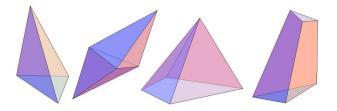
79**th Sèminaire Lotharingien de Combinatoire and** XXI Incontro Italiano di Combinatoria Algebrica Bertinoro - September 12, 2017



Slack ideals of Polytopes

Antonio Macchia

Università degli Studi di Bari

joint work with João Gouveia, Rekha Thomas, Amy Wiebe

Polytopes

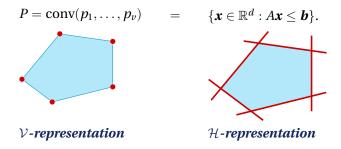
A *polytope P* is a convex hull of a finite set of points in some \mathbb{R}^d :

 $P = \operatorname{conv}(p_1, \dots, p_\nu)$

 \mathcal{V} -representation

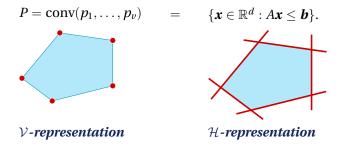
Polytopes

A *polytope P* is a convex hull of a finite set of points in some \mathbb{R}^d :



Polytopes

A *polytope P* is a convex hull of a finite set of points in some \mathbb{R}^d :



The *dimension* of a polytope is the dimension of its affine hull.

 $\begin{array}{ccc} \textbf{Polytope} & \longleftrightarrow & \textbf{Face lattice} \\ \downarrow & & \downarrow \\ \textbf{Geometry} & \textbf{Combinatorics} \end{array}$

Polytope	\longleftrightarrow	Face lattice
\downarrow		\downarrow
Geometry		Combinatorics

Find all polytopes of a fixed dimension:

- combinatorial types of polytopes ↔ finite lattices corresponding to face lattices of polytopes,
- describe the set of all realizations of a given combinatorial type (realization space).

Polytope	\longleftrightarrow	Face lattice
\downarrow		\downarrow
Geometry		Combinatorics

Find all polytopes of a fixed dimension:

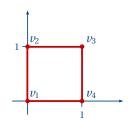
- combinatorial types of polytopes ↔ finite lattices corresponding to face lattices of polytopes,
- describe the set of all realizations of a given combinatorial type (realization space).

Theorem (Steinitz, 1922) A graph G is the edge graph of a 3-polytope \Leftrightarrow G is simple, planar and 3-connected.

Given: combinatorial type of a *d*-polytope \rightarrow face lattice or vertex-facet incidences **Want**: all ways to realize this type in \mathbb{R}^d

Given: combinatorial type of a *d*-polytope \rightarrow face lattice or vertex-facet incidences **Want:** all ways to realize this type in \mathbb{R}^d

 $P \text{ is a quadrilateral} \\ 4 \text{ vertices } \{v_1, v_2, v_3, v_4\} \\ 4 \text{ facets } \{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_4, v_1\} \\ \end{cases}$



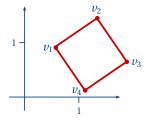
Combinatorial equivalence

 $Q \stackrel{c}{=} P \Leftrightarrow P$ and Q have the same vertex-facet incidences

All quadrilaterals are combinatorially equivalent to a square

Given: combinatorial type of a *d*-polytope \rightarrow face lattice or vertex-facet incidences **Want:** all ways to realize this type in \mathbb{R}^d

P is a quadrilateral $4 \text{ vertices } \{v_1, v_2, v_3, v_4\}$ $4 \text{ facets } \{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_4, v_1\}$



Affine equivalence

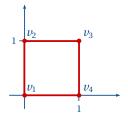
$$Q \stackrel{a}{=} P \Leftrightarrow Q = \psi(P), \ \psi(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$$

preserves parallel lines, e.g. scaling, rotation, reflection, translation

Parallelograms are affinely equivalent to a square

Given: combinatorial type of a *d*-polytope \rightarrow face lattice or vertex-facet incidences **Want:** all ways to realize this type in \mathbb{R}^d

P is a quadrilateral $4 \text{ vertices } \{v_1, v_2, v_3, v_4\}$ $4 \text{ facets } \{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_4, v_1\}$



Projective equivalence

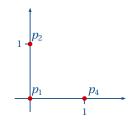
$$Q \stackrel{p}{=} P \Leftrightarrow Q = \phi(P), \ \phi(\mathbf{x}) = \frac{A\mathbf{x} + \mathbf{b}}{\mathbf{c}^{\mathsf{T}} + d}, \ \det \begin{bmatrix} A & \mathbf{b} \\ \mathbf{c}^{\mathsf{T}} & d \end{bmatrix} \neq \mathbf{0}$$

All quadrilaterals are projectively equivalent to a square. A square is *projectively unique*.

