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Introduction Content of the lectures

Content of the lectures

Main topic: shifted symmetric functions, an analogue of symmetric
functions.

unlike symmetric functions, we will evaluate shifted symmetric
functions on the parts of a partition:

interesting (and powerful) vanishing results;
link with representation theory;
new kind of expansions with nice combinatorics
(e.g. in multirectangular coordinates, lecture 2).

nice extension with Jack or Macdonald parameters with many open
problems (lecture 3).
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Introduction Shifted Schur functions

Shifted symmetric function: definition

Definition
A polynomial f (x1, . . . , xN) is shifted symmetric if it is symmetric in x1 − 1,
x2 − 2, . . . , xN − N.

Example: p?k(x1, . . . , xN) =
∑N

i=1(xi − i)k .

Shifted symmetric function: sequence fN(x1, . . . , xN) of shifted symmetric
polynomials with

fN+1(x1, . . . , xN , 0) = fN(x1, . . . , xN).

Example: p?k =
∑

i≥1
[
(xi − i)k − (−i)k

]
.
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Introduction Shifted Schur functions

Shifted Schur functions (Okounkov, Olshanski, ’98)

Notation: µ = (µ1 ≥ · · · ≥ µ`) partition.
(x � k) := x(x − 1) . . . (x − k + 1);

Definition (Shifted Schur function s?µ)

s?µ(x1, . . . , xN) =
det(xi + N − i � µj + N − j)

det(xi + N − i � N − j)

Example:

s(2,1)(x1, x2, x3) = x2
1 x2 + x2

1 x3 + x1 x
2
2 + 2 x1 x2 x3 + x1 x

2
3 + x2

2 x3 + x2 x
2
3

− x1 x2 − x1 x3 + x2
2 − x2 x3 + 2 x2

3 − 2 x2 − 6 x3

Top degree term of s?µ is the standard Schur function sµ.

s?µ is our first favorite basis of the shifted symmetric function ring Λ?.
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Shifted symmetric functions Vanishing property

Transition

The vanishing theorem
and some applications
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Shifted symmetric functions Vanishing property

The vanishing characterization

If λ is a partition (or Young diagram) of length ` and F a shifted
symmetric function, we denote

F (λ) := F (λ1, . . . , λ`).

Easy: a shifted symmetric function is determined by its values on Young
diagrams.
Λ?: subalgebra of F(Y,C) (functions on Young diagrams).

Theorem (Vanishing properties of s?µ (OO ’98))

Vanishing characterization s?µ is the unique shifted symmetric function of
degree at most |µ| such that s?µ(λ) = δλ,µH(λ),
where H(λ) is the hook product of λ.

Extra vanishing property Moreover, s?µ(λ) = 0, unless λ ⊇ µ.
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Shifted symmetric functions Vanishing property

The vanishing characterization

Proof of the extra-vanishing property.

By definition, s?µ(λ) =
det(λi+N−i�µj+N−j)

det(λi+N−i�N−j) .

Call Mi ,j = (λi + N − i � µj + N − j).
If λj < µj for some j , then Mj ,j = 0,

but also all the entries in the bottom left corner.
⇒ det(Mi ,j) = 0.


. . .

0
. . .



Therefore s?µ(λ) = 0 as soon as λ 6⊇ µ.

To compute s?µ(µ), we get a triangular matrix, the determinant is the
product of diagonal entries and we recognize the hook product. (Exercise!)
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Shifted symmetric functions Vanishing property

The vanishing characterization

Proof of uniqueness.

Let F be a shifted symmetric function of degree at most |µ|.
Assume that for each λ of size at most µ,

F (λ) = s?µ(λ) = δλ,µH(λ).

Write G := F − s?µ as linear combination of s?ν :

G =
∑

ν:|ν|≤|µ|

cν s
?
ν . (1)

Assume G 6= 0, and choose ρ minimal for inclusion such that cρ 6= 0.
We evaluate (1) in ρ:

0 = G (ρ) =
∑

ν:|ν|≤|µ|

cν s
?
ν (ρ) = cρ s

?
ρ(ρ) 6= 0.

Contradiction ⇒ G = 0, i.e. F = s?µ.
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Shifted symmetric functions Vanishing property

Application 1: Pieri rule for shifted Schur functions

Proposition (OO ’98)

s?µ(x1, . . . , xN) (x1 + · · ·+ xN − |µ|) =
∑

ν: ν↖µ

s?ν (x1, . . . , xN),

where ν ↖ µ means ν ⊃ µ and |ν| = |µ|+ 1.

Sketch of proof.

