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(RISl Content of the lectures

Content of the lectures

Main topic: shifted symmetric functions, an analogue of symmetric
functions.

@ unlike symmetric functions, we will evaluate shifted symmetric
functions on the parts of a partition:
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(RISl Content of the lectures

Content of the lectures

Main topic: shifted symmetric functions, an analogue of symmetric
functions.

@ unlike symmetric functions, we will evaluate shifted symmetric
functions on the parts of a partition:

o interesting (and powerful) vanishing results;
e link with representation theory;

e new kind of expansions with nice combinatorics
(e.g. in multirectangular coordinates, lecture 2).
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(RISl Content of the lectures

Content of the lectures

Main topic: shifted symmetric functions, an analogue of symmetric
functions.

@ unlike symmetric functions, we will evaluate shifted symmetric
functions on the parts of a partition:

o interesting (and powerful) vanishing results;
e link with representation theory;

e new kind of expansions with nice combinatorics
(e.g. in multirectangular coordinates, lecture 2).

@ nice extension with Jack or Macdonald parameters with many open
problems (lecture 3).
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Shifted symmetric function: definition

Definition
A polynomial f(xi,...,xy) is shifted symmetric if it is symmetric in x; — 1,

X2 —2, ..., xy—N.

Example: pi(x1,...,xn) = Z,{VZI(X,' — ik
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Shifted symmetric function: definition

Definition
A polynomial f(xi,...,xy) is shifted symmetric if it is symmetric in x; — 1,
X2 —2, ..., xy—N.

Example: pi(x1,...,xn) = Z,{VZI(X,' — ik

Shifted symmetric function: sequence fy(xi,...,xy) of shifted symmetric
polynomials with

fN-‘rl(Xla s 7XN70) = fN(Xla s aXN)'
Example: pi =35, [(xi — i) = (—=i)k].
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Shifted Schur functions
Shifted Schur functions (Okounkov, Olshanski, '98)

= (
| k

Notation: p = (u1 > -+ > uy) partition.
(x| k) := (X—l)...(X—k+1);
Definition (Shifted Schur function s};)
det(xi+ N —i| puj+N—))
det(x; + N —i | N —)

S;(Xl, ce ,XN) =

Example:

2 2 2 2., 2 2
S2,1) (X1, X2, X3) = X{ X2 + X7 X3+ X1 X5 +2x1 X2 X3 + X1 X5 + X5 X3 + X2 X3

— X1 Xp — X1 X3 +X22—X2X3+2X§—2X2—6X3
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Shifted Schur functions
Shifted Schur functions (Okounkov, Olshanski, '98)

= (
| k

Notation: p = (u1 > -+ > uy) partition.
(x| k) := (X—l)...(X—k+1);
Definition (Shifted Schur function s};)
det(xi + N —i | pj+ N —j)
det; + N—i | N—))

S;(Xl, ce ,XN) =

Example:

2 2 2 2., 2 2
S2,1) (X1, X2, X3) = X{ X2 + X7 X3+ X1 X5 +2x1 X2 X3 + X1 X5 + X5 X3 + X2 X3

— X1 Xp — X1 X3 —|—x22 — X2 X3 —i—2x§ —2xp —b6x3
o Top degree term of s} is the standard Schur function s,.

@ s, is our first favorite basis of the shifted symmetric function ring A*.
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SN CL RSB TSI E  Vanishing property

Transition

The vanishing theorem
and some applications
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Shifted symmetric functions Vanishing property

The vanishing characterization

If \'is a partition (or Young diagram) of length ¢ and F a shifted
symmetric function, we denote

F(A) := F(A1, ..., o).

Easy: a shifted symmetric function is determined by its values on Young

diagrams.
N*: subalgebra of F(), C) (functions on Young diagrams).
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SN CL RSB TSI E  Vanishing property

The vanishing characterization

If \'is a partition (or Young diagram) of length ¢ and F a shifted
symmetric function, we denote

F(A) := F(A1, ..., o).

Easy: a shifted symmetric function is determined by its values on Young
diagrams.
N*: subalgebra of F(), C) (functions on Young diagrams).

Theorem (Vanishing properties of s; (OO '98))

Vanishing characterization s, is the unique shifted symmetric function of
degree at most || such that s;(\) = 05 ,H(A),
where H()) is the hook product of A.
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SN CL RSB TSI E  Vanishing property

The vanishing characterization

If \'is a partition (or Young diagram) of length ¢ and F a shifted
symmetric function, we denote

F(A) := F(A1, ..., o).