Set of all realizations of polytopes combinatorially equivalent to P

Mod out affine transformation:

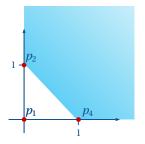
fix an affine basis B of d + 1 labelled vertices



Set of all realizations of polytopes combinatorially equivalent to P

Mod out affine transformation:

fix an affine basis B of d + 1 labelled vertices



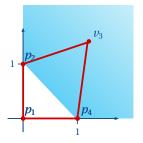
Realization space

$$\mathcal{R}(P,B) = \left\{ Q = \operatorname{conv}\{q_1, \ldots, q_n\} \subset \mathbb{R}^d : q_i = p_i \,\forall p_i \in B, Q \stackrel{c}{=} P \right\}$$

Set of all realizations of polytopes combinatorially equivalent to P

Mod out affine transformation:

fix an affine basis B of d + 1 labelled vertices



Realization space

$$\mathcal{R}(P,B) = \left\{ Q = \operatorname{conv}\{q_1, \ldots, q_n\} \subset \mathbb{R}^d : q_i = p_i \,\forall p_i \in B, Q \stackrel{c}{=} P \right\}$$

 $\begin{array}{cccc} P: & d\text{-polytope} & (0,1) & 1-x_2 \ge 0 & (1,1) \\ \text{vertices:} & \{p_1,\ldots,p_\nu\} \\ \text{facet inequalities:} & \beta_1 - a_1^\mathsf{T} \mathbf{x} \ge 0 \\ & \vdots \\ & \beta_f - a_f^\mathsf{T} \mathbf{x} \ge 0 \end{array} \qquad \begin{array}{c} (0,1) & 1-x_2 \ge 0 & (1,1) \\ & x_1 \ge 0 \\ & & 0 \end{array}$

$$P: \quad d\text{-polytope} \qquad (0,1) \quad 1-x_2 \ge 0 \quad (1,1)$$

facet inequalities:
$$\beta_1 - a_1^{\mathsf{T}} \mathbf{x} \ge 0$$

$$\vdots$$

$$\beta_f - a_f^{\mathsf{T}} \mathbf{x} \ge 0 \qquad (0,0) \quad x_2 \ge 0 \quad (1,0)$$

Slack matrix

$$S_P = \begin{pmatrix} \vdots \\ \cdots & \beta_j - a_j^{\mathsf{T}} p_i & \cdots \\ \vdots \end{pmatrix} \qquad S_P = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$P: \quad d\text{-polytope} \qquad (0,1) \quad 1-x_2 \ge 0 \quad (1,1)$$

facet inequalities:
$$\beta_1 - a_1^{\mathsf{T}} \mathbf{x} \ge 0$$

$$\vdots$$

$$\beta_f - a_f^{\mathsf{T}} \mathbf{x} \ge 0 \qquad (0,0) \quad x_2 \ge 0 \quad (1,0)$$

Slack matrix

$$S_P = \begin{pmatrix} \vdots \\ \cdots & \beta_j - a_j^{\mathsf{T}} p_i & \cdots \\ \vdots \end{pmatrix} \qquad S_P = \begin{pmatrix} 0 & \mathbf{l} & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

$$P: \quad d\text{-polytope} \qquad (0,1) \quad 1-x_2 \ge 0 \quad (1,1)$$

facet inequalities:
$$\beta_1 - a_1^{\mathsf{T}} \mathbf{x} \ge 0$$
$$\vdots$$
$$\beta_f - a_f^{\mathsf{T}} \mathbf{x} \ge 0 \qquad (0,0) \quad x_2 \ge 0 \quad (1,0)$$

Slack matrix

$$S_P = \begin{pmatrix} \vdots \\ \cdots & \beta_j - a_j^{\mathsf{T}} p_i & \cdots \\ \vdots & \end{pmatrix} \qquad S_P = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

