Shifted symmetric functions I: the vanishing property, skew Young diagrams and symmetric group characters

Valentin Féray

Institut für Mathematik, Universität Zürich

Séminaire Lotharingien de Combinatoire Bertinoro, Italy, Sept. 11th-12th-13th

Content of the lectures

Main topic: shifted symmetric functions, an analogue of symmetric functions.

• unlike symmetric functions, we will evaluate shifted symmetric functions on the parts of a partition:

Content of the lectures

Main topic: shifted symmetric functions, an analogue of symmetric functions.

- unlike symmetric functions, we will evaluate shifted symmetric functions on the parts of a partition:
 - interesting (and powerful) vanishing results;
 - link with representation theory;
 - new kind of expansions with nice combinatorics (e.g. in multirectangular coordinates, lecture 2).

Content of the lectures

Main topic: shifted symmetric functions, an analogue of symmetric functions.

- unlike symmetric functions, we will evaluate shifted symmetric functions on the parts of a partition:
 - interesting (and powerful) vanishing results;
 - link with representation theory;
 - new kind of expansions with nice combinatorics (e.g. in multirectangular coordinates, lecture 2).
- nice extension with Jack or Macdonald parameters with many open problems (lecture 3).

Shifted symmetric function: definition

Definition

A polynomial $f(x_1, \ldots, x_N)$ is shifted symmetric if it is symmetric in $x_1 - 1$, $x_2 - 2, \ldots, x_N - N$.

Example: $p_k^*(x_1,...,x_N) = \sum_{i=1}^N (x_i - i)^k$.

Shifted symmetric function: definition

Definition

A polynomial $f(x_1, \ldots, x_N)$ is shifted symmetric if it is symmetric in $x_1 - 1$, $x_2 - 2, \ldots, x_N - N$.

Example:
$$p_k^*(x_1,...,x_N) = \sum_{i=1}^N (x_i - i)^k$$
.

Shifted symmetric function: sequence $f_N(x_1, ..., x_N)$ of shifted symmetric polynomials with

$$f_{N+1}(x_1, \dots, x_N, 0) = f_N(x_1, \dots, x_N).$$

Example: $p_k^{\star} = \sum_{i \ge 1} [(x_i - i)^k - (-i)^k].$

Shifted Schur functions (Okounkov, Olshanski, '98)

Notation:
$$\mu = (\mu_1 \ge \cdots \ge \mu_\ell)$$
 partition.
 $(x \downarrow k) := x(x-1) \dots (x-k+1);$

Definition (Shifted Schur function s^{\star}_{μ})

$$s^{\star}_{\mu}(x_1,\ldots,x_N) = rac{\det(x_i+N-i\mid \mu_j+N-j)}{\det(x_i+N-i\mid N-j)}$$

Example:

$$s_{(2,1)}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2 x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 - x_1 x_2 - x_1 x_3 + x_2^2 - x_2 x_3 + 2 x_3^2 - 2 x_2 - 6 x_3$$

Shifted Schur functions

Shifted Schur functions (Okounkov, Olshanski, '98)

Notation:
$$\mu = (\mu_1 \ge \cdots \ge \mu_\ell)$$
 partition.
 $(x \downarrow k) := x(x-1) \dots (x-k+1);$

Definition (Shifted Schur function s^{\star}_{μ})

$$s^{\star}_{\mu}(x_1,\ldots,x_N) = rac{\det(x_i+N-i\mid \mu_j+N-j)}{\det(x_i+N-i\mid N-j)}$$

Example:

$$s_{(2,1)}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2 x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2 - x_1 x_2 - x_1 x_3 + x_2^2 - x_2 x_3 + 2 x_3^2 - 2 x_2 - 6 x_3$$

• Top degree term of s_{μ}^{\star} is the standard Schur function s_{μ} .

• s^{\star}_{μ} is our first favorite basis of the shifted symmetric function ring Λ^{\star} .

Shifted symmetric functions I

Transition

The vanishing theorem and some applications

If λ is a partition (or Young diagram) of length ℓ and F a shifted symmetric function, we denote

 $F(\lambda) := F(\lambda_1, \ldots, \lambda_\ell).$

Easy: a shifted symmetric function is determined by its values on Young diagrams.

 Λ^* : subalgebra of $\mathcal{F}(\mathcal{Y}, \mathbb{C})$ (functions on Young diagrams).

If λ is a partition (or Young diagram) of length ℓ and F a shifted symmetric function, we denote

 $F(\lambda) := F(\lambda_1, \ldots, \lambda_\ell).$

Easy: a shifted symmetric function is determined by its values on Young diagrams.

 Λ^* : subalgebra of $\mathcal{F}(\mathcal{Y}, \mathbb{C})$ (functions on Young diagrams).

Theorem (Vanishing properties of s^{\star}_{μ} (OO '98))

Vanishing characterization s^{\star}_{μ} is the unique shifted symmetric function of degree at most $|\mu|$ such that $s^{\star}_{\mu}(\lambda) = \delta_{\lambda,\mu}H(\lambda)$, where $H(\lambda)$ is the hook product of λ .

If λ is a partition (or Young diagram) of length ℓ and F a shifted symmetric function, we denote

 $F(\lambda) := F(\lambda_1, \ldots, \lambda_\ell).$

Easy: a shifted symmetric function is determined by its values on Young diagrams.

 Λ^* : subalgebra of $\mathcal{F}(\mathcal{Y}, \mathbb{C})$ (functions on Young diagrams).

Theorem (Vanishing properties of s^{\star}_{μ} (OO '98))

Vanishing characterization s^{\star}_{μ} is the unique shifted symmetric function of degree at most $|\mu|$ such that $s^{\star}_{\mu}(\lambda) = \delta_{\lambda,\mu}H(\lambda)$, where $H(\lambda)$ is the hook product of λ .

