The sandpile model on complete bipartite graphs (joint work with Yvan Le Borgne)

Michele D'Adderio

Université Libre de Bruxelles

Bertinoro, September 13th 2017

79th Séminaire Lotharingien de Combinatoire joint session with XXI Incontro Italiano di Combinatoria Algebrica

Michele D'Adderio

For us graphs are finite, connected, simple, undirected.

Michele D'Adderio

ロ ト く 聞 ト く 臣 ト く 臣 ト く 臣 - う へ ()

Graphs

For us graphs are finite, connected, simple, undirected.

Let
$$\mathcal{G} := (V, E)$$
, where
 $V := \{v_1, v_2, v_3, v_4, v_5\}$ and
 $E := \{\{v_1, v_2\}, \{v_1, v_5\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_2, v_5\}, \{v_3, v_4\}, \{v_4, v_5\}\}.$

A configuration on a graph $\mathcal{G} = (V, E)$ is simply $u \in \mathbb{Z}^{|V|}$.

- イロト イ扉ト イミト イミト ミニ のの

Michele D'Adderic

A configuration on a graph $\mathcal{G} = (V, E)$ is simply $u \in \mathbb{Z}^{|V|}$.

Let
$$\mathcal{G} := (V, E)$$
, where
 $V := \{v_1, v_2, v_3, v_4, v_5\}$, so
 $\mathbb{Z}^V \equiv \mathbb{Z}^5$.

・ロト・日本・モト・モト ヨー うべの

Michele D'Adderio

A configuration on a graph $\mathcal{G} = (V, E)$ is simply $u \in \mathbb{Z}^{|V|}$.

Let
$$\mathcal{G} := (V, E)$$
, where
 $V := \{v_1, v_2, v_3, v_4, v_5\}$, so
 $\mathbb{Z}^V \equiv \mathbb{Z}^5$. Consider
 $u = (3, -1, 0, 2, 2) \in \mathbb{Z}^5$.

Michele D'Adderio

A configuration on a graph $\mathcal{G} = (V, E)$ is simply $u \in \mathbb{Z}^{|V|}$.

Let
$$\mathcal{G} := (V, E)$$
, where
 $V := \{v_1, v_2, v_3, v_4, v_5\}$, so
 $\mathbb{Z}^V \equiv \mathbb{Z}^5$. Consider
 $u = (3, -1, 0, 2, 2) \in \mathbb{Z}^5$.

A configuration on a graph $\mathcal{G} = (V, E)$ is simply $u \in \mathbb{Z}^{|V|}$.

The toppling of the vertex v_i is $u \rightsquigarrow u - \Delta_i$ where $\Delta_i = d_i v_i - \sum_{v \sim v_i} v \in \mathbb{Z}^V$ and d_i is the degree of v_i .

Let $\mathcal{G} := (V, E)$, where $V := \{v_1, v_2, v_3, v_4, v_5\}$, so $\mathbb{Z}^V \equiv \mathbb{Z}^5$. Consider $u = (3, -1, 0, 2, 2) \in \mathbb{Z}^5$.

A configuration on a graph $\mathcal{G} = (V, E)$ is simply $u \in \mathbb{Z}^{|V|}$.

The toppling of the vertex v_i is $u \rightsquigarrow u - \Delta_i$ where $\Delta_i = d_i v_i - \sum_{v \sim v_i} v \in \mathbb{Z}^V$ and d_i is the degree of v_i .

Let
$$\mathcal{G} := (V, E)$$
, where
 $V := \{v_1, v_2, v_3, v_4, v_5\}$, so
 $\mathbb{Z}^V \equiv \mathbb{Z}^5$. Consider
 $u = (3, -1, 0, 2, 2) \in \mathbb{Z}^5$. Here
 $\Delta_4 = (0, -1, -1, 3, -1)$ and
 $u - \Delta_4 = (3, 0, 1, -1, 3)$.

Michele D'Adderio

A configuration on a graph $\mathcal{G} = (V, E)$ is simply $u \in \mathbb{Z}^{|V|}$.

The toppling of the vertex v_i is $u \rightsquigarrow u - \Delta_i$ where $\Delta_i = d_i v_i - \sum_{v \sim v_i} v \in \mathbb{Z}^V$ and d_i is the degree of v_i .

Let
$$\mathcal{G} := (V, E)$$
, where
 $V := \{v_1, v_2, v_3, v_4, v_5\}$, so
 $\mathbb{Z}^V \equiv \mathbb{Z}^5$. Consider
 $u = (3, -1, 0, 2, 2) \in \mathbb{Z}^5$. Here
 $\Delta_4 = (0, -1, -1, 3, -1)$ and
 $u - \Delta_4 = (3, 0, 1, -1, 3)$.

