Shifted symmetric functions II: expansions in multi-rectangular coordinates

Valentin Féray

Institut für Mathematik, Universität Zürich

Séminaire Lotharingien de Combinatoire Bertinoro, Italy, Sept. 11th-12th-13th

Second lecture

Yesterday, we have seen

• Two nice bases of the shifted symmetric function ring: shifted Schur functions s_{μ}^{\star} and normalized characters Ch_{μ} .

Second lecture

Yesterday, we have seen

• Two nice bases of the shifted symmetric function ring: shifted Schur functions s_{μ}^{\star} and normalized characters Ch_{μ} .

Today:

- several sets of coordinates of Young diagrams on which we can write shifted symmetric functions (writing in terms of the λ_i is not necessarily the best thing!);
- investigate expansions in one of these sets, multirectangular coordinates.

First part

Equivalent descriptions of the shifted symmetric function ring

A generating function point of view (Ivanov, Kerov, Olshanski, 2003)

With a Young diagram λ , we associate the function

$$\Phi(\lambda;z) = \prod_{i>1} \frac{z+i}{z-\lambda_i+i}.$$

Around $z = \infty$,

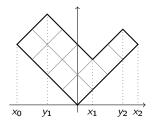
$$\log (\Phi(\lambda; z)) = \sum_{k \ge 1} \frac{1}{k} p_k^{\star}(\lambda) z^{-k},$$

where
$$p_k^{\star}(\lambda) = \sum_{i>1} [(\lambda_i - i)^N - (-i)^N].$$

Proposition

The shifted symmetric ring Λ^* is algebraically generated by the coefficients of the expansion of $\Phi(\lambda; z)$ at $z = \infty$.

Kerov's interlacing coordinates



Alternative description of Young diagrams

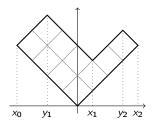
x-coordinates of lower corners

$$x_0 = -4, \ x_1 = 1, \ x_2 = 4$$

x-coordinates of higher corners

$$y_1 = -2, \ y_2 = 3$$

Kerov's interlacing coordinates



Alternative description of Young diagrams

x-coordinates of lower corners

$$x_0 = -4, \ x_1 = 1, \ x_2 = 4$$

x-coordinates of higher corners

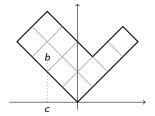
$$y_1 = -2, \ y_2 = 3$$

Proposition (IKO '03)

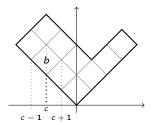
$$\frac{\Phi(\lambda; z-1)}{\Phi(\lambda; z)} = \frac{z \prod_{i=1}^{m} (z-y_i)}{\prod_{i=0}^{m} (z-x_i)}.$$

As a consequence, Λ^* is algebraically generated by the coefficients of the expansion of the RHS at $z=\infty$ (or of log(RHS)).

Proof: $\frac{\Phi(\lambda;z-1)}{\Phi(\lambda;z)} = \frac{z}{z-\lambda_1} \prod_{i\geq 1} \frac{z-\lambda_i+i}{z-\lambda_{i+1}+i}$. Only factors corresponding to corners do not cancel out.

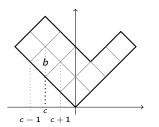


Content c is the x-coordinate of the box center.



Content *c* is the *x*-coordinate of the box center.

Note that c-1 (resp c, c+1, c) are the x-coordinate of the box left (resp. top, right, bottom) corners of the box.



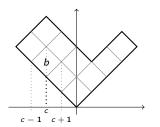
Content *c* is the *x*-coordinate of the box center.

Note that c-1 (resp c, c+1, c) are the x-coordinate of the box left (resp. top, right, bottom) corners of the box.

Claim:

$$\prod_{\square \in \lambda} \frac{(z - c(\square))^2}{(z - c(\square) - 1)(z - c(\square) + 1)} = \frac{z \prod_{i=1}^m (z - y_i)}{\prod_{i=0}^m (z - x_i)} = \frac{\Phi(\lambda; z - 1)}{\Phi(\lambda; z)}.$$

Indeed, in LHS, only factors corresponding to corners of the diagram do not cancel out.



