted
u~u, ifu—u eA.

Fix a vertex g € V which we call the sink.

A configuration u € ZV is stable (w.r.t. the sink q) if
0 < u(v;) < d; for all v; € V' \ {q}, where d; is the degree of v;.

Proposition (Dhar 1990)

Every configuration u € 7V is toppling equivalent to a stable
configuration.
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where 2 0
V :={vi, o, v3,vs, 5}, and let

vs be the sink. We start with

the stable u = (0,3,0,0,2).
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where 2 0
V :={vi, o, v3,vs, 5}, and let

vs be the sink. We start with

the stable u = (0,3,0,0,2).
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where -1 1
V :={vi, o, v3,vs, 5}, and let

vs be the sink. We start with

the stable u = (0,3,0,0,2).
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where -1 1
V :={vi, o, v3,vs, 5}, and let

vs be the sink. We start with

the stable u = (0,3,0,0,2).
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where 0 2
V :={vi, o, v3,vs, 5}, and let

vs be the sink. We start with

the stable u = (0,3,0,0,2).
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where 0 2
V :={vi, o, v3,vs, 5}, and let

vs be the sink. We start with

the stable u = (0,3,0,0,2).
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where

V = {vi,vo,v3,va, 5}, and let 1 2
vs be the sink. We start with

the stable u = (0,3,0,0,2).

And now we got the stable

v =(0,1,1,2,1). 5 ; )
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where

V = {vi,vo,v3,va, 5}, and let 1 2
vs be the sink. We start with

the stable u = (0,3,0,0,2).

And now we got the stable

v =(0,1,1,2,1). 0 ] )
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where

V = {vi,vo,v3,va, 5}, and let -2 3
vs be the sink. We start with

the stable u = (0,3,0,0,2).

And now we got the stable

v =(0,1,1,2,1). 1 . )
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where

V = {vi,vo,v3,va, 5}, and let -2 3
vs be the sink. We start with

the stable u = (0,3,0,0,2).

And now we got the stable

v =(0,1,1,2,1). / > )
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where

V = {vi,vo,v3,va, 5}, and let -1 0
vs be the sink. We start with

the stable u = (0,3,0,0,2).

And now we got the stable

v =(0,1,1,2,1). / a ;
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where

V = {vi,vo,v3,va, 5}, and let -1 0
vs be the sink. We start with

the stable u = (0,3,0,0,2).

And now we got the stable

v =(0,1,1,2,1). / a ;
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where
V = {vi,vo,v3,va, 5}, and let -1 1
vs be the sink. We start with
the stable u = (0,3,0,0,2).
And now we got the stable
/
v =(0,1,1,2,1). / 4 A
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where
V = {vi,vo,v3,va, 5}, and let -1 1
vs be the sink. We start with
the stable u = (0,3,0,0,2).
And now we got the stable
/
v =(0,1,1,2,1). 1 f A
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where
V = {vi,vo,v3,va, 5}, and let 0 2
vs be the sink. We start with
the stable u = (0,3,0,0,2).
And now we got the stable
/
v =(0,1,1,2,1). 5 A )
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where
V = {vi,vo,v3,va, 5}, and let 0 2
vs be the sink. We start with
the stable u = (0,3,0,0,2).
And now we got the stable
/
v =(0,1,1,2,1). 5 A )
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where

V = {vi,vo,v3,va, 5}, and let 1 2
vs be the sink. We start with

the stable u = (0,3,0,0,2).

And now we got the stable

v =(0,1,1,2,1). Back to u'! 0 ] 1
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Sandpile model Ill: Dhar's algorithm

A stable u € ZV is recurrent (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u+ 3 ., A; is not stable.

Let G := (V, E), where

V = {vi,vo,v3,va, 5}, and let 1 2
vs be the sink. We start with

the stable u = (0,3,0,0,2).

And now we got the stable

v =(0,1,1,2,1). Back to u'! 0 ] 1

Theorem (Dhar)
Every configuration is equivalent to a unique recurrent
configuration.
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Sandpile model IV: parking configurations
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Sandpile model IV: parking configurations

A stable u € ZV is parking (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u— > . A; is not stable.

Michele D'Adderio

The sandpile model on complete bipartite graphs



Sandpile on graphs

Sandpile model IV: parking configurations

A stable u € ZV is parking (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u— > . A; is not stable.

Every configuration is equivalent to a unique parking configuration.

Michele D'Adderio

The sandpile model on complete bipartite graphs



Sandpile on graphs

Sandpile model IV: parking configurations

A stable u € ZV is parking (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u— > . A; is not stable.

