FLIP GRAPHS, YOKE GRAPHS AND DIAMETER

Roy H. Jennings

Bar-Ilan University, Israel

79th Sèminaire Lotharingien de Combinatoire 10-13 September, 2017 Bertinoro, Italy

FLIP GRAPH TRIANGULATIONS PERMUTATIONS TREES KNOWN RESULTS

FLIP GRAPHS

Flip graphs are graphs on sets of objects in which the adjacency relation reflects a minor change in adjacent objects.

TYPICAL PROBLEMS

- Metric properties: distance, diameter, finding antipodes and counting geodesics between them.
- Algebraic properties: presentations as Cayley/Schreier graphs, automorphism groups, eigenvalues.
- We generalize known flip graphs into a new family of graphs, namely Yoke graphs.
- We extend known results, especially the diameter, to this new family.

ヘロト ヘポト ヘヨト ヘヨト

FLIP GRAPH TRIANGULATIONS PERMUTATIONS TREES KNOWN RESULTS

FLIP GRAPHS

Flip graphs are graphs on sets of objects in which the adjacency relation reflects a minor change in adjacent objects.

TYPICAL PROBLEMS

- Metric properties: distance, diameter, finding antipodes and counting geodesics between them.
- Algebraic properties: presentations as Cayley/Schreier graphs, automorphism groups, eigenvalues.
- We generalize known flip graphs into a new family of graphs, namely Yoke graphs.
- We extend known results, especially the diameter, to this new family.

< ロ > < 同 > < 回 > < 回 > .

FLIP GRAPH TRIANGULATIONS PERMUTATIONS TREES KNOWN RESULTS

FLIP GRAPHS

Flip graphs are graphs on sets of objects in which the adjacency relation reflects a minor change in adjacent objects.

TYPICAL PROBLEMS

- Metric properties: distance, diameter, finding antipodes and counting geodesics between them.
- Algebraic properties: presentations as Cayley/Schreier graphs, automorphism groups, eigenvalues.
- We generalize known flip graphs into a new family of graphs, namely Yoke graphs.
- We extend known results, especially the diameter, to this new family.

ヘロト ヘポト ヘヨト ヘヨト

LES TRIANGULATIONS PHS PERMUTATIONS TREES KNOWN RESULTS

TRIANGULATIONS

TRIANGULATION

A **triangulation** of a convex polygon in the plane is its subdivision into triangles using diagonals.

FLIP ACTION

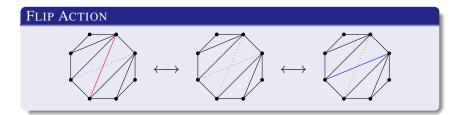
イロト イポト イヨト イヨト

LES TRIANGULATIONS PHS PERMUTATIONS FER TREES KNOWN RESULTS

TRIANGULATIONS

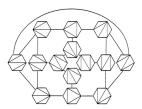
TRIANGULATION

A **triangulation** of a convex polygon in the plane is its subdivision into triangles using diagonals.



(日)

Yoke Graphs Diameter FLIP GRAPH TRIANGULATIONS PERMUTATIONS TREES KNOWN RESULTS



Triangulations of a Hexagon

Many variations of the triangulations flip graph have been studied. One such example is **the colored flip** graph of triangle-free triangulations studied by Adin, Firer and Roichman.

< □ > < 同 > < 回 > .

FLIP GRAPH TRIANGULATIONS PERMUTATIONS TREES KNOWN RESULTS

COLOURED TRIANGLE FREE TRIANGULATIONS (CTFT)

TRIANGLE FREE TRIANGULATION

A triangulation is called **triangle-free**, if it contains no triangle with 3 internal edges (diagonals).

FACT

Each triangle free triangulation induces two opposite linear orders on its chords. A **coloring** of a triangulation is a labeling of the chords by one of these orders.