 $\texttt{zero pattern} \, \leftrightarrow \, \texttt{combinatorics} \quad \texttt{rank}(S_P) = d+1$

$$P: d-polytope$$
vertices: $\{p_1, \dots, p_\nu\}$
facet inequalities: $\beta_1 - a_1^\mathsf{T} \mathbf{x} \ge 0$

$$\vdots$$
 $\beta_f - a_f^\mathsf{T} \mathbf{x} \ge 0$

$$Slack matrix$$

$$(0, 1) 1 - x_2 \ge 0 \quad (1, 1)$$
 $1 - x_1 \ge 0$
 $(0, 0) x_2 \ge 0 \quad (1, 0)$

$$S_{P} = \begin{pmatrix} \vdots \\ \cdots & \beta_{j} - a_{j}^{\mathsf{T}} p_{i} & \cdots \\ \vdots \end{pmatrix} \qquad S_{P} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$$

zero pattern \leftrightarrow combinatorics $\operatorname{rank}(S_{P}) = d + 1$

Theorem (GGKPRT, 2013) A nonnegative matrix S is the slack matrix of some realization of P if and only if

 $supp(S) = supp(S_P);$

2 rank(
$$S$$
) = rank(S_P) = $d + 1$;

3 *the all ones vector lies in the column span of S.*

Slack Ideal

Symbolic slack matrix

Replace nonzero entries of S_P by distinct variables.

$$S_P = \left(egin{array}{ccccc} 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 1 & 1 & 0 & 0 \end{array}
ight)
ightarrow S_P(m{x}) = \left(egin{array}{ccccccccc} 0 & x_1 & x_2 & 0 \ 0 & 0 & x_3 & x_4 \ x_5 & 0 & 0 & x_6 \ x_7 & x_8 & 0 & 0 \end{array}
ight)$$

Slack Ideal

Symbolic slack matrix

Replace nonzero entries of S_P by distinct variables.

$$S_P = \left(egin{array}{ccccc} 0 & 1 & 1 & 0 \ 0 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 \ 1 & 1 & 0 & 0 \end{array}
ight)
ightarrow S_P(m{x}) = \left(egin{array}{ccccccccc} 0 & x_1 & x_2 & 0 \ 0 & 0 & x_3 & x_4 \ x_5 & 0 & 0 & x_6 \ x_7 & x_8 & 0 & 0 \end{array}
ight)$$

Slack ideal

$$I_P = \langle (d+2) \text{-minors of } S_P(\boldsymbol{x}) \rangle : \left(\prod x_i \right)^{\infty}$$
$$I_P = \langle x_2 x_4 x_5 x_8 - x_1 x_3 x_6 x_7 \rangle$$

• Positive part of slack variety: $\mathcal{V}_+(I_P) = \mathcal{V}(I_P) \cap \mathbb{R}^n_+$

- Positive part of slack variety: $\mathcal{V}_+(I_P) = \mathcal{V}(I_P) \cap \mathbb{R}^n_+$
- $\mathbb{R}_{>0}^{\nu} \times \mathbb{R}_{>0}^{f}$ acts on $\mathcal{V}_{+}(I_{P})$:

 $D_{\nu} \mathbf{s} D_{f} \in \mathcal{V}_{+}(I_{P})$ for every $\mathbf{s} \in \mathcal{V}_{+}(I_{P})$, D_{ν}, D_{f} positive diagonal matrices

- Positive part of slack variety: $\mathcal{V}_+(I_P) = \mathcal{V}(I_P) \cap \mathbb{R}^n_+$
- $\mathbb{R}_{>0}^{\nu} \times \mathbb{R}_{>0}^{f}$ acts on $\mathcal{V}_{+}(I_{P})$:

 $D_{\nu} \mathbf{s} D_{f} \in \mathcal{V}_{+}(I_{P})$ for every $\mathbf{s} \in \mathcal{V}_{+}(I_{P})$, D_{ν}, D_{f} positive diagonal matrices

• Mod out affine and projective equivalence \longleftrightarrow set variables to 1

