COMBINATORICS OF (q, y)-LAGUERRE POLYNOMIALS AND THEIR MOMENTS

QIONGQIONG PAN AND JIANG ZENG
To Christian Krattenthaler on the occasion of his 60th birthday

Abstract

We consider a (q, y)-analogue of Laguerre polynomials $L_{n}^{(\alpha)}(x ; y \mid q)$ for integral $\alpha \geq-1$, which turns out to be a rescaled version of Al-Salam-Chihara polynomials. A combinatorial interpretation for the (q, y)-Laguerre polynomials is given using a colored version of Foata and Strehl's Laguerre configurations with suitable statistics. When $\alpha \geq 0$, the corresponding moments are described using certain classical statistics on permutations, and the linearization coefficients are proved to be a polynomial in y and q with nonnegative integral coefficients.

1. Introduction

The monic Laguerre polynomials $L_{n}^{(\alpha)}(x)$ are defined by the generating function

$$
\begin{equation*}
(1+t)^{-\alpha-1} \exp \left(\frac{x t}{t+1}\right)=\sum_{n=0}^{\infty} L_{n}^{(\alpha)}(x) \frac{t^{n}}{n!} . \tag{1.1}
\end{equation*}
$$

They are the multiple of the usual (general) Laguerre polynomials [16, pp. 241-242] by $(-1)^{n} n$!. We have the explicit formula

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=\sum_{k=0}^{n}(-1)^{n-k} \frac{n!}{k!}\binom{n+\alpha}{n-k} x^{k} \tag{1.2}
\end{equation*}
$$

and the three-term recurrence relation

$$
\begin{equation*}
L_{n+1}^{(\alpha)}(x)=(x-(2 n+\alpha+1)) L_{n}^{(\alpha)}(x)-n(n+\alpha) L_{n-1}^{(\alpha)}(x) . \tag{1.3}
\end{equation*}
$$

The Laguerre polynomials $L_{n}^{(\alpha)}(x)$ are orthogonal with respect to the moments $\mathcal{L}\left(x^{n}\right)=$ $(\alpha+1)_{n}$, where $(x)_{n}=x(x+1) \cdots(x+n-1)(n \geq 1)$ is the shifted factorial with $(x)_{0}=1$, and \mathcal{L} is the linear functional defined by

$$
\begin{equation*}
\mathcal{L}(f)=\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} f(x) x^{\alpha} e^{-x} d x \tag{1.4}
\end{equation*}
$$

[^0]

Figure 1. A Laguerre configuration (A, f) on [15] with $A=[15] \backslash\{3,8,9,11\}$.

The linearization formula [23] reads as follows:

$$
\begin{equation*}
\mathcal{L}\left(L_{n_{1}}^{(\alpha)}(x) L_{n_{2}}^{(\alpha)}(x) L_{n_{3}}^{(\alpha)}(x)\right)=\sum_{s \geq 0} \frac{n_{1}!n_{2}!n_{3}!2^{n_{1}+n_{2}+n_{3}-2 s}(\alpha+1)_{s}}{\left(s-n_{1}\right)!\left(s-n_{2}\right)!\left(s-n_{3}\right)!\left(n_{1}+n_{2}+n_{3}-2 s\right)!} . \tag{1.5}
\end{equation*}
$$

A combinatorial model for Laguerre polynomials with parameter α was first given by Foata and Strehl [7]. Recall that a Laguerre configuration on $[n]:=\{1, \ldots, n\}$ is a pair (A, f), where $A \subset[n]$ and f is an injection from A to $[n]$. A Laguerre configuration can be depicted by a digraph on $[n]$ by drawing an edge $i \rightarrow j$ if and only if $f(i)=j$. Clearly, such a graph has two types of connected components called cycles and paths, see Figure 1. Let $\mathcal{L} \mathcal{C}_{n, k}$ be the set of Laguerre configurations (A, f) on $[n]$ with $|A|=n-k$. Then Foata and Strehl's interpretation [7] reads

$$
\begin{equation*}
\sum_{(A, f) \in \mathcal{L} \mathcal{C}_{n, k}}(\alpha+1)^{\operatorname{cyc}(f)}=\frac{n!}{k!}\binom{n+\alpha}{n-k}, \tag{1.6}
\end{equation*}
$$

where $\operatorname{cyc}(f)$ is the number of cycles of f.
Note that one can derive (1.6) from any of the three formulas (1.1)-(1.3), see $[1,7]$. The aim of this paper is to study combinatorial aspects of more general (q, y)-Laguerre polynomials $L_{n}^{(\alpha)}(x ; y \mid q)(n \geq 0)$ defined by the three term-recurrence relation

$$
\begin{align*}
& L_{n+1}^{(\alpha)}(x ; y \mid q)=\left(x-\left(y[n+\alpha+1]_{q}+[n]_{q}\right)\right) L_{n}^{(\alpha)}(x ; y \mid q) \\
& \tag{1.7}\\
& \quad-y[n]_{q}[n+\alpha]_{q} L_{n-1}^{(\alpha)}(x ; y \mid q), \quad \alpha \geq-1, n \geq 1
\end{align*}
$$

with $L_{0}^{(\alpha)}(x ; y \mid q)=1, L_{-1}^{(\alpha)}(x ; y \mid q)=0$. Here and throughout this paper, we use the standard q-notations: $[n]_{q}=\frac{1-q^{n}}{1-q}$ for $n \geq 0$, the q-analogue of n-factorial $n!_{q}=\prod_{i=1}^{n}[i]_{q}$, and the q-binomial coefficient

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{n!_{q}}{k!_{q}(n-k)!_{q}} \quad \text { for } \quad 0 \leq k \leq n .
$$

Clearly we have $L_{n}^{(\alpha)}(x ; 1 \mid 1)=L_{n}^{(\alpha)}(x)$. Kasraoui et al. [17] gave a combinatorial interpretation for the linearization coefficients of the polynomials $L_{n}^{(0)}(x ; y \mid q)$ and pointed out
that a combinatorial model for $L_{n}^{(0)}(x ; y \mid q)$ can be derived from Simion and Stanton's model for octabasic q-Laguerre polynomials in [22]. For $k \in \mathbb{Z}$, let

$$
\mathbb{N}_{k}:=\{n \in \mathbb{Z}: n \geq k\}
$$

and $\mathbb{N}:=\mathbb{N}_{1}$. Recently, using the theory of q-Riordan matrices, Cheon, Jung and Kim [3] derived a combinatorial model for the q-Laguerre polynomials $L_{n}^{(\alpha)}(x ; q \mid q)$ when $\alpha \in \mathbb{N}_{0}$. It is then natural to search for a combinatorial structure unifying the above two special cases, as was alluded to at the end of [3]. Our first goal is to give such a combinatorial model for $L_{n}^{(\alpha)}(x ; y \mid q)$ with variable y and integer $\alpha \in \mathbb{N}_{-1}$ by using a q-analogue of Foata and Strehl's Laguerre configurations. Moreover, for $\alpha \in \mathbb{N}_{0}$, the (q, y)-Laguerre polynomials $L_{n}^{(\alpha)}(x ; y \mid q)$ are orthogonal polynomials. It is our second goal to give a combinatorial interpretation for the moments of (q, y)-Laguerre polynomials and prove that the linearization coefficients are polynomials in y and q with nonnegative integral coefficients. We achieve this by making use of the combinatorial theory of continued fractions.

By (1.7), the first few values of $L_{n}^{(\alpha)}(x ; y \mid q)$ are

$$
\begin{aligned}
& L_{1}^{(\alpha)}(x ; y \mid q)=x-y[\alpha+1]_{q}, \\
& \begin{aligned}
L_{2}^{(\alpha)}(x ; y \mid q)=x^{2} & -\left(y[\alpha+1]_{q}+y[\alpha+2]_{q}+1\right) x+[\alpha+1]_{q}[\alpha+2]_{q} y^{2} \\
L_{3}^{(\alpha)}(x ; y \mid q)=x^{3} & -\left(y\left([\alpha+1]_{q}+[\alpha+2]_{q}+[\alpha+3]_{q}\right)+2+q\right) x^{2} \\
& \quad+\left(y^{2}\left([\alpha+1]_{q}[\alpha+2]_{q}+[\alpha+2]_{q}[\alpha+3]_{q}+[\alpha+1]_{q}[\alpha+3]_{q}\right)\right. \\
& \left.\quad+y\left([\alpha+3]_{q}+[2]_{q}[\alpha+1]_{q}\right)+[2]_{q}\right) x-y^{3}[\alpha+1]_{q}[\alpha+2]_{q}[\alpha+3]_{q} .
\end{aligned}
\end{aligned}
$$

For convenience, we introduce the signless (q, y)-Laguerre polynomials

$$
\begin{equation*}
L_{n}^{(\alpha)}(x ; y \mid q):=(-1)^{n} L_{n}^{(\alpha)}(-x ; y \mid q)=\sum_{k=0}^{n} \ell_{n, k}^{(\alpha)}(y ; q) x^{k} \tag{1.8}
\end{equation*}
$$

For $\alpha \in \mathbb{N}_{-1}$, we observe that $\ell_{n, k}^{(\alpha)}(y ; q)$ is a polynomial in y, q with nonnegative integral coefficients, which is far from obvious from the explicit Formula (2.8). For $\alpha \in \mathbb{N}_{-1}$, Formula (1.6) implies that $\ell_{n, k}^{(\alpha)}(1 ; 1)$ is equal to the number of Laguerre configurations in $\mathcal{L C}_{n, k}$ such that each cycle carries a color $\in[1+\alpha]$. In particular, the number of Laguerre configurations in $\mathcal{L C}_{n, k}$ without cycles (i.e., consisting of only k paths) is equal to the Lah numbers [18]:

$$
\ell_{n, k}^{(-1)}(1 ; 1)=\frac{n!}{k!}\binom{n-1}{k-1}
$$

Remark 1. Two different q-analogues of Lah numbers were defined and studied by Garsia and Remmel [9] and Lindsay et al. [19], respectively. Moreover an elliptic analogue of Garsia and Remmel's q-Lah numbers was constructed by Schlosser and Yoo [21].