Extra vanishing property Moreover, $s^{\star}_{\mu}(\lambda) = 0$, unless $\lambda \supseteq \mu$.

The vanishing characterization

Proof of the extra-vanishing property.

By definition,
$$s^{\star}_{\mu}(\lambda) = \frac{\det(\lambda_i + N - i \mid \mu_j + N - j)}{\det(\lambda_i + N - i \mid N - j)}$$
.

Call
$$M_{i,j} = (\lambda_i + N - i \mid \mu_j + N - j)$$
.
If $\lambda_j < \mu_j$ for some j , then $M_{j,j} = 0$,

The vanishing characterization

Proof of the extra-vanishing property.

By definition,
$$s^{\star}_{\mu}(\lambda) = rac{\det(\lambda_i + N - i \mid \mu_j + N - j)}{\det(\lambda_i + N - i \mid N - j)}.$$

Call $M_{i,j} = (\lambda_i + N - i \mid \mu_j + N - j).$ If $\lambda_i < \mu_i$ for some *j*, then $M_{i,i} = 0$, but also all the entries in the bottom left corner.

The vanishing characterization

Proof of the extra-vanishing property.

By definition,
$$s^{\star}_{\mu}(\lambda) = \frac{\det(\lambda_i + N - i \mid \mu_j + N - j)}{\det(\lambda_i + N - i \mid N - j)}.$$

Call $M_{i,i} = (\lambda_i + N - i \downarrow \mu_i + N - j).$ If $\lambda_i < \mu_i$ for some *j*, then $M_{i,j} = 0$, but also all the entries in the bottom left corner. $\Rightarrow \det(M_{i,i}) = 0.$

The vanishing characterization

Proof of the extra-vanishing property.

By definition,
$$s^{\star}_{\mu}(\lambda) = \frac{\det(\lambda_i + N - i \mid \mu_j + N - j)}{\det(\lambda_i + N - i \mid N - j)}.$$

Call $M_{i,i} = (\lambda_i + N - i \downarrow \mu_i + N - j).$ If $\lambda_i < \mu_i$ for some *j*, then $M_{i,i} = 0$, but also all the entries in the bottom left corner. 1.(14)

$$\Rightarrow \det(M_{i,j}) = 0.$$

Therefore $s^{\star}_{\mu}(\lambda) = 0$ as soon as $\lambda \not\supseteq \mu$.

 $\left(\begin{array}{cccc}
. & & & \\
0 & 0 & & \\
0 & 0 & & \\
0 & 0 & & \\
\end{array}\right)$

The vanishing characterization

Proof of the extra-vanishing property.

By definition,
$$s_{\mu}^{\star}(\lambda) = \frac{\det(\lambda_i + N - i|\mu_j + N - j)}{\det(\lambda_i + N - i|N - j)}$$
.
Call $M_{i,j} = (\lambda_i + N - i \mid \mu_j + N - j)$.
If $\lambda_j < \mu_j$ for some j , then $M_{j,j} = 0$,
but also all the entries in the bottom left corner.
 $\Rightarrow \det(M_{i,j}) = 0$.
Therefore $s_{\mu}^{\star}(\lambda) = 0$ as soon as $\lambda \not\supseteq \mu$.

To compute $s^{\star}_{\mu}(\mu)$, we get a triangular matrix, the determinant is the product of diagonal entries and we recognize the hook product. (Exercise!)

Proof of uniqueness.

Let F be a shifted symmetric function of degree at most $|\mu|$. Assume that for each λ of size at most μ ,

$$F(\lambda) = s^{\star}_{\mu}(\lambda) = \delta_{\lambda,\mu}H(\lambda).$$

Proof of uniqueness.

Let F be a shifted symmetric function of degree at most $|\mu|$. Assume that for each λ of size at most μ ,

$$F(\lambda) = s^{\star}_{\mu}(\lambda) = \delta_{\lambda,\mu}H(\lambda).$$

Write $G := F - s_{\mu}^{\star}$ as linear combination of s_{ν}^{\star} :

$${\mathcal G} = \sum_{
u: |
u| \leq |\mu|} c_
u \, {\mathbf s}^\star_
u.$$

(1)

Proof of uniqueness.

Let F be a shifted symmetric function of degree at most $|\mu|$. Assume that for each λ of size at most μ ,

$$F(\lambda) = s^{\star}_{\mu}(\lambda) = \delta_{\lambda,\mu}H(\lambda).$$

Write $G := F - s_{\mu}^{\star}$ as linear combination of s_{ν}^{\star} :

$$G = \sum_{
u: |
u| \le |
\mu|} c_
u \, s^\star_
u.$$
 (1)

Assume $G \neq 0$, and choose ρ minimal for inclusion such that $c_{\rho} \neq 0$. We evaluate (1) in ρ :

$$0=G(
ho)=\sum_{
u:|
u|\leq |\mu|}c_{
u}\,s_{
u}^{\star}(
ho)=c_{
ho}\,s_{
ho}^{\star}(
ho)
eq 0.$$

Proof of uniqueness.

Let F be a shifted symmetric function of degree at most $|\mu|$. Assume that for each λ of size at most μ ,

$$F(\lambda) = s^{\star}_{\mu}(\lambda) = \delta_{\lambda,\mu}H(\lambda).$$

Write $G := F - s_{\mu}^{\star}$ as linear combination of s_{ν}^{\star} :

$$G = \sum_{
u: |
u| \le |
\mu|} c_
u \, s^\star_
u.$$
 (1)

Assume $G \neq 0$, and choose ρ minimal for inclusion such that $c_{\rho} \neq 0$. We evaluate (1) in ρ :

$$0=G(
ho)=\sum_{
u:|
u|\leq|\mu|}c_{
u}\,s^{\star}_{
u}(
ho)=c_{
ho}\,s^{\star}_{
ho}(
ho)
eq 0.$$

Contradiction $\Rightarrow G = 0$, i.e. $F = s_{\mu}^{\star}$.

