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ENUMERATION OF BOUNDED LECTURE HALL TABLEAUX

SYLVIE CORTEEL AND JANG SOO KIM

To Christian Krattenthaler, our determinantal hero

Abstract. Recently the authors introduced lecture hall tableaux in their study of mul-
tivariate little q-Jacobi polynomials. In this paper, we enumerate bounded lecture hall
tableaux. We show that their enumeration is closely related to standard and semistandard
Young tableaux. We also show that the number of bounded lecture hall tableaux occurs
as a coefficient in the Schur expansion of sλ(m+ y1, . . . ,m+ yn). To prove this result, we
use two main tools: non-intersecting lattice paths and bijections. In particular, we use
ideas developed by Krattenthaler to prove bijectively the hook content formula.

1. Introduction

Recently the authors [9] introduced lecture hall tableaux in their study of multivariate
little q-Jacobi polynomials Pλ(x; a, b; q) with t = q. They showed that, if we expand the
Schur function sλ(x) in terms of Pµ(x; a, b; q) and vice versa as

sλ(x) =
∑
µ

Mλ,µPµ(x; a, b; q), Pλ(x; a, b; q) =
∑
µ

Nλ,µsµ(x),

then the coefficients Mλ,µ and Nλ,µ can be expressed as generating functions for lecture
hall tableaux of shape λ/µ.

A lecture hall tableau is a certain filling of a skew shape λ/µ with nonnegative integers.
Since the entries in a lecture hall tableau can be arbitrarily large, there are infinitely many
lecture hall tableaux of a given shape. If we impose an upper bound on their entries we can
consider the number of lecture hall tableaux. The main goal of this paper is to enumerate
such bounded lecture hall tableaux.

Bounded lecture hall objects were first enumerated by the first author, Lee and Savage
in [10]. They showed that the number of sequences λ = (λ1, . . . , λn) of integers such that

m ≥ λ1
1
≥ λ2

2
≥ · · · ≥ λn

n
≥ 0

is equal to the number of sequences λ = (λ1, . . . , λn) of integers such that

m ≥ λ1
n
≥ λ2
n− 1

≥ · · · ≥ λn
1
≥ 0.
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This number is equal to (m+ 1)n. As remarked by Matt Beck [5], this is also the Ehrhart
polynomial of the n-cube. This observation started a collection of very interesting papers
connecting lecture hall partitions to geometric combinatorics and in particular polytopes.
We cite for example [3, 4, 16, 21]. An overview of the techniques and results is presented
in the survey by Carla Savage [22].

We will see that counting bounded lecture hall tableaux is naturally related to standard
and semistandard Young tableaux. To state our results we first give definitions of related
objects.

A partition is a weakly decreasing sequence λ = (λ1, . . . , λk) of positive integers. Each
integer λi is called a part of λ. The length `(λ) of λ is the number of parts. We identify a
partition λ = (λ1, . . . , λk) with its Young diagram, which is a left-justified array of squares,
called cells, with λi cells in the ith row for 1 ≤ i ≤ k. In other words, we consider
λ = (λ1, . . . , λk) as the set of cells (i, j) such that 1 ≤ i ≤ k and 1 ≤ j ≤ λi. For two
partitions λ and µ we write µ ⊂ λ to mean that the Young diagram of µ is contained in
that of λ as a set. In this case, a skew shape λ/µ is defined to be the set-theoretic difference
λ \µ of their Young diagrams. We denote by |λ/µ| the number of cells in λ/µ. A partition
λ is also considered as a skew shape by λ = λ/∅.

A tableau of shape λ/µ is a filling of the cells in λ/µ with nonnegative integers. In other
words, a tableau is a map T : λ/µ → N, where N is the set of nonnegative integers. A
standard Young tableau of shape λ/µ is a tableau of shape λ/µ such that every integer
1 ≤ i ≤ |λ/µ| appears exactly once and the entries are decreasing in each row and in each
column. Let SYT(λ/µ) denote the set of standard Young tableaux of shape λ/µ. We note
that it is more common to define a standard Young tableau to have entries increasing in
each row and column. However, for our purpose in this paper, it is more convenient to
have entries decreasing.

It is well known that the number of standard Young tableaux of shape λ is given by the
hook length formula due to Frame, Robinson, and Thrall [11]:

(1) |SYT(λ)| = |λ|!∏
(i,j)∈λ h(i, j)

,

where h(i, j) = λi + λ′j − i − j + 1, and λ′j is the number of integers r with 1 ≤ r ≤ `(λ)
and λr ≥ j. There are many proofs of the hook length formula, see the survey by Adin
and Roichman [1]. Among these, a remarkable bijective proof of (1) was found by Novelli,
Pak, and Stoyanovskii [20] using a “jeu de taquin” sorting algorithm.

A semistandard Young tableau of shape λ/µ is a tableau of shape λ/µ such that the
entries are weakly decreasing in each row and strictly decreasing in each column. We
denote by SSYT(λ/µ) the set of semistandard Young tableaux of shape λ/µ. We also
denote by SSYTn(λ/µ) the set of T ∈ SSYT(λ/µ) with max(T ) < n, i.e., the entries of
T are taken from {0, 1, . . . , n− 1}. Stanley [23] showed that the number of such bounded
semistandard Young tableaux is given by the hook content formula

(2) |SSYTn(λ)| =
∏

(i,j)∈λ

n+ c(i, j)

h(i, j)
,



ENUMERATION OF BOUNDED LECTURE HALL TABLEAUX 3

25 25 21

16 18 21 10 4

8 9 2 0

4 4 0

25
8

25
9

21
10

16
5

18
6

21
7

10
8

4
9

8
3

9
4

2
5

0
6

4
2

4
3

0
4

3 2 2

3 3 3 1 0

2 2 0 0

2 1 0

Figure 1. On the left is a lecture hall tableau L ∈ LHTn(λ/µ) for n = 5,
λ = (6, 6, 4, 3) and µ = (3, 1). The diagram in the middle shows the number
L(i, j)/(n + c(i, j)) for each entry (i, j) ∈ λ/µ. The diagram on the right is
the tableau bLc.

where c(i, j) = j− i is the content of the cell (i, j). There are also many proofs of the hook
content formula. Krattenthaler [14] found a bijective proof of (2) that uses a modified jeu
de taquin sorting algorithm. In this paper we will use Krattenthaler’s jeu de taquin to
investigate lecture hall tableaux.

An n-lecture hall tableau of shape λ/µ is a tableau L of shape λ/µ satisfying the following
conditions:

L(i, j)

n+ c(i, j)
≥ L(i, j + 1)

n+ c(i, j + 1)
,

L(i, j)

n+ c(i, j)
>

L(i+ 1, j)

n+ c(i+ 1, j)
.

The set of n-lecture hall tableaux of shape λ/µ is denoted by LHTn(λ/µ). For L ∈
LHTn(λ/µ), let bLc be the tableau of shape λ/µ whose (i, j)-entry is bL(i, j)/(n− i+ j)c,
see Figure 1 for an example. The set of n-lecture hall tableaux L ∈ LHTn(λ/µ) with
max(bLc) < m is denoted by LHTn,m(λ/µ). We will sometimes call such n-lecture hall
tableaux “m-bounded”. Since the bounded lecture hall tableaux in LHTn,1(λ/µ) play an
important role in our paper, we give them a special name. These objects have another
description as follows.

A semistandard n-content tableau of shape λ/µ is a semistandard Young tableau S of
shape λ/µ with the additional condition that 0 ≤ S(i, j) < n− i+ j for every (i, j) ∈ λ/µ.
We denote by SSCTn(λ/µ) the set of semistandard n-content tableaux of shape λ/µ. It is
easy to see that

SSCTn(λ/µ) = LHTn,1(λ/µ),

SSCTn(λ) = SSYTn(λ).

In this paper we prove the following formula for the number of bounded lecture hall
tableaux. Given a partition µ, we use the convention that µi = 0 for all integers i > `(µ).

Theorem 1.1. For partitions λ and µ with µ ⊂ λ and ` = `(λ) ≤ n, we have

|LHTn,m(λ/µ)| = m|λ/µ| det

((
λi + n− i
µj + n− j

))
1≤i,j≤`

.

Note that Theorem 1.1 implies that

(3) |LHTn,m(λ/µ)| = m|λ/µ||LHTn,1(λ/µ)| = m|λ/µ||SSCTn(λ/µ)|.



4 SYLVIE CORTEEL AND JANG SOO KIM

The determinant in Theorem 1.1 has another description in terms of standard Young
tableaux.