The organization of this paper is as follows. In Section 2 we identify the (q, y)-Laguerre polynomials as a rescaled version of Al-Salam-Chihara polynomials and derive several expansion formulas for (q, y)-Laguerre polynomials. In Section 3 we present a combinatorial interpretation for the (q, y)-Laguerre polynomials in terms of α-Laguerre configurations, which are in essence the product structure of "cycles" and "paths". In Section 4 we give a combinatorial interpretation for the moments of (q, y)-Laguerre polynomials and prove that the linearization coefficients are polynomials in y and q with nonnegative integral coefficients. As the Laguerre polynomials play an important role in the theory of rook polynomials, we translate our α-Laguerre configurations in terms of rook placements in Section 5 and set up the connection between our α-Laguerre configurations and the matching model of complete bipartite graphs $K_{n, n+\alpha}$ (see Godsil and Gutman [12]).

2. A detour to Al-Salam-Chihara polynomials

The q-Pochhammer symbol or q-shifted factorial $(a ; q)_{n}$ is defined by

$$
(a ; q)_{n}= \begin{cases}\prod_{i=0}^{n-1}\left(1-a q^{i}\right) & \text { for } n \in \mathbb{Z}^{+} \cup\{\infty\} \\ 1 & \text { for } n=0\end{cases}
$$

The Al-Salam-Chihara polynomials $Q_{n}(x):=Q_{n}(x ; a, b \mid q)$ are defined by the generating function (see [16, Chapter 14])

$$
\begin{equation*}
\sum_{n=0}^{\infty} Q_{n}(x ; a, b \mid q) \frac{t^{n}}{(q ; q)_{n}}=\frac{(a t, b t ; q)_{\infty}}{\left(t e^{i \theta}, t e^{-i \theta} ; q\right)_{\infty}} \tag{2.1}
\end{equation*}
$$

with $(a, b ; q)_{\infty}=(a ; q)_{\infty}(b ; q)_{\infty}$, and they satisfy the recurrence relation (op. cit.)

$$
\left\{\begin{array}{l}
Q_{-1}(x)=0, \quad Q_{0}(x)=1 \tag{2.2}\\
Q_{n+1}(x)=\left(2 x-(a+b) q^{n}\right) Q_{n}(x)-\left(1-q^{n}\right)\left(1-a b q^{n-1}\right) Q_{n-1}(x), \quad n \geq 0
\end{array}\right.
$$

We have the explicit formula

$$
\begin{equation*}
Q_{n}(x ; a, b \mid q)=\frac{(a b ; q)_{n}}{a^{n}} \sum_{k=0}^{n} \frac{\left(q^{-n} ; q\right)_{k}(a u ; q)_{k}\left(a u^{-1} ; q\right)_{k}}{(a b ; q)_{k}(q ; q)_{k}} q^{k}, \tag{2.3}
\end{equation*}
$$

where $x=\frac{u+u^{-1}}{2}$ or $x=\cos \theta$ if $u=e^{i \theta}$.
Comparing (1.7) with (2.2) and using (1.8), we see that our polynomials $L_{n}^{(\alpha)}(x ; y \mid q)$ are a rescaled version of the Al-Salam-Chihara polynomials:

$$
\begin{equation*}
L_{n}^{(\alpha)}(x ; y \mid q)=\left(\frac{\sqrt{y}}{1-q}\right)^{n} Q_{n}\left(\frac{(1-q) x+y+1}{2 \sqrt{y}} ; \frac{1}{\sqrt{y}}, \sqrt{y} q^{\alpha+1} \mid q\right) . \tag{2.4}
\end{equation*}
$$

The Al-Salam-Chihara polynomials (see [16, pp. 455-456] and [14]) are orthogonal with respect to the linear functional $\hat{\mathcal{L}}_{q}$ defined by

$$
\begin{equation*}
\hat{\mathcal{L}}_{q}(f)=\frac{(q, a b ; q)_{\infty}}{2 \pi} \int_{-1}^{+1} \frac{f(x) d x}{\sqrt{1-x^{2}}} \prod_{k=0}^{\infty} \frac{1-2\left(2 x^{2}-1\right) q^{k}+q^{2 k}}{\left[1-2 x a q^{k}+a^{2} q^{2 k}\right]\left[1-2 x b q^{k}+b^{2} q^{2 k}\right]} \tag{2.5}
\end{equation*}
$$

Hence, for $\alpha \in \mathbb{N}_{0}$, the polynomials $L_{n}^{(\alpha)}(x ; y \mid q)$ are orthogonal with respect to the linear functional \mathcal{L}_{q} given by

$$
\begin{align*}
\mathcal{L}_{q}(f)=\frac{\left(q, q^{\alpha+1} ; q\right)_{\infty}}{2 \pi} & \frac{1-q}{2 \sqrt{y}} \int_{B_{-}}^{B_{+}} \frac{f(x) d x}{\sqrt{1-v(x)^{2}}} \\
& \times \prod_{k=0}^{\infty} \frac{\left[1-2\left(2 v(x)^{2}-1\right) q^{k}+q^{2 k}\right]}{\left[1-2 v(x) q^{k} / \sqrt{y}+q^{2 k} / y\right]\left[1-2 v(x) q^{k+\alpha+1} \sqrt{y}+q^{2 k+2 \alpha+2} y\right]}, \tag{2.6}
\end{align*}
$$

where $B_{ \pm}=\frac{(1 \pm \sqrt{y})^{2}}{1-q}$ and

$$
\begin{equation*}
v(x)=\frac{1}{2 \sqrt{y}}((q-1) x+(y+1)) . \tag{2.7}
\end{equation*}
$$

Now, by (2.4), we may derive an explicit formula from (2.3), namely

$$
L_{n}^{(\alpha)}(x ; y \mid q)=\sum_{k=0}^{n} \frac{n!_{q}}{k!_{q}}\left[\begin{array}{l}
n+\alpha \tag{2.8}\\
k+\alpha
\end{array}\right]_{q} q^{k(k-n)} y^{n-k} \prod_{j=0}^{k-1}\left(x+\left(1-y q^{-j}\right)[j]_{q}\right)
$$

and, from (2.1), the generating function

$$
\begin{align*}
\mathcal{L}^{(\alpha)}(x ; y ; t \mid q) & :=\sum_{n \geq 0} L_{n}^{(\alpha)}(x ; y \mid q) \frac{t^{n}}{n!} \\
& =\frac{(t ; q)_{\infty}\left(y t q^{\alpha+1} ; q\right)_{\infty}}{\prod_{k=0}^{\infty}\left[1-((1-q) x+y+1) t q^{k}+y t^{2} q^{2 k}\right]}, \tag{2.9}
\end{align*}
$$

which can be written as

$$
\begin{equation*}
\mathcal{L}^{(\alpha)}(x ; y ; t \mid q)=\mathcal{L}^{(\alpha)}(0 ; y ; t \mid q) \cdot \mathcal{L}^{(-1)}(x ; y ; t \mid q) . \tag{2.10}
\end{equation*}
$$

Define the "vertical generating function"

$$
\begin{equation*}
\mathcal{L}_{k}^{(\alpha)}(y ; t \mid q):=\left[x^{k}\right] \mathcal{L}^{(\alpha)}(x ; y ; t \mid q)=\sum_{n \geq k} \ell_{n, k}^{(\alpha)}(y, q) \frac{t^{n}}{n!}, \tag{2.11}
\end{equation*}
$$

and the q-derivative operator \mathcal{D}_{q} for $f(t) \in \mathbf{R}[[t]]$ by

$$
\mathcal{D}_{q}(f(t))=\frac{f(t)-f(q t)}{(1-q) t}
$$

where $\mathbf{R}=\mathbb{C}[[x, y, q, \ldots]]$. Thus $\mathcal{D}_{q}(1)=0$ and $\mathcal{D}_{q}\left(t^{n}\right)=[n]_{q} t^{n-1}$ for $n>0$.

