On Cyclic Descents of SYT

Yuval Roichman

Bar-Ilan University

Based on joint works with Ron Adin, Sergi Elizalde and Vic Reiner

SLC 79, Bertinoro, Sep '17

Cyclic descents

Summary and open problems

Cyclic descents

Descents and cyclic descents of permutations

Denote
$$[m] := \{1, 2, ..., m\}.$$

The descent set of a permutation $\pi = [\pi_1, \ldots, \pi_n]$ in the symmetric group \mathfrak{S}_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1].$$

Denote
$$[m] := \{1, 2, ..., m\}.$$

The descent set of a permutation $\pi = [\pi_1, \dots, \pi_n]$ in the symmetric group \mathfrak{S}_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1].$$

The cyclic descent set is

$$cDes(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq [n].$$

with the convention $\pi_{n+1} := \pi_1$.

Denote
$$[m] := \{1, 2, ..., m\}.$$

The descent set of a permutation $\pi = [\pi_1, \dots, \pi_n]$ in the symmetric group \mathfrak{S}_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1].$$

The cyclic descent set is

$$cDes(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq [n].$$

with the convention $\pi_{n+1} := \pi_1$.

Introduced by Cellini ['95];

Denote
$$[m] := \{1, 2, ..., m\}.$$

The descent set of a permutation $\pi = [\pi_1, \dots, \pi_n]$ in the symmetric group \mathfrak{S}_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1].$$

The cyclic descent set is

$$\mathsf{cDes}(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq [n].$$

with the convention $\pi_{n+1} := \pi_1$.

Introduced by Cellini ['95]; further studied by Dilks, Petersen and Stembridge ['09] and others.

Example $\pi = 23154$:

$$\pi = 23154$$
 : $Des(\pi) = \{2, 4\}$,

Example

 $\pi = 23154$: $Des(\pi) = \{2, 4\}$, $cDes(\pi) = \{2, 4, 5\}$.

$$\pi = 23154$$
 : Des $(\pi) = \{2, 4\}$, cDes $(\pi) = \{2, 4, 5\}$.
 $\pi = 34152$:

$$\pi = 23154 : \text{Des}(\pi) = \{2,4\}, \text{ cDes}(\pi) = \{2,4,5\}.$$

$$\pi = 34152 : \text{Des}(\pi) = \{2,4\},$$

$$\pi = 23154 : \text{Des}(\pi) = \{2,4\}, \text{ cDes}(\pi) = \{2,4,5\}.$$

$$\pi = 34152 : \text{Des}(\pi) = \{2,4\}, \text{ cDes}(\pi) = \{2,4\}.$$

$$\begin{array}{cccc} [\pi_1, \pi_2, \dots, \pi_{n-1}, \pi_n] & \stackrel{p}{\longmapsto} & [\pi_n, \pi_1, \pi_2, \dots, \pi_{n-1}] \\ & \{i_1, \dots, i_k\} & \stackrel{p}{\longmapsto} & \{i_1 + 1, \dots, i_k + 1\} \bmod n \end{array}$$

$$\begin{array}{cccc} [\pi_1, \pi_2, \dots, \pi_{n-1}, \pi_n] & \stackrel{p}{\longmapsto} & [\pi_n, \pi_1, \pi_2, \dots, \pi_{n-1}] \\ & \{i_1, \dots, i_k\} & \stackrel{p}{\longmapsto} & \{i_1 + 1, \dots, i_k + 1\} \bmod n \end{array}$$

$$\begin{bmatrix} \pi_1, \pi_2, \dots, \pi_{n-1}, \pi_n \end{bmatrix} \xrightarrow{p} \begin{bmatrix} \pi_n, \pi_1, \pi_2, \dots, \pi_{n-1} \end{bmatrix} \{ i_1, \dots, i_k \} \xrightarrow{p} \{ i_1 + 1, \dots, i_k + 1 \} \mod n$$

$$cDes(\pi) \cap [n-1] = Des(\pi)$$
 (extension) (1)