Content *c* is the *x*-coordinate of the box center.

Note that c-1 (resp c, c+1, c) are the x-coordinate of the box left (resp. top, right, bottom) corners of the box.

Claim:

$$\prod_{\square \in \lambda} \frac{(z - c(\square))^2}{(z - c(\square) - 1)(z - c(\square) + 1)} = \frac{z \prod_{i=1}^m (z - y_i)}{\prod_{i=0}^m (z - x_i)} = \frac{\Phi(\lambda; z - 1)}{\Phi(\lambda; z)}.$$

Indeed, in LHS, only factors corresponding to corners of the diagram do not cancel out. We deduce from this (exercise!)

Proposition

 Λ^* is the set of symmetric functions in $\mathcal{C}_{\lambda} = (c(\square))_{\square \in \lambda}$ with coefficients that are polynomials in $|\lambda|$.

Character on cycles

There is a efficient way to compute $Ch_{(k)}$ using the function Φ .

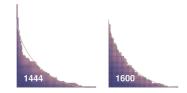
Proposition (Frobenius, '00)

$$\mathsf{Ch}_{(k)}(\lambda) = -\frac{1}{k} \left[z^{-1} \right] (z \mid k) \frac{\Phi(\lambda; z)}{\Phi(\lambda; z - k)}.$$

• Generalized by Rattan and Śniady ('06) to several cycles.

Plancherel measure

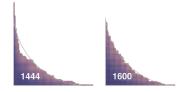
$$\mathbb{P}(\lambda) = \frac{\dim(\rho^{\lambda})^2}{n!}$$



©Notices of the AMS, Feb. 2011, front cover.

Plancherel measure

$$\mathbb{P}(\lambda) = \frac{\dim(\rho^{\lambda})^2}{n!}$$

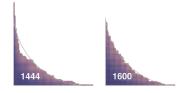


©Notices of the AMS, Feb. 2011, front cover.

Easy representation theory argument: $\mathbb{E}(Ch_{\mu}) = 0$, unless $\mu = (1^k)$.

Plancherel measure

$$\mathbb{P}(\lambda) = \frac{\dim(\rho^{\lambda})^2}{n!}$$



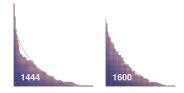
© Notices of the AMS, Feb. 2011, front cover.

Easy representation theory argument: $\mathbb{E}(Ch_{\mu}) = 0$, unless $\mu = (1^k)$.

From there: compute (asymptotically) the expectation (and higher moments) of various shifted symmetric functions.

Plancherel measure

$$\mathbb{P}(\lambda) = \frac{\dim(\rho^{\lambda})^2}{n!}$$



© Notices of the AMS, Feb. 2011, front cover.

Easy representation theory argument: $\mathbb{E}(Ch_{\mu}) = 0$, unless $\mu = (1^k)$.

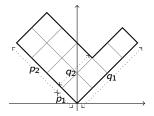
From there: compute (asymptotically) the expectation (and higher moments) of various shifted symmetric functions.

Doable with the formulas of this section and the combinatorial description of the multiplication table of Ch_{ii} (IKO, '03).

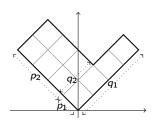
Transition

Multirectangular coordinates – expansion of normalized characters

We see partitions as obtained by piling up rectangles of size $p_i \times q_i$.



We see partitions as obtained by piling up rectangles of size $p_i \times q_i$.

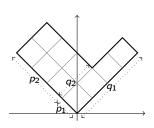


Connection to Kerov's interlacing coordinates

$$x_1 = q_1,$$
 $y_1 = q_1 - p_1$
 $x_2 = q_2 - p_1,$ $y_2 = q_2 - p_1 - p_2$
 $x_3 = -p_1 - p_2$

 \rightarrow Shifted symmetric functions are polynomials in multirectangular coordinates.

We see partitions as obtained by piling up rectangles of size $p_i \times q_i$.