A configuration on a graph $\mathcal{G} = (V, E)$ is simply $u \in \mathbb{Z}^{|V|}$.

The toppling of the vertex v_i is $u \rightsquigarrow u - \Delta_i$ where $\Delta_i = d_i v_i - \sum_{v \sim v_i} v \in \mathbb{Z}^V$ and d_i is the degree of v_i .

Let
$$\mathcal{G} := (V, E)$$
, where
 $V := \{v_1, v_2, v_3, v_4, v_5\}$, so
 $\mathbb{Z}^V \equiv \mathbb{Z}^5$. Consider
 $u = (3, -1, 0, 2, 2) \in \mathbb{Z}^5$. Here
 $\Delta_4 = (0, -1, -1, 3, -1)$ and
 $u - \Delta_4 = (3, 0, 1, -1, 3)$.

Observe that
$$\sum_i \Delta_i = 0 \in \mathbb{Z}^V$$
.

Michele D'Adderio

Let $\Delta := \langle \Delta_1, \Delta_2, \dots \rangle \leq \mathbb{Z}^V$. The group \mathbb{Z}^V / Δ is called the sandpile group of the graph \mathcal{G} .

Two configurations $u, u' \in \mathbb{Z}^V$ are toppling equivalent, denoted $u \sim u'$, if $u - u' \in \Delta$.

Fix a vertex $q \in V$ which we call the sink.

A configuration $u \in \mathbb{Z}^V$ is stable (w.r.t. the sink q) if $0 \le u(v_i) < d_i$ for all $v_i \in V \setminus \{q\}$, where d_i is the degree of v_i .

Proposition (Dhar 1990)

Every configuration $u \in \mathbb{Z}^V$ is toppling equivalent to a stable configuration.

Michele D'Adderio

Let $\Delta := \langle \Delta_1, \Delta_2, \dots \rangle \leq \mathbb{Z}^V$. The group \mathbb{Z}^V / Δ is called the sandpile group of the graph \mathcal{G} .

Two configurations $u, u' \in \mathbb{Z}^V$ are toppling equivalent, denoted $u \sim u'$, if $u - u' \in \Delta$.

Fix a vertex $q \in V$ which we call the sink.

A configuration $u \in \mathbb{Z}^V$ is stable (w.r.t. the sink q) if $0 \le u(v_i) < d_i$ for all $v_i \in V \setminus \{q\}$, where d_i is the degree of v_i .

Proposition (Dhar 1990)

Let $\Delta := \langle \Delta_1, \Delta_2, \dots \rangle \leq \mathbb{Z}^V$. The group \mathbb{Z}^V / Δ is called the sandpile group of the graph \mathcal{G} .

Two configurations $u, u' \in \mathbb{Z}^V$ are toppling equivalent, denoted $u \sim u'$, if $u - u' \in \Delta$.

Fix a vertex $q \in V$ which we call the sink.

A configuration $u \in \mathbb{Z}^V$ is stable (w.r.t. the sink q) if $0 \le u(v_i) < d_i$ for all $v_i \in V \setminus \{q\}$, where d_i is the degree of v_i .

Proposition (Dhar 1990)

Let $\Delta := \langle \Delta_1, \Delta_2, \dots \rangle \leq \mathbb{Z}^V$. The group \mathbb{Z}^V / Δ is called the sandpile group of the graph \mathcal{G} .

Two configurations $u, u' \in \mathbb{Z}^V$ are toppling equivalent, denoted $u \sim u'$, if $u - u' \in \Delta$.

Fix a vertex $q \in V$ which we call the sink.

A configuration $u \in \mathbb{Z}^V$ is stable (w.r.t. the sink q) if $0 \le u(v_i) < d_i$ for all $v_i \in V \setminus \{q\}$, where d_i is the degree of v_i .

Proposition (Dhar 1990)

Let $\Delta := \langle \Delta_1, \Delta_2, \dots \rangle \leq \mathbb{Z}^V$. The group \mathbb{Z}^V / Δ is called the sandpile group of the graph \mathcal{G} .

Two configurations $u, u' \in \mathbb{Z}^V$ are toppling equivalent, denoted $u \sim u'$, if $u - u' \in \Delta$.

Fix a vertex $q \in V$ which we call the sink.

A configuration $u \in \mathbb{Z}^V$ is stable (w.r.t. the sink q) if $0 \le u(v_i) < d_i$ for all $v_i \in V \setminus \{q\}$, where d_i is the degree of v_i .