$$\begin{array}{cccc} [\pi_1, \pi_2, \dots, \pi_{n-1}, \pi_n] & \stackrel{p}{\longmapsto} & [\pi_n, \pi_1, \pi_2, \dots, \pi_{n-1}] \\ & \{i_1, \dots, i_k\} & \stackrel{p}{\longmapsto} & \{i_1 + 1, \dots, i_k + 1\} \bmod n \end{array}$$

$$cDes(\pi) \cap [n-1] = Des(\pi)$$
 (extension) (1)
 $cDes(p(\pi)) = p(cDes(\pi))$ (equivariance) (2)

$$\begin{array}{cccc} [\pi_1, \pi_2, \dots, \pi_{n-1}, \pi_n] & \stackrel{p}{\longmapsto} & [\pi_n, \pi_1, \pi_2, \dots, \pi_{n-1}] \\ & \{i_1, \dots, i_k\} & \stackrel{p}{\longmapsto} & \{i_1 + 1, \dots, i_k + 1\} \bmod n \end{array}$$

$$cDes(\pi) \cap [n-1] = Des(\pi) \quad (extension) \quad (1)$$

$$cDes(p(\pi)) = p(cDes(\pi)) \quad (equivariance) \quad (2)$$

$$\varnothing \subsetneq cDes(\pi) \subsetneq [n] \quad (non-Escher) \quad (3)$$

A non-Escher property

"Ascending and Descending", M. C. Escher

A non-Escher property

"Ascending and Descending", M. C. Escher The paradox of $cDes(\pi) = \emptyset$ and $cDes(\pi) = [n]$.

Descents and cyclic descents of SYT

Denote the set of all standard Young tableaux of shape λ/μ by SYT(λ/μ).

Denote the set of all standard Young tableaux of shape λ/μ by SYT(λ/μ).

The descent set of $T \in SYT(\lambda/\mu)$ is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Denote the set of all standard Young tableaux of shape λ/μ by SYT(λ/μ).

The descent set of $T \in SYT(\lambda/\mu)$ is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \hline \end{array}}_{5} \in SYT((4,3,1)/(1,1))$$

Denote the set of all standard Young tableaux of shape λ/μ by SYT(λ/μ).

The descent set of $T \in SYT(\lambda/\mu)$ is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \hline \end{array}}_{5} \in SYT((4,3,1)/(1,1))$$

 $Des(T) = \{2, 4\}.$

Denote the set of all standard Young tableaux of shape λ/μ by SYT(λ/μ).

The descent set of $T \in SYT(\lambda/\mu)$ is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \hline \end{array}}_{5} \in SYT((4,3,1)/(1,1))$$

$$Des(T) = \{2, 4\}.$$

Motivating Problem:

Denote the set of all standard Young tableaux of shape λ/μ by SYT(λ/μ).

The descent set of $T \in SYT(\lambda/\mu)$ is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \end{array}}_{\text{SYT}((4,3,1)/(1,1))}$$

$$Des(T) = \{2, 4\}.$$

Motivating Problem:

Define a cyclic descent set for SYT of any shape λ/μ .

SYT of rectangular shapes

SYT of rectangular shapes

Theorem (Rhoades '10)

There exists a cyclic descent map cDes : $SYT(r^{n/r}) \rightarrow 2^{[n]} s.t.$ $\forall T \in SYT(r^{n/r})$

SYT of rectangular shapes

Theorem (Rhoades '10)

There exists a cyclic descent map cDes : $SYT(r^{n/r}) \rightarrow 2^{[n]} s.t.$ $\forall T \in SYT(r^{n/r})$

$$cDes(T) \cap [n-1] = Des(T)$$

 $cDes(p(T)) = p(cDes(T))$

where p acts on cDes(T) by adding 1 (mod n) to each element, and acts on SYT by Schützenberger's promotion operator.

SYT of rectangular shapes

Example $\lambda = (3,3) \vdash 6$.

SYT of rectangular shapes

Example $\lambda = (3,3) \vdash 6$.