Every configuration is equivalent to a unique parking configuration.

The degree of a configuration u € Z" is simply >° .\, u(v) € Z.
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Sandpile model IV: parking configurations

A stable u € ZV is parking (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u— > . A; is not stable.

Theorem

Every configuration is equivalent to a unique parking configuration.

The degree of a configuration u € Z" is simply >° .\, u(v) € Z.
Notice that degree(A;) = 0.
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Sandpile model IV: parking configurations

A stable u € ZV is parking (w.r.t. the sink q) if for every
0 # AC V\{q} the configuration u— > . A; is not stable.

Theorem

Every configuration is equivalent to a unique parking configuration.

The degree of a configuration u € Z" is simply >° .\, u(v) € Z.
Notice that degree(A;) = 0.

Theorem

The number of recurrent (parking) configurations of a given degree
on G is equal to the number of spanning trees of G.
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Sandpile on K, ,: sorted configurations
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Sandpile on K, ,: sorted configurations

Let Kmpn=(V,E) with V:=AUB, A={a1,a,...,am},
B ={b1, by,...,bs}, E all possible edges between A and B, a, be
the sink.
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Sandpile on Ky py

Sandpile on K, ,: sorted configurations

Let Kmpn=(V,E) with V:=AUB, A={a1,a,...,am},
B ={b1, by,...,bs}, E all possible edges between A and B, a, be

the sink.

1 H — (UYaysUag,--sUap, qiUam H H
A configuration u = ( Ubl,sz,.T,Ub,, ) on K p is sorted if

Ua S Ugy <0 < Uap g and up, < up, < -0 < Up,.
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Sandpile on Ky py

Sandpile on K, ,: sorted configurations

Let Kmpn=(V,E) with V:=AUB, A={a1,a,...,am},
B ={b1, by,...,bs}, E all possible edges between A and B, a, be
the sink.

1 H — (UYaysUag,--sUap, qiUam H H
A configuration u = ( Ubl,sz,.T,Ub,, ) on K p is sorted if

Ua S Ugy <0 < Uap g and up, < up, < -0 < Up,.

The diagram of the stable

sorted configuration

__ (0,0,0,2,2,2;%
u= (Tgoaaa") of Ks.
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Sandpile on K, ,: recurrent and parking configurations
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Sandpile on K, ,: recurrent and parking configurations

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of Ky, , are the parallelogram
polyominoes with bounding box m X n.
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Sandpile on K, ,: recurrent and parking configurations

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of Ky, , are the parallelogram
polyominoes with bounding box m X n.

The diagram of the recurrent
sorted configuration

— (L1,12,4,4;%
u=("34245 ) of Kis.
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Sandpile on K, ,: recurrent and parking configurations

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of Ky, , are the parallelogram
polyominoes with bounding box m X n.
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Sandpile on Ky py

Sandpile on K, ,: recurrent and parking configurations

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of Ky, , are the parallelogram
polyominoes with bounding box m X n.

Theorem (Aval-D-Dukes-Le Borgne 2016)

The parking sorted configurations of Ky, , are the stable ones
without two cells in the same row in the intersection area.
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Sandpile on K, ,: recurrent and parking configurations

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of Ky, , are the parallelogram
polyominoes with bounding box m X n.

Theorem (Aval-D-Dukes-Le Borgne 2016)

The parking sorted configurations of Ky, , are the stable ones
without two cells in the same row in the intersection area.

The diagram of the parking |

sorted configuration |

_ (0,0,0,3,3,3;%
u=( 0,0,0,3,3 ) of K75.
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Sandpile model on K, ,: Cyclic Lemma
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Sandpile model on K, ,: Cyclic Lemma

0,0,0,2,2,2;*)

Consider the stable sorted configuration u = ( 11555
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Sandpile model on K, ,: Cyclic Lemma

0,0,0,2,2,2;*)

Consider the stable sorted configuration u = ( 11555
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Sandpile model on K, ,: Cyclic Lemma

Consider the stable sorted configuration u = (ocl)gggg*)

— |
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Sandpile model on K, ,: Cyclic Lemma

Consider the stable sorted configuration u = (ocl)gggg*)

— |
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Sandpile model on K, ,: Cyclic Lemma

0,0,0,2,2,2;*)
1,1,555

— |

Consider the stable sorted configuration u = (
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Sandpile model on K, ,: Cyclic Lemma

0,0,0,2,2,2;*)
1,1,555

— |

Consider the stable sorted configuration u = (
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Sandpile model on K, ,: Cyclic Lemma