Easy: a shifted symmetric function is determined by its values on Young
diagrams.
N*: subalgebra of F(), C) (functions on Young diagrams).

Theorem (Vanishing properties of s; (OO '98))

Vanishing characterization s, is the unique shifted symmetric function of
degree at most || such that s;(\) = 05 ,H(A),
where H()) is the hook product of A.

Extra vanishing property Moreover, s);(\) =0, unless A 2 pu.
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SN CL RSB TSI E  Vanishing property

The vanishing characterization

Proof of the extra-vanishing property.

. det(\+N—i|p;+N—j
By definition, s;()\) = dit(Ai+NL7fN,j)J)

Ca||MiJ:(/\f+N—fLuj+N—j). .
If \j < p; for some j, then M;; =0, 0
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SN CL RSB TSI E  Vanishing property

The vanishing characterization

Proof of the extra-vanishing property.

. det(\i+N—ilp+N—j
By definition, s;()\) = edit(AhLle,-LfN,j)J)

Call M,',j:(/\,‘-i-N—f L/Jj-f-N—j).
If \j < p; for some j, then M;; =0,
but also all the entries in the bottom left corner.

oo o
oo o
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SN CL RSB TSI E  Vanishing property

The vanishing characterization

Proof of the extra-vanishing property.

. det(\i+N—ilp+N—j
By definition, s;()\) = edit(AhLle,-LfN,j)J)

Call M,',j:(/\,‘-i-N—f L/Jj-f-N—j).

If \j < p; for some j, then M;; =0,

but also all the entries in the bottom left corner.
= det(l\/l,-,j) =0.

oo o
oo o
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SN CL RSB TSI E  Vanishing property

The vanishing characterization

Proof of the extra-vanishing property.

. det(\i+N—ilp+N—j
By definition, s;()\) = edit(AhLle,-LfN,j)J)

Call M;J:(/\f+N—fLuj+N—j).

If \j < p; for some j, then M;; =0, 0 0

but also all the entries in the bottom left corner. 0 0

Therefore s;(\) = 0 as soon as A 2 pu. DJ
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Shifted symmetric functions Vanishing property

The vanishing characterization

Proof of the extra-vanishing property.

. det(\i+N—ilp+N—j
By definition, s;()\) = edit(,\ﬁ,\,lf,-if,v,j)l)

Call M;J:(/\f+N—fLuj+N—j).

o -
o

If \j < p; for some j, then M;; =0,
but also all the entries in the bottom left corner.

0 0
Therefore s;(\) = 0 as soon as A 2 pu. O

To compute s};(11), we get a triangular matrix, the determinant is the
product of diagonal entries and we recognize the hook product. (Exercise!)
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The vanishing characterization

Proof of uniqueness.

Let F be a shifted symmetric function of degree at most |u.
Assume that for each \ of size at most p,

F(A) = si(A) = dxuH(A).
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SN CL RSB TSI E  Vanishing property

The vanishing characterization

Proof of uniqueness.
Let F be a shifted symmetric function of degree at most |u.
Assume that for each \ of size at most p,

F(A) = si(A) = dxuH(A).

Write G := F — s}, as linear combination of s
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SN CL RSB TSI E  Vanishing property

The vanishing characterization

Proof of uniqueness.

Let F be a shifted symmetric function of degree at most |u.
Assume that for each \ of size at most p,

F(A) = si(A) = dxuH(A).

Write G := F — s}, as linear combination of s

Assume G # 0, and choose p minimal for inclusion such that c, # 0.
We evaluate (1) in p:

0=6(0) = Y asi) =G5l #0

vilv] <l
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SN CL RSB TSI E  Vanishing property

The vanishing characterization

Proof of uniqueness.

Let F be a shifted symmetric function of degree at most |u.
Assume that for each \ of size at most p,

F(A) = si(A) = dxuH(A).

Write G := F — s}, as linear combination of s

Assume G # 0, and choose p minimal for inclusion such that c, # 0.
We evaluate (1) in p:

0=6(0) = Y asi) =G5l #0

vilv] <l

Contradiction = G =0, i.e. F = slj. ]
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U
Application 1: Pieri rule for shifted Schur functions

Proposition (OO '98)

SZ(Xla"wXN) (Xl + XN — ‘:U") = Z 5;(X17"'7XN)7
viv N p
where v\ means v D p and |v| = |p| + 1.
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SN CL RSB TSI E  Vanishing property

Application 1: Pieri rule for shifted Schur functions

Proposition (OO '98)

SZ(Xla"wXN) (Xl + XN — ‘:U") = Z 5;(X17"'7XN)7
viv N p
where v\ means v D p and |v| = |p| + 1.