Proposition (Dhar 1990)

Let $\Delta := \langle \Delta_1, \Delta_2, \dots \rangle \leq \mathbb{Z}^V$. The group \mathbb{Z}^V / Δ is called the sandpile group of the graph \mathcal{G} .

Two configurations $u, u' \in \mathbb{Z}^V$ are toppling equivalent, denoted $u \sim u'$, if $u - u' \in \Delta$.

Fix a vertex $q \in V$ which we call the sink.

A configuration $u \in \mathbb{Z}^V$ is stable (w.r.t. the sink q) if $0 \le u(v_i) < d_i$ for all $v_i \in V \setminus \{q\}$, where d_i is the degree of v_i .

Proposition (Dhar 1990)

Every configuration $u \in \mathbb{Z}^V$ is toppling equivalent to a stable configuration.

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

Let G := (V, E), where $V := \{v_1, v_2, v_3, v_4, v_5\}$, and let v_5 be the sink. We start with the stable u = (0, 3, 0, 0, 2).

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

Let G := (V, E), where $V := \{v_1, v_2, v_3, v_4, v_5\}$, and let v_5 be the sink. We start with the stable u = (0, 3, 0, 0, 2).

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

Let G := (V, E), where $V := \{v_1, v_2, v_3, v_4, v_5\}$, and let v_5 be the sink. We start with the stable u = (0, 3, 0, 0, 2).

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

Let G := (V, E), where $V := \{v_1, v_2, v_3, v_4, v_5\}$, and let v_5 be the sink. We start with the stable u = (0, 3, 0, 0, 2).

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

Let G := (V, E), where $V := \{v_1, v_2, v_3, v_4, v_5\}$, and let v_5 be the sink. We start with the stable u = (0, 3, 0, 0, 2).

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

Let G := (V, E), where $V := \{v_1, v_2, v_3, v_4, v_5\}$, and let v_5 be the sink. We start with the stable u = (0, 3, 0, 0, 2).

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

Let G := (V, E), where $V := \{v_1, v_2, v_3, v_4, v_5\}$, and let v_5 be the sink. We start with the stable u = (0, 3, 0, 0, 2). And now we got the stable u' = (0, 1, 1, 2, 1).

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

Let G := (V, E), where $V := \{v_1, v_2, v_3, v_4, v_5\}$, and let v_5 be the sink. We start with the stable u = (0, 3, 0, 0, 2). And now we got the stable u' = (0, 1, 1, 2, 1).

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

Let G := (V, E), where $V := \{v_1, v_2, v_3, v_4, v_5\}$, and let v_5 be the sink. We start with the stable u = (0, 3, 0, 0, 2). And now we got the stable u' = (0, 1, 1, 2, 1). Back to u'!

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is recurrent (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u + \sum_{v_i \in A} \Delta_i$ is not stable.

Let G := (V, E), where $V := \{v_1, v_2, v_3, v_4, v_5\}$, and let v_5 be the sink. We start with the stable u = (0, 3, 0, 0, 2). And now we got the stable u' = (0, 1, 1, 2, 1). Back to u'!

Theorem (Dhar)

Every configuration is equivalent to a unique recurrent configuration.

Michele D'Adderio
A stable $u \in \mathbb{Z}^V$ is parking (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u - \sum_{v_i \in A} \Delta_i$ is not stable.

I heorem

Every configuration is equivalent to a unique parking configuration.

The degree of a configuration $u \in \mathbb{Z}^V$ is simply $\sum_{v \in V} u(v) \in \mathbb{Z}$. Notice that degree $(\Delta_i) = 0$.

I heorem

The number of recurrent (parking) configurations of a given degree on G is equal to the number of spanning trees of G.

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is parking (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u - \sum_{v_i \in A} \Delta_i$ is not stable.

l heorem

Every configuration is equivalent to a unique parking configuration.

The degree of a configuration $u \in \mathbb{Z}^V$ is simply $\sum_{v \in V} u(v) \in \mathbb{Z}$. Notice that degree $(\Delta_i) = 0$.

Theorem

The number of recurrent (parking) configurations of a given degree on G is equal to the number of spanning trees of G.

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is parking (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u - \sum_{v_i \in A} \Delta_i$ is not stable.

Theorem

Every configuration is equivalent to a unique parking configuration.

The degree of a configuration $u \in \mathbb{Z}^V$ is simply $\sum_{v \in V} u(v) \in \mathbb{Z}$. Notice that degree $(\Delta_i) = 0$.