Since the LHS is shifted symmetric of degree |µ|+ 1, we have

s?µ(x1, . . . , xN) (x1 + · · ·+ xN − |µ|) =
∑

ν: |ν|≤|µ|+1

cνs
?
ν (x1, . . . , xN),

for some constants cν .
LHS vanishes for xi = λi and |λ| ≤ |µ| ⇒ cν = 0 if |ν| ≤ |µ|.
(Same argument as to prove uniqueness.)
Look at top-degree term (and use Pieri rule for usual Schur functions):
⇒ for |ν| = |µ|+ 1, we have cν = δν↖µ.
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Shifted symmetric functions Vanishing property

Application 2: a combinatorial formula for s?µ

Theorem (OO’98)

s?µ(x1, . . . , xN) =
∑
T

∏
�∈T

(xT (�)−c(�)).

where the sum runs over reversea semi-std Young tableaux T ,
and if � = (i , j), then c(�) = j − i (called content).

afilling with decreasing columns and weakly decreasing rows

Example:

s?(2,1)(x1, x2) = x2 (x2 − 1) (x1 + 1) + x2 (x1 − 1) (x1 + 1)

2 2

1

2 1

1
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Shifted symmetric functions Vanishing property

Application 2: a combinatorial formula for s?µ

Theorem (OO’98)

s?µ(x1, . . . , xN) =
∑
T

∏
�∈T

(xT (�)−c(�)).

where the sum runs over reversea semi-std Young tableaux T ,
and if � = (i , j), then c(�) = j − i (called content).

afilling with decreasing columns and weakly decreasing rows

extends the classical combinatorial interpretation of Schur function
(that we recover by taking top degree terms);
completely independent proof, via the vanishing theorem (see next
slide).
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Shifted symmetric functions Vanishing property

Application 2: a combinatorial formula for s?µ

To prove: s?µ(x1, . . . , xN) =
∑
T

∏
�∈T

(xT (�)−c(�)).

Sketch of proof via the vanishing characterization.
1 RHS is shifted symmetric:

OK.

2 RHS
∣∣
xi :=λi

= 0 if λ 6⊇ µ.

We will prove: for each T , some factor
a� := xT (�) − c(�) vanishes.

a(1,1) > 0;

λ′i < µ′i ⇒ a(1,i) ≤ 0;

(a(1,k))k≥1 can only decrease by 1 at each step.

>0 ≤0

3 Normalization: check the coefficients of xλ11 . . . xλNN .
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Shifted symmetric functions Skew SYT and characters

Transition

Skew tableaux
and characters
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Skew standard tableaux

Definition
Let λ and µ be Young diagrams with λ ⊂ µ. A skew standard tableau of
shape λ/µ is a filling of λ/µ with integers from 1 to r = |λ| − |µ| with
increasing rows and columns.

Alternatively, it is a sequence µ↗ µ(1) ↗ · · · ↗ µ(r) = λ.
The number of skew standard tableau of shape λ/µ is denoted f λ/µ.

Example

λ = (3, 3, 1) ⊃ µ = (2, 1)

2

1 4

3

↔ (2, 1)↗ (2, 2)↗ (3, 2)↗ (3, 2, 1)↗ (3, 3, 1)
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Skew standard tableaux and shifted Schur functions

Proposition (OO ’98)

If λ ⊇ µ, then
s?µ(λ) =

H(λ)

(|λ| − |µ|)!
f λ/µ.

Proof.
Set r = |λ| − |µ| We iterate r times the Pieri rule

s?µ(x1, . . . , xN)(x1 + · · ·+ xN − |µ|) · · · (x1 + · · ·+ xN − |µ| − r + 1)

=
∑

ν(1),...,ν(r):
µ↗ν(1)↗···↗ν(r)

s?
ν(r)

(x1, . . . , xN)

=
∑

ν: |ν|=|µ|+r

f ν/µs?ν (x1, . . . , xN) .

We evaluate at xi = λi . The only surviving term corresponds to ν = λ.
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Symmetric group characters

Facts from representation theory:
Irreducible representation ρλ of the symmetric groups are indexed by
Young diagrams λ;
We are interested in computing the character χλ(µ) of ρλ on any
permutation in the conjugacy class Cµ. (here, |µ| = |λ|).

Proposition (Branching rule)

If |λ| = |µ|+ 1, we have χλ(µ ∪ (1)) =
∑

ν: ν↗λ
χν(µ).

Iterating the branching rule r times gives: if |λ| = |µ|+ r ,

χλ(µ ∪ (1r )) =
∑

ν(0),...,ν(r−1)

ν(0)↗ν(1)↗···↗λ

χν
(0)

(µ)

=
∑

ν: |ν|=|µ|

f λ/νχν(µ).
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Normalized characters are shifted symmetric (OO ’98)

Multiply previous equality by H(λ)
(|λ|−|µ|)! = (|λ|�|µ|)

dim(ρλ)
, we get

(|λ| � |µ|) χ
λ(µ ∪ (1r ))

dim(ρλ)
=

∑
ν: |ν|=|µ|

(
H(λ)

(|λ|−|µ|)! f
λ/ν
)
χν(µ)

=
∑

ν: |ν|=|µ|

s?ν (λ)χν(µ) = Chµ(λ),

where Chµ =
∑

ν: |ν|=|µ| χ
ν(µ) s?ν is a shifted symmetric function.

Example (characters on transpositions):

Ch(2)(λ) = s?(2) − s?(1,1) =
∑
i≥1

[
(λi − i)2 + λi − i2

]
.

We’ll refer to Chµ as normalized characters: this will be our second favorite
basis of Λ?.
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Vanishing characterization of normalized characters

Reminder: Chµ =
∑

ν: |ν|=|µ| χ
ν(µ) s?ν .

Proposition (F., Śniady, 2015)

Chµ is the unique shifted symmetric function F of degree at most |µ| such
that

1 F (λ) = 0 if |λ| < |µ|;
2 The top-degree component of F is pµ.

Proof.
Easy to check that Chµ fulfills 1. and 2. from Chµ =

∑
ν: |ν|=|µ| χ

ν(µ) s?ν .

Uniqueness: if F1 and F2 are two such functions, then F1 − F2 has degree
at most |µ| − 1 and vanishes on all diagrams of size |µ| − 1.
⇒ F1 − F2 = 0.
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Vanishing characterization of normalized characters

Reminder: Chµ =
∑

ν: |ν|=|µ| χ
ν(µ) s?ν .

Proposition (F., Śniady, 2015)

Chµ is the unique shifted symmetric function F of degree at most |µ| such
that

1 F (λ) = 0 if |λ| < |µ|;
2 The top-degree component of F is pµ.

Examples
The two following formulas hold since their RHS fulfills 1. and 2.:

Ch(2)(λ) =
∑

i≥1

[
(λi − i)2 + λi − i2

]
.

Ch(3)(λ) =
∑

i≥1

[
(λi − i)3 − λi + i3

]
− 3

∑
i<j

(λi + 1)λj .
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Transition

Multiplications tables
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Multiplication tables

Question
Can we understand the multiplication tables of our favorite bases?

s?µ s
?
ν =

∑
ρ:|ρ|≤|µ|+|ν|

cρµ,νs
?
ρ

Chµ Chν =
∑

ρ:|ρ|≤|µ|+|ν|

gρµ,ν Chρ

Are cρµ,ν and gρµ,ν integers? nonnegative? Do they have a combinatorial
interpretation?

Note: when |ρ| = |µ|+ |ν|, then cρµ,ν is a Littlewood-Richardson coefficient
(but cρµ,ν is defined more generally when |ρ| < |µ|+ |ν|).
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Shifted Littlewood-Richardson coefficients

s?µ s
?
ν =

∑
ρ:|ρ|≤|µ|+|ν|

cρµ,νs
?
ρ (2)

An easy proposition
1 cρµ,ν = 0 if ρ 6⊇ µ or ρ 6⊇ ν;
2 cνµ,ν = s?µ(ν).

Proof.
1 If λ 6⊇ µ or λ 6⊇ ν, the LHS of (2) evaluated in λ vanishes (vanishing

theorem). The same argument as in the uniqueness proof implies 1.
2 We evaluated (2) in λ := ν. Only summands with ρ ⊆ ν survive.

Combining with 1., only summand ρ = ν survives and the factor s?ν (ν)
simplifies.
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Shifted Littlewood-Richardson coefficients

Manipulating further the vanishing theorem, one can prove

Proposition (Molev-Sagan ’99)

cρµ,ν =
1

|ρ| − |ν|

∑
ν+↖ν

cρµ,ν+ −
∑
ρ−↗ρ

cρ
−
µ,ν


Allows to compute all cρµ,ν by induction on |ρ| − |ν| (µ being fixed).

Next slide: combinatorial formula for cρµ,ν .
Proof strategy: show that it satisfies the same induction relation.
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Shifted Littlewood-Richardson coefficients

Theorem (Molev-Sagan, ’99, Molev ’09)

cρµ,ν =
∑
T ,R

wt(T ,R),

T: reverse semi-standard tableau with
barred entries

3̄ 3̄ 1 1̄

2 1̄

1̄

R: sequence

ν ↗ ν(1) · · · ↗ ν(r) = ρ.

