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The dimension of a polytope is the dimension of its affine hull.
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Polytope <«+— Face lattice
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Geometry Combinatorics

Find all polytopes of a fixed dimension:

e combinatorial types of polytopes « finite lattices corresponding
to face lattices of polytopes,

e describe the set of all realizations of a given combinatorial type
(realization space).

Theorem (Steinitz, 1922) A graph G is the edge graph of a
3-polytope < G is simple, planar and 3-connected.
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Given: combinatorial type of a d-polytope

— face lattice or vertex-facet incidences A
Want: all ways to realize this type in R? 4,
U3
P is a quadrilateral
4 vertices {v1, 1o, U3, s} Uy
4 facets {v1, o}, {2, 13}, {13, s}, {va, 1 } '1

Affine equivalence
Q=Pe Q=0(P), (x)=Ax+b

preserves parallel lines, e.g. scaling, rotation, reflection, translation

Parallelograms are affinely equivalent to a square



Realization Space

Given: combinatorial type of a d-polytope
— face lattice or vertex-facet incidences
Want: all ways to realize this type in R? U2 Us

P is a quadrilateral
4 vertices {v1, 1o, U3, s} 2 Uy

4 facets {v1, v}, {v2, 15}, {vs, va}, {va, 1 } 1

Projective equivalence

Ax+b A b
QEP & Q=0(P), ¢x) ="

det
¢ cT d

|+

All quadrilaterals are projectively equivalent to a square.
A square is projectively unique.
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fix an affine basis B of d + 1 labelled vertices

P2

P1 Pa




Realization Space

Set of all realizations of polytopes combinatorially equivalent to P

Mod out affine transformation:
fix an affine basis B of d + 1 labelled vertices

p2

P1 Pa

-

Realization space

R(P,B):{Q:conv{ql,...,qn} CRY:.gi=p:¥pi€ B,Q< P}



Realization Space

Set of all realizations of polytopes combinatorially equivalent to P
Mod out affine transformation:
fix an affine basis B of d + 1 labelled vertices

U3

14! P4

Realization space

R(P,B):{Q:conv{ql,...,qn} CRY:.gi=p:¥pi€ B,Q< P}
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Slack Matrices

P:  d-polytope (0,1) 1-x%>0 (1,1)
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facet inequalities: 51 —a/x >0 >0 x>0
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Slack Matrices

P:  d-polytope (0,1) 1-x%>0 (1,1)
vertices:  {p1,...,pv}
facet inequalities: S —ajx >0 00 x>0
Br—ajx>0 0,00 x>0 (L0)
Slack matrix
: 01 10
Sp — —ad'p, .- o 0 0 1 1
1100

zero pattern <> combinatorics rank(Sp) =d+1

Theorem (GGKPRT, 2013) A nonnegative matrix S is the slack
matrix of some realization of P if and only if

© supp(S) = supp(Sp);

® rank(S) = rank(Sp) =d +1;

© the all ones vector lies in the column span of S.




Slack Ideal

Symbolic slack matrix
Replace nonzero entries of Sp by distinct variables.

01 10 0 x
00 1 1 0 0
=1 1001 | 7%®=| x5 o
1100 X7 Xg

X4
X6



Slack Ideal

Symbolic slack matrix
Replace nonzero entries of Sp by distinct variables.

01 1 0 0 x1 x O
(0011 0 0 x ox
SP=1 1001 | 79®=|x 0 0 x
1 1 0O X7 Xg 0 0
Slack ideal

Ip = ((d +2)-minors of Sp(x)) : (T] )~

Ip = (X2 X4 X5X8 — X1 X3X6X7)
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Slack realization space

e Positive part of slack variety: V. (Ip) = V(Ip) "R’

e RY, x R];o actson V (Ip):

for every s € V. (Ip),

DysDy € V(I
vSLf +(Ip) Dy, Dy positive diagonal matrices

e Mod out affine and projective equivalence <— set variables to 1

Theorem (Gouveia, M, Thomas, Wiebe, 2017)
Vi(Ip)/(RY, x RJ;O) &L classes of projectively equivalent polytopes of
the same combinatorial type as P.

We call V, (Ip)/(RY, x Rf;o) the slack realization space of P: a model
to mod out projective equivalence.

A new computational tool for testing polytopal properties.
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Application 1: Realizability

Steinitz problem Check whether an abstract polytopal complex is
the boundary of an actual polytope.

[Altshuler, Steinberg, 1985]: 4-polytopes and 3-spheres with 8 vertices.

The smallest non-polytopal 3-sphere has vertex-facet non-incidence matrix

00000 % % % % *
0000 * %00 % *
00 %0000 =
00x00=x%x=x%x00
Sp(x): 0x 0% 000 % % %
*0x00=x%x%x000
%« 0000000
#0000 %% %0
[Proposition P isrealizable < V. (Ip) # @. ]

In this case, Ip = (1) = no rank 5 matrix with this support = no
polytope with the given facial structure.
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Lemma F face of P = Sr submatrix of Sp and Ir C Ip.
F prescribablein P < V. (Ir) = V4 (Ip N ClxE]).