Sketch of proof.
Since the LHS is shifted symmetric of degree |u| + 1, we have
100 o) Gat o) = Y asilar ).

v y|<|pl+1
for some constants ¢, .
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U
Application 1: Pieri rule for shifted Schur functions

Proposition (OO '98)

SZ(Xla"wXN) (Xl + XN — ‘/J") = Z 5;(X17"'7XN)7
viv N p
where v\ means v D p and |v| = |p| + 1.

Sketch of proof.
Since the LHS is shifted symmetric of degree |u| + 1, we have

it o) Gt i) = Y asiGa ),

vilv|<|pl+1
for some constants ¢, .

@ LHS vanishes for x; = A; and |A| < |u| = ¢, =0 if [v] < |ul.
(Same argument as to prove uniqueness.)

y
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SN CL RSB TSI E  Vanishing property

Application 1: Pieri rule for shifted Schur functions

Proposition (OO '98)

su(xts .o xn) (O + -+ — [p]) = Z sy (x1, .- xn),
viv N p
where v\ p means v D 1 and |v| = |p| + 1.

Sketch of proof.
Since the LHS is shifted symmetric of degree |u| + 1, we have
100 o) Gat o) = Y asilar ).

vilv|<|pl+1
for some constants ¢, .

@ LHS vanishes for x; = A; and || < |u| = ¢, =0 if [v| < |pul.
(Same argument as to prove uniqueness.)

@ Look at top-degree term (and use Pieri rule for usual Schur functions):
= for [v| = |u| + 1, we have ¢, = §,x . O
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SN CL RSB TSI E  Vanishing property

Application 2: a combinatorial formula for s;

Theorem (00'98)

sila o) =Y [ rgy—c(O

T OeT

and if 0 = (i,j), then c(O) = j — i (called content).

#filling with decreasing columns and weakly decreasing rows

))-

where the sum runs over reverse® semi-std Young tableaux T,

Example:

5(271)(X1,X2) = Xo (X2 — ].) (Xl + 1) + X2 (Xl — 1) (X1 + 1)

2[2]
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Shifted symmetric functions Vanishing property

Application 2: a combinatorial formula for s;

Theorem (00'98)
sia, o) =Y [ Grgy—c(@)).

T DeT
where the sum runs over reverse® semi-std Young tableaux T,

and if 0 = (i,j), then c(O) = j — i (called content).

#filling with decreasing columns and weakly decreasing rows

@ extends the classical combinatorial interpretation of Schur function
(that we recover by taking top degree terms);

e completely independent proof, via the vanishing theorem (see next

slide).
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SN CL RSB TSI E  Vanishing property

Application 2: a combinatorial formula for s;

To prove: s;(x1,...,xy) = Z H (xr@y—c(09)).

T OeT

Sketch of proof via the vanishing characterization.
@ RHS is shifted symmetric:
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SN CL RSB TSI E  Vanishing property

Application 2: a combinatorial formula for s;
To prove: s;(x1,...,xy) = Z H (xr@y—c(09)).
T OeT

Sketch of proof via the vanishing characterization.
@ RHS is shifted symmetric:
it is sufficient to check that it is symmetric in x; —i
and x;11 — i — 1. Thus we can focus on the boxes
containing i and j := i + 1 in the tableau and F
reduce the general case to x = (1,1) and . = (k).

Then it's easy.
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SN CL RSB TSI E  Vanishing property

Application 2: a combinatorial formula for s;

To prove: s;(x1,...,xy) = Z H (xr@y—c(09)).
T DeT

Sketch of proof via the vanishing characterization.
@ RHS is shifted symmetric: OK.
it is sufficient to check that it is symmetric in x; —i
and x;11 — i — 1. Thus we can focus on the boxes
containing i and j := i + 1 in the tableau and F
reduce the general case to x = (1,1) and . = (k).

Then it's easy.