- Positive part of slack variety: $\mathcal{V}_+(I_P) = \mathcal{V}(I_P) \cap \mathbb{R}^n_+$
- $\mathbb{R}_{>0}^{\nu} \times \mathbb{R}_{>0}^{f}$ acts on $\mathcal{V}_{+}(I_{P})$:

 $D_{\nu}\mathbf{s}D_{f} \in \mathcal{V}_{+}(I_{P})$ for every $\mathbf{s} \in \mathcal{V}_{+}(I_{P})$, D_{ν}, D_{f} positive diagonal matrices

• Mod out affine and projective equivalence \longleftrightarrow set variables to 1

Theorem (Gouveia, M, Thomas, Wiebe, 2017) $\mathcal{V}_+(I_P)/(\mathbb{R}^v_{>0} \times \mathbb{R}^f_{>0}) \stackrel{1:1}{\longleftrightarrow}$ classes of projectively equivalent polytopes of the same combinatorial type as *P*.

- Positive part of slack variety: $\mathcal{V}_+(I_P) = \mathcal{V}(I_P) \cap \mathbb{R}^n_+$
- $\mathbb{R}_{>0}^{\nu} \times \mathbb{R}_{>0}^{f}$ acts on $\mathcal{V}_{+}(I_{P})$:

 $D_{\nu} \mathbf{s} D_{f} \in \mathcal{V}_{+}(I_{P})$ for every $\mathbf{s} \in \mathcal{V}_{+}(I_{P})$, D_{ν}, D_{f} positive diagonal matrices

• Mod out affine and projective equivalence \longleftrightarrow set variables to 1

Theorem (Gouveia, M, Thomas, Wiebe, 2017) $\mathcal{V}_+(I_P)/(\mathbb{R}^{\nu}_{>0} \times \mathbb{R}^{f}_{>0}) \stackrel{1:1}{\longleftrightarrow}$ classes of projectively equivalent polytopes of the same combinatorial type as *P*.

We call $\mathcal{V}_+(I_P)/(\mathbb{R}_{>0}^{\nu} \times \mathbb{R}_{>0}^{f})$ the *slack realization space* of *P*: a model to mod out projective equivalence.

- Positive part of slack variety: $\mathcal{V}_+(I_P) = \mathcal{V}(I_P) \cap \mathbb{R}^n_+$
- $\mathbb{R}_{>0}^{\nu} \times \mathbb{R}_{>0}^{f}$ acts on $\mathcal{V}_{+}(I_{P})$:

 $D_{\nu} \mathbf{s} D_{f} \in \mathcal{V}_{+}(I_{P})$ for every $\mathbf{s} \in \mathcal{V}_{+}(I_{P})$, D_{ν}, D_{f} positive diagonal matrices

• Mod out affine and projective equivalence \longleftrightarrow set variables to 1

Theorem (Gouveia, M, Thomas, Wiebe, 2017) $\mathcal{V}_+(I_P)/(\mathbb{R}^{\nu}_{>0} \times \mathbb{R}^{f}_{>0}) \stackrel{1:1}{\longleftrightarrow}$ classes of projectively equivalent polytopes of the same combinatorial type as *P*.

We call $\mathcal{V}_+(I_P)/(\mathbb{R}_{>0}^{\nu} \times \mathbb{R}_{>0}^{f})$ the *slack realization space* of *P*: a model to mod out projective equivalence.

A new computational tool for testing polytopal properties.

Steinitz problem Check whether an abstract polytopal complex is the boundary of an actual polytope.

Steinitz problem Check whether an abstract polytopal complex is the boundary of an actual polytope.

[Altshuler, Steinberg, 1985]: 4-polytopes and 3-spheres with 8 vertices.

The smallest non-polytopal 3-sphere has vertex-facet non-incidence matrix

Steinitz problem Check whether an abstract polytopal complex is the boundary of an actual polytope.

[Altshuler, Steinberg, 1985]: 4-polytopes and 3-spheres with 8 vertices.

The smallest non-polytopal 3-sphere has vertex-facet non-incidence matrix

$$S_P(\boldsymbol{x}) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & * & * & * & * \\ 0 & 0 & 0 & 0 & * & * & 0 & 0 & * & * \\ 0 & 0 & * & * & 0 & 0 & 0 & 0 & * \\ 0 & 0 & * & * & 0 & 0 & 0 & * & * & 0 \\ 0 & * & 0 & 0 & 0 & 0 & * & * & * \\ * & 0 & * & 0 & 0 & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 & * & * & * & 0 \end{pmatrix}.$$

Proposition *P* is realizable $\iff \mathcal{V}_+(I_P) \neq \emptyset$.