Proposition 1.2. For partitions λ and µ with µ ⊂ λ and ` = `(λ) ≤ n, we have

|SSCTn(λ/µ)| = det

((
λi + n− i
µj + n− j

))
1≤i,j≤`

=
|SYT(λ/µ)|
|λ/µ|!

∏
x∈λ/µ

(n+ c(x)).

Kirillov and Scrimshaw [13] recently conjectured that the number |SYT(λ/µ)|
|λ/µ|!

∏
x∈λ/µ(n+

c(x)) on the right hand side of the identity in Proposition 1.2 is always an integer and
proposed a problem to find a combinatorial object for this number. Proposition 1.2 gives
an affirmative answer to the problem. Theorem 1.1 and Proposition 1.2 together with (1)
and (2) immediately imply the following corollary.

Corollary 1.3. For partitions λ and µ with µ ⊂ λ and `(λ) ≤ n, we have

|LHTn,m(λ/µ)| = m|λ/µ|
|SYT(λ/µ)|
|λ/µ|!

∏
x∈λ/µ

(n+ c(x)).

In particular, the number of n-lecture hall tableaux of shape λ whose maximum entry is
less than nm is

|LHTn,m(λ)| = m|λ||SSYTn(λ)| = m|λ|
∏
x∈λ

n+ c(x)

h(x)
.

Using Naruse’s hook length formula for |SYT(λ/µ)| in [19], we get another enumerative
formula.

Corollary 1.4. For partitions λ and µ with µ ⊂ λ and `(λ) ≤ n, the number of m-bounded
lecture tableaux of shape λ/µ is

|LHTn,m(λ/µ)| = m|λ/µ|
∏
x∈λ/µ

(n+ c(x))
∑
D

∏
x∈λ\D

1

h(x)
,

where the sum is over all excited diagrams D of λ/µ. See [18, 19] for details on excited
diagrams.

In this paper we also show that the number of m-bounded lecture hall tableaux occurs
naturally as the coefficient in the Schur expansion of sλ(m+ y1, . . . ,m+ yn). Recall that,
for a sequence of variables x = (x0, x1, . . . ), the (skew) Schur function sλ/µ(x) is defined
by

sλ/µ(x) =
∑

T∈SSYT(λ/µ)

xT ,

where

xT =
∏

(i,j)∈λ/µ

xT (i,j).
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Note that
sλ(x0, x1, . . . , xn−1) =

∑
T∈SSYTn(λ)

xT ,

and |SSYTn(λ)| = sλ(1
n), where (1n) is the sequence (1, 1, . . . , 1) of n ones.

Theorem 1.5. For integers n,m ≥ 0, variables y0, y1, . . . , yn−1, and a partition λ with at
most n parts, we have

sλ(m+ y0,m+ y1, . . . ,m+ yn−1) =
∑
µ⊂λ

|LHTn,m(λ/µ)|sµ(y0, y1, . . . , yn−1).

If m = 1 in Theorem 1.5 we obtain the following formula due to Lascoux [15]:

(4) sλ(1+y0, 1+y1, . . . , 1+yn−1) =
∑
µ⊂λ

det

((
λi + n− i
µj + n− j

))
1≤i,j≤`(λ)

sµ(y0, y1, . . . , yn−1).

Lascoux [15] used (4) to compute the Chern classes of the exterior square and symmetric
square of a vector bundle, see also [17, Chapter 1, §3, Example 10]. We note Theorem 1.5
can also be obtained from (4) and Theorem 1.1.

Our next theorem is a generalization of Theorem 1.5 to skew shapes. In order to state
the theorem we first need to introduce some definitions.

We define
Lnλ/µ(x) =

∑
T∈LHTn(λ/µ)

xbT c,

and
Snλ/µ(x) =

∑
T∈SSCTn(λ/µ)

xT .

Note that Snλ (x) = sλ(x0, x1, . . . , xn−1).
The following theorem is the main theorem of this paper, which is a skew version of

Theorem 1.5.

Theorem 1.6. Let λ and µ be partitions with µ ⊂ λ and `(λ) ≤ n. For any sequences
x = (x0, x1, . . . ) and y = (y0, y1, . . . ) of variables, we have

Snλ/µ(|x|+ y) =
∑
µ⊂ν⊂λ

Lnλ/ν(x)Snν/µ(y),

where |x| = x0 + x1 + · · · and |x|+ y = (|x|+ y0, |x|+ y1, . . . ).

In this paper we give two proofs of Theorem 1.6: one proof uses a Jacobi–Trudi type
determinant identity, and the other proof is bijective. In particular the bijective proof of
Theorem 1.6 uses a variation of jeu de taquin due to Krattenthaler [14].

If µ = ∅ and x = (1m) in Theorem 1.6, we have

Snλ (m+ y) =
∑
ν⊂λ

Lnλ/ν(1
m)Snν (y).

Since Snν (y) = sν(y0, y1, . . . , yn−1) for any partition ν, we obtain Theorem 1.5.
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We can also deduce (3) from Theorem 1.6 as follows. If x = (x0, . . . , xm−1) and y =
(0, 0, . . . ) in Theorem 1.6, we have

(5) Snλ/µ(|x|, |x|, . . . ) = Lnλ/µ(x).

By definition we have Lnλ/µ(1m) = |LHTn,m(λ/µ)| and

(6) Snλ/µ(|x|, |x|, . . . ) = |x||λ/µ|Snλ/µ(1, 1, . . . ) = |x||λ/µ||SSCTn(λ/µ)|.

Then (3) follows from (5), (6) with x = (1m).
The remainder of this paper is organized as follows. In Section 2 we give a simple proof

of Theorem 1.1 using a Jacobi–Trudi type determinant identity. We also prove Proposi-
tion 1.2. In Section 3 we prove Theorem 1.6 also using a Jacobi–Trudi identity. The main
tool of Sections 2 and 3 is to transform the tableaux into some system of non-intersecting
paths on a planar graph and use the Lindström–Gessel–Viennot lemma [12]. In Section 4
we give a bijective proof of Theorem 1.6. In Section 5 we find a connection of our bijec-
tion with the bijections due to Novelli, Pak, and Stoyanovskii [20] and Krattenthaler [14].
Finally, in Section 6 we provide some open problems.

Acknowledgements. The authors want to thank the University of California at Berke-
ley, where this work was started, and BIRS (Banff, Canada), where this work was com-
pleted. We want to thank personally the Director of BIRS who accepted to extend our stay
at BIRS after the workshop “Asymptotic Algebraic Combinatorics” in March 2019. Both
authors would like to thank Curtis Greene and Carla Savage for their precious comments
and advice during the elaboration of this paper, Brendon Rhoades, Travis Scrimshaw and
U-Keun Song for helpful discussions, and the anonymous referees and Christian Kratten-
thaler for their careful reading and helpful comments. J.S.K. was supported by NRF grants
#2019R1F1A1059081 and #2016R1A5A1008055.

2. Jacobi–Trudi identity

In this section, we interpret an n-lecture hall tableau as a family of non-intersecting
lattice paths and give a Jacobi–Trudi type identity for the generating function Lnλ/µ(x) for
n-lecture hall tableaux of a given shape. We then prove Theorem 1.1 and Proposition 1.2.

The paths we consider are on an infinite directed graph embedded in the plane R2 defined
as follows.

Definition 2.1. The lecture hall graph G = (V,E) is a directed graph on the vertex set

V =

{(
i,

j

i+ 1

)
: i, j ∈ N

}
,

whose edge set E consists of

• (nearly) horizontal edges from (i, k+ r
i+1

) to (i+1, k+ r
i+2

) for i, k ∈ N and 0 ≤ r ≤ i,
and
• vertical edges from (i, k + r+1

i+1
) to (i, k + r

i+1
) for i, k ∈ N and 0 ≤ r ≤ i.
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Figure 2. The lecture hall graph G.

See Figure 2 for an example of the lecture hall graph G. We note that in [9] a slightly
different graph is used to describe lecture hall tableaux. However, both graphs can equally
be used for this purpose.

We now consider (directed) paths in the lecture hall graph. A path in G is a (possibly
infinite) sequence P of vertices of G such that (u, v) is a directed edge of G for every two
consecutive elements u and v in P . If P is a finite path (u`, u`−1, . . . , u1), we say that P is
a path from u` to u1. If P is an infinite path (. . . , u3, u2, u1) for ui = (ai, bi), i ≥ 1, such
that limi→∞ ai = a, we say that P is a path from (a,∞) to (a1, b1).

From now on every path considered in this section will be either a finite path or an
infinite path in G satisfying the above limit condition.

We define the weight wt(P ) of a path P to be the product of its edge weights, where the
weight of the horizontal edge from (i, k+ r

i+1
) to (i+ 1, k+ r

i+2
) is defined to be xk and the

weight of every vertical edge is defined to be 1. A sequence (P1, . . . , Pk) of paths is said to
be non-intersecting if no two paths share a vertex. The weight of the system (P1, . . . , Pk)

of paths is defined to be the product
∏k

i=1 wt(Pi) of the weights of the paths. The following
lemma gives a way of understanding lecture hall tableaux as non-intersecting paths.

Lemma 2.2. Let λ and µ be partitions satisfying µ ⊂ λ and ` = `(λ) ≤ n. Then there
exists a bijection between LHTn(λ/µ) and the set of non-intersecting paths (P1, . . . , P`),
where Pi is a path from (µi + n − i,∞) to (λi + n − i, 0). This bijection is such that if
L ∈ LHTn(λ/µ) corresponds to (P1, . . . , P`) then

xbLc =
∏̀
i=1

wt(Pi).

Proof. As in [9] the bijection between lecture hall tableaux L and non-intersecting paths
(P1, . . . , P`) is constructed by counting the number of regions under each horizontal edge of
each path. Namely, L(i, j) is given by the number of regions under the (j−µi)th horizontal
edge of Pi. Then the weight of the edge is xbL(i,j)/(n−i+j)c, so the bijection satisfies the
desired property. �
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Figure 3. Non-intersecting paths in G. For each horizontal edge, its weight
is shown above it.

Figure 3 shows the non-intersecting paths in G corresponding to the lecture hall tableau
L ∈ LHTn(λ/µ) in Figure 1 for n = 5, λ = (6, 6, 4, 3) and µ = (3, 1). The paths in Figure 3
have weight x40x

2
1x

5
2x

4
3, which is equal to xbLc. The entries of bLc can be seen on the right

of Figure 1.
Recall that x = (x0, x1, . . . ) and that |x| = x0 + x1 + · · · . The following proposition is

a Jacobi–Trudi type identity for Lnλ/µ(x).

Proposition 2.3. Let λ and µ be partitions satisfying µ ⊂ λ and ` = `(λ) ≤ n. Then we
have

Lnλ/µ(x) = det
(
L
µj+n−j+1

(λi−µj−i+j)(x)
)
1≤i,j≤`

.

Proof. This is a direct consequence of the Lindström–Gessel–Viennot lemma [12], which
states that the weight generating function for non-intersecting paths from vertices u1, u2,
. . . , u` to vertices v1, v2, . . . , v` of the planar graph G is

det(P (uj, vi))1≤i,j≤`,

where P (uj, vi) is the weight generating function of the paths from uj to vi. Here we choose

uj = (µj + n− j,∞), vi = (λi + n− i, 0), and therefore P (uj, vi) = L
µj+n−j+1

(λi−µj−i+j)(x). Then

the proposition follows from Lemma 2.2. �

We now compute the entries of the matrix of the previous proposition.

Proposition 2.4. For n, k ≥ 0 we have

Ln(k)(x) = |x|k
(
n+ k − 1

k

)
.
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Proof. Let us first recall that

(7) Ln(k)(x) =
∑
L

xbLc,

where the sum is over the n-lecture hall tableaux L ∈ LHTn(λ) of shape λ = (k), i.e.,

L(1, 1)

n
≥ L(1, 2)

n+ 1
≥ · · · ≥ L(1, k)

n+ k − 1
≥ 0.

Consider the case x = (x0, 0, 0, . . .). Then the n-lecture hall tableaux L contributing
nonzero terms in (7) are those satisfying

1 >
L(1, 1)

n
≥ L(1, 2)

n+ 1
≥ · · · ≥ L(1, k)

n+ k − 1
≥ 0.

It is easy to check that for a, b, k ∈ N, the condition 1 > a
k
≥ b

k+1
is equivalent to k > a ≥ b.

Thus, the above condition is equivalent to n > L(1, 1) ≥ · · · ≥ L(1, k) ≥ 0 and we have

Ln(k)(x0) := Ln(k)(x0, 0, 0, . . . ) = xk0

(
n+ k − 1

k

)
.

Now consider the general case x = (x0, x1, . . . ). Fix an n-lecture hall tableau L ∈
LHTn((k)) and let j be the index such that L(1,j)

n+j−1 ≥ 1 and L(1,j+1)
n+j

< 1. Here we suppose

that L1,0 = ∞ and L1,k+1 = 0 so that the index 0 ≤ j ≤ k is always defined. We can
decompose L into two lecture hall tableaux L′ ∈ LHTn((j)) and L′′ ∈ LHTn+j((k − j)) so
that L′(1, i) = L(1, i) and L′′(1, i) = L(1, j + i). Then L′ and L′′ satisfy

(8)
L′(1, 1)

n
≥ · · · ≥ L′(1, j)

n+ j − 1
≥ 1,

(9) 1 >
L′′(1, 1)

n+ j
≥ · · · ≥ L′′(1, k − j)

n+ k − 1
≥ 0.

Conversely, for any pair of L′ and L′′ satisfying (8) and (9), we obtain an n-lecture hall
tableau L ∈ LHTn((k)). Moreover, the tableaux L′ ∈ LHTn((j)) satisfying the con-
dition (8) are those contributing nonzero terms in Ln(j)(0, x1, x2, . . .) and the tableaux

L′′ ∈ LHTn+j((k− j)) satisfying the condition (9) are those contributing nonzero terms in

Ln+j(k−j)(x0). Therefore,

Ln(k)(x0, x1, . . . ) =
k∑
j=0

Ln+j(k−j)(x0)L
n
(j)(0, x1, x2, . . .).

Now we notice that sequences (L′(1, 1), . . . , L′(1, j)) such that

L′(1, 1)

n
≥ · · · ≥ L′(1, j)

n+ j − 1
≥ 1,
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are in bijection with sequences (U ′(1, 1), . . . , U ′(1, j)) such that

U ′(1, 1)

n
≥ · · · ≥ U ′(1, j)

n+ j − 1
≥ 0,

by setting U ′(1, i) = L′(1, i)− n+ i− 1 for 1 ≤ i ≤ j. This implies that

xbL
′c =

j∏
i=1

xbL′1,i/(n−i+1)c =

j∏
i=1

xbU ′1,i/(n−i+1)c+1.

We get that

Ln(j)(0, x1, x2, . . .) = Ln(j)(x1, x2, . . .).

Therefore

Ln(k)(x0, x1, . . . ) =
k∑
j=0

Ln+j(k−j)(x0)L
n
(j)(x1, x2, . . .).

This gives Ln(k)(x0, x1, . . . ) =
(
n+k−1

k

)
|x|k using induction. �

Combining the two previous propositions, we obtain the main theorem in this section.

Theorem 2.5. Let λ and µ be partitions satisfying µ ⊂ λ and ` = `(λ) ≤ n. Then we
have

Lnλ/µ(x) = |x||λ/µ| det

((
λi + n− i
µj + n− j

))
1≤i,j≤`

.

Proof. By Propositions 2.3 and 2.4, we have

Lnλ/µ(x) = det

(
|x|λi−i−µj+j

(
λi + n− i
µj + n− j

))
1≤i,j≤`

.

By factoring out the factor |x|λi−i for each row i and the factor |x|j−µj for each column j,
we obtain the theorem. �

Setting x = (1m) in Theorem 2.5, we obtain Theorem 1.1. Since |SSCTn(λ/µ)| =
Lnλ/µ(1, 0, 0, . . . ), Theorem 2.5 implies that

(10) |SSCTn(λ/µ)| = det

((
λi + n− i
µj + n− j

))
1≤i,j≤`

.

Therefore Theorem 2.5 is equivalent to

(11) Lnλ/µ(x) = |x||λ/µ||SSCTn(λ/µ)|.

Since SSCTn(λ) = SSYTn(λ), by setting µ = ∅ in (11) we obtain the following corollary.

Corollary 2.6. For a partition λ with at most n parts, we have

Lnλ(x) = |x||λ|sλ(1n).

We finish this section by giving a proof of Proposition 1.2.
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Proof of Proposition 1.2. The first equality is shown in (10). It remains to show that

(12) det

((
λi + n− i
µj + n− j

))
1≤i,j≤`

=
|SYT(λ/µ)|
|λ/µ|!