It follows from (2.9) that

$$
\begin{equation*}
\mathcal{D}_{q} \mathcal{L}^{(-1)}(x ; y ; t \mid q)=\frac{x}{(1-t)(1-y t)} \mathcal{L}^{(-1)}(x ; y ; t \mid q) \tag{2.12}
\end{equation*}
$$

which in particular gives

$$
\begin{align*}
\mathcal{D}_{q} \mathcal{L}_{1}^{(-1)}(y ; t \mid q) & =[x] \mathcal{D}_{q} \mathcal{L}^{(-1)}(x ; y ; t \mid q) \\
& =\frac{1}{(1-t)(1-t y)} \\
& =\sum_{n \geq 0} n!_{q}[n+1]_{y} \frac{t^{n}}{n!} \tag{2.13}
\end{align*}
$$

So we can rewrite (2.12) as

$$
\begin{equation*}
\mathcal{D}_{q} \mathcal{L}^{(-1)}(x ; y ; t \mid q)=x \cdot \mathcal{D}_{q} \mathcal{L}_{1}^{(-1)}(y ; t \mid q) \cdot \mathcal{L}^{(-1)}(x ; y ; t \mid q) \tag{2.14}
\end{equation*}
$$

which is equivalent to the following result.
Proposition 2. For $n \in \mathbb{N}$, we have

$$
L_{n+1}^{(-1)}(x ; y \mid q)=x \sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2.15}\\
k
\end{array}\right]_{q} k!_{q}[k+1]_{y} L_{n-k}^{(-1)}(x ; y \mid q)
$$

Now, applying the q-binomial formula (see [10, Chapter 1])

$$
\sum_{n \geq 0} \frac{(a ; q)_{n}}{(q ; q)_{n}} z^{n}=\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}}
$$

with $a=q^{\alpha+1}$ and $z=y t$, we have

$$
\begin{equation*}
\mathcal{L}^{(\alpha)}(0 ; y ; t \mid q)=\frac{\left(y t q^{\alpha+1} ; q\right)_{\infty}}{(y t ; q)_{\infty}}=\sum_{n \geq 0}\left(\prod_{k=1}^{n}[\alpha+k]_{q}\right) \frac{(y t)^{n}}{n!_{q}} \tag{2.16}
\end{equation*}
$$

Substitution of the latter into (2.10) gives the following result.
Proposition 3. For $n \in \mathbb{N}$, we have

$$
L_{n}^{(\alpha)}(x ; y \mid q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2.17}\\
k
\end{array}\right]_{q}\left(\prod_{j=1}^{k}[\alpha+j]_{q}\right) y^{k} L_{n-k}^{(-1)}(x ; y \mid q) .
$$

Remark 4. (1) More generally we can prove the following connection formula for $\alpha \geq$ $\beta \geq-1:$

$$
L_{n}^{(\alpha)}(x ; y \mid q)=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2.18}\\
k
\end{array}\right]_{q}\left(\prod_{j=0}^{k-1}[\alpha-\beta+j]_{q}\right)\left(y q^{\beta+1}\right)^{k} L_{n-k}^{(\beta)}(x ; y \mid q)
$$

(2) For $q \rightarrow 1$, Identity (2.9) reduces to

$$
\sum_{n \geq 0} L_{n}^{(\alpha)}(x ; y \mid 1) \frac{t^{n}}{n!}=(1-y t)^{-(\alpha+1)}\left(1-\frac{(1-y) t}{1-y t}\right)^{-x /(1-y)}
$$

Comparing with the generating function of the Meixner polynomials (see [16, Equation (1.9.11)])

$$
\sum_{n=0}^{\infty} \frac{(\beta)_{n}}{n!} M_{n}(x ; \beta, c) t^{n}=(1-t)^{-x-\beta}(1-t / c)^{x}
$$

we derive

$$
L_{n}^{(\alpha)}(x ; y \mid 1)=y^{n}(\alpha+1)_{n} M_{n}\left(\frac{-x}{1-y} ; \alpha+1, y\right) .
$$

Hence the (q, y)-Laguerre polynomials $L_{n}^{(\alpha)}(x ; y \mid q)$ are a q-analogue of rescaled Meixner polynomials.

3. Combinatorial interpretation of (q, y)-Laguerre polynomials

The reader is referred to $[1,6,13]$ for the general combinatorial theory of exponential generating functions for labeled structures. For our purpose we need only a q-version of this theory for special labeled structures. A labeled structure on a (finite) set $A \subset \mathbb{N}$ is a graph with vertex set A. Consider a family of labeled \mathcal{F}-structures $\mathcal{F}=\bigcup_{n=0}^{\infty} \mathcal{F}_{n}$, where \mathcal{F}_{n} consists of the \mathcal{F}-structures on $[n]$. If $A=\left\{a_{1}, \ldots, a_{n}\right\} \subset \mathbb{N}$, where $a_{1}<\cdots<a_{n}$, an \mathcal{F}-structure on A is obtained by replacing i by a_{i} for $i=1, \ldots, n$ in the elements of \mathcal{F}_{n}. Let $\mathcal{F}[A]$ denote the set of \mathcal{F}-structures on A and associate a weight $u(f)$ to each object $f \in \mathcal{F}$. For the set of weighted \mathcal{F}-structures \mathcal{F}_{u} (where the valuation u may involve the parameter q), the q-generating function is defined as

$$
\mathcal{F}_{u}(t)=\sum_{f \in \mathcal{F}} u(f) \frac{t^{|f|}}{|f|_{q}},
$$

where $|f|=n$ if $f \in \mathcal{F}[n]$. If \mathcal{F}_{u} and \mathcal{G}_{v} are two weighted structures, we denote by $(\mathcal{F} \cdot \mathcal{G})_{w}[n]$ the set of pairs $(f, g) \in \mathcal{F}[S] \times \mathcal{G}[T]$ with weight

$$
w(f, g)=u(f) \cdot v(g) \cdot q^{\operatorname{inv}(S, T)}
$$

where (S, T) is an ordered bipartition of $[n]$ and $\operatorname{inv}(S, T)$ is the number of pairs $(i, j) \in$ $S \times T$ such that $i>j$. Recall (see [13, p. 98]) that

$$
\sum_{(S, T)} q^{\operatorname{inv}(S, T)}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}
$$

where the sum is over all ordered bipartitions (S, T) of $[n]$ with $|S|=k$. It is folklore and immediately checked that

$$
\begin{equation*}
(\mathcal{F} \cdot \mathcal{G})_{w}(t)=\mathcal{F}_{u}(t) \cdot \mathcal{G}_{v}(t) \tag{3.1}
\end{equation*}
$$

We need some further definitions.
(a) For a permutation σ of a set $A \subset \mathbb{N}$, let the word $\hat{\sigma}$ denote its linear representation in the usual sense, i.e., $\hat{\sigma}=\sigma\left(i_{1}\right) \ldots \sigma\left(i_{n}\right)$ if $A=\left\{i_{1}, \ldots, i_{n}\right\}$ with $i_{1}<\cdots<i_{n}$.
(b) A list of (nonnegative) integers, taken as a word over \mathbb{N}, is strict if no element occurs more than once. For a strict list ρ let $\mathrm{rl}(\rho)$ be the number of elements that come after the maximum element.
(c) For a set λ of k non-empty and disjoint strict lists of integers, order these lists according to their minimum element (increasing). This gives a list of k words $\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, which will be identified with λ. Then $\underline{\lambda}=\lambda_{1} \ldots \lambda_{k}$ denotes the concatenation of these lists.
Two particular structures will be used to interpret the (q, y)-Laguerre polynomials.
(d) The structures $\mathcal{S}^{(\alpha)}$ consist of permutations σ, where each cycle carries a color \in $\{0,1,2, \ldots, \alpha\}$. Write σ as a product of unicolored permutations, $\sigma=\sigma_{0} \cdot \sigma_{1} \cdots \sigma_{\alpha}$, where σ_{i} is the product of cycles with color i. Now consider the concatenation

$$
\underline{\sigma}=\hat{\sigma}_{0} \cdot \hat{\sigma}_{1} \cdots \hat{\sigma}_{\alpha}
$$

and the word with letters from $\{0,1\}$ given by

$$
\underline{\underline{\sigma}}=0^{\left|\hat{\sigma}_{0}\right|} 10^{\left|\hat{\sigma}_{1}\right|} 1 \cdots 10^{\left|\hat{\sigma}_{\alpha}\right|} .
$$

Define the valuation u on $\mathcal{S}^{(\alpha)}$ by

$$
u(\sigma)=y^{|\underline{\underline{\mid}}|} q^{\operatorname{inv}(\underline{\sigma})+\operatorname{inv}(\underline{\underline{\sigma}})} .
$$