Theorem

The number of recurrent (parking) configurations of a given degree on G is equal to the number of spanning trees of G.

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is parking (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u - \sum_{v_i \in A} \Delta_i$ is not stable.

Theorem

Every configuration is equivalent to a unique parking configuration.

The degree of a configuration $u \in \mathbb{Z}^V$ is simply $\sum_{v \in V} u(v) \in \mathbb{Z}$. Notice that degree $(\Delta_i) = 0$.

Theorem

The number of recurrent (parking) configurations of a given degree on G is equal to the number of spanning trees of G.

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is parking (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u - \sum_{v_i \in A} \Delta_i$ is not stable.

Theorem

Every configuration is equivalent to a unique parking configuration.

The degree of a configuration $u \in \mathbb{Z}^V$ is simply $\sum_{v \in V} u(v) \in \mathbb{Z}$. Notice that degree $(\Delta_i) = 0$.

I heorem

The number of recurrent (parking) configurations of a given degree on G is equal to the number of spanning trees of G.

Michele D'Adderio

A stable $u \in \mathbb{Z}^V$ is parking (w.r.t. the sink q) if for every $\emptyset \neq A \subseteq V \setminus \{q\}$ the configuration $u - \sum_{v_i \in A} \Delta_i$ is not stable.

Theorem

Every configuration is equivalent to a unique parking configuration.

The degree of a configuration $u \in \mathbb{Z}^V$ is simply $\sum_{v \in V} u(v) \in \mathbb{Z}$. Notice that degree $(\Delta_i) = 0$.

Theorem

The number of recurrent (parking) configurations of a given degree on \mathcal{G} is equal to the number of spanning trees of \mathcal{G} .

Michele D'Adderio

ULB

Sandpile on $K_{m,n}$: sorted configurations

- Let $K_{m,n} = (V, E)$ with $V := A \sqcup B$, $A = \{a_1, a_2, \ldots, a_m\}$, $B = \{b_1, b_2, \ldots, b_n\}$, E all possible edges between A and B, a_m be the sink.
- A configuration $u = \begin{pmatrix} u_{a_1}, u_{a_2}, \dots, u_{a_{m-1}}; u_{a_m} \\ u_{b_1}, u_{b_2}, \dots, u_{b_n} \end{pmatrix}$ on $K_{m,n}$ is sorted if $u_{a_1} \leq u_{a_2} \leq \cdots \leq u_{a_{m-1}}$ and $u_{b_1} \leq u_{b_2} \leq \cdots \leq u_{b_n}$.

Michele D'Adderio

ULB

Sandpile on $K_{m,n}$: sorted configurations

Let $K_{m,n} = (V, E)$ with $V := A \sqcup B$, $A = \{a_1, a_2, \ldots, a_m\}$, $B = \{b_1, b_2, \ldots, b_n\}$, E all possible edges between A and B, a_m be the sink.

A configuration $u = \begin{pmatrix} u_{a_1}, u_{a_2}, \dots, u_{a_{m-1}}; u_{a_m} \\ u_{b_1}, u_{b_2}, \dots, u_{b_n} \end{pmatrix}$ on $K_{m,n}$ is sorted if $u_{a_1} \leq u_{a_2} \leq \cdots \leq u_{a_{m-1}}$ and $u_{b_1} \leq u_{b_2} \leq \cdots \leq u_{b_n}$.

Michele D'Adderio

ULB

Sandpile on $K_{m,n}$: sorted configurations

Let $K_{m,n} = (V, E)$ with $V := A \sqcup B$, $A = \{a_1, a_2, \ldots, a_m\}$, $B = \{b_1, b_2, \ldots, b_n\}$, E all possible edges between A and B, a_m be the sink.

A configuration $u = \begin{pmatrix} u_{a_1}, u_{a_2}, \dots, u_{a_{m-1}}; u_{a_m} \\ u_{b_1}, u_{b_2}, \dots, u_{b_n} \end{pmatrix}$ on $K_{m,n}$ is sorted if $u_{a_1} \leq u_{a_2} \leq \cdots \leq u_{a_{m-1}}$ and $u_{b_1} \leq u_{b_2} \leq \cdots \leq u_{b_n}$.

Michele D'Adderio

Sandpile on $K_{m,n}$: sorted configurations

Let $K_{m,n} = (V, E)$ with $V := A \sqcup B$, $A = \{a_1, a_2, \ldots, a_m\}$, $B = \{b_1, b_2, \ldots, b_n\}$, E all possible edges between A and B, a_m be the sink.