A \mathbb{Z} -orbit:

Reformulation

Definition Given a set \mathcal{T} and map Des : $\mathcal{T}
ightarrow 2^{[n-1]}$,

Reformulation

Definition

Given a set \mathcal{T} and map $\mathsf{Des}:\mathcal{T}\to 2^{[n-1]}$, a cyclic extension of Des

Reformulation

Definition

Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair (cDes, p), where cDes : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms:
Reformulation

Definition

Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair (cDes, p), where cDes : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all \mathcal{T} in \mathcal{T} ,

> (extension) $cDes(T) \cap [n-1] = Des(T)$, (equivariance) cDes(p(T)) = p(cDes(T)), (non-Escher) $\emptyset \subsetneq cDes(T) \subsetneq [n]$.

Reformulation

Definition

Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair (cDes, p), where cDes : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all \mathcal{T} in \mathcal{T} ,

(extension)
$$cDes(T) \cap [n-1] = Des(T)$$
,
(equivariance) $cDes(p(T)) = p(cDes(T))$,
(non-Escher) $\emptyset \subsetneq cDes(T) \subsetneq [n]$.

Examples

- $\mathcal{T} = \mathfrak{S}_n$, with Cellini's cyclic descent set and \mathbb{Z} -action by cyclic rotation.
- $T = SYT(r^{n/r})$, with Rhoades' cyclic descent set and \mathbb{Z} -action by promotion.

Summary and open problems

Summary and open problems

Motivating Problem:

Motivating Problem:

Does Des on SYT(λ/μ) have a cyclic extension ?

Motivating Problem:

Does Des on SYT(λ/μ) have a cyclic extension ?

Recall the axioms: for all $T \in SYT(\lambda/\mu)$,

 $\begin{array}{ll} (\text{extension}) & \text{cDes}(T) \cap [n-1] = \text{Des}(T), \\ (\text{equivariance}) & \text{cDes}(p(T)) = p(\text{cDes}(T)), \\ (\text{non-Escher}) & \varnothing \subsetneq \text{cDes}(T) \subsetneq [n]. \end{array}$

Theorem (Adin-Elizalde-Roichman '16)

Theorem (Adin-Elizalde-Roichman '16)

Theorem (Adin-Elizalde-Roichman '16)

Theorem (Adin-Elizalde-Roichman '16)

Theorem (Adin-Elizalde-Roichman '16)

Each of the following shapes carries a cyclic descent extension:

The proofs are explicit and combinatorial.

Summary and open problems

For $\lambda \vdash n-1$ let λ^{\Box} be the skew shape obtained from λ by placing a disconnected box at its upper right corner.

Example

For $\lambda \vdash n-1$ let λ^{\Box} be the skew shape obtained from λ by placing a disconnected box at its upper right corner.

Example

Theorem (Elizalde-Roichman '15)

For every partition $\lambda \vdash n-1$ there exists a cyclic descent extension on SYT(λ^{\Box}).

For $\lambda \vdash n-1$ let λ^{\Box} be the skew shape obtained from λ by placing a disconnected box at its upper right corner.

Example

Theorem (Elizalde-Roichman '15)

For every partition $\lambda \vdash n-1$ there exists a cyclic descent extension on SYT(λ^{\Box}).

So far - so good!

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square.

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square.

Examples

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square.

Examples

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square.

Proposition A connected ribbon does not have a cyclic descent extension.

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square.

Proposition A connected ribbon does not have a cyclic descent extension.

Oops !!!

Summary and open problems

What's going on ?

Summary and open problems

What's going on ?

At this point, we conducted computer experiments on all partitions of size n < 16. The numerical results led to

Conjecture

A Conjecture

At this point, we conducted computer experiments on all partitions of size n < 16. The numerical results led to

Conjecture

For every non-hook partition $\lambda \vdash n$, the set SYT(λ) has a cyclic descent extension;

A Conjecture

At this point, we conducted computer experiments on all partitions of size n < 16. The numerical results led to

Conjecture

For every non-hook partition $\lambda \vdash n$, the set $SYT(\lambda)$ has a cyclic descent extension; namely, \exists cDes : $SYT(\lambda) \rightarrow 2^{[n]}$ and a bijection $p : SYT(\lambda) \longrightarrow SYT(\lambda)$, s.t. $\forall T \in SYT(\lambda)$

> (extension) $cDes(T) \cap [n-1] = Des(T)$, (equivariance) cDes(p(T)) = p(cDes(T)), (non-Escher) $\varnothing \subsetneq cDes(T) \subsetneq [n]$.