Steinitz problem Check whether an abstract polytopal complex is the boundary of an actual polytope.

[Altshuler, Steinberg, 1985]: 4-polytopes and 3-spheres with 8 vertices.

The smallest non-polytopal 3-sphere has vertex-facet non-incidence matrix

Proposition *P* is realizable $\iff \mathcal{V}_+(I_P) \neq \emptyset$.

In this case, $I_P = \langle 1 \rangle \Rightarrow$ no rank 5 matrix with this support \Rightarrow no polytope with the given facial structure.

Lemma *F* face of $P \Rightarrow S_F$ submatrix of S_P and $I_F \subset I_P$. *F* prescribable in $P \Leftrightarrow \mathcal{V}_+(I_F) = \mathcal{V}_+(I_P \cap \mathbb{C}[\mathbf{x}_F])$.

Lemma *F* face of $P \Rightarrow S_F$ submatrix of S_P and $I_F \subset I_P$. *F* prescribable in $P \Leftrightarrow \mathcal{V}_+(I_F) = \mathcal{V}_+(I_P \cap \mathbb{C}[\mathbf{x}_F])$.

[Barnette, 1987]: 4-dimensional prism over a square pyramid with a non-prescribable cubical facet *F*

$$S_P(\boldsymbol{x}) = \begin{pmatrix} x_1 & 0 & 0 & 0 & x_2 & x_3 & 0 \\ x_4 & 0 & 0 & 0 & 0 & x_5 & x_6 \\ x_7 & 0 & 0 & x_{11} & x_{12} & 0 & 0 \\ x_{10} & 0 & 0 & x_{11} & x_{12} & 0 & 0 \\ x_{13} & 0 & x_{14} & 0 & 0 & 0 & 0 \\ 0 & x_{15} & 0 & 0 & x_{16} & x_{17} & 0 \\ 0 & x_{18} & 0 & 0 & 0 & x_{19} & x_{20} \\ 0 & x_{21} & 0 & x_{25} & x_{26} & 0 & 0 \\ 0 & x_{27} & x_{28} & 0 & 0 & 0 & 0 \end{pmatrix} \cdot S_F(\boldsymbol{x})$$

Lemma *F* face of $P \Rightarrow S_F$ submatrix of S_P and $I_F \subset I_P$. *F* prescribable in $P \Leftrightarrow \mathcal{V}_+(I_F) = \mathcal{V}_+(I_P \cap \mathbb{C}[\mathbf{x}_F])$.

[Barnette, 1987]: 4-dimensional prism over a square pyramid with a non-prescribable cubical facet *F*

$$S_P(\mathbf{x}) = \begin{pmatrix} x_1 & 0 & 0 & 0 & x_2 & x_3 & 0 \\ x_4 & 0 & 0 & 0 & 0 & x_5 & x_6 \\ x_7 & 0 & 0 & x_1 & x_{12} & 0 & 0 \\ x_{10} & 0 & 0 & x_{11} & x_{12} & 0 & 0 \\ x_{13} & 0 & x_{14} & 0 & 0 & 0 & 0 \\ 0 & x_{15} & 0 & 0 & x_{16} & x_{17} & 0 \\ 0 & x_{16} & 0 & 0 & 0 & x_{19} & x_{20} \\ 0 & x_{21} & 0 & x_{22} & 0 & 0 & x_{23} \\ 0 & x_{24} & 0 & x_{25} & x_{26} & 0 & 0 \\ 0 & x_{27} & x_{28} & 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\dim(I_P \cap \mathbb{C}[\boldsymbol{x}_F]) = 15, \dim(I_F) = 16 \Rightarrow I_F \neq I_P \cap \mathbb{C}[\boldsymbol{x}_F]$

Lemma *F* face of $P \Rightarrow S_F$ submatrix of S_P and $I_F \subset I_P$. *F* prescribable in $P \Leftrightarrow \mathcal{V}_+(I_F) = \mathcal{V}_+(I_P \cap \mathbb{C}[\mathbf{x}_F])$.