The compatibility RHS(x1, ..., xn,0) = RHS(x1, ..., xn) is
straigthforward.
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Vanishing property
Application 2: a combinatorial formula for s;
To prove: s;(x1,...,xy) = Z H (xr@y—c(09)).
T OeT

Sketch of proof via the vanishing characterization.
@ RHS is shifted symmetric: OK.

@ RHS| _, =0if A2

We will prove: for each T, some factor
ap = x7(g) — ¢(0) vanishes.
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Vanishing property
Application 2: a combinatorial formula for s;
To prove: s;(x1,...,xy) = Z H (xr@y—c(09)).
T OeT

Sketch of proof via the vanishing characterization.
@ RHS is shifted symmetric: OK.

@ RHS| _, =0if A2

We will prove: for each T, some factor
ap = x7(g) — ¢(0) vanishes.

° 3(1’1) > 0,

o N < pi = ani<0;

o (ag,k))k>1 can only decrease by 1 at each step. ——
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Vanishing property
Application 2: a combinatorial formula for s;
To prove: s;(x1,...,xy) = Z H (xr@y—c(09)).
T OeT

Sketch of proof via the vanishing characterization.
@ RHS is shifted symmetric: OK.

@ RHS| _, =0if A2

We will prove: for each T, some factor
ap = x7(g) — ¢(0) vanishes.

° a1, > 0;

o N < pi = ani<0;

o (ag,k))k>1 can only decrease by 1 at each step. ——

© Normalization: check the coefficients of xi\l .. .x,i‘,"’. O

V.
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Transition

Skew tableaux
and characters
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UL RIS IR TSI EM  Skew SYT and characters

Skew standard tableaux

Definition

Let A and i be Young diagrams with A\ C u. A skew standard tableau of
shape \/pu is a filling of A\/p with integers from 1 to r = || — |p| with
increasing rows and columns.

Example
A=(3,3,1) D u=(2,1)

Ii y
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UL RIS IR TSI EM  Skew SYT and characters

Skew standard tableaux

Definition

Let A and i be Young diagrams with A\ C u. A skew standard tableau of
shape \/pu is a filling of A\/p with integers from 1 to r = || — |p| with
increasing rows and columns.

Alternatively, it is a sequence pn 2 pu() Ao A () = ).

Example
A=(3,3,1) D u=(2,1)

14 « (1) /(22 7(3,2) /(3,2,1) 7(3,3,1)

Ii y
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UL RIS IR TSI EM  Skew SYT and characters

Skew standard tableaux

Definition

Let A and i be Young diagrams with A\ C u. A skew standard tableau of
shape \/pu is a filling of A\/p with integers from 1 to r = || — |p| with
increasing rows and columns.

Alternatively, it is a sequence pn 2 pu() Ao A () = ).

The number of skew standard tableau of shape A/ is denoted /.

Example
A=(3,3,1) D u=(2,1)

14 « (1) /(22 7(3,2) /(3,2,1) 7(3,3,1)

Ii y
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UL RIS IR TSI EM  Skew SYT and characters

Skew standard tableaux and shifted Schur functions

Proposition (OO '98)

If XD p, then HO
si(A) = o £
N = =Ty
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UL RIS IR TSI EM  Skew SYT and characters

Skew standard tableaux and shifted Schur functions

Proposition (OO '98)
If XD p, then
H(\)

%) = =

A

Proof.

Set r = |A| — || We iterate r times the Pieri rule
s;(xl,...,xN)(xl + Xy —p])

Z S;(,) (X]_,...,XN)

.....

w ) ()

(a4 xn—|p—r+1)
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UL RIS IR TSI EM  Skew SYT and characters

Skew standard tableaux and shifted Schur functions

Proposition (OO '98)
If XD p, then
H(\)

%) = =

A

Proof.
Set r = |A| — || We iterate r times the Pieri rule
Sp(xs o)+ A — |pl) -

Z S;(r) (X1, xn) = Z f”/“s,f(xl,...,x,v).
L) ().

.....

5 () il
pD) e (e

(a4 xn—|p—r+1)

V. Féray (I-Math, UZH) Shifted symmetric functions | SLC, 2017-09 14 / 25



UL RIS IR TSI EM  Skew SYT and characters

Skew standard tableaux and shifted Schur functions

Proposition (OO '98)
If XD p, then
H(\)

%) = =

A

Proof.
Set r = |A| — || We iterate r times the Pieri rule
Sp(xs o)+ A — |pl) -

Z S;(r) (X1, xn) = Z f”/“s,f(xl,...,x,v).
L) ().