< ロ > < 同 > < 三 >

FLIP GRAPH Triangulations Permutations Trees Known Results

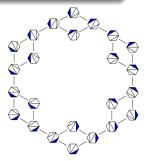
COLOURED TRIANGLE FREE TRIANGULATIONS (CTFT)

TRIANGLE FREE TRIANGULATION

A triangulation is called **triangle-free**, if it contains no triangle with 3 internal edges (diagonals).

Fact

Each triangle free triangulation induces two opposite linear orders on its chords. A **coloring** of a triangulation is a labeling of the chords by one of these orders.



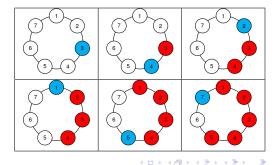
FLIP GRAPH TRIANGULATIONS **PERMUTATIONS** TREES KNOWN RESULTS

ARC PERMUTATIONS

ARC PERMUTATION

A permutation $\pi \in S_n$ is called an **arc permutation** if every prefix (and suffix) in π forms an interval in \mathbb{Z}_n .

 $\pi = 3421576$ is an arc permutation in S_7 .



FLIP GRAPH TRIANGULATIONS **PERMUTATIONS** TREES KNOWN RESULTS

ARC PERMUTATIONS

CAYLEY FLIP GRAPHS

A (right) Cayley graph X(G, S), where S is a symmetric generating set of G, is an algebraic flip graph in which right multiplication by one of the generators is the flip operation.

ARC PERMUTATIONS GRAPH

A graph on the arc permutations of S_n . Two arc permutations π and σ are connected by an edge if $\pi = \sigma \circ (i, i + 1)$ for some $1 \le i \le n - 1$.

FLIP GRAPH TRIANGULATIONS **PERMUTATIONS** TREES KNOWN RESULTS

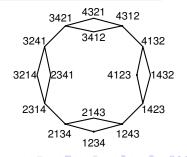
ARC PERMUTATIONS

CAYLEY FLIP GRAPHS

A (right) Cayley graph X(G, S), where S is a symmetric generating set of G, is an algebraic flip graph in which right multiplication by one of the generators is the flip operation.

ARC PERMUTATIONS GRAPH

A graph on the arc permutations of S_n . Two arc permutations π and σ are connected by an edge if $\pi = \sigma \circ (i, i + 1)$ for some $1 \le i \le n - 1$.

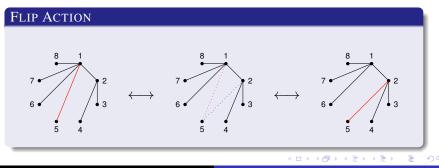


FLIP GRAPH TRIANGULATIONS PERMUTATIONS **TREES** KNOWN RESULTS

CATERPILLARS

CATERPILLAR

A (geometric) caterpillar is a non-crossing geometric tree, whose vertices are drawn on a circle, such that the non-leaves form an interval.



ROY H. JENNINGS FLIP GRAPHS, YOKE GRAPHS AND DIAMETER

FLIP GRAPH TRIANGULATIONS PERMUTATIONS TREES KNOWN RESULTS

KNOWN RESULTS

DIAMETER

	Aux.	Card.	Diameter	Proof
Arc permutations	Sn	n2 ⁿ⁻²	$\frac{n(n-1)}{2}$	Similarity with the dominance order on \mathbb{Z}^{n-1} .
Caterpillars	<i>n</i> -trees	n2 ⁿ⁻³	$\lfloor \frac{n(n-2)}{2} \rfloor$	The Hurwitz graph $\mathcal{H}(S_n)$ on maximal chains in the non crossing partition lattice of S_n .
CTFT	<i>n</i> -gon	n2 ⁿ⁻⁴	$\frac{n(n-3)}{2}$	The weak order on \widetilde{C}_{n-4} .

THEY ARE ALL SCHREIER GRAPHS

In all of the cases an affine Weyl group acts transitively on the vertices of the graph.