∏
x∈λ/µ

(n+ c(x)).

We need the following determinant formula for |SYT(λ/µ)| due to Aitken [2], see also [26,
Corollary 7.16.3]:

|SYT(λ/µ)| = |λ/µ|! det

(
1

(λi − µj − i+ j)!

)
1≤i,j≤`

.

Then (12) follows immediately from Aitken’s formula with the identities

det

((
λi + n− i
µj + n− j

))
1≤i,j≤`

=

`(λ)∏
i=1

(λi + n− i)!
(µi + n− i)!

det

(
1

(λi − µj − i+ j)!

)
1≤i,j≤`

,

and
`(λ)∏
i=1

(λi + n− i)!
(µi + n− i)!

=
∏
x∈λ/µ

(n+ c(x)),

which can be easily verified. �

3. Proof of Theorem 1.6 using a Jacobi–Trudi identity

In this section, we prove Theorem 1.6 using a Jacobi–Trudi identity for the generating
function

(13) Snλ/µ(y) =
∑

T∈SSCTn(λ/µ)

yT .

To this end we introduce another infinite directed graph. We use the notation ω for the
smallest infinite ordinal number, i.e, 1 < 2 < · · · < ω.

Definition 3.1. The content graph G ′ is the directed graph G ′ = (V ′, E ′) on the vertex set

V ′ =

{(
i, ω +

r

i+ 1

)
: i ∈ N, r ∈ {0, 1, . . . , i+ 1}

}
,

whose edge set E ′ consists of

• (nearly) horizontal edges from (i, ω+ r
i+1

) to (i+1, ω+ r
i+2

) for i ∈ N and 0 ≤ r ≤ i,
and
• vertical edges from (i, ω + r+1

i+1
) to (i, ω + r

i+1
) for i ∈ N and 0 ≤ r ≤ i.

Figure 4 shows the content graph G ′. Now to any path P ′ in G ′, we associate a monomial
wt(P ′) equal to the product of the weights of the edges of P ′, where the weight of the
horizontal edge from (i, ω + r

i+1
) to (i + 1, ω + r

i+2
) is defined to be yr, and the weight of

every vertical edge is 1.
The following lemma gives a way to understand a semistandard n-content tableau as

non-intersecting paths in G ′.
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0 1 2 3 4 5 6 7 8 9 10
ω

ω + 1
· · ·

Figure 4. The content graph G ′.

0 1 2 3 4 5 6 7 8 9 10
ω

ω + 1
· · ·y1

y0 y0

y2
y1 y1 y1

y4
y3 y3

y0 y0

Figure 5. Non-intersecting paths in G ′. The weight of each horizontal edge
is shown above the edge.

4 3 3 0 0

2 1 1 1

1 0 0

Figure 6. A semistandard n-content tableau of shape λ/µ with n = 4,
λ = (6, 4, 3) and µ = (1).

Lemma 3.2. There is a bijection between SSCTn(λ/µ) and the set of non-intersecting paths
(P1, . . . , P`) in G ′, where Pi starts at ui = (µi+n− i, ω+1) and ends at vi = (λi+n− i, ω),
for i = 1, . . . , `. The correspondence between T ∈ SSCTn(λ/µ) and (P1, . . . , P`) is as
follows. The number of regions under the (j − µi)

th horizontal step of Pi is the entry
T (i, j). In this case we have yT =

∏n
i=1 wt(Pi).

Proof. This can be proved similarly to the proof of Lemma 2.2. �

For example, the non-intersecting paths in Figure 5 correspond to the tableau in Figure 6.
Note that both have weight y40y

4
1y2y

2
3y4.

The following is a Jacobi–Trudi identity for Snλ/µ(x).

Proposition 3.3. Let λ and µ be partitions satisfying µ ⊂ λ and ` = `(λ) ≤ n. Then we
have

Snλ/µ(y) = det
(
S
µj+n−j+1

(λi−µj−i+j)(y)
)
1≤i,j≤`

.

Proof. The proof is similar to that of Proposition 2.3, hence we omit it. �

Since SSCTn(λ) = SSYTn(λ), the definition (13) of Snλ/µ(x) implies that for k ≥ 0 and
n ≥ 1,

(14) Sn(k)(y) = s(k)(y0, . . . , yn−1) = hk(y0, . . . , yn−1),
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0 1 2 3 4 5 6 7 8 9

ω

ω + 1

...
...

...

0

1

2

· · ·

· · ·

· · ·

Figure 7. The extended lecture hall graph G∗ = G ′ ] G.

where hk(y0, . . . , yn−1) is the complete homogeneous polynomial defined by

(15) hk(y0, . . . , yn−1) =
∑

0≤i1≤···≤ik≤n−1

yi1 · · · yik .

Note that y0, . . . , yn−1 are the only variables that actually appear in Sn(k)(y) even though

y = (y0, y1, . . . ) is an infinite sequence of variables. Using (14), Proposition 3.3 can be
restated as

(16) Snλ/µ(y) = det(hλi−µj−i+j(y0, . . . , yµj+n−j))1≤i,j≤`.

In order to prove Theorem 1.6 we introduce yet another graph.

Definition 3.4. The extended lecture hall graph G∗ is the disjoint union G ′ ] G of the
content graph G ′ and the lecture hall graph G.

We draw the extended lecture hall graph G∗ = G ′ ] G with G ′ on top of G as shown in
Figure 7 so that each vertex (i, ω) of G ′ can be considered as the “limit” of the sequence
of vertices (i, 0), (i, 1), (i, 2), . . . in G.

We define an ω-path to be a pair Q = (P ′, P ) satisfying the following conditions:

• P ′ and P are paths in G ′ and G, respectively.
• P ′ is a path from (a, ω + 1) to (b, ω) and P is a path from (b,∞) to (c, 0) for some
a ≤ b ≤ c.

In this case we say that Q is an ω-path from (a, ω + 1) to (c, 0). We use the weight
wt(P ) for a path in G as in Section 2 and define the weight of an ω-path Q = (P ′, P ) by
wt(Q) = wt(P ′) wt(P ).

We are now ready to prove Theorem 1.6, which states that

(17) Snλ/µ(|x|+ y) =
∑
µ⊂ν⊂λ

Lnλ/ν(x)Snν/µ(y).
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1 25 21

1 0 21 10 4

8 9 2 0

4 4 0

Figure 8. A pair (L, S) of tableaux L ∈ LHTn(λ/ν) and S ∈ SSCTn(ν/µ)
for n = 5, λ = (6, 6, 4, 3), µ = (3, 1), and ν = (4, 3). The tableaux L and S
are separated by the thick border.

Proof of Theorem 1.6. Let LHS and RHS be the left hand side and the right hand side
of (17), respectively. By (16), we have

(18) LHS = det(hλi−µj−i+j(y0 + |x|, . . . , yµj+n−j + |x|))1≤i,j≤`.

Our strategy is to express RHS also as a determinant that agrees with the determinant in
(18) entry-wise.

First, observe that

RHS =
∑
µ⊂ν⊂λ

Lnλ/ν(x)Snν/µ(y) =
∑
(L,S)

xbLcyS,

where the sum is over all pairs (L, S) of tableaux L ∈ LHTn(λ/ν) and S ∈ SSCTn(ν/µ)
for some partition ν with µ ⊂ ν ⊂ λ. Combining the bijections in Lemmas 2.2 and 3.2, we
obtain a bijection between the set of such pairs (L, S) and the set of non-intersecting ω-
paths (Q1, . . . , Q`) such thatQi is an ω-path from ui = (µi+n−i, ω+1) to vi = (λi+n−i, 0).
Furthermore, under this bijection we have xbLcyS = wt(Q1) · · ·wt(Q`), which implies that

RHS =
∑
(L,S)

xbLcyS =
∑

(Q1,...,Q`)

wt(Q1) · · ·wt(Q`).

For example, the pair (L, S) of tableaux given in Figure 8 corresponds to the non-inter-
secting ω-paths in Figure 9.

By the Lindström–Gessel–Viennot lemma, we have

(19) RHS =
∑

(Q1,...,Q`)

wt(Q1) · · ·wt(Q`) = det(P̃ (uj, vi))1≤i,j≤`,

where P̃ (uj, vi) is the sum of wt(Q) for all ω-paths Q from uj = (µj + n − j, ω + 1) to
vi = (λi + n− i, 0). It is easy to see that

(20) P̃ (uj, vi) =

λi−µj−i+j∑
k=0

S
µj+n−j+1

(k) (y)L
µj+n−j+k+1

(λi−µj−i+j−k)(x).
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0 1 2 3 4 5 6 7 8 9 10

ω

ω + 1

...
...