,,,,,

5 () il
pD) e (e

(a4 xn—|p—r+1)

We evaluate at x; = A;. The only surviving term corresponds to v = A. [
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UL RIS IR TSI EM  Skew SYT and characters

Symmetric group characters

Facts from representation theory:

o Irreducible representation p* of the symmetric groups are indexed by
Young diagrams J;

o We are interested in computing the character x*(u) of p* on any
permutation in the conjugacy class C,,. (here, |u| = |A]).
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Symmetric group characters

Facts from representation theory:

o Irreducible representation p* of the symmetric groups are indexed by
Young diagrams J;

o We are interested in computing the character x*(u) of p* on any
permutation in the conjugacy class C,,. (here, |u| = |A]).

Proposition (Branching rule)

N = [l + 1, we have x (U (1) = 3 x"(n).
viv A
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UL RIS IR TSI EM  Skew SYT and characters

Symmetric group characters

Facts from representation theory:

o Irreducible representation p* of the symmetric groups are indexed by
Young diagrams J;

o We are interested in computing the character x*(u) of p* on any
permutation in the conjugacy class C,,. (here, |u| = |A]).

Proposition (Branching rule)

N = [l + 1, we have x (U (1) = 3 x"(n).
viv A

Iterating the branching rule r times gives: if |A| = |u| + r,

0)

Pruan= Y W

.....
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UL RIS IR TSI EM  Skew SYT and characters

Symmetric group characters

Facts from representation theory:

o Irreducible representation p* of the symmetric groups are indexed by
Young diagrams J;

o We are interested in computing the character x*(u) of p* on any
permutation in the conjugacy class C,,. (here, |u| = |A]).

Proposition (Branching rule)

N = [l + 1, we have x (U (1) = 3 x"(n).
viv A

Iterating the branching rule r times gives: if |A| = |u| + r,

o= Y W= Y A,

vir=1) vilvl=|u|

.....
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Skew SYT and characters
Normalized characters are shifted symmetric (OO '98)

Multiply previous equality by (\AT—(IAAI)! = gmy‘fﬂg,

A r
(N L 5 = S (i) v

v: vl=1ul

we get
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Skew SYT and characters
Normalized characters are shifted symmetric (OO '98)

Multiply previous equality by (\AT—(IAAI)' = g.i\n‘(“l'g we get

(ML G0 = 5 ()

rEr
= > s
v1=In
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Skew SYT and characters
Normalized characters are shifted symmetric (OO '98)

Multiply previous equality by (\AT—(IAZI)' = g.i\n‘('u'g we get
XAMpu () HR) o) v
IR s —V:%M((m_u)!f ) X (1)
= > s () x“ ()= Chu(N),
vi|v|=|ul

where Chy, =3, 1=, X" (1) s, is a shifted symmetric function.

Example (characters on transpositions):

Chy(A) = sZkz) - s(*1,1) = Z (N — i+ A\ — i2].

i>1
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Skew SYT and characters
Normalized characters are shifted symmetric (OO '98)

Multiply previous equality by (\AT—(IAZI)' = g.i\n‘(“l'g we get
XM u (1) H) e/
ANT AN TS F2ve% v
(IA] ] [pe |) dlm( ) V:|;M<(|,\|_N)! )X (1)

= > sS)X () = Chy(N),

v: [vl=1ul

where Chy, =3, 1=, X" (1) s, is a shifted symmetric function.

Example (characters on transpositions):

Chy(A) = sZkz) - 5(*1,1) = Z (N — i+ A\ — i2].

i>1

We'll refer to Ch,, as normalized characters: this will be our second favorite
basis of A*.
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UL RIS IR TSI EM  Skew SYT and characters

Vanishing characterization of normalized characters

Reminder: Chy, =3, )1 X" (1) 57
Proposition (F., Sniady, 2015)

Chy, is the unique shifted symmetric function F of degree at most || such
that

Q F\)=0if|A < |u
@ The top-degree component of F is p,,.

1
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Vanishing characterization of normalized characters

Reminder: Chy, =3, )1 X" (1) 57
Proposition (F., Sniady, 2015)
Chy, is the unique shifted symmetric function F of degree at most || such
that
Q F\)=0if|A < |u
@ The top-degree component of F is p,,.