Application 1: Pieri rule for shifted Schur functions

Proposition (OO '98)

$$s_{\mu}^{\star}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|)=\sum_{\nu:\nu \nwarrow \mu}s_{\nu}^{\star}(x_1,\ldots,x_N),$$

where $\nu \nwarrow \mu$ means $\nu \supset \mu$ and $|\nu| = |\mu| + 1$.

Application 1: Pieri rule for shifted Schur functions

Proposition (OO '98)

$$s^{\star}_{\mu}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|)=\sum_{\nu:\,\nu\nearrow\mu}s^{\star}_{\nu}(x_1,\ldots,x_N),$$

where $\nu \nwarrow \mu$ means $\nu \supset \mu$ and $|\nu| = |\mu| + 1$.

Sketch of proof.

Since the LHS is shifted symmetric of degree $|\mu|+1,$ we have

$$s^{\star}_{\mu}(x_1,\ldots,x_N)\left(x_1+\cdots+x_N-|\mu|
ight)=\sum_{
u\colon|
u|\leq|\mu|+1}c_{
u}s^{\star}_{
u}(x_1,\ldots,x_N),$$

for some constants c_{ν} .

Application 1: Pieri rule for shifted Schur functions

Proposition (OO '98)

$$s^{\star}_{\mu}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|)=\sum_{\nu:\,\nu\nearrow\mu}s^{\star}_{\nu}(x_1,\ldots,x_N),$$

where $\nu \nwarrow \mu$ means $\nu \supset \mu$ and $|\nu| = |\mu| + 1$.

Sketch of proof.

Since the LHS is shifted symmetric of degree $|\mu|+1,$ we have

$$s^{\star}_{\mu}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|) = \sum_{\nu: |\nu| \leq |\mu|+1} c_{\nu}s^{\star}_{\nu}(x_1,\ldots,x_N),$$

for some constants c_{ν} .

• LHS vanishes for $x_i = \lambda_i$ and $|\lambda| \le |\mu| \Rightarrow c_{\nu} = 0$ if $|\nu| \le |\mu|$. (Same argument as to prove uniqueness.)

Application 1: Pieri rule for shifted Schur functions

Proposition (OO '98)

$$s^{\star}_{\mu}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|)=\sum_{\nu:\,\nu\nearrow\mu}s^{\star}_{\nu}(x_1,\ldots,x_N),$$

where $\nu \nwarrow \mu$ means $\nu \supset \mu$ and $|\nu| = |\mu| + 1$.

Sketch of proof.

Since the LHS is shifted symmetric of degree $|\mu|+1,$ we have

$$s^{\star}_{\mu}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|) = \sum_{\nu: |\nu| \leq |\mu|+1} c_{\nu}s^{\star}_{\nu}(x_1,\ldots,x_N),$$

for some constants c_{ν} .

- LHS vanishes for $x_i = \lambda_i$ and $|\lambda| \le |\mu| \Rightarrow c_{\nu} = 0$ if $|\nu| \le |\mu|$. (Same argument as to prove uniqueness.)
- Look at top-degree term (and use Pieri rule for usual Schur functions): \Rightarrow for $|\nu| = |\mu| + 1$, we have $c_{\nu} = \delta_{\nu \nwarrow \mu}$.

Application 2: a combinatorial formula for s_{μ}^{\star}

Theorem (OO'98)

$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{T} \prod_{\Box \in T} (x_{T(\Box)} - c(\Box)).$$

where the sum runs over reverse^a semi-std Young tableaux T, and if $\Box = (i, j)$, then $c(\Box) = j - i$ (called content).

^afilling with decreasing columns and weakly decreasing rows

Example:

$$s_{(2,1)}^{\star}(x_1, x_2) = x_2 (x_2 - 1) (x_1 + 1) + x_2 (x_1 - 1) (x_1 + 1)$$

$$2 2 1$$

$$1$$

$$2 1$$

$$1$$

Theorem (OO'98)

$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{T} \prod_{\Box \in T} (x_{T(\Box)} - c(\Box)).$$

where the sum runs over reverse^a semi-std Young tableaux T, and if $\Box = (i, j)$, then $c(\Box) = j - i$ (called content).

^afilling with decreasing columns and weakly decreasing rows

- extends the classical combinatorial interpretation of Schur function (that we recover by taking top degree terms);
- completely independent proof, via the vanishing theorem (see next slide).

To prove:
$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{\mathcal{T}} \prod_{\Box \in \mathcal{T}} (x_{\mathcal{T}(\Box)} - c(\Box)).$$

Sketch of proof via the vanishing characterization.

1 RHS is shifted symmetric:

To prove:
$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{T} \prod_{\Box \in T} (x_{T(\Box)} - c(\Box)).$$

Sketch of proof via the vanishing characterization.

RHS is shifted symmetric:

it is sufficient to check that it is symmetric in $x_i - i$ and $x_{i+1} - i - 1$. Thus we can focus on the boxes containing i and j := i + 1 in the tableau and reduce the general case to $\mu = (1, 1)$ and $\mu = (k)$. Then it's easy.

To prove:
$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{\mathcal{T}} \prod_{\Box \in \mathcal{T}} (x_{\mathcal{T}(\Box)} - c(\Box)).$$

Sketch of proof via the vanishing characterization.

1 RHS is shifted symmetric: OK.

it is sufficient to check that it is symmetric in $x_i - i$ and $x_{i+1} - i - 1$. Thus we can focus on the boxes containing *i* and j := i + 1 in the tableau and reduce the general case to $\mu = (1, 1)$ and $\mu = (k)$. Then it's easy.