...

0

1

2

3

4

· · ·

· · ·

· · ·

x2

x1

x0

x2
x2

x0
x0

y1 y0

x3

x1

x0

y1

x2
x2

Figure 9. Non-intersecting ω-paths in G∗. For each horizontal edge, its
weight is shown above it.

By (14) and Proposition 2.4, we have

S
µj+n−j+1

(k) (y) = hk(y0, . . . , yµj+n−j),

L
µj+n−j+k+1

(λi−µj−i+j−k)(x) = |x|λi−µj−i+j−k
(

λi + n− i
λi − µj − i+ j − k

)
.

Therefore, by (18), (19), (20) and the above two equations, it suffices to prove the
identity

(21) hλi−µj−i+j(y0 + |x|, . . . , yµj+n−j + |x|)

=

λi−µj−i+j∑
k=0

hk(y0, . . . , yµj+n−j)|x|λi−µj−i+j−k
(

λi + n− i
λi − µj − i+ j − k

)
.

Using the definition (15) of the complete homogeneous polynomial, it is not hard to see
that

ht(y0 + |x|, . . . , ya + |x|) =
∑

0≤i1≤···≤it≤a

(yi1 + |x|)(yi2 + |x|) · · · (yit + |x|)

=
t∑

k=0

hk(y0, . . . , ya)ht−k(|x|a+k+1),

where ht−k(|x|a+k+1) means ht−k(

a+k+1︷ ︸︸ ︷
|x|, . . . , |x|). Since ht−k(|x|a+k+1) = |x|t−k

(
a+t
t−k

)
, we obtain

(21) from the above identity by setting a = µj + n− j and t = λi − µj − i+ j. The proof
is now complete. �
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13 72 12

13 03 03 21 40

22 12 20 00

02 11 00

Figure 10. On the left is a lecture hall tableau L ∈ LHTn(λ/µ) for n = 5,
λ = (6, 6, 4, 3) and µ = (3, 1). The diagram in the middle shows the number
L(i, j)/(n + c(i, j)) for each entry (i, j) ∈ λ/µ. The diagram on the right is
the corresponding marked tableau T , given by T (i, j) = ar, where a and r
are the unique integers satisfying L(i, j) = r · (n − i + j) + a and 0 ≤ a <
n− i+ j.

4. A bijective proof of the main theorem

In this section, we give a bijective proof of Theorem 1.6. We first introduce some
definitions and restate the theorem accordingly.

A marked tableau of shape λ/µ is a map T : λ/µ → N × (N ∪ {∞}). If T (i, j) = (a, r)
we say that a is a value and r is a mark. Instead of T (i, j) = (a, r), we will simply write
T (i, j) = ar. A marked n-content tableau is a marked tableau T with the condition that,
if T (i, j) = ar, then 0 ≤ a < n− i + j. For a marked tableau T of shape λ/µ and a skew
shape α ⊂ λ/µ, we denote by T |α the restriction of T to the cells in α.

Let T be a marked tableau of shape λ/µ. For (i, j) ∈ λ/µ, let

wt∗(T (i, j)) =

{
xb, if T (i, j) = ab and b 6=∞,

ya, if T (i, j) = a∞.

The weight wt∗(T ) of T is defined by

wt∗(T ) =
∏

(i,j)∈λ/µ

wt∗(T (i, j)).

Consider an n-lecture hall tableau L ∈ LHTn(λ/µ). We construct a marked tableau T
as follows. For each cell (i, j) ∈ λ/µ, let T (i, j) = ar, where r = bL(i, j)/(n+ j − i)c and
a = L(i, j)− r · (n+ j − i). See Figure 10. Clearly, L can be recovered from T . From now
on we will identify the lecture hall tableau L with the marked tableau T . Note that under
this identification every mark of a lecture hall tableau is a nonnegative integer.

An extended n-lecture hall tableau of shape λ/µ is a marked tableau T : λ/µ→ N× (N∪
{∞}) satisfying the following conditions:

(1) If (i, j) ∈ λ/µ and T (i, j) = ar, then 0 ≤ a < n+ j − i.
(2) If (i, j), (i, j+1) ∈ λ/µ and T (i, j) = ar, T (i, j+1) = bs, then we have either r > s,

or r = s and a ≥ b.
(3) If (i, j), (i+1, j) ∈ λ/µ and T (i, j) = ar, T (i+1, j) = bs, then we have either r > s,

or r = s and a > b.
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1∞ 72 12

1∞ 0∞ 03 21 40

22 12 20 00

02 11 00

Figure 11. An extended n-lecture hall tableau L in LHT∗n(λ/µ), where n =
5, λ = (6, 6, 4, 2) and µ = (3, 1). The weight of L is wt∗(L) = x40x

2
1x

5
2x

1
3y0y

2
1.

The tail of L is indicated by the blue circle.

62 21 1∞

20 22 20 02 03

22 1∞ 10 00

01 02 0∞

Figure 12. A marked semistandard n-content tableau S in SSCT∗n(λ/µ),
where n = 5, λ = (6, 6, 4, 2) and µ = (3, 1). The weight of S is wt∗(S) =
x40x

2
1x

5
2x

1
3y0y

2
1. The head of S is indicated by the red cell.

We denote by LHT∗n(λ/µ) the set of extended n-lecture hall tableaux of shape λ/µ. See
Figure 11 for an example, where the blue circle will be explained later.

A marked semistandard n-content tableau is a marked tableau T such that the tableau
obtained from T by deleting its marks is a semistandard n-content tableau. See Figure 12
for an example, where the red circle will be explained later. We denote by SSCT∗n(λ/µ)
the set of marked semistandard n-content tableaux of shape λ/µ. From the definition one
can easily see that

(22) Snλ/µ(|x|+ y) =
∑

T∈SSCT∗n(λ/µ)

wt∗(T ).

Observe that if T is an extended n-lecture hall tableau, then the marks are weakly
decreasing in each row and each column, and for all i ∈ N ∪ {∞} the values with mark i
form a semistandard n-content tableau. Therefore, if we restrict T to the cells whose marks
are not ∞, we obtain an n-lecture hall tableau, which implies that

(23)
∑

T∈LHT∗n(λ/µ)

wt∗(T ) =
∑
ν

 ∑
T∈LHTn(λ/ν)

xbT c
∑

T∈SSCTn(ν/µ)

yT

 =
∑
ν

Lnλ/ν(x)Snν/µ(y).

By (22) and (23), Theorem 1.6 can be restated as follows.

Theorem 4.1. We have ∑
T∈LHT∗n(λ/µ)

wt∗(T ) =
∑

T∈SSCT∗n(λ/µ)

wt∗(T ).
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05 33 23 42 71

72 12 60 61 50 40

2∞ 52 61 51 50 31 31

23 12 40 41 40 21

40 31 21 11 10 12

P =

05 33 23 42 71

72 71 60 61 50 40

2∞ 52 50 51 50 31 31

23 12 31 30 20 21

40 31 21 11 12 12

Q =

Figure 13. If u = (2, 3) and v = (5, 5), then φvjdt(P, u) = (Q, v) and
φmjdt(Q, v) = (P, u). In each diagram the positions that the active cell visits
are enclosed by the thick polygon.

We will construct a weight-preserving bijection between LHT∗n(λ/ν) and SSCT∗n(λ/µ).
The basic idea is to sort the values of L ∈ LHT∗n(λ/µ) using a variation of “jeu de taquin”
according to a certain order of the cells in λ/µ depending on L itself. Our algorithms are
inspired by those due to Krattenthaler [14].

Algorithm 4.2 (Value-jeu de taquin). The value-jdt algorithm is described as follows.

Notation: φvjdt(P, u) = (Q, v).
Input: A pair (P, u) of a marked tableau P of shape λ/µ and a cell u ∈ λ/µ.
Output: A pair (Q, v) of a marked tableau Q of shape λ/µ and a cell v ∈ λ/µ.