A configuration $u = \begin{pmatrix} u_{a_1}, u_{a_2}, \dots, u_{a_{m-1}}; u_{a_m} \\ u_{b_1}, u_{b_2}, \dots, u_{b_n} \end{pmatrix}$ on $K_{m,n}$ is sorted if $u_{a_1} \leq u_{a_2} \leq \dots \leq u_{a_{m-1}}$ and $u_{b_1} \leq u_{b_2} \leq \dots \leq u_{b_n}$.

The diagram of the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2,*\\ 0,0,4,4,4 \end{pmatrix}$ of $K_{7,5}$.

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of $K_{m,n}$ are the parallelogram polyominoes with bounding box $m \times n$.

Michele D'Adderio

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of $K_{m,n}$ are the parallelogram polyominoes with bounding box $m \times n$.

Michele D'Adderio

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of $K_{m,n}$ are the parallelogram polyominoes with bounding box $m \times n$.

The diagram of the recurrent sorted configuration $u = \begin{pmatrix} 1,1,1,2,4,4;*\\3,4,4,6 \end{pmatrix} \text{ of } K_{7,5}.$

Michele D'Adderio

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of $K_{m,n}$ are the parallelogram polyominoes with bounding box $m \times n$.

Michele D'Adderio

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of $K_{m,n}$ are the parallelogram polyominoes with bounding box $m \times n$.

Theorem (Aval-D-Dukes-Le Borgne 2016)

The parking sorted configurations of $K_{m,n}$ are the stable ones without two cells in the same row in the intersection area.

Michele D'Adderio

Theorem (Dukes-Le Borgne 2013)

The recurrent sorted configurations of $K_{m,n}$ are the parallelogram polyominoes with bounding box $m \times n$.

Theorem (Aval-D-Dukes-Le Borgne 2016)

The parking sorted configurations of $K_{m,n}$ are the stable ones without two cells in the same row in the intersection area.

The diagram of the parking sorted configuration $u = \begin{pmatrix} 0.0, 0.3, 3, 3; * \\ 0.0, 0.3, 3 \end{pmatrix}$ of $K_{7,5}$.

Michele D'Adderio

Rank on *K_{m,n}*: enumeration

Sandpile model on $K_{m,n}$: Cyclic Lemma

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1.1.5.5.5 \end{pmatrix}$.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ◆ □ ● ● ● ● ●

Michele D'Adderic

I

Sandpile model on $K_{m,n}$: Cyclic Lemma

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

The sandpile model on complete bipartite graphs

I

I

Sandpile model on $K_{m,n}$: Cyclic Lemma

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

The sandpile model on complete bipartite graphs

I

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

ULB

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

ULB

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

HIR

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

ULB

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

ULB

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

ULB

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

ULB

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

HIR

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

ULB

Consider the stable sorted configuration $u = \begin{pmatrix} 0,0,0,2,2,2;*\\1,1,5,5,5 \end{pmatrix}$.

Michele D'Adderio

A configuration u is non-negative $(u \ge 0)$ if $u(v) \ge 0$ for all $v \in V$. A configuration u is effective if u is toppling equivalent to a non-negative configuration. The rank of a configuration u is defined as rank $(u) := -1 + \min\{\text{degree}(f) \mid f \ge 0 \text{ and } u - f \text{ is non-effective}\}.$ Observe that $u \sim u'$ implies rank $(u) = \operatorname{rank}(u')$. The motivation is a Riemann-Roch theorem:

Theorem (Baker-Norine 2007)

For any configuration u on a graph $\mathcal{G} = (V, E)$ we have

$$\mathsf{rank}(u) - \mathsf{rank}(K - u) = \mathsf{degree}(u) + 1 - g$$

A configuration u is non-negative $(u \ge 0)$ if $u(v) \ge 0$ for all $v \in V$. A configuration u is effective if u is toppling equivalent to a non-negative configuration. The rank of a configuration u is defined as rank $(u) := -1 + \min\{\text{degree}(f) \mid f \ge 0 \text{ and } u - f \text{ is non-effective}\}.$ Observe that $u \sim u'$ implies rank $(u) = \operatorname{rank}(u')$. The motivation is a Riemann-Roch theorem:

Theorem (Baker-Norine 2007)

For any configuration u on a graph $\mathcal{G} = (V, E)$ we have

$$\mathsf{rank}(u) - \mathsf{rank}(K - u) = \mathsf{degree}(u) + 1 - g$$

A configuration u is non-negative $(u \ge 0)$ if $u(v) \ge 0$ for all $v \in V$. A configuration u is effective if u is toppling equivalent to a non-negative configuration.