The compatibility $RHS(x_1, ..., x_N, 0) = RHS(x_1, ..., x_N)$ is straigthforward.

To prove:
$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{\mathcal{T}} \prod_{\Box \in \mathcal{T}} (x_{\mathcal{T}(\Box)} - c(\Box)).$$

Sketch of proof via the vanishing characterization.

1 RHS is shifted symmetric: OK.

RHS |_{x_i:=λ_i} = 0 if λ ⊉ μ.
 We will prove: for each *T*, some factor

$$a_{\Box} := x_{T(\Box)} - c(\Box)$$
 vanishes.

To prove:
$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{\mathcal{T}} \prod_{\Box \in \mathcal{T}} (x_{\mathcal{T}(\Box)} - c(\Box)).$$

Sketch of proof via the vanishing characterization.

RHS is shifted symmetric: OK.

2
$$\operatorname{RHS}|_{x_i:=\lambda_i} = 0 \text{ if } \lambda \not\supseteq \mu.$$

We will prove: for each T, some factor $a_{\Box} := x_{T(\Box)} - c(\Box)$ vanishes.

- $a_{(1,1)} > 0;$
- $\lambda_i' < \mu_i' \; \Rightarrow \; \textbf{\textit{a}}_{(1,i)} \leq \textbf{0};$
- $(a_{(1,k)})_{k\geq 1}$ can only decrease by 1 at each step.

To prove:
$$s^{\star}_{\mu}(x_1,\ldots,x_N) = \sum_{T} \prod_{\Box \in T} (x_{T(\Box)} - c(\Box)).$$

Sketch of proof via the vanishing characterization.

RHS is shifted symmetric: OK.

2
$$\operatorname{RHS}|_{x_i:=\lambda_i} = 0$$
 if $\lambda \not\supseteq \mu$.

We will prove: for each T, some factor $a_{\Box} := x_{T(\Box)} - c(\Box)$ vanishes.

- $a_{(1,1)} > 0;$
- $\lambda_i' < \mu_i' \; \Rightarrow \; \textbf{a}_{(1,i)} \leq \textbf{0};$
- $(a_{(1,k)})_{k\geq 1}$ can only decrease by 1 at each step.
- **③** Normalization: check the coefficients of $x_1^{\lambda_1} \dots x_N^{\lambda_N}$.

Transition

Skew tableaux and characters

Skew standard tableaux

Definition

Let λ and μ be Young diagrams with $\lambda \subset \mu$. A skew standard tableau of shape λ/μ is a filling of λ/μ with integers from 1 to $r = |\lambda| - |\mu|$ with increasing rows and columns.

Example

$$\lambda = (3,3,1) \supset \mu = (2,1)$$

Skew standard tableaux

Definition

Let λ and μ be Young diagrams with $\lambda \subset \mu$. A skew standard tableau of shape λ/μ is a filling of λ/μ with integers from 1 to $r = |\lambda| - |\mu|$ with increasing rows and columns.

Alternatively, it is a sequence $\mu \nearrow \mu^{(1)} \nearrow \cdots \nearrow \mu^{(r)} = \lambda$.

Example

$$\lambda = (3,3,1) \supset \mu = (2,1)$$

$$2$$

$$1 \quad 4 \qquad \leftrightarrow \qquad (2,1) \nearrow (2,2) \nearrow (3,2) \nearrow (3,2,1) \nearrow (3,3,1)$$

$$3$$

Skew standard tableaux

Definition

Let λ and μ be Young diagrams with $\lambda \subset \mu$. A skew standard tableau of shape λ/μ is a filling of λ/μ with integers from 1 to $r = |\lambda| - |\mu|$ with increasing rows and columns.

Alternatively, it is a sequence $\mu \nearrow \mu^{(1)} \nearrow \cdots \nearrow \mu^{(r)} = \lambda$. The number of skew standard tableau of shape λ/μ is denoted $f^{\lambda/\mu}$.

Example

$$\lambda = (3, 3, 1) \supset \mu = (2, 1)$$

$$2$$

$$1 \quad 4 \quad \leftrightarrow \quad (2, 1) \nearrow (2, 2) \nearrow (3, 2) \nearrow (3, 2, 1) \nearrow (3, 3, 1)$$

$$3$$

Proposition (OO '98)

If $\lambda \supseteq \mu$, then

$$s^{\star}_{\mu}(\lambda) = rac{H(\lambda)}{(|\lambda| - |\mu|)!} \, f^{\lambda/\mu}.$$

Proposition (OO '98)

If $\lambda \supseteq \mu$, then

$$s^{\star}_{\mu}(\lambda) = rac{H(\lambda)}{(|\lambda|-|\mu|)!}\,f^{\lambda/\mu}.$$

Proof.

Set $r = |\lambda| - |\mu|$ We iterate r times the Pieri rule

$$s^{\star}_{\mu}(x_1,\ldots,x_N)(x_1+\cdots+x_N-|\mu|)\cdots(x_1+\cdots+x_N-|\mu|-r+1) = \sum_{\substack{
u(1),\ldots,
u(r):\\
\mu
eq
u(1)
eq \dots,
eq
u(r)}} s^{\star}_{
u(r)}(x_1,\ldots,x_N)$$

Proposition (OO '98)

If $\lambda \supseteq \mu$, then

$$s^{\star}_{\mu}(\lambda) = rac{H(\lambda)}{(|\lambda|-|\mu|)!}\,f^{\lambda/\mu}.$$

Proof.

Set $r = |\lambda| - |\mu|$ We iterate r times the Pieri rule

$$s^{\star}_{\mu}(x_{1},...,x_{N})(x_{1}+\cdots+x_{N}-|\mu|)\cdots(x_{1}+\cdots+x_{N}-|\mu|-r+1) = \sum_{\substack{
u(1),...,
u(r):\\
\mu
eq
u(1),\dots,
u(r):\\
\mu
eq
u(1),\dots,
u(r)}} s^{\star}_{
u(r)}(x_{1},...,x_{N}) = \sum_{\substack{
u:|
u|=|\mu|+r}} f^{
u/\mu}s^{\star}_{
u}(x_{1},\dots,x_{N}).$$

Proposition (OO '98)

If $\lambda \supseteq \mu$, then

$$s^{\star}_{\mu}(\lambda) = rac{H(\lambda)}{(|\lambda|-|\mu|)!}\,f^{\lambda/\mu}.$$

Proof.

Set $r = |\lambda| - |\mu|$ We iterate r times the Pieri rule

$$s^{\star}_{\mu}(x_1, \dots, x_N)(x_1 + \dots + x_N - |\mu|) \cdots (x_1 + \dots + x_N - |\mu| - r + 1) = \sum_{\substack{
u^{(1)}, \dots,
u^{(r)}: \\ \mu
earrow
u^{(1)}, \dots,
earrow
u^{(r)}}} s^{\star}_{
u^{(r)}}(x_1, \dots, x_N) = \sum_{\substack{
u: |
u| = |\mu| + r}} f^{
u/\mu} s^{\star}_{
u}(x_1, \dots, x_N).$$

We evaluate at $x_i = \lambda_i$. The only surviving term corresponds to $\nu = \lambda$.

Facts from representation theory:

- Irreducible representation ρ^{λ} of the symmetric groups are indexed by Young diagrams λ ;
- We are interested in computing the character $\chi^{\lambda}(\mu)$ of ρ^{λ} on any permutation in the conjugacy class C_{μ} . (here, $|\mu| = |\lambda|$).

Facts from representation theory:

- Irreducible representation ρ^{λ} of the symmetric groups are indexed by Young diagrams λ ;
- We are interested in computing the character $\chi^{\lambda}(\mu)$ of ρ^{λ} on any permutation in the conjugacy class C_{μ} . (here, $|\mu| = |\lambda|$).

Proposition (Branching rule)

If
$$|\lambda| = |\mu| + 1$$
, we have $\chi^{\lambda}(\mu \cup (1)) = \sum_{\nu: \nu \nearrow \lambda} \chi^{\nu}(\mu)$.

Facts from representation theory:

- Irreducible representation ρ^{λ} of the symmetric groups are indexed by Young diagrams λ ;
- We are interested in computing the character $\chi^{\lambda}(\mu)$ of ρ^{λ} on any permutation in the conjugacy class C_{μ} . (here, $|\mu| = |\lambda|$).

Proposition (Branching rule)

If
$$|\lambda| = |\mu| + 1$$
, we have $\chi^{\lambda}(\mu \cup (1)) = \sum_{\nu: \nu \nearrow \lambda} \chi^{\nu}(\mu).$

Iterating the branching rule r times gives: if $|\lambda| = |\mu| + r$,

$$\chi^{\lambda}(\mu\cup(1^r))=\sum_{\substack{
u^{(0)},\dots,
u^{(r-1)}\
u^{(0)}
earrow
u^{(1)}
earrow
u^{(\lambda)}}}\chi^{
u^{(0)}}(\mu)$$

Facts from representation theory:

- Irreducible representation ρ^{λ} of the symmetric groups are indexed by Young diagrams λ ;
- We are interested in computing the character $\chi^{\lambda}(\mu)$ of ρ^{λ} on any permutation in the conjugacy class C_{μ} . (here, $|\mu| = |\lambda|$).

Proposition (Branching rule)

If
$$|\lambda| = |\mu| + 1$$
, we have $\chi^{\lambda}(\mu \cup (1)) = \sum_{\nu: \, \nu
earrow \lambda} \chi^{
u}(\mu).$

Iterating the branching rule r times gives: if $|\lambda| = |\mu| + r$,

$$\chi^{\lambda}(\mu \cup (1^{r})) = \sum_{\nu^{(0)}, \dots, \nu^{(r-1)} \atop \nu^{(0)} \nearrow^{\nu^{(1)}} } \chi^{\nu^{(0)}}(\mu) = \sum_{\nu : |\nu| = |\mu|} f^{\lambda/\nu} \chi^{\nu}(\mu).$$

Multiply previous equality by $\frac{H(\lambda)}{(|\lambda|-|\mu|)!} = \frac{(|\lambda| \lfloor |\mu|)}{\dim(\rho^{\lambda})}$, we get 11 $(|\lambda$ $'(\mu)$

$$|\lambda| \downarrow |\mu|) \, rac{\chi^{\lambda}(\mu \cup (1'))}{\dim(
ho^{\lambda})} = \sum_{
u : |
u| = |\mu|} \left(rac{H(\lambda)}{(|\lambda| - |\mu|)!} f^{\lambda/
u}
ight) \chi^{
u}$$

Multiply previous equality by $\frac{H(\lambda)}{(|\lambda| - |\mu|)!} = \frac{(|\lambda| \downarrow |\mu|)}{\dim(\rho^{\lambda})}, \text{ we get}$ $(|\lambda| \downarrow |\mu|) \frac{\chi^{\lambda}(\mu \cup (1^{r}))}{\dim(\rho^{\lambda})} = \sum_{\nu: |\nu| = |\mu|} \left(\frac{H(\lambda)}{(|\lambda| - |\mu|)!} f^{\lambda/\nu}\right) \chi^{\nu}(\mu)$ $= \sum_{\nu: |\nu| = |\mu|} s_{\nu}^{\star}(\lambda) \chi^{\nu}(\mu)$