Step 1: Set Q = P and v = u. We call v the active cell.
Step 2: Let (i, j) be the coordinate of the active cell v. Let ar = Q(i, j), bs =
Q(i, j+1), and ct = Q(i+1, j). If (i, j+1) 6∈ λ/µ (resp. (i+1, j) 6∈ λ/µ), then
set bs = (−1)0 (resp. ct = (−1)0). If a ≥ b and a > c, then stop the process
and return (Q, v) as the output. Otherwise, there are two cases.
• If b − 1 > c, then set Q(i, j) = (b − 1)s and Q(i, j + 1) = ar as shown

below, where the active cell v is the cell containing ar. Set v = (i, j + 1)
and repeat Step 2.

ar bs

ct
→

(b− 1)s ar

ct

• If c + 1 ≥ b, then set Q(i, j) = (c + 1)t and Q(i + 1, j) = ar as shown
below, the active cell v is the cell containing ar. Set v = (i + 1, j) and
repeat Step 2.

ar bs

ct
→

(c+ 1)t bs

ar

See Figure 13 for an example of the value-jdt algorithm.

Algorithm 4.3 (Mark-jeu de taquin). The mark-jdt algorithm is described as follows.

Notation: φmjdt(Q, v) = (P, u).
Input: A pair (Q, v) of a marked tableau Q of shape λ/µ and a cell v ∈ λ/µ.
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NW

NW SE

NW

SE

Figure 14. The northwest corners are the cells with an “NW” and the
southeast corners are the cells with an “SE”.

Output: A pair (P, u) of a marked tableau P of shape λ/µ and a cell u ∈ λ/µ.
Step 1: Set P = Q and u = v. We call u the active cell.
Step 2: Let (i, j) be the coordinate of the active cell u. Let ar = P (i, j), bs =
P (i, j − 1), and ct = P (i − 1, j). If (i, j − 1) 6∈ λ/µ (resp. (i − 1, j) 6∈ λ/µ),
then set bs =∞∞ (resp. ct =∞∞). If r ≤ s and r ≤ t, then stop the process
and return (P, u) as the output. Otherwise, there are two cases.
• If t < r ≤ s, or s, t < r and b ≥ c − 1, then set P (i, j) = (c − 1)t

and P (i − 1, j) = ar as shown below, where the active cell u is the cell
containing ar. Set u = (i− 1, j) and repeat Step 2.

ct

arbs
→

ar

(c− 1)tbs

• If s < r ≤ t, or s, t < r and c > b + 1, then set P (i, j) = (b + 1)s
and P (i, j − 1) = ar as shown below, where the active cell u is the cell
containing ar. Set u = (i, j − 1) and repeat Step 2.

ct

arbs
→

ct

(b+ 1)sar

See Figure 13 for an example of the value-jdt algorithm.
Let λ be a partition. An outer corner of λ is a cell u 6∈ λ such that λ∪{u} is a partition.

An inner corner of λ is a cell u ∈ λ such that λ \ {u} is a partition. For a skew shape
λ/µ, a northwest corner of λ/µ is a cell in λ/µ that is an outer corner of µ and a southeast
corner of λ/µ is a cell in λ/µ that is an inner corner of λ. See Figure 14 for an example.

Definition 4.4. Let α be a skew shape and L ∈ LHT∗n(α). Suppose that r is the smallest
mark and a is the smallest value with mark r in L. Then the tail of L, denoted tail(L), is
defined to be the rightmost cell (i, j) ∈ α with L(i, j) = ar. See Figure 11 for an example.

Note that for distinct cells (i, j), (i′, j′) ∈ λ/µ, if L(i, j) = L(i′, j′) = ar, then the fact
that L is an element in LHT∗n(λ/µ) ensures that j 6= j′. Thus the tail of L ∈ LHT∗n(λ/µ) is
well-defined. It is clear from the definition that the tail of L is a southeast corner of λ/µ.

Definition 4.5. Let β be a skew shape and S ∈ SSCT∗n(β). Suppose that r is the largest
mark and a is the largest value with mark r in S. Then the head of S, denoted head(S),
is defined to be the leftmost cell (i, j) ∈ β with S(i, j) = ar. See Figure 12 for an example.
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Ti =

αi βi

ui−1

vi

Figure 15. A typical diagram with Ti, αi, βi, ui−1, and vi. The border
between αi and βi is shown with a thick path. The blue circle represents ui−1
and the red circle represents vi. The dashed path represents the movement
of the active cell in the process of φvjdt(Ti−1, ui−1) = (Ti, vi).

By a similar argument as before, one can check that if S ∈ SSCT∗n(β), then head(S)
is well-defined. Note, however, that head(S) is not necessarily a (northwest or southeast)
corner of β.

We are now ready to define a map sending an extended n-lecture hall tableau L ∈
LHT∗n(λ/µ) to a marked semistandard n-content tableau S ∈ SSCT∗n(λ/µ). Recall from
the definition that in L the marks are weakly decreasing along each row and column but
the values are not sorted. In S, on the contrary, the values are weakly decreasing along
each row and strictly decreasing along each column but the marks are not sorted. Our
approach is, therefore, to sort the values of L in order to obtain S, and to sort the marks
of S in order to obtain L. The two sorting algorithms are described below. See Figure 15
for an illustration of a typical situation and Figure 16 for a concrete example of these
algorithms.

Algorithm 4.6 (Value-sorting). The value-sorting algorithm is described as follows.

Notation: φvsort(L) = S.
Input: An extended n-lecture hall tableau L of shape λ/µ.
Output: A marked semistandard n-content tableau S of shape λ/µ.

Step 1: Set T0 = L, α0 = λ/µ, β0 = ∅, and u0 = tail(T0).
Step 2: For i = 1, 2, . . . , |λ/µ|, define αi, βi, Ti, ui, and vi recursively by

(Ti, vi) = φvjdt(Ti−1, ui−1),

αi = αi−1 \ {ui−1},
βi = βi−1 ∪ {ui−1},
ui = tail(Ti|αi

).

Step 3: Return S = T|λ/µ| as the output.

Algorithm 4.7 (Mark-sorting). The mark-sorting algorithm is described as follows.

Notation: φmsort(S) = L.
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L =

1∞ 31 40

31 21 21

40

→
1∞ 31 40

31 21 21

40

→
1∞ 31 40

31 21 21

40

→
1∞ 31 40

31 21 21

40

↓

1∞ 31 40

31 21 21

40

←
1∞ 30 31

31 21 21

40

←
1∞ 30 31

50 21 21

31

←
31 30 31

50 11 1∞

31

S =

Figure 16. The value-sorting algorithm applied to L ∈ LHT∗n(λ/µ) returns
S ∈ SSCT∗n(λ/µ), where n = 7, λ = (4, 3, 1) and µ = (1). The mark-
sorting algorithm is the reverse process. Each diagram represents Ti. The
border between αi and βi is drawn by a thick path. The blue circle indicates
ui = tail(Ti|αi

) and the red circle indicates vi = head(Ti|βi).

Input: A marked semistandard n-content tableau S of shape λ/µ.
Output: An extended n-lecture hall tableau L of shape λ/µ.

Step 1: Set T|λ/µ| = S, α|λ/µ| = ∅, β|λ/µ| = λ/µ, and v|λ/µ| = head(T|λ/µ|).
Step 2: For i = |λ/µ|−1, |λ/µ|−2, . . . , 0, define αi, βi, Ti, ui, and vi recursively

by

(Ti, ui) = φmjdt(Ti+1, vi+1),

αi = αi+1 ∪ {ui+1},
βi = βi+1 \ {ui+1},
vi = head(Ti|βi).

Step 3: Return L = T0 as the output.

In order to show that the above algorithms are inverse to each other, we need the
following two lemmas.

Lemma 4.8. Let L ∈ LHT∗n(λ/µ). Suppose that αi, βi, Ti, ui, and vi, 0 ≤ i ≤ |λ/µ|, are
given as in Algorithm 4.6. Then, for i = 1, 2, . . . , |λ/µ|, the following properties hold:

(1) Ti|αi
∈ LHT∗n(αi) and Ti|βi ∈ SSCT∗n(βi). In particular, T|λ/µ| ∈ SSCT∗n(λ/µ).

(2) head(Ti|βi) = vi.
(3) φmjdt(Ti, vi) = (Ti−1, ui−1).

Proof. (1): We prove this for i = 0, 1, . . . , |λ/µ| by induction. Since T0|α0 = L and T0|β0 =
∅, it is true for i = 0. Let 1 ≤ i ≤ |λ/µ| and suppose that (1) is true for i − 1. Since
Ti−1|αi−1

∈ LHT∗n(αi−1), we have that ui−1 = tail(Ti−1|αi−1
) is a southeast corner of αi−1.