[Barnette, 1987]: 4-dimensional prism over a square pyramid with a
non-prescribable cubical facet F
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Application 2: Prescribability of faces

Lemma F face of P = Sr submatrix of Sp and Ir C Ip.
F prescribablein P < V. (Ir) = V4 (Ip N ClxE]).

[Barnette, 1987]: 4-dimensional prism over a square pyramid with a
non-prescribable cubical facet F

X1 0 0 0 X2 X3 0

x, 0O 010 0 x5 x4

X7 0 0 Xg 0 0 X9

X10 0 0 X11 X12 0 0

X13 0 X14 0 0 0 0

Sp(x) - 0 x50 0[O0 x16 x17 O : SF(x)

0 X18 0 0 0 X19 X20|

0 X21 0 X22 0 0 X23

0 X24 0 X25 X26 0 0

0 X27 X28 0 0 0 0

dim(Ip N C[xf)) = 15, dim(Ir) = 16 = Ir # Ip N Clxf]

Computations show that the cube admits further realizations than
are possible as a face of P = V., (Ir) # Vi (Ip N R[xF])
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Application 3: Rationality

A combinatorial polytope is rational if it has a realization in which
all vertices have rational coordinates.

[ Lemma A polytope P is rational < V. (Ip) has a rational point.

We consider the following non-rational point-line arrangement in
the plane [Griinbaum, 1967]:

Sp(x) =

SO0 O ¥ ¥ ¥ ¥ *
¥ ¥ ¥ OO % ¥ ¥ ©
¥ ¥ O % ¥ OO % ¥
¥ O% ¥ ¥ ¥ ¥ OO
O % % ¥ OO % ¥ %
¥ % ¥ O % O % O %
¥ B O* O % ¥ O %
* O %X ¥ O % O % %
O ¥ ¥ ¥ ¥ ¥ © % O

Scaling rows and columns to set some variables to 1 (this does not
affect rationality):

~1++5
2

What else can we determine from Ip?

X¥+x—leh=x= = no rational realizations
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How nice can Ip be?

Ip cannot contain monomials
Ip can be generated by binomials, but usually not
Ip can be prime — so can be toric!

Examples:

. do Always

true?

All are toric and

projectively unique
e d = 4: 11 combinatorial classes of

PSD-minimal polytopes [GPRT17]
e Products of simplices

Is Ip the defining ideal of V, (Ip)? If Ip is toric, yes.
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In high enough dimension there are infinitely many projectively
unique polytopes [Adiprasito, Ziegler, 2015], but only finitely many
toric slack ideals in any dimension [Gouveia, Pashkovich, Robin-
son, Thomas, 2017].

e In dimension 5 there are non-projectively unique polytopes that
have toric slack ideals [Gouveia, M, Thomas, Wiebe, 2017].

e Which polytopes are toric and PU?
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Non-incidence graph of a polytope

Polytope P +— Slack Matrix Sp «— Bipartite Graph Gp
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Non-incidence graph of a polytope

Polytope P +— Slack Matrix Sp «— Bipartite Graph Gp

F Uy
v = i h B F F
1
41 0 x1 x» O
F, Bl = [0 0 X x|

s lxs 0 0 x6

F, Uy X7 X8 0 0
U3 Uy

Toric ideal of a graph is a well-studied object:

+ - .
Tp = <xC -x¢ . C cyclesin Gp) Tp = (XoXaX5Xs — X1X3X6X7)

What is the relation between Ip and Tp?
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Graphic Polytopes

Geometric meaning of polytopes for which Ip C Tp.

A polytope P is 2-level if it has a slack matrix in which every positive
entry is one, i.e., Sp(1) is a slack matrix of P.

Definition
e Apolytope Pis morally?2-levelif Sp(1) lies in the slack variety of P.
e Ip graphicif Ip = Tp.

Theorem (Gouveia, M, Thomas, Wiebe, 2017)
©® A polytope P is morally 2-level < Ip C Tp.

® Ip is graphic < Ip toric and P projectively unique.




Conclusions

e Slack matrix encodes the combinatorics of polytopes

e Positive part of the slack variety as a model of the realization space
for modding out projective equivalence

e Slack ideals gives new computational framework for classic poly-
topal questions

e New characterization of class of projectively unique polytopes via
slack ideal: graphic polytopes are PU

What next?

e Continue toimprove this new dictionary between algebra and com-
binatorics of polytopes



Thank you for listening!



	Polytopes
	Realization Space and Slack Ideals
	Realization Space
	Slack Matrices
	Slack ideal
	Slack realization space

	Applications
	Realizability
	Prescribability of faces
	Rationality

	Projective uniqueness and toricness
	Non-incidence graph of a polytope
	Graphic Polytopes
	Conclusions