Multiply previous equality by $\frac{H(\lambda)}{(|\lambda|-|\mu|)!} = \frac{(|\lambda| \lfloor |\mu|)}{\dim(\rho^{\lambda})}$, we get

$$(|\lambda| \downarrow |\mu|) \frac{\chi^{\lambda}(\mu \cup (1^{r}))}{\dim(\rho^{\lambda})} = \sum_{\nu : |\nu| = |\mu|} \left(\frac{H(\lambda)}{(|\lambda| - |\mu|)!} f^{\lambda/\nu} \right) \chi^{\nu}(\mu)$$
$$= \sum_{\nu : |\nu| = |\mu|} s_{\nu}^{\star}(\lambda) \chi^{\nu}(\mu) = \mathsf{Ch}_{\mu}(\lambda),$$

where $Ch_{\mu} = \sum_{\nu: |\nu| = |\mu|} \chi^{\nu}(\mu) s_{\nu}^{\star}$ is a shifted symmetric function.

Example (characters on transpositions):

$$Ch_{(2)}(\lambda) = s^{\star}_{(2)} - s^{\star}_{(1,1)} = \sum_{i \ge 1} \left[(\lambda_i - i)^2 + \lambda_i - i^2 \right].$$

Multiply previous equality by $\frac{H(\lambda)}{(|\lambda|-|\mu|)!} = \frac{(|\lambda| ||\mu|)}{\dim(\rho^{\lambda})}$, we get

$$\begin{aligned} (|\lambda| \downarrow |\mu|) \, \frac{\chi^{\lambda}(\mu \cup (1^{r}))}{\dim(\rho^{\lambda})} &= \sum_{\nu: \, |\nu| = |\mu|} \left(\frac{H(\lambda)}{(|\lambda| - |\mu|)!} f^{\lambda/\nu} \right) \chi^{\nu}(\mu) \\ &= \sum_{\nu: \, |\nu| = |\mu|} s_{\nu}^{\star}(\lambda) \, \chi^{\nu}(\mu) = \mathsf{Ch}_{\mu}(\lambda), \end{aligned}$$

where $Ch_{\mu} = \sum_{\nu: |\nu| = |\mu|} \chi^{\nu}(\mu) s_{\nu}^{\star}$ is a shifted symmetric function.

Example (characters on transpositions):

$$Ch_{(2)}(\lambda) = s_{(2)}^{\star} - s_{(1,1)}^{\star} = \sum_{i \ge 1} \left[(\lambda_i - i)^2 + \lambda_i - i^2 \right].$$

We'll refer to Ch_{μ} as normalized characters: this will be our second favorite basis of Λ^{\star} .

Vanishing characterization of normalized characters

Reminder:
$$Ch_{\mu} = \sum_{\nu: |\nu| = |\mu|} \chi^{\nu}(\mu) s_{\nu}^{\star}$$
.

Proposition (F., Śniady, 2015)

 Ch_{μ} is the unique shifted symmetric function F of degree at most $|\mu|$ such that

- **1** $F(\lambda) = 0$ if $|\lambda| < |\mu|$;
- **2** The top-degree component of F is p_{μ} .

Vanishing characterization of normalized characters

Reminder:
$$Ch_{\mu} = \sum_{\nu: |\nu| = |\mu|} \chi^{\nu}(\mu) s_{\nu}^{\star}$$
.

Proposition (F., Śniady, 2015)

 Ch_{μ} is the unique shifted symmetric function F of degree at most $|\mu|$ such that

- **1** $F(\lambda) = 0$ if $|\lambda| < |\mu|$;
- **2** The top-degree component of F is p_{μ} .

Proof.

Easy to check that Ch_{μ} fulfills 1. and 2. from $Ch_{\mu} = \sum_{\nu: |\nu| = |\mu|} \chi^{\nu}(\mu) s_{\nu}^{\star}$. Uniqueness: if F_1 and F_2 are two such functions, then $F_1 - F_2$ has degree at most $|\mu| - 1$ and vanishes on all diagrams of size $|\mu| - 1$. $\Rightarrow F_1 - F_2 = 0$.

Vanishing characterization of normalized characters

Reminder:
$$Ch_{\mu} = \sum_{\nu: |\nu| = |\mu|} \chi^{\nu}(\mu) s_{\nu}^{\star}$$
.

Proposition (F., Śniady, 2015)

 Ch_{μ} is the unique shifted symmetric function F of degree at most $|\mu|$ such that

- **1** $F(\lambda) = 0$ if $|\lambda| < |\mu|$;
- **2** The top-degree component of F is p_{μ} .

Examples

The two following formulas hold since their RHS fulfills 1. and 2.:

$$\operatorname{Ch}_{(2)}(\lambda) = \sum_{i \ge 1} \left[(\lambda_i - i)^2 + \lambda_i - i^2 \right].$$

$$Ch_{(3)}(\lambda) = \sum_{i \ge 1} \left[(\lambda_i - i)^3 - \lambda_i + i^3 \right] - 3 \sum_{i < j} (\lambda_i + 1) \lambda_j.$$

Transition

Multiplications tables

Multiplication tables

Question

Can we understand the multiplication tables of our favorite bases?

$$egin{aligned} &s^{\star}_{\mu}\,s^{\star}_{
u} &= \sum_{
ho: |
ho| \leq |\mu| + |
u|} c^{
ho}_{\mu,
u}\,s^{\star}_{
ho} \ & \mathcal{Ch}_{\mu}\,\,\mathcal{Ch}_{
u} &= \sum_{
ho: |
ho| \leq |\mu| + |
u|} g^{
ho}_{\mu,
u}\,\mathcal{Ch}_{
ho} \end{aligned}$$

Are $c^{\rho}_{\mu,\nu}$ and $g^{\rho}_{\mu,\nu}$ integers? nonnegative? Do they have a combinatorial interpretation?