(e) The structures $\mathcal{L} i^{(k)}$ consist of sets $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ of k nonempty and disjoint strict lists (cf. (c)). Define the valuation v on $\mathcal{L i n}^{(k)}$ by

$$
v(\lambda)=y^{\mathrm{r}(\lambda)} q^{\operatorname{inv}(\underline{\lambda})-\mathrm{rl}(\lambda)},
$$

where $\operatorname{rl}(\lambda)=\sum_{i=1}^{k} \mathrm{rl}\left(\lambda_{i}\right)$.
Let $\mathcal{L C}_{n, k}^{(\alpha)}:=\mathcal{S}^{(\alpha)} \cdot \mathcal{L}^{2} n^{(k)}[n]$. For any α-Laguerre configuration $(\sigma, \lambda) \in \mathcal{S}^{(\alpha)}[A] \times$ $\mathcal{L} \mathrm{in}^{(k)}[B]$ with $A \cap B=\emptyset$ and $A \cup B=[n]$, in order to invoke the folklore statement (3.1), one should use as valuation

$$
\begin{align*}
w(\sigma, \lambda) & =u(\lambda) \cdot v(\lambda) \cdot q^{\operatorname{inv}(A, B)} \\
& =y^{|\underline{\sigma}|} q^{\operatorname{inv}(\underline{\sigma})+\operatorname{inv}(\underline{\sigma})} y^{r(\lambda)} q^{\operatorname{inv}(\underline{\lambda})-r \mid(\lambda)} q^{\operatorname{inv}(A, B)} \\
& =y^{|\underline{\sigma}|+r \mid(\lambda)} q^{\operatorname{inv}(\underline{\sigma})+\operatorname{inv}\left(\underline{\underline{(})+\operatorname{inv}(\underline{\lambda})-r \mid(\lambda)} q^{\operatorname{inv}(A, B)}\right.} \\
& =y^{|\underline{\sigma}|+r \mid(\lambda)} q^{\operatorname{inv}(\underline{\sigma} \cdot \underline{\lambda})-r(\lambda)+\operatorname{inv}(\underline{\underline{\sigma}})} . \tag{3.2}
\end{align*}
$$

Figure 2. A 1-Laguerre configuration $(\sigma, \lambda) \in \mathcal{L C}_{15,4}^{(1)}$, which is the Laguerre configuration in Figure 1 of which each cycle gets a color 0 or 1.

The essential point is $\operatorname{inv}(\underline{\sigma})+\operatorname{inv}(\underline{\lambda})+\operatorname{inv}(A, B)=\operatorname{inv}(\underline{\sigma} \cdot \underline{\lambda})$. This describes the weighted configurations $\left(\mathcal{L C}_{n, k}^{(\alpha)}\right)_{w}$. An element of $\left(\mathcal{L C}_{n, k}^{(\alpha)}\right)_{w}$ is called an α-Laguerre configuration on [n], see Figure 2.
Lemma 5. For $\alpha \in \mathbb{N}$, we have

$$
\mathcal{S}_{u}^{(\alpha)}(t)=\mathcal{L}^{(\alpha)}(0 ; y ; t \mid q)
$$

Proof. Let $\mathrm{P}(n, \alpha)$ be the set of words of length $n+\alpha$ with $n 0$'s and α 1's, i.e., lattice paths from $(0,0)$ to (n, α). For $\sigma \in \mathcal{S}^{(\alpha)}[n]$, the word $\underline{\sigma}$ can be seen as the linear representation of an (ordinary) permutation $\tilde{\sigma} \in \mathcal{S}^{(0)}[n]$, whereas $\underline{\underline{\sigma}} \in \mathrm{P}(n, \alpha)$. The mapping

$$
\begin{aligned}
\mathcal{S}^{(\alpha)}[n] & \rightarrow \mathcal{S}^{(0)}[n] \times \mathrm{P}(n, \alpha) \\
\sigma & \mapsto(\tilde{\sigma}, \underline{\underline{\sigma}})
\end{aligned}
$$

is a bijection, and from summing both contributions separately, one obtains

$$
\begin{aligned}
\sum_{\sigma \in \mathcal{S}^{(\alpha)}[n]} q^{\operatorname{inv}(\underline{\sigma})+\operatorname{inv}(\underline{\underline{\sigma}})} & =\sum_{\sigma \in \mathcal{S}^{(0)}[n]} q^{\operatorname{inv}(\underline{\underline{\sigma}})} \sum_{\underline{\underline{\sigma}} \in P(n, \alpha)} q^{\operatorname{inv}(\underline{\underline{\sigma}})} \\
& =n!_{q}\left[\begin{array}{c}
n+\alpha \\
\alpha
\end{array}\right]_{q}
\end{aligned}
$$

which is $\prod_{i=1}^{n}[\alpha+i]_{q}$. So we get

$$
\mathcal{S}_{u}^{(\alpha)}(t)=\sum_{n \geq 0}\left(\prod_{i=1}^{n}[\alpha+i]_{q}\right)(y t)^{n}
$$

The result then follows from (2.16).
Lemma 6. For integers $k \geq 1$, we have

$$
\mathcal{L}_{\operatorname{Li}}^{v}(k)(t)=\mathcal{L}_{k}^{(-1)}(y ; t \mid q)
$$

Proof. We proceed by induction on $k \geq 1$.

- The case $k=1$. For a single list $\lambda=\underline{\lambda} \in \mathcal{L i n}^{(1)}[n+1]$, let j_{λ} be the position of the maximum element, let $\lambda^{\prime}=\underline{\lambda}^{\prime} \in \operatorname{Lin}^{(1)}[n]$ be the list obtained by deleting this maximum element. Then

$$
\begin{aligned}
\operatorname{Lin}^{(1)}[n+1] & \rightarrow \mathcal{L i n}^{(1)}[n] \times[n+1] \\
\lambda & \mapsto\left(\lambda^{\prime}, j_{\lambda}\right)
\end{aligned}
$$

is a bijection such that $\operatorname{inv}(\underline{\lambda})=\operatorname{inv}\left(\underline{\lambda}^{\prime}\right)+\operatorname{rl}(\lambda)$. Furthermore, we have

$$
\sum_{\lambda \in \mathcal{L} \mathcal{L i}^{(1)}[n+1]} y^{\mathrm{rl}(\lambda)} q^{\operatorname{inv}(\underline{\lambda})-\mathrm{rl}(\lambda)}=\sum_{\lambda^{\prime} \in \mathcal{\operatorname { L i n }} \mathrm{n}^{(1)}[n]} q^{\operatorname{inv}\left(\underline{\lambda}^{\prime}\right)} \sum_{j \in[n+1]} y^{n+1-j},
$$

and thus

$$
\sum_{\lambda \in \mathcal{L i n}^{(1)}[n+1]} v(\lambda)=n!_{q}[n+1]_{y},
$$

which, in view of (2.13), gives

$$
\mathcal{D}_{q}{\mathcal{L} i n_{v}^{(1)}(t)=\mathcal{D}_{q} \mathcal{L}_{1}^{(-1)}(y ; t \mid q), ~}_{\text {a }}
$$

and by q-integration

$$
\mathcal{L}^{\operatorname{in}} n_{v}^{(1)}(t)=\mathcal{L}_{1}^{(-1)}(y ; t \mid q)
$$

because the series on both sides have a zero constant term.

- The case $k>1$. Assuming that $\mathcal{L} i n_{v}^{(k)}(t)=\mathcal{L}_{k}^{(-1)}(y ; t \mid q)$ has already been proved for $k \geq 1$, the goal is to show

$$
\mathcal{L}_{i n}^{(k+1)}(t)=\mathcal{L}_{k+1}^{(-1)}(y ; t \mid q)
$$

Comparing the coefficients of x^{k+1} on both sides of Equation (2.14), we obtain

$$
\mathcal{D}_{q} \mathcal{L}_{k+1}^{(-1)}(y ; t \mid q)=\mathcal{D}_{q} \mathcal{L}_{1}^{(-1)}(y ; t \mid q) \cdot \mathcal{L}_{k}^{(-1)}(y ; t \mid q)
$$

If we can show that similarly

$$
\begin{equation*}
\mathcal{D}_{q} \mathcal{L i n}{ }_{v}^{(k+1)}(t)=\mathcal{D}_{q} \mathcal{L} i n_{v}^{(1)}(t) \cdot \mathcal{L i n}_{v}^{(k)}(t) \tag{3.3}
\end{equation*}
$$

then we would be done. Again, the final integration step poses no problem because in both $\mathcal{L} i n_{v}^{(k+1)}(t)$ and $\mathcal{L}_{k+1}^{(-1)}(y ; t \mid q)$ the first $k+1$ coefficients vanish. Recall that a configuration $\lambda \in \mathcal{L i n}^{(k+1)}[n]$ consists of a list of $k+1$ disjoint strict lists, written as a list $\lambda=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}\right)$, with $\lambda_{i} \in \operatorname{Lin}^{(1)}\left[A_{i}\right]$, where

$$
\biguplus_{i=0}^{k} A_{i}=[n] \quad \text { and } \quad \min A_{i-1}<\min A_{i}, \quad 1 \leq i \leq k .
$$

We have a bijection

$$
\begin{aligned}
\operatorname{Lin}^{(k+1)}[A] & \rightarrow \operatorname{Lin}^{(1)}\left[A_{0}\right] \times \mathcal{L i n}^{(k)}\left[A^{\prime}\right] \\
\lambda & \mapsto\left(\lambda_{0}, \lambda^{\prime}\right),
\end{aligned}
$$

where $\lambda^{\prime}=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ and $A^{\prime}=\bigcup_{i=1}^{k} A_{i}$, which also satisfies the requirement for applying the folklore statement (3.1):

$$
v(\lambda)=v\left(\lambda_{0}\right) \cdot v\left(\lambda^{\prime}\right) \cdot q^{\operatorname{inv}\left(A_{0}, A^{\prime}\right)}
$$

All this holds only if for the bipartition $A=A_{0} \uplus A^{\prime}$ it is guaranteed that min $A_{0}<$ $\min A^{\prime}$. This is where the derivative \mathcal{D}_{q} comes into play. Differentiation for a collection of structures means that the minimum element of the underlying set of a structure is tagged and no longer counted in the w-valuation of the base set. In the present situation, this implies that only structures are considered where tagging the minimum element of λ means the same as tagging the minimum element of λ_{0}. This shows that (3.3) holds.