1

Proof.
Easy to check that Chy, fulfills 1. and 2. from Ch, =3, X" (1) sJ.
Uniqueness: if F; and F» are two such functions, then F; — F> has degree

at most |u| — 1 and vanishes on all diagrams of size |u| — 1.
= FH—-F=0. U

v

V. Féray (I-Math, UZH) Shifted symmetric functions | SLC, 2017-09 17 / 25



UL RIS IR TSI EM  Skew SYT and characters

Vanishing characterization of normalized characters

Reminder: Ch, =", Ivl=|ul X’ (1) sy
Proposition (F., Sniady, 2015)

Chy, is the unique shifted symmetric function F of degree at most || such
that

Q@ F(A\) =01
@ The top-degree component of F is p,,.

Examples

The two following formulas hold since their RHS fulfills 1. and 2.:

Chy(N) = Z’_ZI [N = )2+ X — 2.
Ch(3)(>\)zzi21 (A =i =i+ —32 CYEE))
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Transition

Multiplications tables
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G
Multiplication tables

Question

Can we understand the multiplication tables of our favorite bases?

* Kk D oK
Sy S, = E ch s,
prlpl<lpl+lv]
- p
Ch, Ch, = E gl Ch,
pilpl<lpl+v|

Are cfi,, and gl integers? nonnegative? Do they have a combinatorial
interpretation?

v

Note: when |p| = |u| + |v|, then cf, is a Littlewood-Richardson coefficient
(but ¢f, . is defined more generally when |p| < |u| + [v]).
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Multiplication tables
Shifted Littlewood-Richardson coefficients

* oK P o*
Sp S, = E Sy

pilpl<|ul+|v]

An easy proposition

Q cly=0ifp2porpdu
Q ¢, =s(v)

()
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Multiplication tables
Shifted Littlewood-Richardson coefficients

* ok P ok
Sp S, = E ch s, (2)
pilpl<|ul+|v]

An easy proposition

Q cly=0ifp2porpdu
Q ¢, =s(v)

Proof.

Q If X2 por A2 v, the LHS of (2) evaluated in A vanishes (vanishing
theorem). The same argument as in the uniqueness proof implies 1.
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Multiplication tables
Shifted Littlewood-Richardson coefficients

* ok P ok
Sp S, = E ch s, (2)
pilpl<|ul+|v]

An easy proposition

Q@ c,=0ifpPporppuv;
Q ¢, =siv)

Proof.

Q If X2 por A2 v, the LHS of (2) evaluated in A vanishes (vanishing
theorem). The same argument as in the uniqueness proof implies 1.

@ We evaluated (2) in A := v. Only summands with p C v survive.
Combining with 1., only summand p = v survives and the factor s}(v)
simplifies. Ol

v
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Multiplication tables
Shifted Littlewood-Richardson coefficients

Manipulating further the vanishing theorem, one can prove

Proposition (Molev-Sagan '99)

1
Sl = = =D

! vV P~/

Allows to compute all ¢, by induction on |p| — |v| (i being fixed).
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Multiplication tables
Shifted Littlewood-Richardson coefficients

Manipulating further the vanishing theorem, one can prove

Proposition (Molev-Sagan '99)

1
Sl = = =D

! vV P~/

Allows to compute all ¢, by induction on |p| — |v| (i being fixed).

Next slide: combinatorial formula for ¢ ..
Proof strategy: show that it satisfies the same induction relation.
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ELNCE RIS IR TSI EM  Multiplication tables

Shifted Littlewood-Richardson coefficients

Theorem (Molev-Sagan, '99, Molev '09)

ch,=> wt(T,R),
T,R

T: reverse semi-standard tableau with| R: sequence

barred entrie;s _ ) v AW a0 =),
3 % L | L ‘ (The barred entries of T indicate in
2]1 which row is the box V(1 /() so
1 that R is in fact determined by T.)

wi(T,R) =[] [ —cO)].
O unbarred

We do not explain the rule to determine k in I/sf(()[]).
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Multiplication tables
Shifted Littlewood-Richardson coefficients

Theorem (Molev-Sagan, '99, Molev '09)
=Y wt(T,R),
T,R
T: reverse semi-standard tableau with| R: sequence
barred entries v AW a0 = ),

(The barred entries of T indicate in
which row is the box v 1 /() so
that R is in fact determined by T.)

wi(T,R) =[] [, —cO)].
O unbarred

1 [1]

[l | OS]