Note: when $|\rho| = |\mu| + |\nu|$, then $c^{\rho}_{\mu,\nu}$ is a Littlewood-Richardson coefficient (but $c^{\rho}_{\mu,\nu}$ is defined more generally when $|\rho| < |\mu| + |\nu|$).

$$s^{\star}_{\mu}s^{\star}_{
u}=\sum_{
ho:|
ho|\leq|\mu|+|
u|}c^{
ho}_{\mu,
u}s^{\star}_{
ho}$$
 (2)

An easy proposition

$$\begin{array}{l} \bullet \quad c^{\rho}_{\mu,\nu} = 0 \text{ if } \rho \not\supseteq \mu \text{ or } \rho \not\supseteq \nu; \\ \bullet \quad c^{\nu}_{\mu,\nu} = s^{\star}_{\mu}(\nu). \end{array}$$

$$s^{\star}_{\mu}s^{\star}_{
u} = \sum_{
ho: |
ho| \le |\mu| + |
u|} c^{
ho}_{\mu,
u}s^{\star}_{
ho}$$
 (2)

An easy proposition

•
$$c^{\rho}_{\mu,\nu} = 0 \text{ if } \rho \not\supseteq \mu \text{ or } \rho \not\supseteq \nu;$$

• $c^{\nu}_{\mu,\nu} = s^{\star}_{\mu}(\nu).$

Proof.

If λ ⊉ µ or λ ⊉ ν, the LHS of (2) evaluated in λ vanishes (vanishing theorem). The same argument as in the uniqueness proof implies 1.

$$s^{\star}_{\mu}s^{\star}_{
u}=\sum_{
ho:|
ho|\leq|\mu|+|
u|}c^{
ho}_{\mu,
u}s^{\star}_{
ho}$$
 (2)

An easy proposition

•
$$c^{\rho}_{\mu,\nu} = 0$$
 if $\rho \not\supseteq \mu$ or $\rho \not\supseteq \nu$;
• $c^{\nu}_{\mu,\nu} = s^{\star}_{\mu}(\nu)$.

Proof.

- If $\lambda \not\supseteq \mu$ or $\lambda \not\supseteq \nu$, the LHS of (2) evaluated in λ vanishes (vanishing theorem). The same argument as in the uniqueness proof implies 1.
- We evaluated (2) in λ := ν. Only summands with ρ ⊆ ν survive. Combining with 1., only summand ρ = ν survives and the factor s^{*}_ν(ν) simplifies.

Manipulating further the vanishing theorem, one can prove

Proposition (Molev-Sagan '99)

$$c^{
ho}_{\mu,
u} = rac{1}{|
ho| - |
u|} \left(\sum_{
u^+ \nwarrow
u} c^{
ho}_{\mu,
u^+} - \sum_{
ho^-
earrow
ho} c^{
ho^-}_{\mu,
u}
ight)$$

Allows to compute all $c^{\rho}_{\mu,\nu}$ by induction on $|\rho| - |\nu|$ (μ being fixed).

Manipulating further the vanishing theorem, one can prove

Proposition (Molev-Sagan '99)

$$c^{
ho}_{\mu,
u} = rac{1}{|
ho| - |
u|} \left(\sum_{
u^+ \nwarrow
u} c^{
ho}_{\mu,
u^+} - \sum_{
ho^-
earrow
ho} c^{
ho^-}_{\mu,
u}
ight)$$

Allows to compute all $c^{\rho}_{\mu,\nu}$ by induction on $|\rho| - |\nu|$ (μ being fixed).

Next slide: combinatorial formula for $c^{\rho}_{\mu,\nu}$. Proof strategy: show that it satisfies the same induction relation.

Theorem (Molev-Sagan, '99, Molev '09)

$$c^{
ho}_{\mu,
u} = \sum_{T,R} \operatorname{wt}(T,R),$$

T: reverse semi-standard tableau with *R*: sequence barred entries

 $\nu \nearrow \nu^{(1)} \cdots \nearrow \nu^{(r)} = \rho.$

(The barred entries of T indicate in which row is the box $\nu^{(i+1)}/\nu^{(i)}$, so that R is in fact determined by T.)

$$\operatorname{wt}(T,R) := \prod_{\Box \text{ unbarred}} \left[\nu_{T(\Box)}^{(k)} - c(\Box) \right].$$

We do not explain the rule to determine k in $\nu_{\mathcal{T}(\Box)}^{(k)}$.

Theorem (Molev-Sagan, '99, Molev '09)

$$c^{
ho}_{\mu,
u} = \sum_{T,R} \operatorname{wt}(T,R),$$

T: reverse semi-standard tableau with *R*: sequence barred entries

 $\nu \nearrow \nu^{(1)} \cdots \nearrow \nu^{(r)} = \rho.$

(The barred entries of T indicate in which row is the box $\nu^{(i+1)}/\nu^{(i)}$, so that R is in fact determined by T.)

wt
$$(T, R) := \prod_{\square \text{ unbarred}} [\nu_{T(\square)}^{(k)} - c(\square)].$$

 $\bullet\,$ all barred entries $\rightarrow\,$ combinatorial rule for usual LR coefficients.

• no barred entries \rightarrow combinatorial formula for $s^*_{\mu}(x_1, \dots, x_N)$.