Theorem 7. For integers $\alpha \geq-1$, we have

$$
\ell_{n, k}^{(\alpha)}(y ; q)=\sum_{(\sigma ; \lambda) \in \mathcal{L} \mathcal{C}_{n, k}^{(\alpha)}} y^{|\underline{\sigma}|+\mathrm{rl}(\lambda)} q^{\operatorname{inv}(\underline{\sigma} \cdot \underline{\lambda})-\mathrm{rl}(\lambda)+\operatorname{inv}(\underline{\underline{(})} .}
$$

Proof. From (2.10) we infer

$$
\mathcal{L}_{k}^{(\alpha)}(y ; t \mid q)=\mathcal{L}^{(\alpha)}(0 ; y ; t \mid q) \mathcal{L}_{k}^{(-1)}(y ; t \mid q)
$$

and the result follows from Lemmas 1 and 2.
Here we give an example to illustrate the α-Laguerre configurations.
Example 8. Consider the 1-Laguerre configuration $(\sigma ; \lambda) \in \mathcal{L C}_{15,4}^{(1)}$ in Figure 2. We have

$$
\begin{aligned}
& \sigma=\sigma_{0} \cdot \sigma_{1} \quad \text { with } \quad \sigma_{0}=(15)(74), \sigma_{1}=(14)(1352) \\
& \lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \quad \text { with } \quad \lambda_{1}=13, \lambda_{2}=12611, \lambda_{3}=108, \lambda_{4}=9
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \underline{\sigma}=\hat{\sigma}_{0} \cdot \hat{\sigma}_{1}=7415 \cdot 132514, \\
& \underline{\underline{\sigma}}=0^{3} 10^{4} ; \\
& \underline{\lambda}=13 \cdot 12611 \cdot 108 \cdot 9 .
\end{aligned}
$$

We have $|\underline{\sigma}|=7, \operatorname{rl}(\lambda)=3, \operatorname{inv}(\underline{\underline{\sigma}})=4$, and $\operatorname{inv}(\underline{\sigma} \cdot \underline{\lambda})=52$.
Remark 9. Our model of α-Laguerre configurations is simpler than the model in [3]. Actually, the α-Laguerre configurations are essentially the Laguerre configurations of which each cycle has a color in $\{0, \ldots, \alpha\}$. A linear order of paths and colored cycles is needed only for the valuation w in (3.2).

4. Moments of (q, y)-Laguerre polynomials

For $\alpha \in \mathbb{N}_{0}$, by (2.6) the moments of the (q, y)-Laguerre polynomials are defined by

$$
\begin{equation*}
\mu_{n}^{(\alpha)}(q, y):=\mathcal{L}_{q}\left(x^{n}\right) \tag{4.1}
\end{equation*}
$$

According to the theory of orthogonal polynomials (see [4]) and the three-term recurrence relation (1.7), we have the orthogonality relation

$$
\begin{equation*}
\mathcal{L}_{q}\left(L_{n}^{(\alpha)}(x ; y \mid q) L_{m}^{(\alpha)}(x ; y \mid q)\right)=y^{n} n!_{q}\left(\prod_{j=1}^{n}[\alpha+j]_{q}\right) \delta_{n m} \tag{4.2}
\end{equation*}
$$

Moreover, we have the following continued fraction expansion:

$$
\begin{equation*}
\sum_{n \geq 0} \mu_{n}^{(\alpha)}(q, y) t^{n}=\frac{1}{1-b_{0} t-\frac{\lambda_{1} t^{2}}{1-b_{1} t-\frac{\lambda_{2} t^{2}}{\ddots}}} \tag{4.3}
\end{equation*}
$$

where $b_{n}=y[n+\alpha+1]_{q}+[n]_{q}$ and $\lambda_{n}=y[n]_{q}[n+\alpha]_{q}$.
Let \mathfrak{S}_{n} be the set of permutations of $\{1,2, \ldots, n\}$. For $\sigma \in \mathfrak{S}_{n}$, we define three statistics, namely:

- the number of weak excedances, wex (σ), given by

$$
\operatorname{wex}(\sigma)=|\{i \in[n]: \sigma(i) \geq i\}| ;
$$

- the number of records (or left-to-right maxima), rec (σ), given by

$$
\operatorname{rec}(\sigma)=\mid\{i \in[n]: \sigma(i)>\sigma(j) \text { for all } j<i\} \mid ;
$$

- the number of crossings, $\operatorname{cros}(\sigma)$, given by

$$
\operatorname{cros}(\sigma)=\mid\{(i, j) \in[n] \times[n]: i<j \leq \sigma(i)<\sigma(j) \text { or } \sigma(j)<\sigma(i)<j<i\} \mid .
$$

Theorem 10. Let $\beta=[\alpha+1]_{q}$. Then

$$
\begin{equation*}
\mu_{n}^{(\alpha)}(y, q)=\sum_{\sigma \in \mathfrak{S}_{n}} \beta^{\operatorname{rec}(\sigma)} y^{\operatorname{wex}(\sigma)} q^{\operatorname{cros}(\sigma)} \tag{4.4}
\end{equation*}
$$

The first values of the moments are as follows:

$$
\begin{aligned}
& \mu_{1}^{(\alpha)}(y, q)=y \beta \\
& \mu_{2}^{(\alpha)}(y, q)=y \beta+y^{2} \beta^{2} \\
& \mu_{3}^{(\alpha)}(y, q)=y \beta+\beta(1+(2+q) \beta) y^{2}+y^{3} \beta^{3} .
\end{aligned}
$$

Due to the contraction formula [13, p. 292], we can rewrite (4.3) as

$$
\begin{equation*}
\sum_{n \geq 0} \mu_{n}^{(\alpha)}(q, y) t^{n}=\frac{1}{1-\frac{\gamma_{1} t}{1-\frac{\gamma_{2} t}{\ddots}}} \tag{4.5}
\end{equation*}
$$

where $\gamma_{2 n}=[n]_{q}$ and $\gamma_{2 n+1}=y[n+\alpha]_{q}=y\left([n]_{q}+[\alpha+1]_{q} q^{n}\right)$ for $n \geq 0$.
Recall that a Dyck path of length $2 n$ is a sequence of points $\left(\omega_{0}, \ldots, \omega_{2 n}\right)$ in $\mathbb{N}_{0} \times \mathbb{N}_{0}$ satisfying $\omega_{0}=(0,0), \omega_{2 n}=(2 n, 0)$ and $\omega_{i+1}-\omega_{i}=(1,1)$ or $(1,-1)$ for $i=0, \ldots, 2 n-1$. Clearly we can also identify a Dyck path with its sequence of steps (or Dyck word) $s=s_{1} \ldots s_{2 n}$ on the alphabet $\{\mathbf{u}, \mathrm{d}\}$, and we use $|s|_{\mathrm{u}}$ and $|s|_{\mathrm{d}}$ to denote the number of u's and d's, respectively, in s. So, for a Dyck word s, we have $|s|_{\mathrm{u}}=|s|_{\mathrm{d}}=n$ and $\left|s_{1} \ldots s_{k}\right|_{u} \geq\left|s_{1} \ldots s_{k}\right|_{\mathrm{d}}$ for $k \in[2 n]$. The height h_{k} of step s_{k} is defined to be $h_{1}=0$ and

$$
h_{k}=\left|s_{1} \ldots s_{k-1}\right|_{u}-\left|s_{1} \ldots s_{k-1}\right|_{d} \quad \text { for } \quad k=2, \ldots, 2 n
$$

A Laguerre history of length $2 n$ is a pair (s, ξ), where s is a Dyck word of length $2 n$ and $\xi=\left(\xi_{1}, \ldots, \xi_{2 n}\right)$ is a sequence of integers such that $\xi_{i}=1$ if $s_{i}=\mathrm{u}$ and $1 \leq \xi_{i} \leq\left\lceil h_{i} / 2\right\rceil$ if $s_{i}=$ d. Let $\mathcal{L} \mathcal{H}_{n}$ be the set of Laguerre histories of length $2 n$. We essentially use Biane's bijection [2] to construct a bijection Φ from \mathfrak{S}_{n} to $\mathcal{L} \mathcal{H}_{n}$.