’I—lll\.) [OM)}

@ all barred entries — combinatorial rule for usual LR coefficients.
@ no barred entries — combinatorial formula for s;(x1, ..., xn).
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Multiplication tables
Shifted Littlewood-Richardson coefficients

Theorem (Molev-Sagan, '99, Molev '09)
b, =Y wt(T,R),
TR

T: reverse semi-standard tableau with| R: sequence

barred entrie_s ] _ v AW a0 = ),
3 ‘i’ L | ! ‘ (The barred entries of T indicate in
% 1 which row is the box v *+1) /1) so
1 that R is in fact determined by T.)

wi(T,R) =[] [ —cO)].
O unbarred

If V(Tk()m) — ¢(0) < 0 for some unbarred box [J in some tableau T, then it

vanishes for another unbarred box in the same tableau. = ¢/, € N>q.

V. Féray (I-Math, UZH) Shifted symmetric functions | SLC, 2017-09 22 /25



Multiplication tables
Multiplication table of Ch), (lvanov-Kerov, '99)
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Multiplication tables
Multiplication table of Ch), (lvanov-Kerov, '99)

Observation (on an example):

A n—2
X2,1"2) 1 MO G
Chiy(A) = n(n — 1)=— T tr ;
(2)( ) ( ) dim(p*) dim(p*) g 1§i¢j§n( /)

But p* (Z1gi7&jgn(i7f)> = const idy, (Schur's lemma),
so Ch(z)(A) is simply the eigenvalue of Clp) := 3> 1.;;<,(i,Jj) on o
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Multiplication tables
Multiplication table of Ch), (lvanov-Kerov, '99)

Observation (on an example):

A n—2
Chiy ) = n(n - X2 — s (A X )

1<i#j<n

But p* (Zlgi;&jgn(i7j)> = const idy, (Schur's lemma),
so Ch(z)(A) is simply the eigenvalue of Clp) := 3> 1.;;<,(i,Jj) on o

Conclusion: in general, define C¢,, = Z (ar---au)- -
1<ayg,..., alp“gn
o . . distinct
Then the multiplication table of Ch, is the same as C/,,.
— It has nonnegative integer coefficients and is related to the
multiplication table of the center of the symmetric group algebra
(computing the latter is a widely studied problem!)
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Multiplication tables
Multiplication table of Ch, (an example)

Cloy-Clay= > (i) - Y. (k1)
1<ij<n 1<k,I<n
i£j k£
This looks similar to C/(, 5), except that the indices (i, j, k, /) may not be
disjoint.
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Multiplication tables
Multiplication table of Ch, (an example)

Cloy-Clay= > (i) - Y. (k1)

1<ij<n 1<k,I<n
i£j k£
This looks similar to C/(, 5), except that the indices (i, j, k, /) may not be
disjoint.
— We split the sum depending on which indices are equal. We get
Cf(z) . C€(2) = Z (i )k 1)

ij kI distinct

+4 > (i1)+2> ()0)

ij,I distinct i#j
Thus Ch%Z) = Ch(272) +4 Ch(3) +2 Ch(l,l)'
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Shifted symmetric functions [EEHIIETY

Conclusion

We have seen

@ Two nice bases of the shifted symmetric function ring: shifted Schur
functions s and normalized characters Ch,,;
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Shifted symmetric functions Conclusion

Conclusion

We have seen

@ Two nice bases of the shifted symmetric function ring: shifted Schur
functions s and normalized characters Ch,,;

@ Vanishing characterization theorems for these two bases and several
applications for shifted Schur functions;
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Shifted symmetric functions Conclusion

Conclusion

We have seen

@ Two nice bases of the shifted symmetric function ring: shifted Schur
functions s and normalized characters Ch,,;

@ Vanishing characterization theorems for these two bases and several
applications for shifted Schur functions;

@ That the multiplication tables of these two bases contain nonnegative
coefficients which provide information on

o Littlewood-Richardson coefficients;

e multiplication table of the center of the symmetric group algebra.
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Shifted symmetric functions Conclusion

Conclusion

We have seen

@ Two nice bases of the shifted symmetric function ring: shifted Schur
functions s and normalized characters Ch,,;

@ Vanishing characterization theorems for these two bases and several
applications for shifted Schur functions;

@ That the multiplication tables of these two bases contain nonnegative
coefficients which provide information on

o Littlewood-Richardson coefficients;

e multiplication table of the center of the symmetric group algebra.

Tomorrow: combinatorial formulas for these bases.
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