Hence, αi = αi−1 \ {ui−1} and βi = βi−1 ∪ {ui−1} are skew shapes. When we compute
(Ti, vi) = φvjdt(Ti−1, ui−1), the value-jdt algorithm does not modify the cells in αi, which
implies that Ti|αi

= Ti−1|αi
= L|αi

∈ LHT∗n(αi) and φvjdt(Ti−1|βi , ui−1) = (Ti|βi , vi). It is
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∗ ∗
cybx

∗ (c+ 1)y

∗bx

cy ∗
∗bx

Figure 17. The restrictions of Ti−1 (on the left), Ti (in the middle), and
Ti+1 (on the right) to the cells (g, h− 1), (g, h), (g + 1, h− 1), (g + 1, h).

not hard to check that in the process of φvjdt(Ti−1|βi , ui−1) to obtain Ti|βi , the values of the
cells in βi are weakly decreasing in each row and strictly decreasing in each column with
only possible exceptions between the active cell and the cell to the right of it and the cell
below it. When the process stops these two possible exceptions are resolved and we obtain
Ti|βi ∈ SSCT∗n(βi) as desired.

(2): It is clear from the construction that, if r is the largest mark and a is the largest
value with mark r in Ti|βi , then Ti(vi) = ar. If vi is the only cell in βi with this property,
then we have head(Ti|βi) = vi. Otherwise, we must show that vi is the leftmost cell
with this property. To this end suppose that Ti−1(ui−1) = Ti(ui) = ar, ui−1 = (k, l),
ui = (k′, l′), and vi = (p, q), vi+1 = (p′, q′). Then it is sufficient to show that q′ < q. Since
Ti−1|αi−1

∈ LHT∗n(αi−1) and ui−1 = head(Ti−1|αi−1
), we have k′ ≥ k and j′ < j.

Let ui−1 = w0, w1, w2, . . . , wd = vi be the sequence of positions of the active cell in the
construction of φvjdt(Ti−1, ui−1) = (Ti, vi). We claim that, when we compute φvjdt(Ti, vi),
the active cell never enters the position wt if wt+1 is south of wt, for 0 ≤ t < d.

Suppose that the claim is false. Then we can find the smallest integer m such that wm =
(g, h), wm+1 = (g+1, h), and the active cell enters wm. Considering the relative positions of
ui−1 and ui, one can check that the active cell must enter wm from the east. Now we focus on
the restrictions of Ti−1, Ti, and Ti+1 to the cells (g, h−1), (g, h), (g+1, h−1), (g+1, h) as in
Figure 17. Let Ti−1(g+1, h−1) = bx and Ti−1(g+1, h) = cy. Since Ti−1|βi−1

∈ SSCT∗n(βi−1),
we have b ≥ c. Considering the positions of the active cell in the process of φvjdt(Ti−1, ui−1)
and φvjdt(Ti, ui), we obtain Ti(g+1, h−1) = bx, Ti(g, h) = (c+1)y, Ti+1(g+1, h−1) = bx, and
Ti+1(g, h− 1) = cy. Since Ti+1|βi+1

∈ SSCT∗n(βi+1), we have b < c, which is a contradiction
to the above fact that b ≥ c. Therefore, the claim is true.

By the above claim, if q′ ≥ q, then the active cell in the process of φvjdt(Ti, ui) must
move from (z, q− 1) to (z, q) for some z ≥ p. Suppose that z = p. Let Ti(p+ 1, q− 1) = ct.
Since Ti(p, q) = ar, the fact that the active cell moved from (p, q− 1) to (p, q) implies that
a− 1 > c. However, this means that, when the active cell was in (p, q − 1), its value is at
most the value of the cell to the right and greater than the value of the cell below, and
the value-jdt algorithm must stop at this stage, which is a contradiction. Therefore, we
must have z > p. In this case, since Ti+1|βi+1

∈ SSCT∗n(βi+1) and vi+1 is strictly below and
weakly to the right of vi, the value of Ti+1(vi+1) is less than the value of Ti+1(vi), which is
a contradiction. Therefore, we must have q′ < q, which completes the proof of (2).

(3): By the fact that Ti−1|βi−1
∈ SSCT∗n(βi−1) and Ti−1|βi−1

∈ SSCT∗n(βi), it is clear that
the reverse process of φvjdt(Ti−1, ui−1) is given by the mark-jdt algorithm. We only need to
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check that the process of φmjdt(Ti, vi) stops when the active cell reaches the cell ui−1. Let r
be the largest mark and a the largest value with mark in Ti|βi . Since vi = head(Ti|βi), we
have Ti(vi) = ar, and vi is the leftmost cell with this property. Therefore, the movement
of the active cell in the process of φmjdt(Ti, vi) continues until the active cell reaches a
northwest corner of βi, which is ui−1. If the active cell is at ui−1, then the fact that the
mark of every cell in αi is at least r implies that the process of φmjdt(Ti, vi) stops. �

Lemma 4.9. Let S ∈ SSCT∗n(λ/µ). Suppose that αi, βi, Ti, ui, and vi are given as in
Algorithm 4.7. Then, for i = 0, 1, 2, . . . , |λ/µ| − 1, the following properties hold:

(1) Ti|αi
∈ LHT∗n(αi) and Ti|βi ∈ SSCT∗n(βi). In particular, T0 ∈ LHT∗n(λ/µ).

(2) tail(Ti|αi
) = ui.

(3) φvjdt(Ti, ui) = (Ti+1, vi+1).

Proof. This lemma can be proved by arguments similar to those in the proof of Lemma 4.8.
We omit the proof. �

We now give a bijective proof of Theorem 4.1.

Theorem 4.10. The map

φvsort : LHT∗n(λ/µ)→ SSCT∗n(λ/µ)

is a weight-preserving bijection whose inverse is

φmsort : SSCT∗n(λ/µ)→ LHT∗n(λ/µ).

Proof. Lemmas 4.8 and 4.9 imply that the two maps φvsort and φmsort are inverses of each
other. Suppose φvsort(L) = S. In the process of the value-sorting algorithm, the marks and
the values with mark ∞ are never changed. Therefore wt∗(L) = wt∗(S). �

Remark 4.11. The bijection allows us to generate a random bounded lecture hall tableau
of a given partition shape using Krattenthaler’s random generation of a semistandard
Young tableau. It will be interesting to extend this random generation to skew shapes.
In [8] a different algorithm is established using a Markov chain on bounded lecture hall
tableaux and coupling from the past.

5. A connection between SSCT and SYT

In this section, we use the weight-preserving bijection φvsort : LHT∗n(λ/µ)→ SSCT∗n(λ/µ)
and its inverse φmsort : SSCT∗n(λ/µ) → LHT∗n(λ/µ) to find a connection between
|SSCTn(λ/µ)| and |SYT(λ/µ)|.

Recall the sets SYT(λ/µ), SSYTn(λ/µ), LHTn(λ/µ), and SSCTn(λ/µ) defined in the
introduction. We also need the following definitions.

A tableau T of shape λ/µ is called standard if every integer 1 ≤ i ≤ |λ/µ| appears
exactly once in T . The set of standard tableaux of shape λ/µ is denoted by ST(λ/µ). An
n-content tableau of shape λ/µ is a tableau T of shape λ/µ such that 0 ≤ T (i, j) < n−i+j
for all (i, j) ∈ λ/µ. The set of n-content tableaux of shape λ/µ is denoted by CTn(λ/µ).
A hook tabloid of shape λ is a map H : λ → Z satisfying − leg(i, j) ≤ H(i, j) ≤ arm(i, j)
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for all (i, j) ∈ λ, where leg(i, j) = λ′j − i and arm(i, j) = λi − j. We denote by HT(λ) the
set of hook tabloids of shape λ.

Let us now consider the map φvsort : LHT∗n(λ/µ) → SSCT∗n(λ/µ) restricted to the
following sets:

Xn(λ/µ) = {L ∈ LHT∗n(λ/µ) : wt∗(L) = x1 · · ·x|λ/µ|},
Yn(λ/µ) = {T ∈ SSCT∗n(λ/µ) : wt∗(T ) = x1 · · ·x|λ/µ|}.

Since φvsort is a weight-preserving bijection, we obtain the induced bijection

φvsort : Xn(λ/µ)→ Yn(λ/µ).

We may naturally identify L ∈ Xn(λ/µ) with the pair (A,R) of tableaux of shape
λ/µ: if L(i, j) = ar then A(i, j) = a and R(i, j) = r. Then, by the condition on L,
we have A ∈ CTn(λ/µ) and R ∈ SYT(λ/µ). This allows us to identify Xn(λ/µ) with
CTn(λ/µ)× SYT(λ/µ). Similarly, we can identify Yn(λ/µ) with SSCTn(λ/µ)× ST(λ/µ).
Using this identification we can consider φvsort as a bijection between these sets:

(24) φvsort : CTn(λ/µ)× SYT(λ/µ)→ SSCTn(λ/µ)× ST(λ/µ).