Proof of Theorem 10. We identify a permutation $\sigma \in \mathfrak{S}_{n}$ with the bipartite graph \mathcal{G} on $\left\{1, \ldots, n ; 1^{\prime}, \ldots, n^{\prime}\right\}$ with an edge $\left(i, j^{\prime}\right)$ if and only if $\sigma(i)=j$. We display the vertices on two rows called top row and bottom row as follows:

$$
\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
1^{\prime} & 2^{\prime} & \cdots & n^{\prime}
\end{array}\right),
$$

and we read the graph column by column from left to right and from top to bottom. In other words, the order of vertices is $v_{1}=1, v_{2}=1^{\prime}, \ldots, v_{2 n-1}=n, v_{2 n}=n^{\prime}$.

For $k=1, \ldots, 2 n$, the k-th restriction of \mathcal{G} is the graph \mathcal{G}_{k} on $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ with edge $\left(v_{i}, v_{j}\right)$ in \mathcal{G}_{k} if and only if $i, j \in[k]$, so isolated vertices may exist in \mathcal{G}_{k}.

For $i=1, \ldots, n$, the Dyck path $s=s_{1} \ldots s_{2 n}$ is defined as follows:

- if $\sigma^{-1}(i)>i<\sigma(i)$ (i.e., i is a cycle valley), then $s_{2 i-1} s_{2 i}=\mathrm{uu}$;
- if $\sigma^{-1}(i)<i<\sigma(i)$ (i.e., i is a cycle double ascent), then $s_{2 i-1} s_{2 i}=\mathrm{ud}$;
- if $\sigma^{-1}(i)>i>\sigma(i)$ (i.e., i is a cycle double descent), then $s_{2 i-1} s_{2 i}=\mathrm{du}$;
- if $\sigma^{-1}(i)<i>\sigma(i)$ (i.e., i is a cycle peak), then $s_{2 i-1} s_{2 i}=\mathrm{dd}$;
- if $\sigma^{-1}(i)=i=\sigma(i)$ (i.e., i is a fixed point), then $s_{2 i-1} s_{2 i}=\mathrm{ud}$.

It is easy to see that

- s is a Dyck path;
- the height h_{i} is the number of isolated vertices in \mathcal{G}_{i-1} for $i \in[2 n]$ with $\mathcal{G}_{i-1}=\emptyset$; thus $h_{2 i-1}$ (respectively $h_{2 i}$) is even (respectively odd) for $i=1, \ldots, n$ and there are $\left\lceil h_{i} / 2\right\rceil$ isolated vertices in the top row.
Next, the sequence $\xi=\left(\xi_{1}, \ldots, \xi_{2 n}\right)$ is defined as follows:
- $s_{i}=\mathrm{u}$ then $\xi_{i}=1$;
- $s_{i}=\mathrm{d}$, then
- if $\sigma(i)<i$ (i.e., i is a cycle double descent or cycle peak), then $h_{2 i-1}>0$; let $\xi_{i}=m$ if $\sigma(2 i)$ is the m-th isolated vertex in the bottom row of $\mathcal{G}_{2 i-2}$ from right-to-left $\left(1 \leq m \leq\left\lceil h_{2 i} / 2\right\rceil\right)$; clearly the value i will contribute $m-1$ crossings $l<k<i<j$ such that $l=\sigma(i), k=\sigma(j)$;
- if $\sigma^{(-1)}(i) \leq i$ (i.e., i is a cycle double ascent, cycle peak or fixed point), then $h_{2 i}>0$; let $\xi_{i}=m$ if $\sigma^{(-1)}(i)$ is the m-th isolated vertex in the top row of $\mathcal{G}_{2 i-2}$ from right-to-left, so $1 \leq m \leq\left\lceil h_{2 i} / 2\right\rceil$; clearly the value i will contribute $m-1$ crossings $l<k<i<j$ such that $l=\sigma^{-1)}(i), k=\sigma(j)$, and i is a record if and only if $m=\left\lceil h_{2 i} / 2\right\rceil$.
Let $\Phi(\sigma)=(s, \xi)$. Then

$$
\begin{aligned}
\operatorname{wex}(\sigma) & =\left|\left\{i \in[n]: s_{2 i}=\mathrm{d}\right\}\right| \\
\operatorname{rec}(\sigma) & =\left|\left\{i \in[n]: s_{2 i}=\mathrm{d}, \xi_{2 i}=\left\lceil h_{2 i} / 2\right\rceil\right\}\right|, \\
\operatorname{cros}(\sigma) & =\sum_{i: s_{i}=\mathrm{d}}\left(\xi_{i}-1\right)
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\sum_{\sigma \in \mathfrak{S}_{n}} \beta^{\operatorname{rec}(\sigma)} y^{\operatorname{wex}(\sigma)} q^{\operatorname{cros}(\sigma)} & =\sum_{(s, \xi) \in \mathcal{L} \mathcal{H}_{n}} \prod_{i: s_{i}=\mathrm{d}} q^{\xi_{i}-1} \prod_{i: s_{2 i}=\mathrm{d}} y \beta^{\chi\left(\xi_{2 i}=\left[h_{2 i} / 2\right\rceil\right)} \\
& =\sum_{s \in \operatorname{Dyck}} \prod_{i: s_{i}=\mathrm{d}} w\left(s_{i}\right) \tag{4.6}
\end{align*}
$$

where Dyck $_{n}$ denotes the set of Dyck paths of semilength n, and the weight of each down step $s_{i}=\mathrm{d}$ is defined by

$$
w\left(s_{i}\right)= \begin{cases}1+q+\cdots+q^{k-1}, & \text { if } h_{i}=2 k \\ y\left(1+q+\cdots+q^{k-1}+\beta q^{k}\right), & \text { if } h_{i}=2 k+1\end{cases}
$$

A folklore theorem [5] implies that the generating function of (4.6) has the continued fraction expansion (4.5), and we are done.

Example 11. If $\sigma=412796583 \in \mathfrak{S}_{9}$, then the Laguerre history $\Phi(\sigma)=(s, \xi)$ is given by

$$
\binom{s}{\xi}=\left(\begin{array}{ccccccccc}
\text { uu } & \text { du } & \text { du } & \text { ud } & \text { uu } & \text { ud } & \text { dd } & \text { ud } & d d \\
11 & 11 & 11 & 12 & 11 & 11 & 12 & 11 & 11
\end{array}\right)
$$

Theorem 12. Let $\alpha \in \mathbb{N}_{0}$. For nonnegative integers n_{1}, \ldots, n_{k}, the linearization coefficient

$$
\begin{equation*}
\mathcal{L}_{q}\left(\prod_{k=1}^{m} L_{n_{k}}^{(\alpha)}(x ; y \mid q)\right) \tag{4.7}
\end{equation*}
$$

is a polynomial in $\mathbb{N}[y, q]$.
Proof. In view of the orthogonality (4.2), it suffices to prove the $m=3$ case. Indeed, we can derive the following explicit formula from [17, Theorem 1]:

$$
\begin{align*}
& \mathcal{L}_{q}\left(L_{n_{1}}^{(\alpha)}(x ; y \mid q) L_{n_{2}}^{(\alpha)}(x ; y \mid q) L_{n_{3}}^{(\alpha)}(x ; y \mid q)\right) \\
&=n_{1}!_{q} n_{2}!_{q} n_{3}!_{q} \sum_{s \geq \max \left(n_{1}, n_{2}, n_{3}\right)} y^{s}\left[n_{1}+n_{2}+n_{3}-2 s, s-n_{3}, s-n_{2}, s-n_{1}\right]_{q} \\
& \times\left[\begin{array}{c}
\alpha+s \\
s
\end{array}\right]_{q} \sum_{k \geq 0}\left[\begin{array}{c}
n_{1}+n_{2}+n_{3}-2 s \\
k
\end{array}\right]_{q} y^{k} q^{\binom{k+1}{2}+\binom{n_{1}+n_{2}+n_{3}-2 s-k}{2}+k \alpha} \tag{4.8}
\end{align*}
$$

where the q-multinomial coefficients

$$
\left[\begin{array}{c}
a+b+c+d \\
a, b, c, d
\end{array}\right]_{q}=\frac{(a+b+c+d)!_{q}}{a!_{q} b!_{q} c!_{q} d!_{q}}
$$

are known to be polynomials in $\mathbb{N}[q]$ for integral $a, b, c, d \geq 0$, see [13]. Hence, the righthand side of (4.8) is a polynomial in $\mathbb{N}[y, q]$, and we are done.

For arbitrary α, a combinatorial interpretation of (4.7) was given by Foata and Zeilberger [8] with $y=q=1$, and generalized by the second author [23] to $q=1$ (see also [24]), while for $\alpha=0$ a combinatorial interpretation of (4.7) was given by Kasraoui et al. [17]. Thus, the following problem suggests itself.
Problem. What is the combinatorial interpretation of (4.7) for $\alpha \in \mathbb{N}_{0}$ unifying the two special cases with $\alpha=0$ or $q=1$?

5. Connection with rook polynomials and matching polynomials

In this section we show how the model of α-Laguerre configurations is connected with the models of non-attacking rook placements and matchings of complete bipartite graphs.
5.1. Interpretation in rook polynomials. An m by n board B is a subset of an $m \times n$ grid of cells (or squares). A rook is a chessboard piece which takes on rows and columns. If r_{k} is the number of ways of putting k non-attacking rooks on this board, then the ordinary rook polynomial is defined by

$$
R_{m, n}(x)=\sum_{k} r_{k} x^{k}
$$

Thus, the Laguerre polynomials (1.2) can be written as

$$
\begin{equation*}
L_{n}^{(\alpha)}(x)=(-1)^{n} n!R_{n, n+\alpha}\left(-x^{-1}\right) \tag{5.1}
\end{equation*}
$$

A k-rook placement on a board B is a subset $C \subset B$ of k cells such that no two cells are in the same row or column of B. We refer the reader to Riordan's classical book [20, Chapters 7 and 8] for many problems formulated in terms of configurations of nonattacking rooks on "chessboards" of various shapes.

Figure 3. The Ferrers board of shape $\mu=(4,4,3,3,1)$ and a placement C of three non-attacking rooks with $\operatorname{inv}(C)=3$.

We label the rows of the grid from top to bottom and the columns from left to right in the same way as referring to the entries of an $m \times n$ matrix. Recall that an integer partition is a sequence of positive integers $\mu:=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{l}\right)$ such that $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{l}>0$. We also use the notation $\mu=\left(n_{1}^{m_{1}}, \ldots, n_{k}^{m_{k}}\right)$ to denote the partition with m_{i} parts equal to n_{i} for $i=1, \ldots, k$. For convenience, we shall identify μ with its Ferrers board B_{μ}, which is defined as the subset $\left\{(i, j): 1 \leq i \leq \mu_{j}, 1 \leq j \leq l\right\}$ of $\mathbb{N} \times \mathbb{N}$. For a placement C of rooks on B_{μ}, the inversion number $\operatorname{inv}(C)$ is defined as follows: for each rook (cell) in C cross out all the cells which are below or to the right of the rook; then $\operatorname{inv}(C)$ is the number of squares of F_{μ} that are not crossed out. An example is shown in Figure 3.

Definition 13. For integers $n, k \geq 0$ and $\alpha \geq-1$, let $\mathbf{m}=\left(m_{0}, \ldots, m_{\alpha}\right)$ and $\mathbf{n}=$ $\left(n_{1}, \ldots, n_{k}\right)$ be nonnegative integer sequences such that $m_{0}+m_{1}+\cdots+m_{\alpha}+n_{1}+\cdots+n_{k}=n$ with $m_{i} \geq 0$ and $n_{j} \geq 1$. We define $\mathcal{B}_{n, k}^{(\alpha)}(\mathbf{m} ; \mathbf{n})$ as the set of $n \times n$ squares of color shape $B:=\left(B^{(1)} ; B^{(2)}\right)$ with

$$
\begin{align*}
& B^{(1)}:=\left(n^{m_{0}}, \ldots, n^{m_{\alpha}}\right), \tag{5.2a}\\
& B^{(2)}:=\left(n^{n_{1}}, \ldots, n^{n_{k}}\right) . \tag{5.2b}
\end{align*}
$$

By convention, if $\alpha=-1$ (respectively $k=0)$, then $B^{(1)}=\emptyset$ (respectively $\left.B^{(2)}=\emptyset\right)$. Let

$$
\mathrm{cw}(B)=\sum_{i=0}^{\alpha} m_{i} \quad \text { and } \quad \operatorname{cd}(B)=\sum_{i=0}^{\alpha} i \cdot m_{i} .
$$

Let $\mathcal{B C}_{n, k}^{(\alpha)}(\mathbf{m} ; \mathbf{n})$ denote the set of all ordered pairs $\mathcal{R}=(B, C)$, where $B \in \mathcal{B}_{n, k}^{(\alpha)}(\mathbf{m} ; \mathbf{n})$ and C is an n-rook placement on B such that

$$
\begin{equation*}
\min \left(C \cap B_{1}^{(2)}\right)<\min \left(C \cap B_{2}^{(2)}\right)<\cdots<\min \left(C \cap B_{k}^{(2)}\right) \tag{5.3}
\end{equation*}
$$

where $\min \left(C \cap B_{1}^{(2)}\right)$ is the minimum row index of cells in $C \cap B_{1}^{(2)}$. For each block $B_{i}^{(2)}=\left(n^{n_{i}}\right)$, we define $\operatorname{ind}\left(C \cap B_{i}^{(2)}\right)$ as the number of rooks in $C \cap B_{i}^{(2)}$ whose column indices are greater than the column index of the rook which has the maximum row index in $B_{i}^{(2)}$, and let $\operatorname{ind}(\mathcal{R})=\sum_{i=1}^{k} \operatorname{ind}\left(C \cap B_{i}^{(2)}\right)$. Let

$$
\mathcal{B C}_{n, k}^{(\alpha)}=\bigcup_{\mathbf{m}, \mathbf{n}} \mathcal{B C}_{n, k}^{(\alpha)}(\mathbf{m} ; \mathbf{n}) \quad \text { with } \quad \sum_{i=0}^{\alpha} m_{i}+\sum_{j=1}^{k} n_{j}=n
$$

Figure 4. The colored rook configuration \mathcal{R} corresponding to the 1 Laguerre configuration in Figure 2 with $(\mathbf{m} ; \mathbf{n})=((3,4) ;(2,3,2,1))$.

An element $\mathcal{R}=(B, C) \in \mathcal{B C}_{n, h}^{(\alpha)}$ is called a colored rook configuration.
Remark 14. One can imagine that each column of a board in $\mathcal{B C}_{n, k}^{(\alpha)}(\mathbf{m} ; \mathbf{n})$ is colored with colors in $\{0,1, \ldots, \alpha+k\}$ from left to right as follows: the first m_{0} columns get color 0 , the next m_{1} columns get color $1, \ldots$, the last n_{k} columns get color $\alpha+k$.

Theorem 15. The coefficient $\ell_{n, k}^{(\alpha)}(y ; q)$ in (1.8) is the following generating polynomial of colored rook configurations in $\mathcal{B C}_{n, k}^{(\alpha)}$:

$$
\ell_{n, k}^{(\alpha)}(y ; q)=\sum_{\mathcal{R}=(B, C) \in \mathcal{B C}_{n, k}^{(\alpha)}} y^{\operatorname{cw}(B)+\operatorname{ind}(\mathcal{R})} q^{\operatorname{inv}(C)+\operatorname{cd}(B)-\operatorname{ind}(\mathcal{R})}
$$

Proof. Let $\mathcal{L C}_{n, k}^{(\alpha)}(\mathbf{m} ; \mathbf{n})$ be the set of $\rho:=\left(\sigma_{0}, \ldots, \sigma_{\alpha} ; \lambda_{1}, \ldots, \lambda_{k}\right) \in \mathcal{L C}_{n, k}^{(\alpha)}$ such that $|\rho|=\left(\left|\sigma_{0}\right|, \ldots,\left|\sigma_{\alpha}\right| ;\left|\lambda_{1}\right|, \ldots,\left|\lambda_{k}\right|\right)=(\mathbf{m} ; \mathbf{n})$. We define the map $\phi: \mathcal{L C}_{n, k}^{(\alpha)}(\mathbf{m} ; \mathbf{n}) \longrightarrow$ $\mathcal{B C}_{n, k}^{(\alpha)}(\mathbf{m} ; \mathbf{n})$ by $\phi(\rho)=(B, C)$ for $\rho=\left(\sigma_{0}, \ldots, \sigma_{\alpha} ; \lambda_{1}, \ldots, \lambda_{k}\right) \in \mathcal{L C} C_{n, k}^{(\alpha)}(\mathbf{m} ; \mathbf{n})$ as follows:
(i) The colored board $B=\left(B^{(1)}, B^{(2)}\right)$ is given by

$$
B^{(1)}=\left(n^{\left|\sigma_{0}\right|}, \ldots, n^{\left|\sigma_{\alpha}\right|}\right) \quad \text { and } \quad B^{(2)}=\left(n^{\left|\lambda_{1}\right|}, n^{\left|\lambda_{2}\right|}, \ldots, n^{\left|\lambda_{k}\right|}\right) .
$$

(ii) If $w:=\hat{\sigma}_{0} \hat{\sigma}_{1} \cdots \hat{\sigma}_{\alpha} \lambda_{1} \lambda_{2} \cdots \lambda_{k}=w_{1} \ldots w_{n}$, which is a permutation of $[n]$, let $C=$ $\left\{\left(j, w_{j}\right): j \in[n]\right\}$.