The rank of a configuration u is defined as rank $(u) := -1 + \min\{\text{degree}(f) \mid f \ge 0 \text{ and } u - f \text{ is non-effective}\}.$ Observe that $u \sim u'$ implies rank $(u) = \operatorname{rank}(u')$. The motivation is a Riemann-Roch theorem:

Theorem (Baker-Norine 2007)

For any configuration u on a graph $\mathcal{G} = (V, E)$ we have

$$\mathsf{rank}(u) - \mathsf{rank}(K-u) = \mathsf{degree}(u) + 1 - g$$

A configuration u is non-negative $(u \ge 0)$ if $u(v) \ge 0$ for all $v \in V$. A configuration u is effective if u is toppling equivalent to a non-negative configuration. The rank of a configuration u is defined as rank $(u) := -1 + \min\{\text{degree}(f) \mid f \ge 0 \text{ and } u - f \text{ is non-effective}\}.$ Observe that $u \sim u'$ implies rank $(u) = \operatorname{rank}(u')$. The motivation is a Riemann-Roch theorem:

Theorem (Baker-Norine 2007)

For any configuration u on a graph $\mathcal{G} = (V, E)$ we have

$$\mathsf{rank}(u) - \mathsf{rank}(K-u) = \mathsf{degree}(u) + 1 - g$$

A configuration u is non-negative $(u \ge 0)$ if $u(v) \ge 0$ for all $v \in V$. A configuration u is effective if u is toppling equivalent to a non-negative configuration. The rank of a configuration u is defined as rank $(u) := -1 + \min\{\text{degree}(f) \mid f \ge 0 \text{ and } u - f \text{ is non-effective}\}.$ Observe that $u \sim u'$ implies rank $(u) = \operatorname{rank}(u')$. The metivation is a Riemann Roch theorem:

Theorem (Baker-Norine 2007)

For any configuration u on a graph $\mathcal{G} = (V, E)$ we have

$$\mathsf{rank}(u) - \mathsf{rank}(K - u) = \mathsf{degree}(u) + 1 - g$$

A configuration u is non-negative $(u \ge 0)$ if $u(v) \ge 0$ for all $v \in V$. A configuration u is effective if u is toppling equivalent to a non-negative configuration. The rank of a configuration u is defined as rank $(u) := -1 + \min\{\text{degree}(f) \mid f \ge 0 \text{ and } u - f \text{ is non-effective}\}.$ Observe that $u \sim u'$ implies rank $(u) = \operatorname{rank}(u')$. The motivation is a Riemann-Roch theorem:

Theorem (Baker-Norine 2007)

For any configuration u on a graph $\mathcal{G} = (V, E)$ we have

$$\mathsf{rank}(u) - \mathsf{rank}(K-u) = \mathsf{degree}(u) + 1 - g$$
Sandpile model V: rank of configurations

A configuration u is non-negative $(u \ge 0)$ if $u(v) \ge 0$ for all $v \in V$. A configuration u is effective if u is toppling equivalent to a non-negative configuration. The rank of a configuration u is defined as rank $(u) := -1 + \min\{\text{degree}(f) \mid f \ge 0 \text{ and } u - f \text{ is non-effective}\}.$ Observe that $u \sim u'$ implies rank $(u) = \operatorname{rank}(u')$. The motivation is a Riemann-Roch theorem:

Theorem (Baker-Norine 2007)

For any configuration u on a graph $\mathcal{G} = (V, E)$ we have

$$\mathsf{rank}(u) - \mathsf{rank}(K - u) = \mathsf{degree}(u) + 1 - g$$

where
$$K = \sum_{i} (d_i - 2)v_i$$
 and $g = |E| - |V| + 1$.

- ▲日本 ▲国本 ▲国本 ▲国本 ▲日本

Michele D'Adderic

The rank of a configuration u is defined as rank $(u) := -1 + \min\{\text{degree}(f) \mid f \ge 0 \text{ and } u - f \text{ is non-effective}\}.$

Michele D'Adderio

The rank of a configuration u is defined as rank $(u) := -1 + \min\{\text{degree}(f) \mid f \ge 0 \text{ and } u - f \text{ is non-effective}\}.$ How to compute it?

Michele D'Adderio

□ > 《@ > 《글 > 《글 > 글 · ^Q<)

The rank of a configuration u is defined as rank $(u) := -1 + \min\{\text{degree}(f) \mid f \ge 0 \text{ and } u - f \text{ is non-effective}\}.$ How to compute it?

