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Cyclic descents Affine ribbon Schur functions Main Results Summary and open problems

Descents and cyclic descents of permutations

Denote [m] := {1, 2, . . . ,m}.

The descent set of a permutation π = [π1, . . . , πn] in the
symmetric group Sn is

Des(π) := {1 ≤ i ≤ n − 1 : πi > πi+1} ⊆ [n − 1].

The cyclic descent set is

cDes(π) := {1 ≤ i ≤ n : πi > πi+1} ⊆ [n].

with the convention πn+1 := π1.

Introduced by Cellini [’95]; further studied by Dilks, Petersen and
Stembridge [’09] and others.
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Descents and cyclic descents of permutations

Example

π = 23154 : Des(π) = {2, 4} , cDes(π) = {2, 4, 5}.
π = 34152 : Des(π) = {2, 4} , cDes(π) = {2, 4}.
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Consider Z-actions on Sn and on 2[n], where the generator p of Z
acts by

[π1, π2, . . . , πn−1, πn]
p7−→ [πn, π1, π2, . . . , πn−1]

{i1, . . . , ik}
p7−→ {i1 + 1, . . . , ik + 1} mod n

For every permutation π, one has the following three properties:

cDes(π) ∩ [n − 1] = Des(π) (extension) (1)

cDes(p(π)) = p(cDes(π)) (equivariance) (2)

∅ ( cDes(π) ( [n] (non-Escher) (3)
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A non-Escher property

“Ascending and Descending”, M. C. Escher

The paradox of cDes(π) = ∅ and cDes(π) = [n].
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Descents and cyclic descents of SYT

Denote the set of all standard Young tableaux of shape λ/µ by
SYT(λ/µ).

The descent set of T ∈ SYT(λ/µ) is

Des(T ) := {i : i + 1 is in a lower row than i}.

Example

T =
1 2 4
3 6

5
∈ SYT((4, 3, 1)/(1, 1))

Des(T ) = {2, 4}.

Motivating Problem:

Define a cyclic descent set for SYT of any shape λ/µ.
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SYT of rectangular shapes

Theorem (Rhoades ’10)

There exists a cyclic descent map cDes : SYT(rn/r )→ 2[n] s.t.
∀T ∈ SYT(rn/r )

cDes(T ) ∩ [n − 1] = Des(T )

cDes(p(T )) = p(cDes(T )),

where p acts on cDes(T ) by adding 1 (mod n) to each element,
and acts on SYT by Schützenberger’s promotion operator.
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SYT of rectangular shapes

Example λ = (3, 3) ` 6.

A Z-orbit:

1 3 4
2 5 6

→ 1 2 5
3 4 6

→ 1 2 3
4 5 6

→ 1 3 4
2 5 6

{1, 4} {2, 5} {3, 6} {1, 4}
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Reformulation

Definition
Given a set T and map Des : T → 2[n−1],

a cyclic extension of Des
is a pair (cDes, p), where cDes : T −→ 2[n] is a map and
p : T −→ T is a bijection, satisfying the following axioms:
for all T in T ,

(extension) cDes(T ) ∩ [n − 1] = Des(T ),
(equivariance) cDes(p(T )) = p(cDes(T )),

(non-Escher) ∅ ( cDes(T ) ( [n].

Examples

• T = Sn, with Cellini’s cyclic descent set and Z-action by
cyclic rotation.

• T = SYT(rn/r ), with Rhoades’ cyclic descent set and
Z-action by promotion.
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Reformulation

Motivating Problem:

Does Des on SYT(λ/µ) have a cyclic extension ?

Recall the axioms: for all T ∈ SYT(λ/µ),

(extension) cDes(T ) ∩ [n − 1] = Des(T ),
(equivariance) cDes(p(T )) = p(cDes(T )),

(non-Escher) ∅ ( cDes(T ) ( [n].
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New examples

Theorem (Adin-Elizalde-Roichman ’16)

Each of the following shapes carries a cyclic descent extension:

(strip)

(hook plus one box)

(two rows).

The proofs are explicit and combinatorial.
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New examples

For λ ` n− 1 let λ� be the skew shape obtained from λ by placing
a disconnected box at its upper right corner.

Example

(3, 3, 1)� =

Theorem (Elizalde-Roichman ’15)

For every partition λ ` n− 1 there exists a cyclic descent extension
on SYT(λ�).

So far - so good!
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Connected ribbons

A connected skew shape λ/µ is a ribbon if it does not contain a
2× 2 square.

Examples

Proposition A connected ribbon does not have a cyclic descent
extension.

Oops !!!
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A Conjecture

At this point, we conducted computer experiments on all partitions
of size n < 16. The numerical results led to

Conjecture

For every non-hook partition λ ` n, the set SYT(λ) has a cyclic
descent extension; namely,
∃ cDes : SYT(λ)→ 2[n] and a bijection p : SYT(λ) −→ SYT(λ),
s.t. ∀ T ∈ SYT(λ)

(extension) cDes(T ) ∩ [n − 1] = Des(T ),
(equivariance) cDes(p(T )) = p(cDes(T )),

(non-Escher) ∅ ( cDes(T ) ( [n].
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Ribbon Schur functions

For a subset J = {j1 < j2 < . . . < jt} ⊆ [n − 1] define the
associated composition

co(J) := (j1, j2 − j1, j3 − j2, . . . , n − jt)

and the corresponding ribbon Schur function

sco(J) :=
∑
I⊆J

(−1)|J\I |hco(I ).