Therefore we obtain the following corollary, which is a restatement of Proposition 1.2.

Corollary 5.1. For any skew shape λ/µ, we have

|SSCTn(λ/µ)|∏
x∈λ/µ(n+ c(x))

=
|SYT(λ/µ)|
|λ/µ|!

,

which means that the probability that a random T ∈ CTn(λ/µ) is semistandard is equal to
the probability that a random T ∈ ST(λ/µ) is a standard Young tableau.

It is possible to understand the probabilistic description in Corollary 5.1 using the map
(24). To this end we note that each element (A,B) ∈ CTn(λ/µ) × SYT(λ/µ) is a fixed
point of φvsort, i.e., φvsort(A,B) = (A,B), if and only if A ∈ SSCTn(λ/µ). Similarly, each
element (A,B) ∈ SSCTn(λ/µ)×ST(λ/µ) is a fixed point of the inverse map φmsort = φ−1vsort

if and only if B ∈ SYT(λ/µ). The probability that a random A ∈ CTn(λ/µ) is an
element in SSCTn(λ/µ) is clearly equal to the probability that a random pair (A,B) ∈
CTn(λ/µ) × SYT(λ/µ) satisfies A ∈ SSCTn(λ/µ). In other words, this is the probability
that a random pair (A,B) ∈ CTn(λ/µ)× SYT(λ/µ) is a fixed point of φvsort. By the same
argument, we obtain that the probability that a random B ∈ ST(λ/µ) is an element of
SYT(λ/µ) is equal to the probability that a random pair (A,B) ∈ SSCTn(λ/µ)×ST(λ/µ)
is a fixed point of the map φ−1vsort. Since φvsort and φ−1vsort are inverses of each other with the
same set of fixed points, we obtain that the two probabilities that we consider are equal.

We now consider the map (24) for the case µ = ∅. Since SSCTn(λ) = SSYTn(λ), we
have the following bijection:

(25) φvsort : CTn(λ)× SYT(λ)→ SSYTn(λ)× ST(λ).

Recall the two bijections due to Novelli, Pak and Stoyanovskii, and to Krattenthaler.
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CTn(λ)× SYT(λ) SSYTn(λ)× ST(λ)

SSYTn(λ)× HT(λ)× SYT(λ)

φvsort

φK φNPS

Figure 18. Three maps between three objects.

Theorem 5.2 (Novelli, Pak, Stoyanovskii). For any partition λ, there is a bijection

φNPS : ST(λ)→ SYT(λ)× HT(λ).

Theorem 5.3 (Krattenthaler). For any partition λ, there is a bijection

φK : CTn(λ)→ SSYTn(λ)× HT(λ).

Note that φNPS naturally induces a bijection

φNPS : SSYTn(λ)× ST(λ)→ SSYTn(λ)× HT(λ)× SYT(λ)

by fixing the first component. Similarly φK induces a bijection

φK : CTn(λ)× SYT(λ)→ SSYTn(λ)× HT(λ)× SYT(λ).

Then the three maps φvsort, φK , and φNPS are bijections between the three sets CTn(λ)×
SYT(λ), SSYTn(λ)×ST(λ), and SSYTn(λ)×HT(λ)×SYT(λ), see Figure 18. These maps
are not directly related. It might be interesting to find any connection between these maps.

6. Final remarks

Stanley [24] showed that semistandard Young tableaux and standard Young tableaux
fit together nicely in the framework of the P -partition theory, see also [25, Chapter 3] and
[26, Chapter 7]. Lecture hall tableaux are also a special case of lecture hall P -partitions
introduced by Brändén and Leander [7]. They found a connection between generating
functions for the bounded lecture hall P -partitions and colored linear extensions of P . It
will be interesting to compare our results with theirs.

Problem 6.1. Investigate bounded lecture hall tableaux using the results of Brändén and
Leander [7].

Krattenthaler’s map [14] in fact gives a bijective proof of the following q-analog of (2),
also due to Stanley [23]: ∑

T∈SSYTn(λ)

q|T | = q
∑

i≥1(i−1)λi
∏

(i,j)∈λ

[n+ c(i, j)]q
[h(i, j)]q

,

where [k]q = 1 + q + q2 + · · · + qk−1. If we only look at the values and ignore the marks,
then our jeu de taquin slides in Algorithms 4.2 and 4.3 are essentially the same as those
in [14]. Recall that during these algorithms values are changing. Krattenthaler carefully
designed his bijection so that these value changes are consistent with the value changes in
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hook tabloids. Our bijection, on the contrary, does not have hook tabloids, which makes it
difficult to follow the change of values. If we can keep track of all the value changes, then
it may be possible to find a refinement of Theorem 4.1.

Problem 6.2. Find a q-analogue of Theorem 4.1.

For a partition λ = (λ1, . . . , λ`) with distinct parts, the shifted Young diagram of λ is
an array of squares in which the ith row has λi squares and is shifted to the right by i− 1
units. Standard Young tableaux and semistandard Young tableaux of a shifted shape can
then be defined in a similar fashion. They also enjoy nice enumerative properties as in the
case of a usual shape.

Problem 6.3. Find a formula for the number of bounded n-lecture hall tableaux of a
given shifted shape.

Note that we cannot expect a nice product formula for this problem. For example, the
number of 17-bounded 14-lecture hall tableaux of shape (2, 1) has the prime factorization
2 · 3 · 7 · 17 · 3331.

Let δn = (n− 1, n− 2, . . . , 1, 0) and

d
(n)
λ,µ = det

((
λi + n− i
µj + n− j

))
1≤i,j≤n

,

which is by Proposition 1.2 equal to |SSCTn(λ/µ)|. As mentioned in the introduction,
Lascoux [15] used (4) to compute the Chern classes of the exterior square

∧2E and sym-
metric square Sym2E of a vector bundle E. To be more precise, let c(E) =

∏n
i=1(1 + yi)

be the total Chern class of E. Lascoux showed that

c
(∧2E

)
=

∏
1≤i<j≤n

(1 + yi + yj) =
∑
µ⊂δn

2|µ|−(n
2)d

(n)
δn,µ

sµ(y1, . . . , yn),(26)

c(Sym2E) =
∏

1≤i≤j≤n

(1 + yi + yj) =
∑

λ⊂δn+1

2|λ|−(n
2)d

(n)
δn+1,λ

sλ(y1, . . . , yn).(27)

Billey, Rhoades, and Tewari [6, Corollary 4.3] found the following manifestly integral
and positive formulas for the Schur expansions of c

(∧2E
)

and c(Sym2E):∏
1≤i<j≤n

(1 + yi + yj) =
∑
µ⊂δn

r(n)µ sµ(y1, . . . , yn),(28)

∏
1≤i≤j≤n

(1 + yi + yj) =
∑

λ⊂δn+1

∑
µ⊆λ∩δn

λ/µ a vertical strip

2|λ/µ|r(n)µ sλ(y1, . . . , yn),(29)

where a vertical strip is a skew shape in which every row has at most one cell and r
(n)
µ is

the number of tableaux of shape µ such that the entries are strictly decreasing along rows
and weakly decreasing down columns, and every entry in row i is in {1, 2, . . . , n− i}.

Comparing the Schur coefficients in (26), (27), (28), and (29), and using the fact d
(n)
λ/µ =

|SSCTn(λ/µ)|, we obtain the following proposition.
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Proposition 6.4. For µ ⊆ δn and λ ⊆ δn+1, we have

|SSCTn(δn/µ)| = 2|δn/µ|r(n)µ ,

|SSCTn(δn+1/λ)| =
∑

µ⊆λ∩δn
λ/µ a vertical strip

2|δn/µ|r(n)µ .

The objects in SSCTn(δn/µ) and those counting r
(n)
µ have somewhat similar conditions

on their entries but their shapes are complementary: δn/µ and µ. Understanding the
connection between these two objects will be very interesting.

Problem 6.5. Find a bijective proof of Proposition 6.4.

In a forthcoming paper [8], the first author, Keating and Nicoletti show that lecture hall
tableaux are in bijection with a certain dimer model on a graph whose faces are hexagons
and octagons. Moreover they show that bounded lecture hall tableaux of a “large” shape
exhibit the arctic curve phenomenon.
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