Connection to Kerov's interlacing coordinates

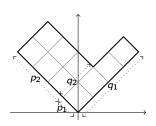
$$x_1 = q_1,$$
 $y_1 = q_1 - p_1$
 $x_2 = q_2 - p_1,$ $y_2 = q_2 - p_1 - p_2$
 $x_3 = -p_1 - p_2$

→ Shifted symmetric functions are polynomials in multirectangular coordinates.

Why expression in multirectangular coordinates?

- Contains expression in parts (by setting $p_i = 1$), but is more convenient when taking transpose or dilatation of Young diagrams.
- It turns out that these expressions have nice positivity/combinatorial properties!

We see partitions as obtained by piling up rectangles of size $p_i \times q_i$.



Connection to Kerov's interlacing coordinates

$$x_1 = q_1,$$
 $y_1 = q_1 - p_1$
 $x_2 = q_2 - p_1,$ $y_2 = q_2 - p_1 - p_2$
 $x_3 = -p_1 - p_2$

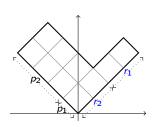
→ Shifted symmetric functions are polynomials in multirectangular coordinates.

Why expression in multirectangular coordinates?

- Contains expression in parts (by setting $p_i = 1$), but is more convenient when taking transpose or dilatation of Young diagrams.
- It turns out that these expressions have nice positivity/combinatorial properties!

More symmetric variant: $r_i = q_i - q_{i+1}$.

We see partitions as obtained by piling up rectangles of size $p_i \times q_i$.



Connection to Kerov's interlacing coordinates

$$x_1 = q_1,$$
 $y_1 = q_1 - p_1$
 $x_2 = q_2 - p_1,$ $y_2 = q_2 - p_1 - p_2$
 $x_3 = -p_1 - p_2$

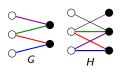
→ Shifted symmetric functions are polynomials in multirectangular coordinates.

Why expression in multirectangular coordinates?

- Contains expression in parts (by setting $p_i = 1$), but is more convenient when taking transpose or dilatation of Young diagrams.
- It turns out that these expressions have nice positivity/combinatorial properties!

More symmetric variant: $r_i = q_i - q_{i+1}$.

Embeddings of bipartite graphs



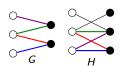
Definition: A bipartite graph embedding $G \to H$ maps edges of G to edges of H respecting incidence relations: i.e. edges sharing a black (resp. white) extremity in G are mapped to edges sharing a black (resp. white) extremity in H.

Notation

 $N_G(H) := \#\{\text{embeddings of } G \text{ in } H\}$

 $\widetilde{N_G}(H) := \#\{\text{injective embeddings of } G \text{ in } H\}$

Embeddings of bipartite graphs



Definition: A bipartite graph embedding $G \to H$ maps edges of G to edges of H respecting incidence relations: i.e. edges sharing a black (resp. white) extremity in G are mapped to edges sharing a black (resp. white) extremity in H.

Notation

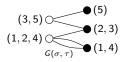
 $N_G(H) := \#\{\text{embeddings of } G \text{ in } H\}$

 $\widetilde{N_G}(H) := \#\{\text{injective embeddings of } G \text{ in } H\}$

Note: an embedding also maps black (resp. white) vertices of G to black (resp. white) vertices of H

Two families of bipartite graphs associated . . .

with pairs of permutations



$$\sigma = (1, 2, 4)(3, 5), \ \tau = (1, 4)(2, 3)(5)$$

Vertices share as many edges as the size of their intersection.

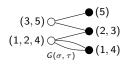
with partitions

$$\lambda = (4, 2, 1)$$

The *i*-th white vertex is connected to the λ_i first black vertices.

Two families of bipartite graphs associated . . .

with pairs of permutations



$$\sigma = (1, 2, 4)(3, 5), \ \tau = (1, 4)(2, 3)(5)$$

Vertices share as many edges as the size of their intersection.

with partitions

$$\lambda = (4, 2, 1)$$

The *i*-th white vertex is connected to the λ_i first black vertices.