- Arc permutations: C_{n-2} .
- Caterpillars: C_{n-3}.
- Coloured triangle free triangulations: \widetilde{C}_{n-4} .

FLIP GRAPH TRIANGULATIONS PERMUTATIONS TREES KNOWN RESULTS

KNOWN RESULTS

DIAMETER

	Aux.	Card.	Diameter	Proof
Arc permutations	Sn	n2 ⁿ⁻²	$\frac{n(n-1)}{2}$	Similarity with the dominance order on \mathbb{Z}^{n-1} .
Caterpillars	<i>n</i> -trees	n2 ⁿ⁻³	$\lfloor \frac{n(n-2)}{2} \rfloor$	The Hurwitz graph $\mathcal{H}(S_n)$ on maximal chains in the non crossing partition lattice of S_n .
CTFT	<i>n</i> -gon	n2 ⁿ⁻⁴	$\frac{n(n-3)}{2}$	The weak order on \widetilde{C}_{n-4} .

THEY ARE ALL SCHREIER GRAPHS

In all of the cases an affine Weyl group acts transitively on the vertices of the graph.

- Arc permutations: \tilde{C}_{n-2} .
- Caterpillars: C_{n-3}.
- Coloured triangle free triangulations: \widetilde{C}_{n-4} .

DEFINITION YOKE GRAPHS GENERALIZE THE EXAMPLES

Yoke Graph $\mathscr{Y}_{n,m}$

VERTICES

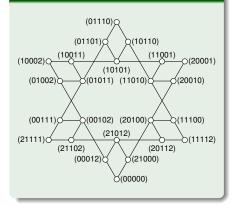
 $u \in \mathscr{Y}_{n,m} \subseteq \mathbb{Z}_n \times \{0,1\}^m \times \mathbb{Z}_n$ $\sum_{i=0}^{m+1} u_i \equiv 0 \pmod{n}.$

ADJACENCY (FLIP)

 $u \sim v$ if for some $0 \leq i \leq m$

- $u_j = v_j \ (\forall j \notin \{i, i+1\})$ and either
- *u_i* = *v_i* + 1 and *u_{i+1}* = *v_{i+1}* − 1 (left shift) or
- $u_i = v_i 1$ and $u_{i+1} = v_{i+1} + 1$ (right shift).

EXAMPLE. $\mathscr{Y}_{3,3}$



ヘロト 人間 とくほ とくほ とう

3

PROPOSITION.

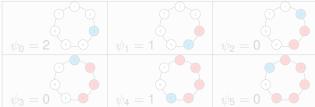
CTFT, Arc permutation and Caterpillar graphs are Yoke graphs.

BIJECTION FOR ARC PERMUTATIONS

The Arc permutations graph A_n is isomorphic to $\mathscr{Y}_{n,n-2}$.

$$\psi: A_n \to \mathbb{Z}_n \times \{0,1\}^{n-2} \times \mathbb{Z}_n$$

Example: ψ (3421576) = (2, 1, 0, 0, 1, 0, 3):



ヘロト ヘポト ヘヨト ヘヨト

э

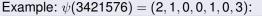
PROPOSITION.

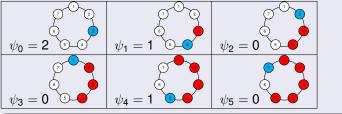
CTFT, Arc permutation and Caterpillar graphs are Yoke graphs.

BIJECTION FOR ARC PERMUTATIONS

The Arc permutations graph A_n is isomorphic to $\mathscr{Y}_{n,n-2}$.

$$\psi: \boldsymbol{A}_n \to \mathbb{Z}_n \times \{0,1\}^{n-2} \times \mathbb{Z}_n$$





ROY H. JENNINGS FLIP GRAPHS, YOKE GRAPHS AND DIAMETER

ヘロト ヘ戸ト ヘヨト ヘヨト

э

ψ respects the adjacency relation

Right multiplication by a simple reflection (i, i + 1) corresponds to a unit shift between ψ_i and ψ_{i+1} . For example:

• ψ (3421576) = (2, 1, 0, 0, 1, 0, 3).