Proposition (Baker-Norine 2007)

A configuration u is effective if and only if $park(u) \ge 0$.

Michele D'Adderio

ULB

The rank of a configuration u is defined as rank $(u) := -1 + \min\{\text{degree}(f) \mid f \ge 0 \text{ and } u - f \text{ is non-effective}\}.$ How to compute it?

Proposition (Baker-Norine 2007)

A configuration u is effective if and only if $park(u) \ge 0$.

Theorem (Kiss-Tóthmérész 2015)

Computing the rank for a general (even eulerian) graph $\mathcal{G} = (V, E)$ is NP-hard in |V|.

Michele D'Adderio

The rank of a configuration u is defined as rank $(u) := -1 + \min\{\text{degree}(f) \mid f \ge 0 \text{ and } u - f \text{ is non-effective}\}.$ How to compute it?

Proposition (Baker-Norine 2007)

A configuration u is effective if and only if $park(u) \ge 0$.

Theorem (Kiss-Tóthmérész 2015)

Computing the rank for a general (even eulerian) graph $\mathcal{G} = (V, E)$ is NP-hard in |V|.

Theorem (Cori-Le Borgne 2016)

There is an algorithm to compute the rank on K_n of linear complexity in n.

Michele D'Adderio

Rank on $K_{m,n}$: algorithm

Theorem (D-Le Borgne)

The following algorithm computes the rank of a configuration u on $K_{m,n}$.

```
def \ compute\_rank(u):
u = park(u)
rank = -1
f = 0 \ \# \ f \ is \ the \ 0 \ configuration
while \ u(a_m) >= 0:
let \ i \ be \ such \ that \ u(b_i) = 0
u = park(u - b_i)
f = f + b_i
rank = rank + 1
return \ (rank, f)
```

Michele D'Adderio

Rank on $K_{m,n}$: algorithm

Theorem (D-Le Borgne)

The following algorithm computes the rank of a configuration u on $K_{m,n}$.

```
def \ compute\_rank(u):
u = park(u)
rank = -1
f = 0 \ \# \ f \ is \ the \ 0 \ configuration
while \ u(a_m) >= 0:
let \ i \ be \ such \ that \ u(b_i) = 0
u = park(u - b_i)
f = f + b_i
rank = rank + 1
return \ (rank, f)
```

Rank on $K_{m,n}$: cylindric diagram

Consider the parking sorted configuration $u = \begin{pmatrix} 0,0,0,3,3,3;21\\0,0,0,3,3 \end{pmatrix}$.

Michele D'Adderic

Rank on $K_{m,n}$: cylindric diagram

Consider the parking sorted configuration $u = \begin{pmatrix} 0,0,0,3,3,3;21\\0,0,0,3,3 \end{pmatrix}$.

Michele D'Adderio

Rank on $K_{m,n}$: cylindric diagram

Consider the parking sorted configuration $u = \begin{pmatrix} 0,0,0,3,3,3;21\\0,0,0,3,3 \end{pmatrix}$.

			4	9	14	19
			3	8	13	18
2	7	12	17			
1	6	11	16	21		
0	5	10	15	20		

Michele D'Adderio

ULB

Rank on $K_{m,n}$: cylindric diagram

Consider the parking sorted configuration $u = \begin{pmatrix} 0,0,0,3,3,3;21\\0,0,0,3,3 \end{pmatrix}$.

			4	9	14	19
			3	8	13	18
2	7	12	17			
1	6	11	16	21		
0	5	10	15	20		

Theorem (D-Le Borgne)

The rank of a parking sorted configuration u on $K_{m,n}$ is equal to -1 plus the number of red labels in its cylindric diagram.

Michele D'Adderio

ULB

Rank on $K_{m,n}$: cylindric diagram

Consider the parking sorted configuration $u = \begin{pmatrix} 0.0, 0.3, 3, 3; 21 \\ 0.0, 0.3, 3 \end{pmatrix}$.

			4	9	14	19
			3	8	13	18
2	7	12	17			
1	6	11	16	21		
0	5	10	15	20		

Theorem (D-Le Borgne)

The rank of a parking sorted configuration u on $K_{m,n}$ is equal to -1 plus the number of red labels in its cylindric diagram.

Theorem (D-Le Borgne)

There is an algorithm to compute the rank on $K_{m,n}$ of linear complexity in n + m.