0,0,0,2,2,2;*)
1,1,555

— |

Consider the stable sorted configuration u = (
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0,0,0,2,2,2;*)
1,1,555

— |

Consider the stable sorted configuration u = (
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Consider the stable sorted configuration u = (
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Sandpile model on K, ,: Cyclic Lemma

0,0,0,2,2,2;*)
1,1,555

— |

Consider the stable sorted configuration u = (
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Sandpile model on K, ,: Cyclic Lemma

0,0,0,2,2,2;*)

Consider the stable sorted configuration u = ( 11555
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Sandpile model on K, ,: Cyclic Lemma

0,0,0,2,2,2;*)

Consider the stable sorted configuration u = ( 11555
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Sandpile model on K, ,: Cyclic Lemma

0,0,0,2,2,2;*)

Consider the stable sorted configuration u = ( 11555
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Sandpile model V: rank of configurations
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Rank on Kp, p: algorithm

Sandpile model V: rank of configurations

A configuration u is non-negative (u > 0) if u(v) > 0 for all v € V.
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Rank on Kp, p: algorithm

Sandpile model V: rank of configurations

A configuration u is non-negative (u > 0) if u(v) > 0 for all v € V.
A configuration u is effective if u is toppling equivalent to a
non-negative configuration.
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Rank on Kp, p: algorithm

Sandpile model V: rank of configurations

A configuration u is non-negative (u > 0) if u(v) > 0 for all v € V.
A configuration u is effective if u is toppling equivalent to a
non-negative configuration.

The rank of a configuration u is defined as

rank(u) := —1+4+min{degree(f) | f > 0 and u — f is non-effective}.
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Rank on Kp, p: algorithm

Sandpile model V: rank of configurations

A configuration u is non-negative (u > 0) if u(v) > 0 for all v € V.
A configuration u is effective if u is toppling equivalent to a
non-negative configuration.

The rank of a configuration u is defined as

rank(u) := —1+4+min{degree(f) | f > 0 and u — f is non-effective}.
Observe that u ~ v implies rank(u) = rank(v’).
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Sandpile model V: rank of configurations

A configuration u is non-negative (u > 0) if u(v) > 0 for all v € V.
A configuration u is effective if u is toppling equivalent to a
non-negative configuration.

The rank of a configuration u is defined as

rank(u) := —1+4+min{degree(f) | f > 0 and u — f is non-effective}.
Observe that u ~ v implies rank(u) = rank(v’).

The motivation is a Riemann-Roch theorem:
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Sandpile model V: rank of configurations

A configuration u is non-negative (u > 0) if u(v) > 0 for all v € V.
A configuration u is effective if u is toppling equivalent to a
non-negative configuration.

The rank of a configuration u is defined as

rank(u) := —1+4+min{degree(f) | f > 0 and u — f is non-effective}.
Observe that u ~ v implies rank(u) = rank(v’).

The motivation is a Riemann-Roch theorem:

Theorem (Baker-Norine 2007)

For any configuration u on a graph G = (V, E) we have

rank(u) — rank(K — u) = degree(u) +1 — g
where K = Y,(di —2)v; and g = |E| — |V| + 1.
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Sandpile model VI: rank computation
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Sandpile model VI: rank computation

The rank of a configuration u is defined as
rank(u) := —1+4+min{degree(f) | f > 0 and u — f is non-effective}.
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Sandpile model VI: rank computation

The rank of a configuration u is defined as
rank(u) := —1+4+min{degree(f) | f > 0 and u — f is non-effective}.
How to compute it?
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Sandpile model VI: rank computation

The rank of a configuration u is defined as
rank(u) := —1+4+min{degree(f) | f > 0 and u — f is non-effective}.
How to compute it?

Proposition (Baker-Norine 2007)
A configuration u is effective if and only if park(u) > 0.
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Sandpile model VI: rank computation

The rank of a configuration u is defined as
rank(u) := —1+4+min{degree(f) | f > 0 and u — f is non-effective}.
How to compute it?

Proposition (Baker-Norine 2007)

A configuration u is effective if and only if park(u) > 0.

Theorem (Kiss-Téthmérész 2015)

Computing the rank for a general (even eulerian) graph
G =(V,E) is NP-hard in |V|.
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Sandpile model VI: rank computation

The rank of a configuration u is defined as
rank(u) := —1+4+min{degree(f) | f > 0 and u — f is non-effective}.
How to compute it?

Proposition (Baker-Norine 2007)

A configuration u is effective if and only if park(u) > 0.

Theorem (Kiss-Téthmérész 2015)

Computing the rank for a general (even eulerian) graph
G =(V,E) is NP-hard in |V|.