[Barnette, 1987]: 4-dimensional prism over a square pyramid with a non-prescribable cubical facet *F*

$$S_P(\mathbf{x}) = \begin{pmatrix} x_1 & 0 & 0 & 0 & x_2 & x_3 & 0 \\ x_4 & 0 & 0 & 0 & 0 & x_5 & x_6 \\ x_7 & 0 & 0 & x_{11} & x_{12} & 0 & 0 \\ x_{13} & 0 & x_{14} & 0 & 0 & 0 & 0 \\ 0 & x_{15} & 0 & 0 & x_{16} & x_{17} & 0 \\ 0 & x_{18} & 0 & 0 & 0 & x_{19} & x_{20} \\ 0 & x_{21} & 0 & x_{22} & 0 & 0 & x_{23} \\ 0 & x_{24} & 0 & x_{25} & x_{26} & 0 & 0 \\ 0 & x_{27} & x_{28} & 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\dim(I_P \cap \mathbb{C}[\boldsymbol{x}_F]) = 15, \dim(I_F) = 16 \Rightarrow I_F \neq I_P \cap \mathbb{C}[\boldsymbol{x}_F]$

Computations show that the cube admits further realizations than are possible as a face of $P \Rightarrow \mathcal{V}_+(I_F) \neq \mathcal{V}_+(I_P \cap \mathbb{R}[\boldsymbol{x}_F])$

A combinatorial polytope is *rational* if it has a realization in which all vertices have rational coordinates.

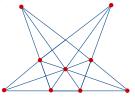
A combinatorial polytope is *rational* if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_+(I_P)$ has a rational point.

A combinatorial polytope is *rational* if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_+(I_P)$ has a rational point.

We consider the following non-rational point-line arrangement in the plane [Grünbaum, 1967]:

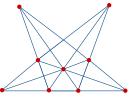


$$S_P(\mathbf{x}) = \begin{pmatrix} * & 0 & * & 0 & * & * & * & * & 0 \\ * & * & * & 0 & * & 0 & 0 & * & * \\ * & * & 0 & * & 0 & 0 & * & * \\ * & 0 & * & 0 & * & 0 & 0 & * \\ * & 0 & * & * & 0 & * & 0 & * \\ 0 & 0 & * & * & 0 & * & * & * \\ 0 & * & * & 0 & * & \mathbf{x} & 0 & * \\ 0 & * & * & 0 & * & \mathbf{x} & 0 & * \end{pmatrix}$$

A combinatorial polytope is *rational* if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_+(I_P)$ has a rational point.

We consider the following non-rational point-line arrangement in the plane [Grünbaum, 1967]:



	/ *	0	*	0	*	*	*	*	0 * 0 * * * *
	*	*	*	0	*	0	0	*	*
	*	*	0	*	*	*	*	0	0
	*	*	0	*	0	0	*	*	*
$S_P(\mathbf{x}) =$	*	0	*	*	0	*	0	0	*
	0	0	*	*	*	0	*	*	*
	0	*	0	*	*	*	0	*	*
	0	*	*	0	*	*	x	0	*
	0 /	*	*	*	0	*	*	*	0 /

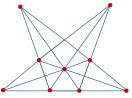
Scaling rows and columns to set some variables to 1 (this does not affect rationality):

 $x^2 + x - 1 \in I_P$

A combinatorial polytope is *rational* if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_+(I_P)$ has a rational point.

We consider the following non-rational point-line arrangement in the plane [Grünbaum, 1967]:



	/ *	0	*	0	*	*	*	*	0 \
	*	*	*		*	0	0	*	*
	*	*	0	*	*	*	*	0	0
	*	*		*	0	0	*	*	*
$S_P(\mathbf{x}) =$	*	0	*	*	0	*	0	0	*
	0	0	*	*	*	0	*	*	*
	0	*	0	*	*	*	0	*	*
	0	*	*	0	*	*	x	0	*
	0 /	*	*	*	0	*	*	*	0 * 0 * * * * * *

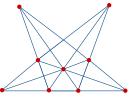
Scaling rows and columns to set some variables to 1 (this does not affect rationality):

$$x^2+x-1\in I_P$$
 \Rightarrow $x=rac{-1\pm\sqrt{5}}{2}$ \Rightarrow no rational realizations

A combinatorial polytope is *rational* if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_+(I_P)$ has a rational point.