Cyclic descents

Affine ribbon Schur functions

Summary and open problems

Ribbon Schur functions

For a subset $J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n-1]$ define the associated composition

$$co(J) := (j_1, j_2 - j_1, j_3 - j_2, \dots, n - j_t)$$

For a subset $J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n-1]$ define the associated composition

$$co(J) := (j_1, j_2 - j_1, j_3 - j_2, \dots, n - j_t)$$

and the corresponding ribbon Schur function

$$s_{\operatorname{co}(J)} := \sum_{I \subseteq J} (-1)^{|J \setminus I|} h_{\operatorname{co}(I)}.$$

For a subset $J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n-1]$ define the associated composition

$$co(J) := (j_1, j_2 - j_1, j_3 - j_2, \dots, n - j_t)$$

and the corresponding ribbon Schur function

$$s_{\operatorname{co}(J)} := \sum_{I \subseteq J} (-1)^{|J \setminus I|} h_{\operatorname{co}(I)}.$$

Theorem (Gessel '83)

For any skew shape λ/μ and $J \subseteq [n]$,

$$\langle s_{\lambda/\mu}, s_{co(J)}
angle =$$

For a subset $J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n-1]$ define the associated composition

$$co(J) := (j_1, j_2 - j_1, j_3 - j_2, \dots, n - j_t)$$

and the corresponding ribbon Schur function

$$s_{\operatorname{co}(J)} := \sum_{I \subseteq J} (-1)^{|J \setminus I|} h_{\operatorname{co}(I)}.$$

Theorem (Gessel '83)

For any skew shape λ/μ and $J \subseteq [n]$,

$$\langle s_{\lambda/\mu}, s_{co(J)} \rangle = #\{T \in SYT(\lambda/\mu) : Des(T) = J\}.$$

Summary and open problems

Affine ribbon Schur functions

Affine ribbon Schur functions

For a subset $\emptyset \neq J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n]$ define the associated cyclic composition

$$cc(J) := (j_2 - j_1, j_3 - j_2, \dots, j_1 - j_t + n)$$

Affine ribbon Schur functions

For a subset $\emptyset \neq J = \{j_1 < j_2 < \ldots < j_t\} \subseteq [n]$ define the associated cyclic composition

$$cc(J) := (j_2 - j_1, j_3 - j_2, \dots, j_1 - j_t + n)$$

and the corresponding affine ribbon Schur function

$$\widetilde{s}_{\mathsf{cc}(J)} := \sum_{\varnothing \neq I \subseteq J} (-1)^{|J \setminus I|} h_{\mathsf{cc}(I)}.$$

Affine ribbon Schur functions

Example

Let n = 6 and $J = \{3, 5\}$. The affine ribbon Schur function is

$$\begin{split} \tilde{s}_{\text{cc}(\{3,5\})} &= h_{\text{cc}(\{3,5\})} - h_{\text{cc}(\{3\})} - h_{\text{cc}(\{5\})} \\ &= h_{(2,4)} - h_{(6)} - h_{(6)}. \end{split}$$

Theorem (Adin-Reiner-Roichman '16)

A skew shape λ/μ has a cyclic descent extension if and only if

 $\langle s_{\lambda/\mu}, \tilde{s}_{cc(J)} \rangle \geq 0$ ($\forall \varnothing \subsetneq J \subsetneq [n]$),
A skew shape λ/μ has a cyclic descent extension if and only if

 $\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle \geq 0 \qquad (\forall \varnothing \subsetneq J \subsetneq [n]),$

and then

$$\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle = \#\{T \in \mathsf{SYT}(\lambda/\mu) : \mathsf{cDes}(T) = J\}.$$

A skew shape λ/μ has a cyclic descent extension if and only if

 $\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle \geq 0 \qquad (\forall \varnothing \subsetneq J \subsetneq [n]),$

and then

$$\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle = \#\{T \in \mathsf{SYT}(\lambda/\mu) : \mathsf{cDes}(T) = J\}.$$

If all the $\tilde{s}_{cc(J)}$ were Schur positive, we would have a cyclic extension for all λ/μ .