It is clear that $\phi(\rho) \in \mathcal{B C}_{n, k}^{(\alpha)}$, and the procedure is reversible. Hence ϕ is a bijection. It is easy to verify that $\operatorname{inv}(C)=\operatorname{inv}(\rho), \operatorname{ind}\left(B_{i}^{(2)}\right)=\operatorname{rl}\left(\lambda_{i}\right)$, and $\operatorname{cd}(B)=\sum_{i=0}^{\alpha} i\left|\sigma_{i}\right|$, which implies that

$$
\begin{aligned}
|\underline{\sigma}|+\mathrm{rl}(\lambda) & =\operatorname{cw}(B)+\operatorname{ind}(\mathcal{R}) ; \\
\operatorname{inv}(\underline{\sigma} \cdot \underline{\lambda})-\mathrm{rl}(\lambda)+\operatorname{inv}(\underline{\underline{\sigma}}) & =\operatorname{inv}(C)+\operatorname{cd}(B)-\operatorname{ind}(\mathcal{R}) .
\end{aligned}
$$

The result then follows from Theorem 7.
Example 16. Let $\rho=((74)(15),(1325)(14) ; 13,12611,108,9) \in \mathcal{L} \mathcal{C}_{15,4}^{(1)}$. Then ϕ maps ρ to the placement of 15 rooks on the board $B=\left(15^{7} ; 15^{2}, 10^{3}, 8^{2}, 7\right)$ shown in Figure 4. We find $\mathrm{cw}(B)=1, \operatorname{cd}(B)=4 ; \operatorname{inv}(C)=52$ and $\operatorname{ind}(\mathcal{R})=3$.
5.2. Interpretation in matching polynomials. Recall that a matching of a graph G is a set of edges without common vertices. For any graph G with n vertices, the matching polynomial of G is defined by

$$
m(G, x)=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} m_{k} x^{n-2 k}
$$

where m_{k} is the number of k-edge matchings of G. Let $K_{n, m}$ denote the set of complete bipartite graphs on the two disjoint sets $A=[n]$ and $B=\left\{1^{\prime}, \ldots, m^{\prime}\right\}$, that is, there is an edge (a, b) if and only if $a \in A$ and $b \in B$. From the explicit formula (1.2) it is quite easy to derive the connection formula

$$
\begin{equation*}
m\left(K_{n, n+\alpha}, x\right)=x^{\alpha} L_{n}^{(\alpha)}\left(x^{2}\right), \quad \alpha \geq-1 \tag{5.4}
\end{equation*}
$$

Godsil and Gutman [12] proved (5.4) by showing that the matching polynomials satisfy the same three-term recurrence relation (1.3). Here we give a simple bijection between our α-Laguerre configuration model and the above matching model of complete bipartite graphs. Let $\mathcal{M}_{n, m}^{n-k}$ be the set of matchings of $K_{n, m}$ with $n-k$ edges.

Proposition 17. For integers $n, k \geq 1$ and $\alpha \geq-1$, there exists an explicit bijection $\phi: \mathcal{L C}_{n, k}^{(\alpha)} \longrightarrow \mathcal{M}_{n, n+\alpha}^{n-k}$.

Proof. We construct such a bijection ϕ. Let $\rho=\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{\alpha} ; \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in \mathcal{L C}_{n, k}^{(\alpha)}$ be an α-Laguerre configuration. We define a matching γ of $K_{n, n+\alpha}$ such that $\left(a, b^{\prime}\right) \in A \times B$ is an edge in γ if and only if (a, b) satisfies one of the following three conditions:
(1) $\sigma_{0}(a)=b$, i.e., the image of a is b through the action of permutation σ_{0};
(2) a and b are consecutive letters in the word $\hat{\sigma}_{1}(n+1) \hat{\sigma}_{2}(n+2) \ldots \hat{\sigma}_{\alpha}(n+\alpha)$;
(3) a and b are consecutive letters in the word λ_{j} for some $j \in[k]$.

By convention, if $\alpha=-1$ (respectively $\alpha=0$) there are no words of types (1) and (2) (respectively type (2)). Since $\sigma_{0} \sigma_{1} \ldots \sigma_{\alpha} \lambda_{1} \ldots \lambda_{k}$ is a permutation of [n], it is clear that there are $n-k$ such edges $\left(a, b^{\prime}\right)$. The above procedure is obviously reversible.

Figure 5. The matching corresponding to the 1-Laguerre configuration in Figure 2
Example 18. For the 1-Laguerre configuration

$$
\rho=((74)(15),(1325)(14) ; 13,12611,108,9) \in \mathcal{L} \mathcal{C}_{15,4}^{(1)}
$$

in Example 8, the corresponding matching γ of $K_{15,16}^{11}$ is shown in Figure 5.
Remark 19. We leave it to the interested reader to find the (q, y)-version of the above matching polynomials for (q, y)-Laguerre polynomials $L_{n}^{(\alpha)}(x ; y \mid q)$.

Acknowledgement

We thank the anonymous reviewers for their careful reading of our manuscript and their many helpful comments and suggestions.

References

[1] F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures. Encyclopedia of Mathematics and its Applications, vol. 67. Cambridge University Press, Cambridge, 1998.
[2] P. Biane, Permutations suivant le type d'excédance et le nombre d'inversions et interprétation combinatoire d'une fraction continue de Heine. European J. Combin. 14 (1993), no. 4, 277-284.
[3] G.-S. Cheon, J.-H. Jung and S.-R. Kim, New q-Laguerre polynomials having factorized permutation interpretations. J. Math. Anal. Appl. 470 (2019), 118-134.
[4] T. Chihara, An Introduction to Orthogonal Polynomials. Gordon and Breach, New York, London, Paris, 1978.
[5] P. Flajolet, Combinatorial aspects of continued fractions. Discrete Math. 32 (1980), no. 2, 125161.
[6] P. Flajolet and R. Sedgewick, Analytic Combinatorics. Cambridge University Press, Cambridge, 2009.
[7] D. Foata and V. Strehl, Combinatorics of Laguerre polynomials. In: "Enumeration and design" (Waterloo, Ont., 1982), Academic Press, Toronto, 1984, pp. 123-140.
[8] D. Foata and D. Zeilberger, Laguerre polynomials, weighted derangements, and positivity. SIAM J. Discrete Math. 1 (1988), no. 4, 425-433.
[9] A. M. Garsia and J. Remmel, A combinatorial interpretation of q-derangement and q-Laguerre numbers. European J. Combin. 1 (1980), 47-59.
[10] G. Gasper and M. Rahman, Basic Hypergeometric Series. 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004.
[11] I. M. Gessel, Generalized rook polynomials and orthogonal polynomials. In: D. Stanton, ed., q-Series and Partitions (Springer, Berlin, 1989), pp. 154-176.
[12] C. D. Godsil and I. Gutman, On the theory of the matching polynomial. J. Graph Theory 5 (1981), no. 2, 137-144.
[13] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley-Interscience Series in Discrete Mathematics. John Wiley \& Sons, Inc., New York, 1983.
[14] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge, 2009.
[15] M. E. H. Ismail, A. Kasraoui and J. Zeng, Separation of variables and combinatorics of linearization coefficients of orthogonal polynomials. J. Combin. Theory Ser. A 120 (2013), no. 3, 561-599.
[16] R. Koekoek, P. A. Lesky and R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics, Springer, 2010.
[17] A. Kasraoui, D. Stanton and J. Zeng, The combinatorics of Al-Salam-Chihara (q, y)-Laguerre polynomials. Adv. Appl. Math. 47 (2011), no. 2, 216-239.
[18] I. Lah, Eine neue Art von Zahlen, ihre Eigenschaften und Anwendung in der mathematischen Statistik. Mitteilungsbl. Math. Statist. 7 (1955), 203-212.
[19] J. Lindsay, T. Mansour and M. Shattuck, A new combinatorial interpretation of a q-analogue of the Lah numbers. J. Combin. 2 (2011), no. 2, 245-264.
[20] J. Riordan, An Introduction to Combinatorial Analysis. Reprint of the 1958 original [Wiley, New York]. Dover Publications, Inc., Mineola, NY, 2002.
[21] M. J. Schlosser and M. Yoo, Elliptic rook and file numbers. Electron. J. Combin. 24 (2017), no. 1, Paper 1.31, 47 pp.
[22] R. Simion and D. Stanton, Octabasic Laguerre polynomials and permutation statistics. J. Comp. Appl. Math. 68 (1996), 297-329.
[23] J. Zeng, Weighted derangements and the linearization coefficients of orthogonal Sheffer polynomials. Proc. London Math. Soc. (3) 65 (1992), 1-22.
[24] J. Zeng, Combinatorics of orthogonal polynomials and their moments. Lecture Notes at OPSF Summer School, Univ. Maryland, College Park, MD, July 11-July 15, 2016.

Univ Lyon, Université Lyon1, UMR 5208 du CNRS, Institut Camille Jordan, F-69622, Villeurbanne Cedex, France

Email address: qpan@math.univ-lyon1.fr
Univ Lyon, Université Lyon1, UMR 5208 du CNRS, Institut Camille Jordan, F-69622, Villeurbanne Cedex, France

Email address: zeng@math.univ-lyon1.fr

[^0]: 2010 Mathematics Subject Classification. Primary 05A18; Secondary 05A15, 05A30.
 Key words and phrases. Laguerre polynomials, (q, y)-Laguerre polynomials, Al-Salam-Chihara polynomials, moments, linearization coefficients, moments, inversion numbers, rook polynomials, matching polynomials.