We consider the following non-rational point-line arrangement in the plane [Grünbaum, 1967]:



	/ *	0	*	0	*	*	*	*	0 * 0 * * * * *
	*	*	*	0	*	0	0	*	*
	*	*	0	*	*	*	*	0	0
	*	*	0	*	0	0	*	*	*
$S_P(\mathbf{x}) =$	*	0	*	*	0	*	0	0	*
	0	0	*	*	*	0	*	*	*
	0	*	0	*	*	*	0	*	*
	0	*	*	0	*	*	x	0	*
	0 /	*	*	*	0	*	*	*	0 /

Scaling rows and columns to set some variables to 1 (this does not affect rationality):

$$x^2 + x - 1 \in I_P \Rightarrow x = rac{-1 \pm \sqrt{5}}{2} \Rightarrow ext{ no rational realizations}$$

What else can we determine from I_P ?

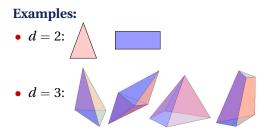
I_P cannot contain monomials

I_P cannot contain monomials

 I_P can be generated by binomials, but usually not

I_P cannot contain monomials

 I_P can be generated by binomials, but usually not



- d = 4: 11 combinatorial classes of PSD-minimal polytopes [GPRT17]
- Products of simplices

 I_P cannot contain monomials I_P can be generated by binomials, but usually not I_P can be prime \rightarrow so can be toric!

Examples: • *d* = 2:

- d = 4: 11 combinatorial classes of PSD-minimal polytopes [GPRT17]
- Products of simplices

 I_P cannot contain monomials I_P can be generated by binomials, but usually not I_P can be prime \rightarrow so can be toric!

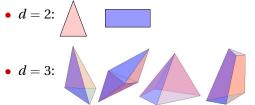
Examples: • *d* = 2:

- *d* = 4: 11 combinatorial classes of PSD-minimal polytopes [GPRT17]
- Products of simplices

Is I_P the defining ideal of $\mathcal{V}_+(I_P)$? If I_P is toric, yes.

 I_P cannot contain monomials I_P can be generated by binomials, but usually not I_P can be prime \rightarrow so can be toric!

Examples:



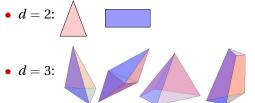
- *d* = 4: 11 combinatorial classes of PSD-minimal polytopes [GPRT17]
- Products of simplices

Is I_P the defining ideal of $\mathcal{V}_+(I_P)$? If I_P is toric, yes.

All are toric and projectively unique

 I_P cannot contain monomials I_P can be generated by binomials, but usually not I_P can be prime \rightarrow so can be toric!

Examples:



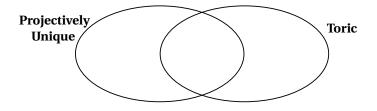
- *d* = 4: 11 combinatorial classes of PSD-minimal polytopes [GPRT17]
- Products of simplices

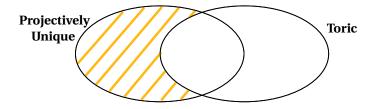
Is I_P the defining ideal of $\mathcal{V}_+(I_P)$? If I_P is toric, yes.

Always true?

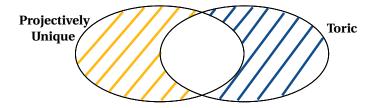
All are toric and projectively unique

NO

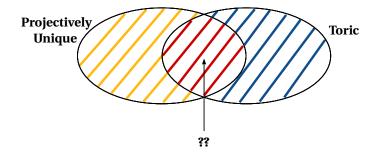




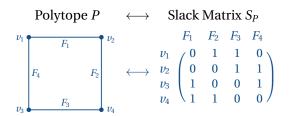
• In high enough dimension there are infinitely many projectively unique polytopes [Adiprasito, Ziegler, 2015], but only finitely many toric slack ideals in any dimension [Gouveia, Pashkovich, Robinson, Thomas, 2017].