•
$$\psi((3421576)(1,2)) = (3,0,0,0,1,0,3).$$

For all of the examples m < n

 $\begin{array}{ll} \text{Arc permutations} & \to \mathbb{Z}_n \times \{0,1\}^{n-2} \times \mathbb{Z}_n & (\mathscr{Y}_{n,n-2}) \\ \text{Caterpillars} & \to \mathbb{Z}_n \times \{0,1\}^{n-3} \times \mathbb{Z}_n & (\mathscr{Y}_{n,n-3}) \\ \text{CTFT} & \to \mathbb{Z}_n \times \{0,1\}^{n-4} \times \mathbb{Z}_n & (\mathscr{Y}_{n,n-4}) \end{array}$

THEOREM

 $\mathscr{Y}_{n,m}$ is a Schreir graph of the affine Weyl group \widetilde{C}_m .

ROY H. JENNINGS FLIP GRAPHS, YOKE GRAPHS AND DIAMETER

ψ respects the adjacency relation

Right multiplication by a simple reflection (i, i + 1) corresponds to a unit shift between ψ_i and ψ_{i+1} . For example:

• ψ (3421576) = (2, 1, 0, 0, 1, 0, 3).

•
$$\psi((3421576)(1,2)) = (3,0,0,0,1,0,3).$$

For all of the examples m < n

$$\begin{array}{lll} \text{Arc permutations} & \to \mathbb{Z}_n \times \{0,1\}^{n-2} \times \mathbb{Z}_n & (\mathscr{Y}_{n,n-2}) \\ \text{Caterpillars} & \to \mathbb{Z}_n \times \{0,1\}^{n-3} \times \mathbb{Z}_n & (\mathscr{Y}_{n,n-3}) \\ \text{CTFT} & \to \mathbb{Z}_n \times \{0,1\}^{n-4} \times \mathbb{Z}_n & (\mathscr{Y}_{n,n-4}) \end{array}$$

Theorem

 $\mathscr{Y}_{n,m}$ is a Schreir graph of the affine Weyl group C_m .

ψ respects the adjacency relation

Right multiplication by a simple reflection (i, i + 1) corresponds to a unit shift between ψ_i and ψ_{i+1} . For example:

• ψ (3421576) = (2, 1, 0, 0, 1, 0, 3).

•
$$\psi((3421576)(1,2)) = (3,0,0,0,1,0,3).$$

For all of the examples m < n

$$\begin{array}{lll} \text{Arc permutations} & \to \mathbb{Z}_n \times \{0,1\}^{n-2} \times \mathbb{Z}_n & (\mathscr{Y}_{n,n-2}) \\ \text{Caterpillars} & \to \mathbb{Z}_n \times \{0,1\}^{n-3} \times \mathbb{Z}_n & (\mathscr{Y}_{n,n-3}) \\ \text{CTFT} & \to \mathbb{Z}_n \times \{0,1\}^{n-4} \times \mathbb{Z}_n & (\mathscr{Y}_{n,n-4}) \end{array}$$

THEOREM

 $\mathscr{Y}_{n,m}$ is a Schreir graph of the affine Weyl group \widetilde{C}_m .

ROY H. JENNINGS FLIP GRAPHS, YOKE GRAPHS AND DIAMETER

MOTIVATION AND EXAMPLES Yoke Graphs Diameter THE DIAMETER OF YOKE GRAPHS SKETCH OF PROOF

THE DIAMETER OF YOKE GRAPHS

THEOREM

If
$$n \ge m$$
 then diam $(\mathscr{Y}_{n,m}) = \lfloor \frac{n(m+1)}{2} \rfloor$.

