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The dimension of a polytope is the dimension of its affine hull.
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Polytope ←→ Face lattice

↓ ↓
Geometry Combinatorics

Find all polytopes of a fixed dimension:

• combinatorial types of polytopes ↔ finite lattices corresponding

to face lattices of polytopes,

• describe the set of all realizations of a given combinatorial type

(realization space).

Theorem (Steinitz, 1922) A graph G is the edge graph of a

3-polytope⇔ G is simple, planar and 3-connected.
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Realization Space

Given: combinatorial type of a d-polytope

→ face lattice or vertex-facet incidences

Want: all ways to realize this type in R
d

P is a quadrilateral

4 vertices {v1, v2, v3, v4}

4 facets {v1, v2}, {v2, v3}, {v3, v4}, {v4, v1}

1

1

b b

bb
v1

v2 v3

v4

Projective equivalence

Q
p
= P ⇔ Q = φ(P), φ(x) =

Ax + b

c⊺ + d
, det

[

A b

c⊺ d

]

6= 0

All quadrilaterals are projectively equivalent to a square.

A square is projectively unique.
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zero pattern ↔ combinatorics
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0 1 1 0
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rank(SP) = d+ 1

Theorem (GGKPRT, 2013) A nonnegative matrix S is the slack

matrix of some realization of P if and only if

1 supp(S) = supp(SP);

2 rank(S) = rank(SP) = d + 1;

3 the all ones vector lies in the column span of S.



Slack Ideal

Symbolic slack matrix
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Slack ideal

IP = 〈(d + 2)-minors of SP(x)〉 :
(

∏

xi

)

∞

IP = 〈x2x4x5x8 − x1x3x6x7〉
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DvsDf ∈ V+(IP)
for every s ∈ V+(IP),

Dv ,Df positive diagonal matrices

• Mod out affine and projective equivalence ←→ set variables to 1

Theorem (Gouveia, M, Thomas, Wiebe, 2017)
V+(IP)/(R

v
>0×R

f
>0)

1:1←→ classes of projectively equivalent polytopes of

the same combinatorial type as P.

We call V+(IP)/(R
v
>0×R

f
>0) the slack realization space of P: a model

to mod out projective equivalence.

A new computational tool for testing polytopal properties.
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Proposition P is realizable ⇐⇒ V+(IP) 6= ∅.

In this case, IP = 〈1〉 ⇒ no rank 5 matrix with this support ⇒ no

polytope with the given facial structure.
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SF (x)

dim(IP ∩C[xF ]) = 15, dim(IF ) = 16⇒ IF 6= IP ∩ C[xF ]

Computations show that the cube admits further realizations than

are possible as a face of P⇒V+(IF ) 6= V+(IP ∩ R[xF ])
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What else can we determine from IP?
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• In high enough dimension there are infinitely many projectively

unique polytopes [Adiprasito, Ziegler, 2015], but only finitely many

toric slack ideals in any dimension [Gouveia, Pashkovich, Robin-

son, Thomas, 2017].

• In dimension 5 there are non-projectively unique polytopes that

have toric slack ideals [Gouveia, M, Thomas, Wiebe, 2017].

• Which polytopes are toric and PU?
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Toric ideal of a graph is a well-studied object:

TP = 〈xC+ − xC−

: C cycles in GP〉 TP = 〈x2x4x5x8 − x1x3x6x7〉

What is the relation between IP and TP ?
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Graphic Polytopes

Geometric meaning of polytopes for which IP ⊆ TP .

A polytope P is 2-level if it has a slack matrix in which every positive

entry is one, i.e., SP(1) is a slack matrix of P.

Definition

• A polytope P is morally 2-level if SP(1) lies in the slack variety of P.

• IP graphic if IP = TP .

Theorem (Gouveia, M, Thomas, Wiebe, 2017)

1 A polytope P is morally 2-level⇔ IP ⊆ TP .

2 IP is graphic⇔ IP toric and P projectively unique.



Conclusions

• Slack matrix encodes the combinatorics of polytopes

• Positive part of the slack variety as a model of the realization space

for modding out projective equivalence

• Slack ideals gives new computational framework for classic poly-

topal questions

• New characterization of class of projectively unique polytopes via

slack ideal: graphic polytopes are PU

What next?

• Continue to improve this new dictionary between algebra and com-

binatorics of polytopes



Thank you for listening!
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