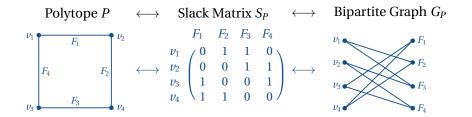


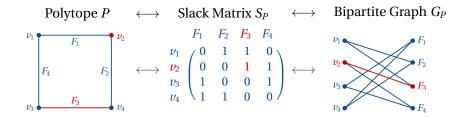
- In high enough dimension there are infinitely many projectively unique polytopes [Adiprasito, Ziegler, 2015], but only finitely many toric slack ideals in any dimension [Gouveia, Pashkovich, Robinson, Thomas, 2017].
- In dimension 5 there are non-projectively unique polytopes that have toric slack ideals [Gouveia, M, Thomas, Wiebe, 2017].

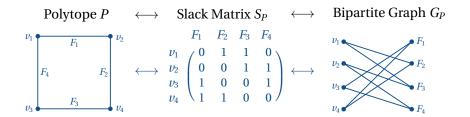


- In high enough dimension there are infinitely many projectively unique polytopes [Adiprasito, Ziegler, 2015], but only finitely many toric slack ideals in any dimension [Gouveia, Pashkovich, Robinson, Thomas, 2017].
- In dimension 5 there are non-projectively unique polytopes that have toric slack ideals [Gouveia, M, Thomas, Wiebe, 2017].
- Which polytopes are toric and PU?



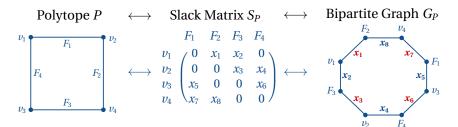






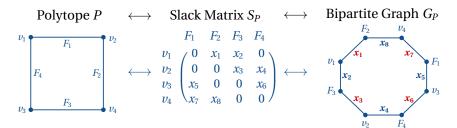
Toric ideal of a graph is a well-studied object:

 $T_P = \langle \boldsymbol{x}^{C^+} - \boldsymbol{x}^{C^-} : C \text{ cycles in } G_P \rangle$



Toric ideal of a graph is a well-studied object:

 $T_P = \langle \boldsymbol{x}^{C^+} - \boldsymbol{x}^{C^-} : C \text{ cycles in } G_P \rangle \quad T_P = \langle x_2 x_4 x_5 x_8 - \underline{x_1} x_3 x_6 x_7 \rangle$



Toric ideal of a graph is a well-studied object:

 $T_P = \langle \boldsymbol{x}^{C^+} - \boldsymbol{x}^{C^-} : C \text{ cycles in } G_P \rangle \quad T_P = \langle x_2 x_4 x_5 x_8 - x_1 x_3 x_6 x_7 \rangle$

What is the relation between I_P and T_P ?

Geometric meaning of polytopes for which $I_P \subseteq T_P$.

Geometric meaning of polytopes for which $I_P \subseteq T_P$.

A polytope *P* is 2-*level* if it has a slack matrix in which every positive entry is one, i.e., $S_P(1)$ is a slack matrix of *P*.

Geometric meaning of polytopes for which $I_P \subset T_P$.

A polytope *P* is 2-*level* if it has a slack matrix in which every positive entry is one, i.e., $S_P(1)$ is a slack matrix of P.

Definition

- A polytope *P* is *morally* 2-*level* if $S_P(1)$ lies in the slack variety of *P*. I_P graphic if $I_P = T_P$.

Geometric meaning of polytopes for which $I_P \subseteq T_P$.

A polytope *P* is 2-*level* if it has a slack matrix in which every positive entry is one, i.e., $S_P(1)$ is a slack matrix of *P*.

Definition

- A polytope *P* is *morally* 2-*level* if $S_P(1)$ lies in the slack variety of *P*.
- I_P graphic if $I_P = T_P$.

Theorem (Gouveia, M, Thomas, Wiebe, 2017)

1 A polytope P is morally 2-level \Leftrightarrow $I_P \subseteq T_P$.

2 I_P is graphic \Leftrightarrow I_P toric and P projectively unique.

Conclusions

- Slack matrix encodes the combinatorics of polytopes
- Positive part of the slack variety as a model of the realization space for modding out projective equivalence
- Slack ideals gives new computational framework for classic polytopal questions
- New characterization of class of projectively unique polytopes via slack ideal: graphic polytopes are PU

What next?

• Continue to improve this new dictionary between algebra and combinatorics of polytopes

Thank you for listening!