Short notation:
$$N_{\sigma,\tau}(\lambda) := N_{G(\sigma,\tau)}(H(\lambda)); \quad \widetilde{N_{\sigma,\tau}}(\lambda) := \widetilde{N_{G(\sigma,\tau)}}(H(\lambda)).$$

Lemma

 $N_{\sigma,\tau}(\lambda)$ is a polynomial with nonnegative coefficients in multirectangular coordinates. It has degree $|C(\sigma)|$ in \mathbf{p} and degree $|C(\tau)|$ in \mathbf{q} (or \mathbf{r}).

A formula for normalized characters

Theorem (Stanley, 2006, F., Śniady, 2007)

Let π be a permutation in S_k of type μ

$$\mathsf{Ch}_{\mu} = \sum_{\stackrel{\sigma,\tau}{\sigma \, \tau = \pi}} (-1)^{\tau} N_{\sigma,\tau} = \sum_{\stackrel{\sigma,\tau}{\sigma \, \tau = \pi}} (-1)^{\tau} \widetilde{N_{\sigma,\tau}}.$$

$$(-1)^{\tau} = \text{sign of } \tau = (-1)^k (-1)^{|C(\tau)|}.$$

Note: second equality is relatively easy (show by sign-reversing involution that non-injective embeddings do not contribute to the total sum).

A formula for normalized characters

Theorem (Stanley, 2006, F., Śniady, 2007)

Let π be a permutation in S_k of type μ

$$\mathsf{Ch}_{\mu} = \sum_{\stackrel{\sigma,\tau}{\sigma\,\tau=\pi}} (-1)^{\tau} \mathit{N}_{\sigma,\tau} = \sum_{\stackrel{\sigma,\tau}{\sigma\,\tau=\pi}} (-1)^{\tau} \widetilde{\mathit{N}_{\sigma,\tau}}.$$

$$(-1)^{\tau} = \text{sign of } \tau = (-1)^k (-1)^{|C(\tau)|}.$$

Note: second equality is relatively easy (show by sign-reversing involution that non-injective embeddings do not contribute to the total sum).

Corollary

 $(-1)^k \operatorname{Ch}_{\mu}$ is a polynomial with nonnegative coefficients in \mathbf{p} and $-\mathbf{q}$ (and thus in \mathbf{p} and $-\mathbf{r}$).

The formula is also suited for finding upper bounds for characters (F., Śniady, 2007).

Use vanishing characterization: we define

$$F = \sum_{\substack{\sigma,\tau\\\sigma\,\tau = \pi}} (-1)^{\tau} N_{\sigma,\tau} = \sum_{\substack{\sigma,\tau\\\sigma\,\tau = \pi}} (-1)^{\tau} \widetilde{N_{\sigma,\tau}}$$

Use vanishing characterization: we define

$$F = \sum_{\substack{\sigma,\tau\\\sigma\,\tau=\pi}} (-1)^{\tau} N_{\sigma,\tau} = \sum_{\substack{\sigma,\tau\\\sigma\,\tau=\pi}} (-1)^{\tau} \widetilde{N_{\sigma,\tau}}$$

The shifted symmetry is hard – more on that later;

Use vanishing characterization: we define

$$F = \sum_{\substack{\sigma,\tau\\\sigma\,\tau=\pi}} (-1)^{\tau} N_{\sigma,\tau} = \sum_{\substack{\sigma,\tau\\\sigma\,\tau=\pi}} (-1)^{\tau} \widetilde{N_{\sigma,\tau}}$$

- The shifted symmetry is hard more on that later;
- ② That $F(\lambda) = 0$ if $|\lambda| < |\mu|$ is obvious from the second expression: indeed all $\widetilde{N_{\sigma,\tau}}(\lambda)$ are zero since $G(\sigma,\tau)$ has more edges than $G(\lambda)$.

Use vanishing characterization: we define

$$F = \sum_{\stackrel{\sigma,\tau}{\sigma \tau = \pi}} (-1)^{\tau} N_{\sigma,\tau} = \sum_{\stackrel{\sigma,\tau}{\sigma \tau = \pi}} (-1)^{\tau} \widetilde{N_{\sigma,\tau}}$$

- The shifted symmetry is hard more on that later;
- ② That $F(\lambda) = 0$ if $|\lambda| < |\mu|$ is obvious from the second expression: indeed all $\widetilde{N_{\sigma,\tau}}(\lambda)$ are zero since $G(\sigma,\tau)$ has more edges than $G(\lambda)$.
- **3** The component of F of degree $|\mu|$ comes from the term $\sigma=\pi$ and $\tau=\operatorname{id}$ (in the first expression). But in this term is

$$N_{\pi,\mathsf{id}}(\lambda) = p_{\mu}(\lambda),$$

so that the top-component of F is p_{μ} as wanted.

Connection with maps combinatorics

• Reminder: if π has type μ , then $\mathsf{Ch}_{\mu} = \sum_{\substack{\sigma,\tau \\ \sigma,\tau=\pi}} (-1)^{\tau} N_{\sigma,\tau}.$

Connection with maps combinatorics

- Reminder: if π has type μ , then $\mathsf{Ch}_{\mu} = \sum_{\substack{\sigma,\tau \\ \sigma \, \tau = \pi}} (-1)^{\tau} \mathit{N}_{\sigma,\tau}.$
- But the set $\{\sigma, \tau; \ \sigma \tau = \pi\}$ is in bijection with maps (=graphs embedded in oriented surfaces) with prescribed face-degree. In other terms, Ch_{μ} is a signed weighted enumeration of maps.

Connection with maps combinatorics

- Reminder: if π has type μ , then $\mathsf{Ch}_{\mu} = \sum\limits_{\substack{\sigma,\tau \\ \sigma\,\tau = \pi}} (-1)^{\tau} \textit{N}_{\sigma,\tau}.$
- But the set $\{\sigma, \tau; \ \sigma \tau = \pi\}$ is in bijection with maps (=graphs embedded in oriented surfaces) with prescribed face-degree. In other terms, Ch_{μ} is a signed weighted enumeration of maps.
- Maps with prescribed face-degree are better understood in the unicellular case, corresponding to $\mu = (k)$. For example, using a bijection of Chapuy ('11), we get this suprising relation:

$$\left(\sum_{\substack{i\geq 1\\h\geq 0}} \frac{p_i}{(2h+1)!} \frac{\partial^{2h+1}}{\partial p_i^{2h+1}} + \frac{r_i}{(2h+1)!} \frac{\partial^{2h+1}}{\partial r_i^{2h+1}}\right) \operatorname{Ch}_{(k)} = (k+1) \operatorname{Ch}_{(k)}.$$

Representation-theoretical consequence/interpretation? similar formulas for several parts?

Transition

Multirectangular coordinates – expansion of shifted Schur functions

The falling factorial basis

Reminder: $s_{\mu}^{\star}(\lambda) = 0$ if $\lambda \not\supset \mu$.

 \rightarrow we cannot expect s_{μ}^{\star} to expand positively on multirectangular coordinates since it vanishes on a lot on Young diagrams (i.e. for a lot of positive specializations of multirectangular coordinates).

The falling factorial basis

Reminder: $s_{\mu}^{\star}(\lambda) = 0$ if $\lambda \not\supset \mu$.

 \rightarrow we cannot expect s_{μ}^{\star} to expand positively on multirectangular coordinates since it vanishes on a lot on Young diagrams (i.e. for a lot of positive specializations of multirectangular coordinates).

We introduce the falling factorial basis of multirectangular coordinates

$$(p_1 \mid a_1) \dots (p_m \mid a_m)(r_1 \mid b_1) \dots (r_m \mid b_m).$$

(Basis of polynomial ring in \boldsymbol{p} and \boldsymbol{r} when $a_1, \ldots, a_m, b_1, \ldots, b_m$ runs over lists of nonnegative integers.)

A nonnegative expansion for shifted Schur functions

Theorem (Alexandersson, F., 2017)

 s_{μ}^{\star} expands positively on the falling factorial basis of multirectangular coordinates.

Corollary

 $s_{\mu}^{\star}(x_1,\ldots,x_n)$ expands positively on the basis

$$\left((x_1-x_2)_{b_1}\cdots(x_{\ell-1}-x_{\ell})_{b_{\ell}-1}(x_{\ell})_{b_{\ell}}\right)_{b_1,\ldots,b_{\ell}>0}.$$

A nonnegative expansion for shifted Schur functions

Theorem (Alexandersson, F., 2017)

 s_{μ}^{\star} expands positively on the falling factorial basis of multirectangular coordinates.

Corollary

 $s_{\mu}^{\star}(x_1,\ldots,x_n)$ expands positively on the basis

$$\left((x_1-x_2)_{b_1}\cdots(x_{\ell-1}-x_{\ell})_{b_{\ell}-1}(x_{\ell})_{b_{\ell}}\right)_{b_1,\ldots,b_{\ell}\geq 0}.$$

- $\ ^{ullet}$ lifts to the polynomial s^{\star}_{μ} the nonnegativity of $s^{\star}_{\mu}(\lambda)$, for all partitions λ .
- $^{\bullet}$ No combinatorial interpretation (although the coefficients of $|\mu|! \, s_{\mu}^{\star}$ are integers).

Main step of proofs

Using the previous formula for Ch_{μ} and the relation $s_{\mu}^{\star}=\sum_{\nu}\chi_{\nu}^{\mu}\,\mathrm{Ch}_{\nu}$, we get

$$s_{\mu}^{\star} = \frac{1}{k!} \sum_{\sigma, \tau \in \mathfrak{S}_k} \chi^{\mu}(\sigma \tau) (-1)^{\tau} N_{\sigma, \tau}.$$

Main step of proofs

Using the previous formula for Ch_μ and the relation $s_\mu^\star = \sum_\nu \chi_\nu^\mu \, \mathrm{Ch}_\nu$, we get

$$s_{\mu}^{\star} = rac{1}{k!} \sum_{\sigma, au \in \mathfrak{S}_k} \chi^{\mu}(\sigma au) (-1)^{ au} N_{\sigma, au}.$$

From there, we can extract the coefficient in FF-basis and reduce their nonnegativity to the one of

$$B_{S,T}^{\mu} = \sum_{\substack{\sigma \in \mathfrak{S}_{S} \\ \tau \in \mathfrak{S}_{T}}} \chi^{\mu}(\sigma\tau) (-1)^{\tau},$$

for set-partitions S and T.

Main step of proofs

Using the previous formula for Ch_{μ} and the relation $s_{\mu}^{\star}=\sum_{\nu}\chi_{\nu}^{\mu}\,\mathrm{Ch}_{\nu}$, we get

$$s_{\mu}^{\star} = rac{1}{k!} \sum_{\sigma, au \in \mathfrak{S}_k} \chi^{\mu}(\sigma au) (-1)^{ au} N_{\sigma, au}.$$

From there, we can extract the coefficient in FF-basis and reduce their nonnegativity to the one of

$$B_{S,T}^{\mu} = \sum_{\substack{\sigma \in \mathfrak{S}_S \\ \tau \in \mathfrak{S}_T}} \chi^{\mu}(\sigma \tau) (-1)^{\tau},$$

for set-partitions S and T.

We conclude with representation-theoretic arguments.

Transition

Quasi-symmetric functions on Young diagrams

In which algebra lives N_G ?

Expressing the shifted symmetric functions Ch_{μ} and s_{μ}^{\star} in terms of N_G gives nice expression.

But N_G is not shifted symmetric!

In the following slides, we study $Q\Lambda^* := \operatorname{Span}(N_G)$ and connect it with quasi-symmetric functions.

In which algebra lives N_G ?

Expressing the shifted symmetric functions Ch_{μ} and s_{μ}^{\star} in terms of N_G gives nice expression.

But N_G is not shifted symmetric!

In the following slides, we study $Q\Lambda^* := \operatorname{Span}(N_G)$ and connect it with quasi-symmetric functions.

Definition

A polynomial F is symmetric if for any exponents a_1, \ldots, a_r , the coefficients of $x_{i_1}^{a_1} \ldots x_{i_r}^{a_r}$ is the same for all repetition-free sequences i_1, \ldots, i_r .

Example:
$$x_1^2x_2 + x_1^2x_3 + x_2^2x_3 + x_2^2x_1 + x_3^2x_1 + x_3^2x_2 + \dots$$

In which algebra lives N_G ?

Expressing the shifted symmetric functions Ch_{μ} and s_{μ}^{\star} in terms of N_G gives nice expression.

But N_G is not shifted symmetric!

In the following slides, we study $Q\Lambda^* := \operatorname{Span}(N_G)$ and connect it with quasi-symmetric functions.

Definition

A polynomial F is quasi-symmetric if for any exponents a_1, \ldots, a_r , the coefficients of $x_{i_1}^{a_1} \ldots x_{i_r}^{a_r}$ is the same for all increasing sequences i_1, \ldots, i_r .

Example:
$$x_1^2x_2 + x_1^2x_3 + x_2^2x_3 + 2x_2^2x_1 + 2x_3^2x_1 + 2x_3^2x_2 + \dots$$

Detour: Quasi-symmetric function of an acyclic graph

Take an unlabelled acyclic directed graph $G_{\rm ex} =$

Definition

A function $f: V_G \to \mathbb{N}$ is order-preserving if

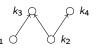
$$(i,j) \in E_G \Rightarrow f(i) \leq f(j).$$

We consider the multivariate generating function in x_1, x_2, \dots

$$\Gamma(G) = \sum_{\substack{f: V \to \mathbb{N} \\ f \text{ order-preserving}}} \prod_{v \in V} x_{f(v)} \in \mathsf{QSym} \,.$$

Detour: Quasi-symmetric function of an acyclic graph

Take an unlabelled acyclic directed graph $G_{\rm ex} =$



Definition

A function $f:V_G\to\mathbb{N}$ is order-preserving if

$$(i,j) \in E_G \Rightarrow f(i) \leq f(j).$$

We consider the multivariate generating function in x_1, x_2, \dots

$$\Gamma(G) = \sum_{\substack{f: V \to \mathbb{N} \\ f \text{ order-preserving}}} \prod_{v \in V} x_{f(v)} \in \mathsf{QSym} \,.$$

On the example above:

$$\Gamma(G_{\mathrm{ex}}) = \sum_{k_1, k_2, k_3, k_4 \atop k_1 \le k_3, \ k_2 \le k_3, \ k_2 \le k_4} x_{k_1} x_{k_2} x_{k_3} x_{k_4}.$$

It is a quasisymmetric function (studied by Stanley, Gessel, ...).

Quasisymmetric functions as functions on Young diagrams

Theorem (Aval, F., Novelli, Thibon, 2015)

There is an isomorphism QSym $\simeq Q\Lambda^* = \operatorname{Span}(N_G)$ such that

- Sym \subset QSym is mapped to $\Lambda^* \subset Q\Lambda^*$;
- for bipartite graphs G, the function $\Gamma(G)$ is mapped to N_G .

(Bipartite graphs are seen as acyclic graphs, by orienting edges from white to black.)

We have an "explicit" construction of the isomorphism using the virtual alphabet framework.

Quasisymmetric functions as functions on Young diagrams

Theorem (Aval, F., Novelli, Thibon, 2015)

There is an isomorphism QSym $\simeq Q\Lambda^* = \operatorname{Span}(N_G)$ such that

- Sym \subset QSym is mapped to $\Lambda^* \subset Q\Lambda^*$;
- for bipartite graphs G, the function $\Gamma(G)$ is mapped to N_G .

As a consequence,

$$\sum_{G} c_G N_G \Leftrightarrow \sum_{G} c_G \Gamma(G)$$
 is shifted symmetric

 \rightarrow more standard problem in symmetric function literature.

Conclusion

 Seeing shifted symmetric functions as functions on Young diagrams leads to considering them in terms of various sets of coordinates;

Conclusion

- Seeing shifted symmetric functions as functions on Young diagrams leads to considering them in terms of various sets of coordinates;
- Nice combinatorics when using multirectangular coordinates;

Conclusion

- Seeing shifted symmetric functions as functions on Young diagrams leads to considering them in terms of various sets of coordinates;
- Nice combinatorics when using multirectangular coordinates;
- Tomorrow we will discuss Jack (and Macdonald) analogues of Ch_{μ} and s_{μ}^{\star} ; the extension of the positivity results shown today are only conjectured!