Theorem (Cori-Le Borgne 2016)

There is an algorithm to compute the rank on K, of linear
complexity in n.
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Km,n: algorithm
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Rank on K, »: algorithm

Theorem (D-Le Borgne)

The following algorithm computes the rank of a configuration u on
K

def compute_rank(u):
u = park(u)
rank = —1
=0# f is the 0 configuration
while u(am) >=0:
let i be such that u(b)) =0
u = park(u—b;)
f =f+b
rank = rank +1
return (rank ,f)
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Km.n: cylindric diagram
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Rank on K, »: cylindric diagram

Consider the parking sorted configuration u = ( .00 3’33;21).

Michele D'Adderio

The sandpile model on complete bipartite graphs



Rank on Kp, p: algorithm

Rank on K, »: cylindric diagram

419|14]19

3181318
247112117
116111621
0f5/10/15/20
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Rank on K, »: cylindric diagram

Consider the parking sorted configuration u = (0’0’0 3.3 33;21).

0,003
4J914]19
3] 81318
2§ 711217
16111621
0] 5101520

Theorem (D-Le Borgne)

The rank of a parking sorted configuration u on K, , is equal to
—1 plus the number of red labels in its cylindric diagram.
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Rank on K, »: cylindric diagram

Theorem (D-Le Borgne)

The rank of a parking sorted configuration u on K, , is equal to
—1 plus the number of red labels in its cylindric diagram.

Theorem (D-Le Borgne)

There is an algorithm to compute the rank on Ky, , of linear

complexity in n+ m.
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dpile on K, ,: enumeration
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Sandpile on K, ,: enumeration

Consider the generating function

Km,"(d7 r) = Zu parking sorted on K, » ddegree(u)rrank(u)'
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Sandpile on K, ,: enumeration

Consider the generating function

K - degree(u) ,rank(u)

Km,"(d7 r) S Zu parking sorted on K, » d r .
9 105
8 105
Py 1 105

. N - 6

This is a partial ' 3 104
5 18102

table Of the ,4 311597

coefficients of I 192789

1% 2 1 6/20 39|75

K5’3(d’ r) A 13920 36 49|57
0 13 8 1527 39 49 48 35
+—1105105105104102 97 89 75 57 35 15

d= U410 gt a2 o3 d* o d° o7 o8 49 giOgilgl2 i3 gl4 gl ylo yl7

Michele D'Adderio

The sandpile model on complete bipartite graphs



Rank on Kp, n: enumeration

Sandpile on K, ,: enumeration

Consider the generating function
% . degree rank
Km,"(d7 r) T Zu parking sorted on K, » deee (U)r (U)

This suggests the change of variables
xpara(u) := (m — 1)(n — 1) + rank(u) — degree(u)
ypara(u) := rank(u) + 1.
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Sandpile on K, ,: enumeration

Consider the generating function

Km,"(d7 r) = Zu parking sorted on K, » ddegree(u)rrank(u)'

This suggests the change of variables

xpara(u) := (m — 1)(n — 1) + rank(u) — degree(u)
ypara(u) := rank(u) + 1.

So we consider instead

Km,n(X> )/) = Zu parking sorted on K n Xxpara(u)yypara(u)
= x(m-D(=-1y K (x1 xy).
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Sandpile on K, ,: enumeration

Consider the generating function

Km,"(d7 r) = Zu parking sorted on K, » ddegree(u)rrank(u)'

This suggests the change of variables

xpara(u) := (m — 1)(n — 1) + rank(u) — degree(u)
ypara(u) := rank(u) + 1.

So we consider instead

Km,n(X> )/) = Zu parking sorted on K n Xxpara(u)yypara(u)
= x(m-D(=-1y K (x1 xy).

Theorem (D-Le Borgne)
We have K n(x,y) = Kmn(y, x).
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Sandpile on K, ,: enumeration

Consider the generating function
F(x,y,w, h):= anl,m21 Km,n(x, y)w™h".
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Sandpile on K, ,: enumeration

Consider the generating function
F(x,y,w, h):= anl,mzl Km,n(x, y)w™h".

Theorem (D-Le Borgne)

_ (1—=xy)(hw—P(x;w,h)P(y;w,h))
We have F(x,y,w, h) = T—x)(1—y)(I—h—w—P(xw,h)—P(y;w,h))
where P(q; w,h) := thLI(_‘ZZ—’Z;),
- m-npn i (m+n+1)
L(w, h) = Z (-1) h"wmg\ 2
n>0.m>0 (q)n(Q)m

n—1
and (a)p = H(l —q'a).
i=0
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THE END
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