A skew shape λ/μ has a cyclic descent extension if and only if

 $\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle \geq 0 \qquad (\forall \varnothing \subsetneq J \subsetneq [n]),$

and then

$$\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle = \#\{T \in \mathsf{SYT}(\lambda/\mu) : \mathsf{cDes}(T) = J\}.$$

If all the $\tilde{s}_{cc(J)}$ were Schur positive, we would have a cyclic extension for all λ/μ .

However, this is not the case!

A skew shape λ/μ has a cyclic descent extension if and only if

 $\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle \geq 0 \qquad (\forall \varnothing \subsetneq J \subsetneq [n]),$

and then

$$\langle s_{\lambda/\mu}, \tilde{s}_{\mathsf{cc}(J)} \rangle = \#\{T \in \mathsf{SYT}(\lambda/\mu) : \mathsf{cDes}(T) = J\}.$$

If all the $\tilde{s}_{cc(J)}$ were Schur positive, we would have a cyclic extension for all λ/μ .

However, this is not the case!

Example For n = 6 and $J = \{3, 5\}$,

$$\tilde{s}_{cc({3,5})} = s_{4,2} + s_{5,1} - s_6.$$

Cyclic descents

Summary and open problems

Main results:

Main results: existence and uniqueness

Theorem (ARR,

Theorem (ARR, Postnikov '05, McNamara '06)

Theorem (ARR, Postnikov '05, McNamara '06) For all $\emptyset \neq J \subseteq [n]$ of size k > 0

$$\tilde{s}_{cc(J)} + \sum_{i=0}^{k-1} (-1)^{k-i} s_{(n-i,1^i)}$$

is Schur positive (and hook-free).

Proof idea:

Proof idea:

$$\tilde{s}_{\mathsf{cc}(J)} = s_{\lambda/1/\lambda} + (-1)^{|J|-1} p_n,$$

where $s_{\lambda/1/\lambda}$ is a special case of Postnikov's toric Schur functions and

$$p_n = x_1^n + x_2^n + \ldots = \sum_{i=0}^{n-1} (-1)^i s_{(n-i,1^i)}$$

is the *n*-th power symmetric function.

Proof idea:

$$\tilde{s}_{\operatorname{cc}(J)} = s_{\lambda/1/\lambda} + (-1)^{|J|-1} p_n,$$

where $s_{\lambda/1/\lambda}$ is a special case of Postnikov's toric Schur functions and

$$p_n = x_1^n + x_2^n + \ldots = \sum_{i=0}^{n-1} (-1)^i s_{(n-i,1^i)}$$

is the *n*-th power symmetric function.

Postnikov proved that, letting $x_{k+1} = x_{k+2} = \ldots = 0$,

$$s_{\lambda/d/\mu}(x_1,\ldots,x_k) = \sum_{\nu\subseteq k imes (n-k)} C_{\mu,\nu}^{\lambda,d} s_{\nu}(x_1,\ldots,x_k),$$

where $C_{\mu,\nu}^{\lambda,d} \ge 0$ are the Gromov-Witten invariants.

Recall

Conjecture

For every non-hook partition $\lambda \vdash n$, the set SYT(λ) has a cyclic descent extension.

Recall

Conjecture

For every non-hook partition $\lambda \vdash n$, the set SYT(λ) has a cyclic descent extension.

This can now be proved, and actually extended to skew shapes.

Recall

Conjecture

For every non-hook partition $\lambda \vdash n$, the set SYT(λ) has a cyclic descent extension.

This can now be proved, and actually extended to skew shapes.

Theorem (Adin-Reiner-Roichman '16)

For every skew shape λ/μ of size n, which is not a connected ribbon, there exists a cyclic descent extension;

Recall

Conjecture

For every non-hook partition $\lambda \vdash n$, the set SYT(λ) has a cyclic descent extension.

This can now be proved, and actually extended to skew shapes.