(The barred entries of T indicate in
which row is the box ν(i+1)/ν(i), so
that R is in fact determined by T .)

wt(T ,R) :=
∏

� unbarred

[
ν
(k)
T (�) − c(�)

]
.

We do not explain the rule to determine k in ν(k)T (�).
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Shifted Littlewood-Richardson coefficients

Theorem (Molev-Sagan, ’99, Molev ’09)

cρµ,ν =
∑
T ,R

wt(T ,R),

T: reverse semi-standard tableau with
barred entries

3̄ 3̄ 1 1̄

2 1̄

1̄

R: sequence

ν ↗ ν(1) · · · ↗ ν(r) = ρ.

(The barred entries of T indicate in
which row is the box ν(i+1)/ν(i), so
that R is in fact determined by T .)

wt(T ,R) :=
∏

� unbarred

[
ν
(k)
T (�) − c(�)

]
.

all barred entries → combinatorial rule for usual LR coefficients.
no barred entries → combinatorial formula for s∗µ(x1, . . . , xN).
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Shifted Littlewood-Richardson coefficients

Theorem (Molev-Sagan, ’99, Molev ’09)
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that R is in fact determined by T .)

wt(T ,R) :=
∏

� unbarred

[
ν
(k)
T (�) − c(�)

]
.

If ν(k)T (�) − c(�) < 0 for some unbarred box � in some tableau T , then it
vanishes for another unbarred box in the same tableau. ⇒ cρµ,ν ∈ N≥0.
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Multiplication table of Chµ (Ivanov-Kerov, ’99)

Observation (on an example):

Ch(2)(λ) = n(n − 1)
χλ(2, 1n−2)

dim(ρλ)
=

1
dim(ρλ)

tr

ρλ
 ∑

1≤i 6=j≤n
(i , j)

 .

But ρλ
(∑

1≤i 6=j≤n(i , j)
)

= const idVλ (Schur’s lemma),

so Ch(2)(λ) is simply the eigenvalue of C`(2) :=
∑

1≤i<j≤n(i , j) on ρλ.

Conclusion: in general, define C`µ =
∑

1≤a1,...,a|µ|≤n

distinct

(a1 · · · aµ1) · · ·

Then the multiplication table of Chµ is the same as C`µ.

→ It has nonnegative integer coefficients and is related to the
multiplication table of the center of the symmetric group algebra
(computing the latter is a widely studied problem!)
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χλ(2, 1n−2)

dim(ρλ)
=

1
dim(ρλ)

tr

ρλ
 ∑

1≤i 6=j≤n
(i , j)

 .

But ρλ
(∑

1≤i 6=j≤n(i , j)
)

= const idVλ (Schur’s lemma),

so Ch(2)(λ) is simply the eigenvalue of C`(2) :=
∑

1≤i<j≤n(i , j) on ρλ.

Conclusion: in general, define C`µ =
∑

1≤a1,...,a|µ|≤n

distinct

(a1 · · · aµ1) · · ·

Then the multiplication table of Chµ is the same as C`µ.

→ It has nonnegative integer coefficients and is related to the
multiplication table of the center of the symmetric group algebra
(computing the latter is a widely studied problem!)
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Shifted symmetric functions Multiplication tables

Multiplication table of Chµ (an example)

C`(2) · C`(2) =
∑

1≤i ,j≤n
i 6=j

(i j) ·
∑

1≤k,l≤n
k 6=l

(k l).

This looks similar to C`(2,2), except that the indices (i , j , k , l) may not be
disjoint.

→ We split the sum depending on which indices are equal. We get

C`(2) · C`(2) =
∑

i ,j ,k,l distinct

(i j)(k l)

+ 4
∑

i ,j ,l distinct

(i l j) + 2
∑
i 6=j

(i)(j)

= C`(2,2) + 4C`(3) + 2C`(1,1).

Thus Ch2
(2) = Ch(2,2) +4Ch(3) +2Ch(1,1).
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Shifted symmetric functions Conclusion

Conclusion

We have seen

Two nice bases of the shifted symmetric function ring: shifted Schur
functions s?µ and normalized characters Chµ;

Vanishing characterization theorems for these two bases and several
applications for shifted Schur functions;

That the multiplication tables of these two bases contain nonnegative
coefficients which provide information on

Littlewood-Richardson coefficients;
multiplication table of the center of the symmetric group algebra.

Tomorrow: combinatorial formulas for these bases.
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