Theorem

If
$$n \le m$$
 and $2|m - n$ or $n \le \lceil \frac{m+1}{2} \rceil$, then

diam
$$(\mathscr{Y}_{n,m}) = d = \begin{pmatrix} \lceil \frac{m-n}{2} \rceil + 1 \\ 2 \end{pmatrix} + \begin{pmatrix} \lfloor \frac{m+n}{2} \rfloor + 1 \\ 2 \end{pmatrix}$$

Otherwise, diam($\mathscr{Y}_{n,m}$) = $d + n - \lceil \frac{m+1}{2} \rceil$.

イロト イポト イヨト イヨト

MOTIVATION AND EXAMPLES Yoke Graphs Diameter THE DIAMETER OF YOKE GRAPHS SKETCH OF PROOF

THE DIAMETER OF YOKE GRAPHS

THEOREM

If
$$n \ge m$$
 then diam $(\mathscr{Y}_{n,m}) = \lfloor \frac{n(m+1)}{2} \rfloor$.

THEOREM

If
$$n \le m$$
 and $2|m - n$ or $n \le \lceil \frac{m+1}{2} \rceil$, then

$$\operatorname{diam}(\mathscr{Y}_{n,m}) = d = \begin{pmatrix} \lceil \frac{m-n}{2} \rceil + 1 \\ 2 \end{pmatrix} + \begin{pmatrix} \lfloor \frac{m+n}{2} \rfloor + 1 \\ 2 \end{pmatrix}.$$

Otherwise, diam($\mathscr{Y}_{n,m}$) = $d + n - \lceil \frac{m+1}{2} \rceil$.

< ロ > < 同 > < 回 > < 回 > <</p>

THE DIAMETER OF YOKE GRAPHS Sketch of proof

SKETCH OF PROOF

The eccentricity of 0 in $\mathscr{Y}_{n,m}$

It can be shown that $ecc_{\mathscr{Y}_{n,m}}(0)$ is equal to the value of the diameter in the theorem. Alas, we couldn't prove that 0 is an antipode in $\mathscr{Y}_{n,m}$.

Definition (*dYoke* graphs $\mathscr{Z}_{n,m}$)

Vertices

 $u \in \mathscr{Z}_{n,m} \subseteq \mathbb{Z}_n \times \{0, \pm 1\}^m \times \mathbb{Z}_n$ such that $\sum_{i=0}^{m+1} u_i \equiv 0 \pmod{n}$.

• Adjacency (Flip) is the same as in Yoke graphs.

The eccentricity of 0 in $\mathscr{Z}_{n,m}$

It can also be shown that $ecc_{\mathscr{Z}_{n,m}}(0)$ is equal to the value of the diameter in the theorem.

ヘロト ヘポト ヘヨト ヘヨト

THE DIAMETER OF YOKE GRAPHS Sketch of proof

Sketch of proof

The eccentricity of 0 in $\mathscr{Y}_{n,m}$

It can be shown that $ecc_{\mathscr{Y}_{n,m}}(0)$ is equal to the value of the diameter in the theorem. Alas, we couldn't prove that 0 is an antipode in $\mathscr{Y}_{n,m}$.

DEFINITION (*dYoke* GRAPHS $\mathscr{Z}_{n,m}$)

Vertices

 $u \in \mathscr{Z}_{n,m} \subseteq \mathbb{Z}_n \times \{0, \pm 1\}^m \times \mathbb{Z}_n$ such that $\sum_{i=0}^{m+1} u_i \equiv 0 \pmod{n}$.

• Adjacency (Flip) is the same as in Yoke graphs.

The eccentricity of ${\sf 0}$ in $\mathscr{Z}_{n,m}$

It can also be shown that $ecc_{\mathscr{Z}_{n,m}}(0)$ is equal to the value of the diameter in the theorem.