Michele D'Adderio

Consider the generating function $\widetilde{K}_{m,n}(d,r) := \sum_{u \text{ parking sorted on } K_{m,n}} d^{\text{degree}(u)} r^{\text{rank}(u)}.$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへの

Michele D'Adderio

Consider the generating function $\widetilde{K}_{m,n}(d,r) := \sum_{u \text{ parking sorted on } K_{m,n}} d^{\text{degree}(u)} r^{\text{rank}(u)}.$

Michele D'Adderio

Michele D'Adderio

Consider the generating function $\widetilde{K}_{m,n}(d,r) := \sum_{u \text{ parking sorted on } K_{m,n}} d^{\text{degree}(u)} r^{\text{rank}(u)}.$ This suggests the change of variables

xpara(u) := (m-1)(n-1) + rank(u) - degree(u)ypara(u) := rank(u) + 1.

Michele D'Adderio

Consider the generating function $\widetilde{K}_{m,n}(d,r) := \sum_{u \text{ parking sorted on } K_{m,n}} d^{\text{degree}(u)} r^{\text{rank}(u)}.$

This suggests the change of variables xpara(u) := (m-1)(n-1) + rank(u) - degree(u)ypara(u) := rank(u) + 1.

So we consider instead
$$\begin{split} &\mathcal{K}_{m,n}(x,y) := \sum_{u \text{ parking sorted on } \mathcal{K}_{m,n}} x^{\operatorname{xpara}(u)} y^{\operatorname{ypara}(u)} \\ &= x^{(m-1)(n-1)} y \widetilde{\mathcal{K}}_{m,n}(x^{-1}, xy). \end{split}$$

Michele D'Adderio

Consider the generating function $\widetilde{K}_{m,n}(d,r) := \sum_{u \text{ parking sorted on } K_{m,n}} d^{\text{degree}(u)} r^{\text{rank}(u)}.$

This suggests the change of variables xpara(u) := (m-1)(n-1) + rank(u) - degree(u)ypara(u) := rank(u) + 1.

So we consider instead $\begin{aligned}
\mathcal{K}_{m,n}(x,y) &:= \sum_{u \text{ parking sorted on } \mathcal{K}_{m,n}} x^{\text{xpara}(u)} y^{\text{ypara}(u)} \\
&= x^{(m-1)(n-1)} y \widetilde{\mathcal{K}}_{m,n}(x^{-1}, xy).
\end{aligned}$

Theorem (D-Le Borgne)

We have $K_{m,n}(x, y) = K_{m,n}(y, x)$ *.*

Michele D'Adderio

Consider the generating function $\mathcal{F}(x, y, w, h) := \sum_{n \ge 1, m \ge 1} K_{m,n}(x, y) w^m h^n.$

- イロト イボト イモト - モ - のへ(

Michele D'Adderic

Consider the generating function $\mathcal{F}(x, y, w, h) := \sum_{n \ge 1, m \ge 1} K_{m,n}(x, y) w^m h^n.$

メロトメポトメミトメミト ヨーのの(

Michele D'Adderio

Consider the generating function $\mathcal{F}(x, y, w, h) := \sum_{n \ge 1, m \ge 1} K_{m,n}(x, y) w^m h^n.$

Theorem (D-Le Borgne)

We have
$$\mathcal{F}(x, y, w, h) = \frac{(1-xy)(hw-P(x;w,h)P(y;w,h))}{(1-x)(1-y)(1-h-w-P(x;w,h)-P(y;w,h))}$$

where
$$P(q; w, h) := qwh \frac{L(qw, qh)}{L(w, h)},$$

 $L(w, h) := \sum_{n \ge 0, m \ge 0} \frac{(-1)^{m+n}h^n w^m q^{\binom{m+n+1}{2}}}{(q)_n (q)_m}$
and $(a)_n := \prod_{i=0}^{n-1} (1 - q^i a).$

Michele D'Adderio

THE END

References

- J.-C. Aval, M. D'Adderio, M- Dukes, Y. Le Borgne, Two operators on sandpile configurations, the sandpile model on the complete bipartite graph, and a cyclic lemma, Adv. in Appl. Math. **73** (2016), 59–98.
- M. D'Adderio, Y. Le Borgne, The sandpile model on K_{m,n} and the rank of its configurations, arXiv:1608.01521

Michele D'Adderio

THE END

THANKS!

References

J.-C. Aval, M. D'Adderio, M- Dukes, Y. Le Borgne, Two operators on sandpile configurations, the sandpile model on the complete bipartite graph, and a cyclic lemma, Adv. in Appl. Math. **73** (2016), 59–98.

M. D'Adderio, Y. Le Borgne, The sandpile model on K_{m,n} and the rank of its configurations, arXiv:1608.01521

Michele D'Adderio