Theorem (Adin-Reiner-Roichman '16)

For every skew shape λ/μ of size n, which is not a connected ribbon, there exists a cyclic descent extension; namely, $\exists cDes : SYT(\lambda/\mu) \longrightarrow 2^{[n]}$ and $p : SYT(\lambda/\mu) \longrightarrow SYT(\lambda/\mu)$, s.t. $\forall T \in in SYT(\lambda)$

$$\begin{array}{ll} (extension) & cDes(T) \cap [n-1] = Des(T), \\ (equivariance) & cDes(p(T)) = p(cDes(T)), \\ (non-Escher) & \varnothing \subsetneq cDes(T) \subsetneq [n]. \end{array}$$

Main Results

Summary and open problems

The actual extended map cDes is almost never unique;

The actual extended map cDes is almost never unique; however, its distribution is almost always unique:

The actual extended map cDes is almost never unique; however, its distribution is almost always unique:

Theorem

If λ/μ is not a connected ribbon then for all cyclic descent extensions, the distribution of cDes over SYT(λ/μ) is uniquely determined.

The actual extended map cDes is almost never unique; however, its distribution is almost always unique:

Theorem

If λ/μ is not a connected ribbon then for all cyclic descent extensions, the distribution of cDes over SYT(λ/μ) is uniquely determined.

 $(\implies$ Equidistribution results)

The actual extended map cDes is almost never unique; however, its distribution is almost always unique:

Theorem

If λ/μ is not a connected ribbon then for all cyclic descent extensions, the distribution of cDes over SYT(λ/μ) is uniquely determined.

 $(\implies$ Equidistribution results) Corollary

$$\sum_{\pi \in \mathfrak{S}_n} \mathbf{x}^{\mathsf{cDes}(\pi)} = \sum_{\substack{\mathsf{non-hook} \\ \lambda \vdash n}} f^{\lambda} \sum_{T \in \mathsf{SYT}(\lambda)} \mathbf{x}^{\mathsf{cDes}(T)} + \sum_{k=1}^{n-1} \binom{n-2}{k-1} \sum_{T \in \mathsf{SYT}((n-k+1,1^k)/(1))} \mathbf{x}^{\mathsf{cDes}(T)},$$

where $f^{\lambda} = |SYT(\lambda)|$.

Cyclic descents

Summary and open problems

• For almost all skew shapes λ/μ there exists a cyclic extension cDes to the usual descent map.

- For almost all skew shapes λ/μ there exists a cyclic extension cDes to the usual descent map.
- For almost all skew shapes $\lambda/\mu,$ the fiber distribution of this cyclic extension is unique.

- For almost all skew shapes λ/μ there exists a cyclic extension cDes to the usual descent map.
- For almost all skew shapes $\lambda/\mu,$ the fiber distribution of this cyclic extension is unique.
- The proof (of existence) involves toric Schur functions and the nonnegativity of the Gromov-Witten invariants.

• Theory of cyclic quasi-symmetric functions, which explains the above results (with Adin, Gessel and Reiner)

- Theory of cyclic quasi-symmetric functions, which explains the above results (with Adin, Gessel and Reiner)
- Applications to Schur-positivisty (with Elizalde)

Problem

Find an explicit combinatorial description of the cyclic descent set of $SYT(\lambda/\mu)$.

Problem

Find an explicit combinatorial description of the cyclic descent set of $SYT(\lambda/\mu)$.

Problem

Find an explicit \mathbb{Z} -action on SYT (λ/μ) which shifts the cyclic descent set.

Problem

Find an explicit combinatorial description of the cyclic descent set of $SYT(\lambda/\mu)$.

Problem

Find an explicit \mathbb{Z} -action on SYT (λ/μ) which shifts the cyclic descent set.

Problem

Find bijective proofs to resulting equidistribution identities.

THANK YOU ! and ...
THANK YOU ! and ... a tribute to Bertinoro

Cyclic descents

Main Results

Summary and open problems

Main Results

Summary and open problems

פירוש המשניות

הצרו הרכ המוכהק החכם השלם הא^דף והנאון כלתר עוביה כבר שנויה אשר נפשו אותח ויעש בירוישלם ער הקודשות ב כאפר נווע בשערים שבו בי התחשב עשו :

en on repip room erb

אותו העיר: הכחור מאר: בכשפחתו הצעיר:

פה וניצא