ヘロト ヘ戸ト ヘヨト ヘヨト

THE DIAMETER OF YOKE GRAPHS Sketch of proof

Sketch of proof

The eccentricity of 0 in $\mathscr{Y}_{n,m}$

It can be shown that $ecc_{\mathscr{Y}_{n,m}}(0)$ is equal to the value of the diameter in the theorem. Alas, we couldn't prove that 0 is an antipode in $\mathscr{Y}_{n,m}$.

DEFINITION (*dYoke* GRAPHS $\mathscr{Z}_{n,m}$)

Vertices

 $u \in \mathscr{Z}_{n,m} \subseteq \mathbb{Z}_n \times \{0, \pm 1\}^m \times \mathbb{Z}_n$ such that $\sum_{i=0}^{m+1} u_i \equiv 0 \pmod{n}$.

• Adjacency (Flip) is the same as in Yoke graphs.

The eccentricity of 0 in $\mathscr{Z}_{n,m}$

It can also be shown that $ecc_{\mathscr{Z}_{n,m}}(0)$ is equal to the value of the diameter in the theorem.

・ロット (雪) (日) (日)

MOTIVATION AND EXAMPLES YOKE GRAPHS DIAMETER

THE DIAMETER OF YOKE GRAPHS SKETCH OF PROOF

OBSERVATION

$$\varphi_{u}:\mathscr{Y}_{n,m}\to\mathscr{Z}_{n,m}$$
$$v\mapsto v-u$$

is a faithful, injective homomorphism for every $u \in \mathscr{Y}_{n,m}$.

And the images of φ_u cover $\mathscr{Z}_{n,m}$.

LEMMA

For every
$$v, u \in \mathscr{Y}_{n,m}, d_{\mathscr{Y}_{n,m}}(v, u) = d_{\mathscr{Z}_{n,m}}(v - u, 0).$$

COROLLARY

 $\operatorname{diam}(\mathscr{Y}_{n,m}) = \operatorname{ecc}_{\mathscr{Z}_{n,m}}(\mathbf{0}).$

ヘロト 人間 とくき とくきとう

MOTIVATION AND EXAMPLES YOKE GRAPHS DIAMETER

THE DIAMETER OF YOKE GRAPHS SKETCH OF PROOF

OBSERVATION

$$\varphi_{u}:\mathscr{Y}_{n,m}\to\mathscr{Z}_{n,m}$$
$$v\mapsto v-u$$

is a faithful, injective homomorphism for every $u \in \mathscr{Y}_{n,m}$.

And the images of φ_u cover $\mathscr{Z}_{n,m}$.

Lemma

For every
$$v, u \in \mathscr{Y}_{n,m}, d_{\mathscr{Y}_{n,m}}(v, u) = d_{\mathscr{Z}_{n,m}}(v - u, 0).$$

COROLLARY

 $\mathsf{diam}(\mathscr{Y}_{n,m}) = \mathsf{ecc}_{\mathscr{Z}_{n,m}}(\mathbf{0}).$

<ロ> <問> <問> < 回> < 回> < 回> 、

THE DIAMETER OF YOKE GRAPHS SKETCH OF PROOF

OBSERVATION

$$\varphi_{u}:\mathscr{Y}_{n,m}\to\mathscr{Z}_{n,m}$$
$$v\mapsto v-u$$

is a faithful, injective homomorphism for every $u \in \mathscr{Y}_{n,m}$.

And the images of φ_u cover $\mathscr{Z}_{n,m}$.

Lemma

For every
$$v, u \in \mathscr{Y}_{n,m}, d_{\mathscr{Y}_{n,m}}(v, u) = d_{\mathscr{Z}_{n,m}}(v - u, 0).$$

COROLLARY

 $\mathsf{diam}(\mathscr{Y}_{n,m})=\mathsf{ecc}_{\mathscr{Z}_{n,m}}(\mathbf{0}).$

ヘロト ヘポト ヘヨト ヘヨト

Thank You

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで