

A new q, t-square

Anna Vanden Wyngaerd Université Libre de Bruxelles anvdwyng@ulb.ac.be September 11, 2017

Background

The old *q*, *t*-square

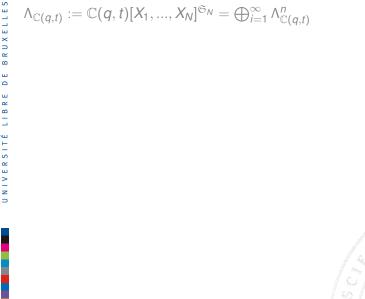
A new q, t-square

Decorated Dyck paths

IBRE DE BRUX

UNIVERSITÉ L

Background



 $\Lambda_{\mathbb{C}(q,t)} := \mathbb{C}(q,t)[X_1,...,X_N]^{\mathfrak{S}_N} = \bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q,t)}^n$

When n ≥ N, basis of Λⁿ_{C(q,t)} include elementary e_λ, homogeneous h_λ, power p_λ and Shur s_λ symmetric functions.

 $\Lambda_{\mathbb{C}(q,t)} := \mathbb{C}(q,t)[X_1,...,X_N]^{\mathfrak{S}_N} = \bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q,t)}^n$

- When n ≥ N, basis of Λⁿ_{C(q,t)} include elementary e_λ, homogeneous h_λ, power p_λ and Shur s_λ symmetric functions.
- {*H˜*_λ | λ ⊢ n} (modified, Garsia & Haiman) Macdonald Polynomials: basis of Λ_{C(q,t)}

 $\Lambda_{\mathbb{C}(q,t)} := \mathbb{C}(q,t)[X_1,...,X_N]^{\mathfrak{S}_N} = \bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q,t)}^n$

- When n ≥ N, basis of Λⁿ_{C(q,t)} include elementary e_λ, homogeneous h_λ, power p_λ and Shur s_λ symmetric functions.
- {*H˜*_λ | λ ⊢ n} (modified, Garsia & Haiman) Macdonald Polynomials: basis of Λ_{ℂ(q,t)}

Applications in wide variety of subjects

ES EL \times Ľ ш S x > z

 $\Lambda_{\mathbb{C}(q,t)} := \mathbb{C}(q,t)[X_1,...,X_N]^{\mathfrak{S}_N} = \bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q,t)}^n$

- When n ≥ N, basis of Λⁿ_{C(q,t)} include elementary e_λ, homogeneous h_λ, power p_λ and Shur s_λ symmetric functions.
- {*H˜*_λ | λ ⊢ n} (modified, Garsia & Haiman) Macdonald Polynomials: basis of Λ_{ℂ(q,t)}
 - Applications in wide variety of subjects
 - "Generalisation" of Hall-Littlewood, Jack polynomials,...

 $\Lambda_{\mathbb{C}(q,t)} := \mathbb{C}(q,t)[X_1,...,X_N]^{\mathfrak{S}_N} = \bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q,t)}^n$

- When n ≥ N, basis of Λⁿ_{C(q,t)} include elementary e_λ, homogeneous h_λ, power p_λ and Shur s_λ symmetric functions.
- {*H˜*_λ | λ ⊢ n} (modified, Garsia & Haiman) Macdonald Polynomials: basis of Λ_{ℂ(q,t)}
 - Applications in wide variety of subjects
 - "Generalisation" of Hall-Littlewood, Jack polynomials,...
 - Kostka-Macdonald coefficients

$$ilde{H}_{\mu} = \sum_{\lambda \vdash n} ilde{K}_{\lambda\mu}(q,t) s$$

 $\Lambda_{\mathbb{C}(q,t)} := \mathbb{C}(q,t)[X_1,...,X_N]^{\mathfrak{S}_N} = \bigoplus_{i=1}^{\infty} \Lambda_{\mathbb{C}(q,t)}^n$

- When n ≥ N, basis of Λⁿ_{C(q,t)} include elementary e_λ, homogeneous h_λ, power p_λ and Shur s_λ symmetric functions.
- {*H˜*_λ | λ ⊢ n} (modified, Garsia & Haiman) Macdonald Polynomials: basis of Λ_{ℂ(q,t)}
 - Applications in wide variety of subjects
 - "Generalisation" of Hall-Littlewood, Jack polynomials,...
 - Kostka-Macdonald coefficients

$$ilde{H}_{\mu} = \sum_{\lambda \vdash n} ilde{K}_{\lambda \mu}(q, t) s_{\lambda}$$

Macdonald Positivity Conjecture

 $ilde{\mathcal{K}}_{\lambda\mu}(q,t)\in\mathbb{N}[q,t],$ i.e. the Macdonald polynomials are *Shur positive*

n! conjecture

Strategy to prove Shur positivity of Macdonald Polynomials

n! conjecture

Strategy to prove Shur positivity of Macdonald Polynomials

► Construction, for each µ, a bi-graded module M_µ (Garsia Haiman module), affording regular representation of S_n

Strategy to prove Shur positivity of Macdonald Polynomials

- ► Construction, for each µ, a bi-graded module M_µ (Garsia Haiman module), affording regular representation of G_n
- *H*_µ is image of the bi-graded character of this module by Frobenius characteristic map

Strategy to prove Shur positivity of Macdonald Polynomials

- ► Construction, for each µ, a bi-graded module M_µ (Garsia Haiman module), affording regular representation of G_n
- \tilde{H}_{μ} is image of the bi-graded character of this module by Frobenius characteristic map
- ► Garsia and Haiman reduced this to the problem of showing that Dim(M_µ) = n!

Strategy to prove Shur positivity of Macdonald Polynomials

- ► Construction, for each µ, a bi-graded module M_µ (Garsia Haiman module), affording regular representation of 𝔅_n
- \tilde{H}_{μ} is image of the bi-graded character of this module by Frobenius characteristic map
- ► Garsia and Haiman reduced this to the problem of showing that Dim(M_µ) = n!
- Proved by Haiman in 2001, using tools from Algebraic Geometry

► Working on the Macdonald positivity conjecture, Garsia and Haiman introduced the S_N-module DH_n of diagonal harmonics

- ► Working on the Macdonald positivity conjecture, Garsia and Haiman introduced the S_N-module DH_n of diagonal harmonics
- Conjecture:

$$\mathcal{F}(DH_n;q,t)=\nabla e_n$$

Where ∇ is a linear operator defined by

$$\nabla \tilde{H}_{\mu} = T_{\mu} \tilde{H}_{\mu} \qquad \qquad T_{\lambda} := q^{n(\lambda)} t^{n(\lambda')}$$

(now proved using n! conjecture)

- Working on the Macdonald positivity conjecture, Garsia and Haiman introduced the S_N-module DH_n of diagonal harmonics
- Conjecture:

$$\mathcal{F}(DH_n;q,t)=\nabla e_n$$

Where ∇ is a linear operator defined by

$$\nabla \tilde{H}_{\mu} = T_{\mu} \tilde{H}_{\mu} \qquad \qquad T_{\lambda} := q^{n(\lambda)} t^{n(\lambda')}$$

(now proved using n! conjecture)

• Conjecture: for each partition λ , ∇s_{λ} is Shur positive.

- ► Working on the Macdonald positivity conjecture, Garsia and Haiman introduced the S_N-module DH_n of diagonal harmonics
- Conjecture:

$$\mathcal{F}(DH_n;q,t)=\nabla e_n$$

Where ∇ is a linear operator defined by

$$\nabla \tilde{H}_{\mu} = T_{\mu} \tilde{H}_{\mu} \qquad \qquad T_{\lambda} := q^{n(\lambda)} t^{n(\lambda')}$$

(now proved using n! conjecture)

- Conjecture: for each partition λ , ∇s_{λ} is Shur positive.
- Shuffle conjecture (now theorem Carlsson & Mellit 2015) gives a combinatorial interpretation of ∇en

The delta operator and conjecture

The linear operator Δ_f

Eigenoperator of Macdonald polynomials

$$\Delta_f \tilde{H}_\mu = f[B_\mu] \tilde{H}_\mu$$

The delta operator and conjecture

The linear operator Δ_f

Eigenoperator of Macdonald polynomials

$$\Delta_f \tilde{H}_\mu = f[B_\mu] \tilde{H}_\mu$$

• Generalisation of ∇ , on $\Lambda^n_{\mathbb{C}(q,t)}$:

$$\Delta_{e_n} = \nabla.$$

The delta operator and conjecture

The linear operator Δ_f

Eigenoperator of Macdonald polynomials

$$\Delta_f \tilde{H}_{\mu} = f[B_{\mu}]\tilde{H}_{\mu}$$

• Generalisation of ∇ , on $\Lambda^n_{\mathbb{C}(q,t)}$:

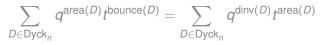
 $\Delta_{e_n} = \nabla.$

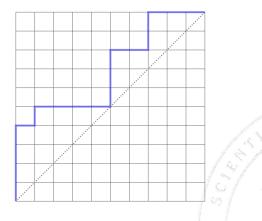
 Delta conjecture (generalisation of the Shufle Conjecture) gives a combinatorial interpretation of Δ_{ek} e_n and is still open (Haglund, Remmel & Wilson 2016)

Combinatorial interpretation of $\langle \nabla e_n, e_n \rangle = \langle \nabla e_n, s_{1^n} \rangle$:

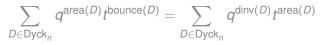
$$\sum_{D \in \text{Dyck}_n} q^{\text{area}(D)} t^{\text{bounce}(D)} = \sum_{D \in \text{Dyck}_n} q^{\text{dinv}(D)} t^{\text{area}(D)}$$

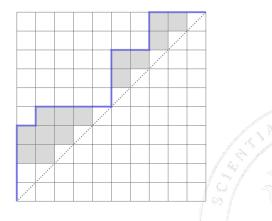
Combinatorial interpretation of $\langle \nabla e_n, e_n \rangle = \langle \nabla e_n, s_{1^n} \rangle$:



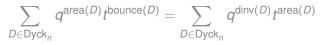


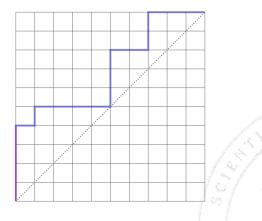
Combinatorial interpretation of $\langle \nabla e_n, e_n \rangle = \langle \nabla e_n, s_{1^n} \rangle$:



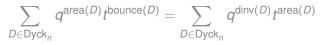


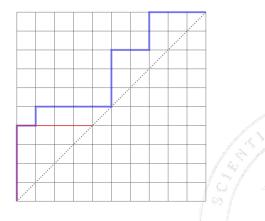
Combinatorial interpretation of $\langle \nabla e_n, e_n \rangle = \langle \nabla e_n, s_{1^n} \rangle$:



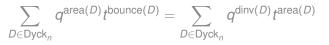


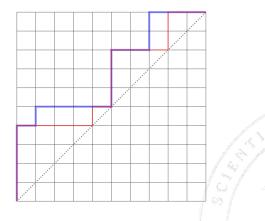
Combinatorial interpretation of $\langle \nabla e_n, e_n \rangle = \langle \nabla e_n, s_{1^n} \rangle$:



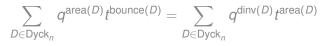


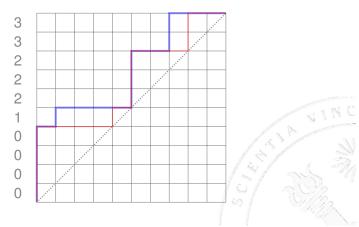
Combinatorial interpretation of $\langle \nabla e_n, e_n \rangle = \langle \nabla e_n, s_{1^n} \rangle$:





Combinatorial interpretation of $\langle \nabla e_n, e_n \rangle = \langle \nabla e_n, s_{1^n} \rangle$:





IBRE DE BRUX

UNIVERSITÉ

The old q, t-square

Combinatorial interpretation of $\langle (-1)^{n-1} \nabla p_n, e_n \rangle$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)}$$

ULB

S

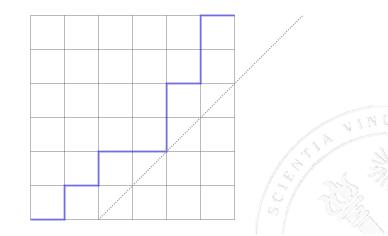
Combinatorial interpretation of $\langle (-1)^{n-1} \nabla p_n, e_n \rangle$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)}$$

L			

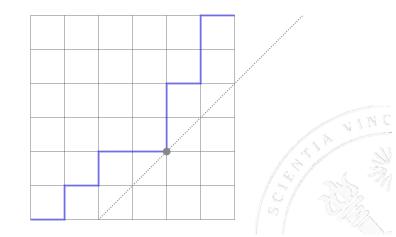
Combinatorial interpretation of $\langle (-1)^{n-1} \nabla p_n, e_n \rangle$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)}$$



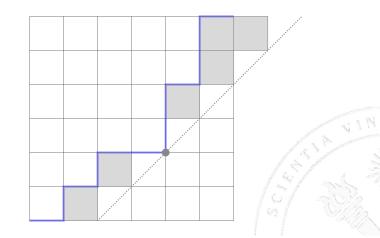
Combinatorial interpretation of $\langle (-1)^{n-1} \nabla p_n, e_n \rangle$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)}$$



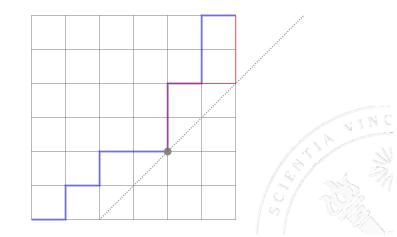
Combinatorial interpretation of $\langle (-1)^{n-1} \nabla p_n, e_n \rangle$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)}$$



Combinatorial interpretation of $\langle (-1)^{n-1} \nabla p_n, e_n \rangle$

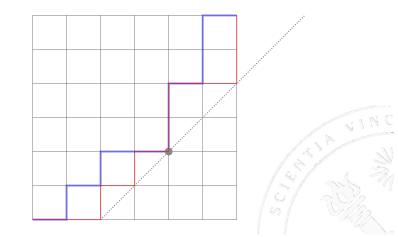
$$\sum_{P \in SQ_n^E} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)}$$



Loehr and Warrington 2006

Combinatorial interpretation of $\langle (-1)^{n-1} \nabla p_n, e_n \rangle$

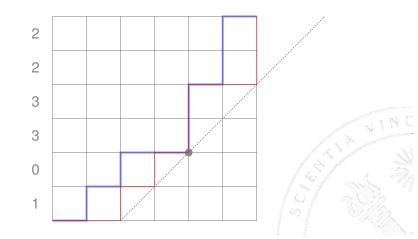
$$\sum_{P \in SQ_n^E} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)}$$



Loehr and Warrington 2006

Combinatorial interpretation of $\langle (-1)^{n-1} \nabla p_n, e_n \rangle$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area_1}(P)} t^{\operatorname{bounce_1}(P)}$$



Context

Statistics generalize Catalan statistics

Context

- Statistics generalize Catalan statistics
- Link with Delta conjecture

Theorem (M. D'Adderio, A.V.W.)

$$\Delta_{e_{n-1}} e_{n|_{t=1/q}} = (-1)^{n-1} \nabla p_{n|_{t=1/q}}$$

Context

- Statistics generalize Catalan statistics
- Link with Delta conjecture

Theorem (M. D'Adderio, A.V.W.)

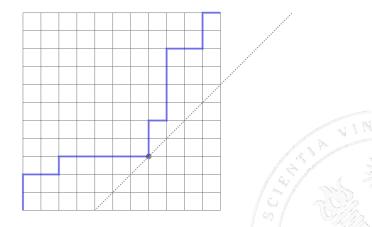
$$\Delta_{e_{n-1}} e_{n|_{t=1/q}} = (-1)^{n-1} \nabla p_{n|_{t=1/q}}$$

 \rightarrow Our new q, t-square is also about $\Delta_{e_{n-1}}e_n$

A new q, t-square

Combinatorial interpretation of $\langle \Delta_{e_{n-1}} e_n, e_n \rangle$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)}$$



ULB

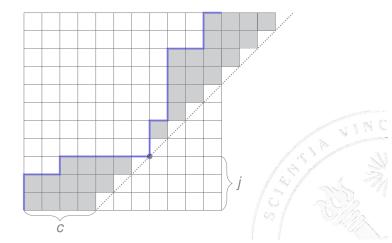
ES

BRUX

×

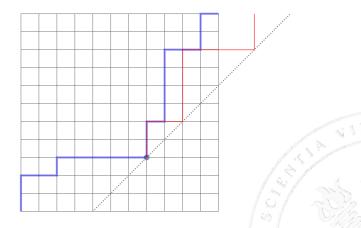
N N Combinatorial interpretation of $\langle \Delta_{e_{n-1}} e_n, e_n \rangle$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)}$$



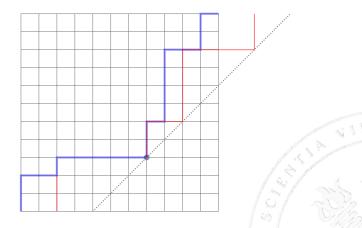
Combinatorial interpretation of $\langle \Delta_{e_{n-1}} e_n, e_n \rangle$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)}$$



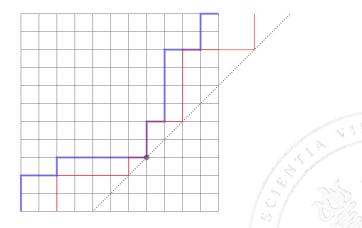
Combinatorial interpretation of $\langle \Delta_{e_{n-1}} e_n, e_n \rangle$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)}$$



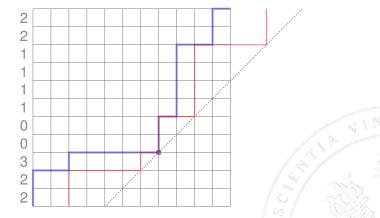
Combinatorial interpretation of $\langle \Delta_{e_{n-1}} e_n, e_n \rangle$

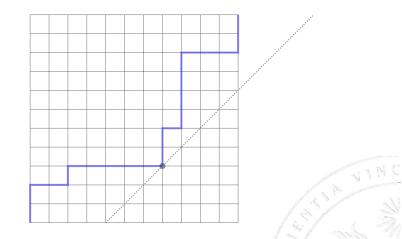
$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)}$$



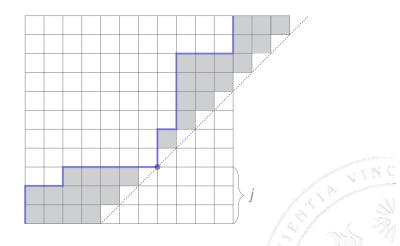
Combinatorial interpretation of $\langle \Delta_{e_{n-1}} e_n, e_n \rangle$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)} = \sum_{P \in SQ_n^N} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)}$$



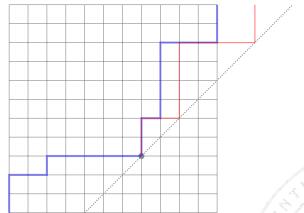


ES



× Ľ m × m S e c > z

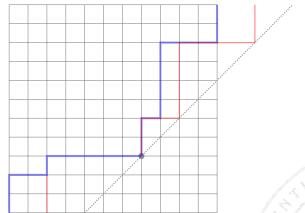
ES



× Ľ m × m S x > z

ES

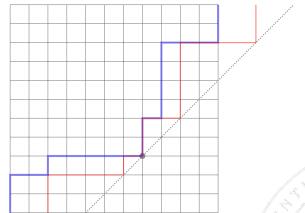
Contraction of the second seco



× Ľ m × m S x > z

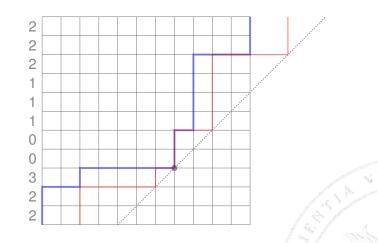
ES

S CLARKER S



S

S S S S



The old and the new

 area₁, area₂ generalise area and bounce₁, bounce₂ generalise bounce

The old and the new

- area₁, area₂ generalise area and bounce₁, bounce₂ generalise bounce
- We have

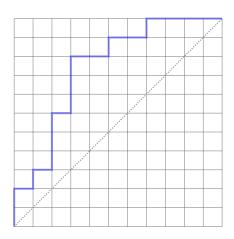
$$\langle \Delta_{e_{n-1}} e_n, e_n \rangle_{|t=1/q} = \langle (-1)^{n-1} \nabla p_n, e_n \rangle_{|t=1/q}$$
$$= \begin{bmatrix} 2n \\ n \end{bmatrix}_q \frac{1}{1+q^n}$$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area_1}(P) - \operatorname{bounce_1}(P)} = \sum_{P \in SQ_n^E} q^{\operatorname{area_2}(P) - \operatorname{bounce_2}(P)}$$

BRE DE BR

UNIVERSITÉ

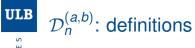
Decorated Dyck paths





* *

S S S S



ж К

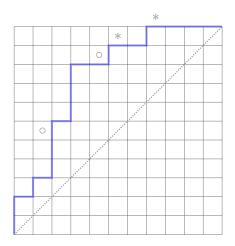
BRE DE BRU

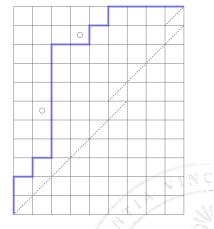
UNIVERS

* *

$\mathcal{D}_n^{(a,b)}$: definitions

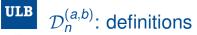
ES ш × × B ш ш Ľ æ S Ľ ш U N I V





* 2 * 2 1 1 -1 1 1 0 0

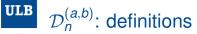
NC



* 2 * 2 -1 -1 0 0

▶ *a* := decorated peaks, *b* := decorated double falls

ES



ES

ш

×

R U

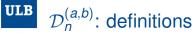
D E D

8

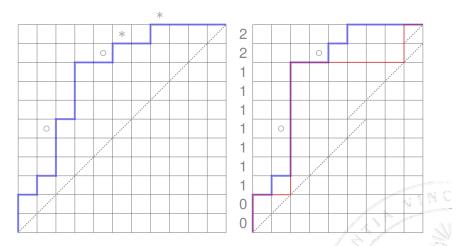
UNIVERS

* 2 * 2 -1 0 \cap

- ▶ *a* := decorated peaks, *b* := decorated double falls
- Statistics area₃ and bounce₃



ES × Ľ m ш × m S x ш > ī ∍



- ▶ *a* := decorated peaks, *b* := decorated double falls
- Statistics area₃ and bounce₃
- Top peak is not decorated

Link between our *q*, *t*-square and Decorated Dyck paths

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)} = \sum_{P \in \mathcal{D}_n^{(0,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)} + \sum_{P \in \mathcal{D}_n^{(0,1)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)} \sum_{P \in SQ_n^N} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)} = \sum_{P \in \mathcal{D}_n^{(0,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)} + \sum_{P \in \mathcal{D}_n^{(1,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$

Link between our *q*, *t*-square and Decorated Dyck paths

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)} = \sum_{P \in \mathcal{D}_n^{(0,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)} + \sum_{P \in \mathcal{D}_n^{(0,1)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)} \sum_{P \in SQ_n^N} q^{\operatorname{area}_2(P)} t^{\operatorname{bounce}_2(P)} = \sum_{P \in \mathcal{D}_n^{(0,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)} + \sum_{P \in \mathcal{D}_n^{(1,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$

The unifying language of decorated Dyck paths has many links to existing work.

ш Ж

m

RS

NIVE

⊃

The unifying language of decorated Dyck paths has many links to existing work.

 \rightarrow More results on symmetric functions related to the Delta conjecture

A new q, t-square

ULB BRUXELLES

3 R E D

S

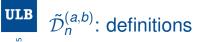
UNIVER

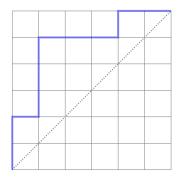
Anna Vanden Wyngaerd Université Libre de Bruxelles anvdwyng@ulb.ac.be September 11, 2017

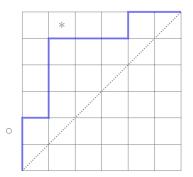
Z N

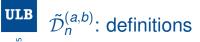
Garsia and Remmel, *Breakthroughs in the theory of macdonald polynomials*, PNAS, 2005.

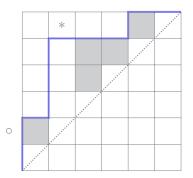
J. Haglund, *The q,t-catalan numbers and the space of diagonal harmonics*, Mathematics subject classification, 1991.

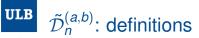


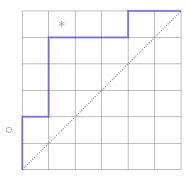


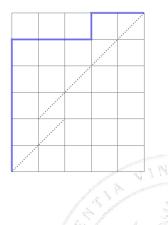












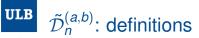
VERSITÉ LIBRE DE

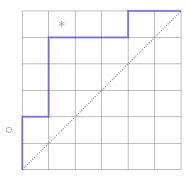
N N

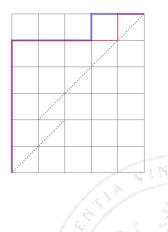
ES

RUX

m

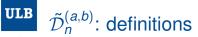


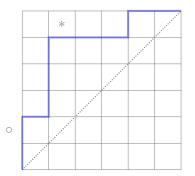


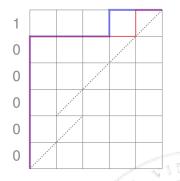


ES × × m ш ш × m S 2 > z

∍







NIVERSITÉ LIBRE

ES

RUX

D E D

∍

ES

RUX

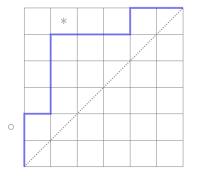
m

×

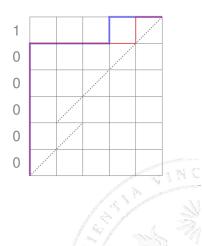
m

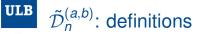
s S

NIVE



Statistics area₃ and bounce₃





ES

RUX

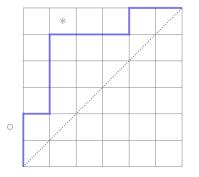
m

×

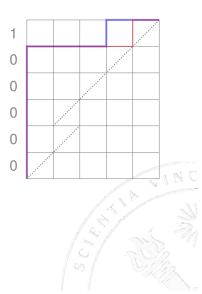
s S

>

N N

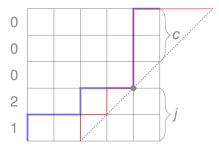


- Statistics area₃ and bounce₃
- Top peak is not decorated



$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(0,1)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(0,1)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

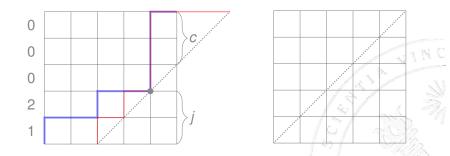
ES

BRUX

×

ERS

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(0,1)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

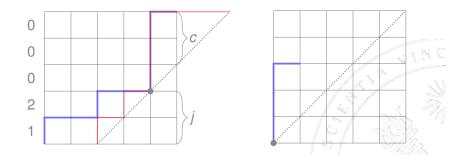
ES

BRUX

×

ERS

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(0,1)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

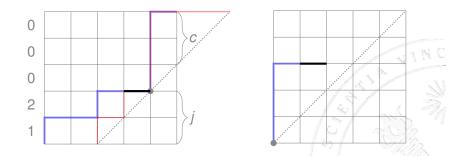
ES

BRUX

×

ERS

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(0,1)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

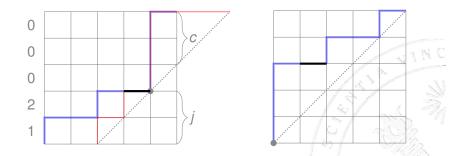
ES

BRUX

×

ERS

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(0,1)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

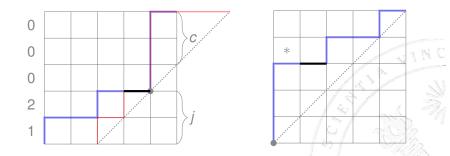
ES

BRUX

×

ERS

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(0,1)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

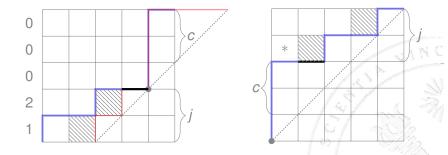
ES

BRUX

×

ERS

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(0,1)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

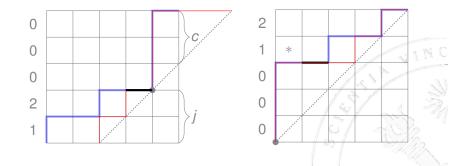
ES

BRUX

×

ERS

$$\sum_{P \in SQ_n^E} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(0,1)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

ES

2

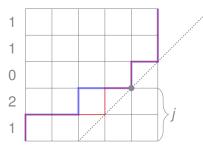
×

UNIVER

P

$$\sum_{e \in SQ_n^N} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(1,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$

$$\sum_{P \in SQ_n^N} q^{\operatorname{area}_2^{\mathcal{E}}(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(1,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

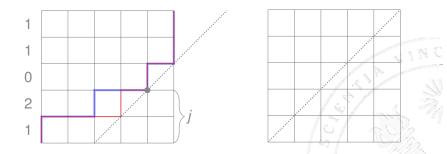
ES

BRUX

×

UNIVER

$$\sum_{P \in SQ_n^N} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(1,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

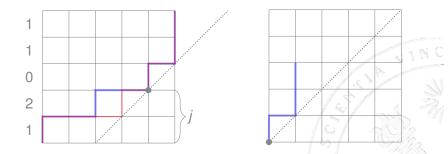
ES

BRUX

×

UNIVERS

$$\sum_{P \in SQ_n^N} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(1,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

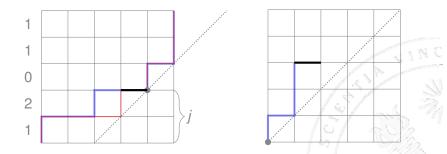
ES

BRUX

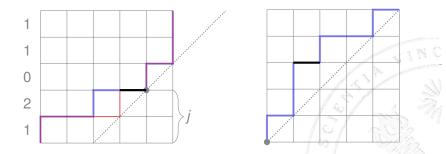
×

UNIVERS

$$\sum_{P \in SQ_n^N} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(1,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



$$\sum_{P \in SQ_n^N} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(1,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

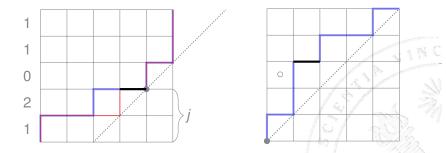
ES

BRUX

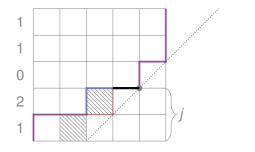
×

UNIVERS

$$\sum_{P \in SQ_n^N} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(1,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



$$\sum_{P \in SQ_n^N} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(1,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB

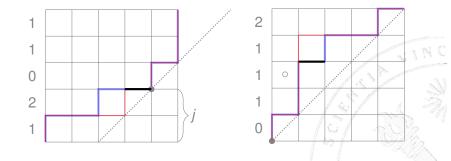
ES

BRUX

×

ERS

$$\sum_{P \in SQ_n^N} q^{\operatorname{area}_2^E(P)} t^{\operatorname{bounce}_2(P)} = \sum_{D \in \operatorname{Dyck}_n} q^{\operatorname{area}(D)} t^{\operatorname{bounce}(D)} + \sum_{P \in \tilde{\mathcal{D}}_n^{(1,0)}} q^{\operatorname{area}_3(P)} t^{\operatorname{bounce}_3(P)}$$



ULB Representation theory

$$\rho:\mathfrak{S}_n\longrightarrow \mathsf{GL}\left(\bigoplus_{(i,j)\in\mathbb{N}\times\mathbb{N}}V^{(j,j)}\right)$$

- $V^{(i,j)}$ are ρ invariant
- Character

$$\chi_{\rho} = \mathsf{tr} \circ \rho : \mathfrak{S}_n \to \mathbb{C}$$

▶ We can decompose $\chi_{\rho} = \sum_{(i,j)} \chi_{\rho}^{(i,j)}$ and $\chi_{\rho}^{(i,j)} = \sum c_{\lambda} \chi_{\lambda}$ where $c_{\lambda} \in \mathbb{N}$ (multiplicity) and χ_{λ} are the irreducible characters of $(\rho_{|V^{(i,j)}}, V^{(i,j)})$ (one per conjugacy class

ULB Frobenius Characteristic map

$$\mathcal{F}: \mathsf{Class}(\mathfrak{S}_n) \to \Lambda^n_{\mathbb{C}}$$
$$f \mapsto \frac{1}{n!} \sum_{\sigma \in \mathfrak{S}_n} f(\sigma) p_{\lambda(\sigma)}$$

- Irreducible characters get sent to Shur functions
- If a symmetric function is the image of the character of a representation by the Frobenius map then is must be Shur positive because *F* is linear
- Bi-graded Frobenius characteristic map

$$\mathcal{F}: \chi_{\rho} \mapsto \sum_{(i,j)} q^{i} t^{j} \mathcal{F}(\chi_{\rho}^{(i,j)})$$

 $\Lambda_{\mathcal{K}} := \mathcal{K}[X_1, ..., X_N]^{\mathfrak{S}_N}$ space of symmetric functions.

 $\Lambda_{\mathcal{K}} := \mathcal{K}[X_1, ..., X_N]^{\mathfrak{S}_N}$ space of symmetric functions.

where Λ_{K}^{n} is t	the space of	homogeneous	symmetric fu	nctions of
degree n.				

 $\Lambda_K = \bigoplus \Lambda_K^n$

i=1

 $\Lambda_{\mathcal{K}} := \mathcal{K}[X_1, ..., X_N]^{\mathfrak{S}_N}$ space of symmetric functions.

$$\Lambda_K = \bigoplus_{i=1}^{\infty} \Lambda_K^n$$

where Λ_K^n is the space of homogeneous symmetric functions of degree *n*.

 A lot of different basis for Λⁿ_K, indexed by partitions of n: elementary e_λ, homogeneous h_λ, power symmetric p_λ.

 $\Lambda_{\mathcal{K}} := \mathcal{K}[X_1, ..., X_N]^{\mathfrak{S}_N}$ space of symmetric functions.

$$\Lambda_K = \bigoplus_{i=1}^{\infty} \Lambda_K^n$$

where Λ_K^n is the space of homogeneous symmetric functions of degree *n*.

- A lot of different basis for Λⁿ_K, indexed by partitions of n: elementary e_λ, homogeneous h_λ, power symmetric p_λ.
- ► Link with representation theory of S_n: the Frobenius characteristic map:

$$\mathcal{F}: \mathsf{Class}(\mathfrak{S}_n) \to \Lambda_K^n$$

 $\Lambda_{\mathcal{K}} := \mathcal{K}[X_1, ..., X_N]^{\mathfrak{S}_N}$ space of symmetric functions.

$$\Lambda_K = \bigoplus_{i=1}^{\infty} \Lambda_K^n$$

where Λ_K^n is the space of homogeneous symmetric functions of degree *n*.

- A lot of different basis for Λⁿ_K, indexed by partitions of n: elementary e_λ, homogeneous h_λ, power symmetric p_λ.
- ► Link with representation theory of S_n: the Frobenius characteristic map:

$$\mathcal{F}: \mathsf{Class}(\mathfrak{S}_n) \to \Lambda_K^n$$

Shur functions s_λ form another basis and are the image of the irreducible characters by the Frobenius map.

 $\Lambda_{\mathcal{K}} := \mathcal{K}[X_1, ..., X_N]^{\mathfrak{S}_N}$ space of symmetric functions.

$$\Lambda_K = \bigoplus_{i=1}^{\infty} \Lambda_K^n$$

where Λ_K^n is the space of homogeneous symmetric functions of degree *n*.

- A lot of different basis for Λⁿ_K, indexed by partitions of *n*: elementary *e*_λ, homogeneous *h*_λ, power symmetric *p*_λ.
- ► Link with representation theory of S_n: the Frobenius characteristic map:

$$\mathcal{F}: \mathsf{Class}(\mathfrak{S}_n) \to \Lambda_K^n$$

- Shur functions s_λ form another basis and are the image of the irreducible characters by the Frobenius map.
- Scalar product ⟨, ⟩ on Λⁿ_K such that s_λ are orthonormal → *F* is an isometry