Theorem (Gessel ’83)

For any skew shape λ/µ and J ⊆ [n],

〈sλ/µ, sco(J)〉 = #{T ∈ SYT(λ/µ) : Des(T ) = J}.
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Affine ribbon Schur functions

For a subset ∅ 6= J = {j1 < j2 < . . . < jt} ⊆ [n] define the
associated cyclic composition

cc(J) := (j2 − j1, j3 − j2, . . . , j1 − jt + n)

and the corresponding affine ribbon Schur function

s̃cc(J) :=
∑

∅6=I⊆J
(−1)|J\I |hcc(I ).
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Affine ribbon Schur functions

Example

Let n = 6 and J = {3, 5}. The affine ribbon Schur function is

s̃cc({3,5}) = hcc({3,5}) − hcc({3}) − hcc({5})

= h(2,4) − h(6) − h(6).
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Theorem (Adin-Reiner-Roichman ’16)

A skew shape λ/µ has a cyclic descent extension if and only if

〈sλ/µ, s̃cc(J)〉 ≥ 0 (∀∅ ( J ( [n]),

and then

〈sλ/µ, s̃cc(J)〉 = #{T ∈ SYT(λ/µ) : cDes(T ) = J}.

If all the s̃cc(J) were Schur positive, we would have a cyclic
extension for all λ/µ.

However, this is not the case!

Example For n = 6 and J = {3, 5},

s̃cc({3,5}) = s4,2 + s5,1 − s6.
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Existence

Recall that the cyclic ribbon Schur functions s̃cc(J) are not always
Schur positive. Can this be made more precise?

Theorem (ARR, Postnikov ’05, McNamara ’06)

For all ∅ 6= J ⊆ [n] of size k > 0

s̃cc(J) +
k−1∑
i=0

(−1)k−i s(n−i ,1i )

is Schur positive (and hook-free).
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Existence

Proof idea:

s̃cc(J) = sλ/1/λ + (−1)|J|−1pn,

where sλ/1/λ is a special case of Postnikov’s toric Schur functions
and

pn = xn1 + xn2 + . . . =
n−1∑
i=0

(−1)i s(n−i ,1i )

is the n-th power symmetric function.

Postnikov proved that, letting xk+1 = xk+2 = . . . = 0,

sλ/d/µ(x1, . . . , xk) =
∑

ν⊆k×(n−k)

Cλ,dµ,ν sν(x1, . . . , xk),

where Cλ,dµ,ν ≥ 0 are the Gromov-Witten invariants.
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Main theorem: existence
Recall

Conjecture
For every non-hook partition λ ` n, the set SYT(λ) has a cyclic
descent extension.

This can now be proved, and actually extended to skew shapes.

Theorem (Adin-Reiner-Roichman ’16)

For every skew shape λ/µ of size n, which is not a connected
ribbon, there exists a cyclic descent extension; namely,
∃ cDes : SYT(λ/µ) −→ 2[n] and p : SYT(λ/µ) −→ SYT(λ/µ), s.t.
∀ T ∈ in SYT(λ)

(extension) cDes(T ) ∩ [n − 1] = Des(T ),
(equivariance) cDes(p(T )) = p(cDes(T )),
(non-Escher) ∅ ( cDes(T ) ( [n].
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Uniqueness

The actual extended map cDes is almost never unique; however, its
distribution is almost always unique:

Theorem
If λ/µ is not a connected ribbon then for all cyclic descent
extensions, the distribution of cDes over SYT(λ/µ) is uniquely
determined.

(=⇒ Equidistribution results)
Corollary∑
π∈Sn

xcDes(π) =
∑

non-hook
λ`n

f λ
∑

T∈SYT(λ)

xcDes(T )

+
n−1∑
k=1

(
n − 2

k − 1

) ∑
T∈SYT((n−k+1,1k )/(1))

xcDes(T ),

where f λ = |SYT(λ)|.
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Summary

• For almost all skew shapes λ/µ there exists a cyclic extension
cDes to the usual descent map.

• For almost all skew shapes λ/µ, the fiber distribution of this
cyclic extension is unique.

• The proof (of existence) involves toric Schur functions and the
nonnegativity of the Gromov-Witten invariants.
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Epilogue

• Theory of cyclic quasi-symmetric functions,
which explains the above results (with Adin, Gessel and
Reiner)

• Applications to Schur-positivisty (with Elizalde)
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Open Problems

Problem
Find an explicit combinatorial description of the cyclic descent set
of SYT(λ/µ).

Problem
Find an explicit Z-action on SYT(λ/µ) which shifts the cyclic
descent set.

Problem
Find bijective proofs to resulting equidistribution identities.
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