V. Féray (I-Math, UZH)

Shifted symmetric functions I

SLC, 2017–09 22 / 25

Theorem (Molev-Sagan, '99, Molev '09)

$$c^{
ho}_{\mu,
u} = \sum_{T,R} \operatorname{wt}(T,R),$$

T: reverse semi-standard tableau with *R*: sequence barred entries

 $\nu \nearrow \nu^{(1)} \cdots \nearrow \nu^{(r)} = \rho.$

(The barred entries of T indicate in which row is the box $\nu^{(i+1)}/\nu^{(i)}$, so that R is in fact determined by T.)

$$\operatorname{wt}(T,R) := \prod_{\Box \text{ unbarred}} \left[\nu_{T(\Box)}^{(k)} - c(\Box) \right].$$

If $\nu_{T(\Box)}^{(k)} - c(\Box) < 0$ for some unbarred box \Box in some tableau T, then it vanishes for another unbarred box in the same tableau. $\Rightarrow c_{\mu,\nu}^{\rho} \in \mathbb{N}_{\geq 0}$.

Multiplication table of Ch_{μ} (Ivanov-Kerov, '99)

Multiplication table of Ch_{μ} (Ivanov-Kerov, '99)

Observation (on an example):

$$\mathsf{Ch}_{(2)}(\lambda) = n(n-1)\frac{\chi^{\lambda}(2,1^{n-2})}{\dim(\rho^{\lambda})} = \frac{1}{\dim(\rho^{\lambda})}\operatorname{tr}\left(\rho^{\lambda}\left(\sum_{1\leq i\neq j\leq n}(i,j)\right)\right)$$

But $\rho^{\lambda}\left(\sum_{1 \leq i \neq j \leq n} (i, j)\right) = \text{const id}_{V_{\lambda}}$ (Schur's lemma), so $Ch_{(2)}(\lambda)$ is simply the eigenvalue of $C\ell_{(2)} := \sum_{1 \leq i < j \leq n} (i, j)$ on ρ^{λ} .

Multiplication table of Ch_{μ} (Ivanov-Kerov, '99)

Observation (on an example):

$$\mathsf{Ch}_{(2)}(\lambda) = n(n-1)\frac{\chi^{\lambda}(2,1^{n-2})}{\dim(\rho^{\lambda})} = \frac{1}{\dim(\rho^{\lambda})}\operatorname{tr}\left(\rho^{\lambda}\left(\sum_{1\leq i\neq j\leq n}(i,j)\right)\right)$$

But $\rho^{\lambda}\left(\sum_{1 \leq i \neq j \leq n} (i, j)\right) = \text{const id}_{V_{\lambda}}$ (Schur's lemma), so $Ch_{(2)}(\lambda)$ is simply the eigenvalue of $C\ell_{(2)} := \sum_{1 \leq i < j \leq n} (i, j)$ on ρ^{λ} .

Conclusion: in general, define
$$C\ell_{\mu} = \sum_{\substack{1 \leq a_1, \dots, a_{|\mu|} \leq n \\ distinct}} (a_1 \cdots a_{\mu_1}) \cdots$$

Then the multiplication table of Ch_{μ} is the same as $C\ell_{\mu}$.

 \rightarrow It has nonnegative integer coefficients and is related to the multiplication table of the center of the symmetric group algebra (computing the latter is a widely studied problem!)

V. Féray (I-Math, UZH)

Shifted symmetric functions I

SLC, 2017–09 23 / 25

Multiplication table of Ch_{μ} (an example)

$$C\ell_{(2)} \cdot C\ell_{(2)} = \sum_{\substack{1 \leq i,j \leq n \\ i \neq j}} (i j) \cdot \sum_{\substack{1 \leq k,l \leq n \\ k \neq l}} (k l).$$

This looks similar to $C\ell_{(2,2)}$, except that the indices (i, j, k, l) may not be disjoint.

Multiplication table of Ch_{μ} (an example)

$$C\ell_{(2)} \cdot C\ell_{(2)} = \sum_{\substack{1 \le i,j \le n \\ i \ne j}} (ij) \cdot \sum_{\substack{1 \le k,l \le n \\ k \ne l}} (kl).$$

This looks similar to $C\ell_{(2,2)}$, except that the indices (i, j, k, l) may not be disjoint.

 \rightarrow We split the sum depending on which indices are equal. We get

$$C\ell_{(2)} \cdot C\ell_{(2)} = \sum_{\substack{i,j,k,l \text{ distinct}}} (i \ j)(k \ l) + 4 \sum_{\substack{i,j,l \text{ distinct}}} (i \ l \ j) + 2 \sum_{i \neq j} (i)(j) = C\ell_{(2,2)} + 4C\ell_{(3)} + 2C\ell_{(1,1)}.$$

Thus $Ch_{(2)}^2 = Ch_{(2,2)} + 4Ch_{(3)} + 2Ch_{(1,1)}.$

We have seen

• Two nice bases of the shifted symmetric function ring: shifted Schur functions s^{\star}_{μ} and normalized characters Ch_{μ} ;

We have seen

- Two nice bases of the shifted symmetric function ring: shifted Schur functions s^{*}_μ and normalized characters Ch_μ;
- Vanishing characterization theorems for these two bases and several applications for shifted Schur functions;

We have seen

- Two nice bases of the shifted symmetric function ring: shifted Schur functions s^{\star}_{μ} and normalized characters Ch_{μ} ;
- Vanishing characterization theorems for these two bases and several applications for shifted Schur functions;
- That the multiplication tables of these two bases contain nonnegative coefficients which provide information on
 - Littlewood-Richardson coefficients;
 - multiplication table of the center of the symmetric group algebra.

We have seen

- Two nice bases of the shifted symmetric function ring: shifted Schur functions s^{\star}_{μ} and normalized characters Ch_{μ} ;
- Vanishing characterization theorems for these two bases and several applications for shifted Schur functions;
- That the multiplication tables of these two bases contain nonnegative coefficients which provide information on
 - Littlewood-Richardson coefficients;
 - multiplication table of the center of the symmetric group algebra.

Tomorrow: combinatorial formulas for these bases.