
Séminaire Lotharingien de Combinatoire 81 (2020), Article B81e

COMBINATORICS OF (q, y)-LAGUERRE POLYNOMIALS AND THEIR
MOMENTS

QIONGQIONG PAN AND JIANG ZENG

To Christian Krattenthaler on the occasion of his 60th birthday

Abstract. We consider a (q, y)-analogue of Laguerre polynomials L
(α)
n (x; y | q) for inte-

gral α ≥ −1, which turns out to be a rescaled version of Al-Salam–Chihara polynomials.
A combinatorial interpretation for the (q, y)-Laguerre polynomials is given using a col-
ored version of Foata and Strehl’s Laguerre configurations with suitable statistics. When
α ≥ 0, the corresponding moments are described using certain classical statistics on per-
mutations, and the linearization coefficients are proved to be a polynomial in y and q
with nonnegative integral coefficients.

1. Introduction

The monic Laguerre polynomials L
(α)
n (x) are defined by the generating function

(1 + t)−α−1 exp

(
xt

t+ 1

)
=
∞∑
n=0

L(α)
n (x)

tn

n!
. (1.1)

They are the multiple of the usual (general) Laguerre polynomials [16, pp. 241–242] by
(−1)nn!. We have the explicit formula

L(α)
n (x) =

n∑
k=0

(−1)n−k
n!

k!

(
n+ α

n− k

)
xk (1.2)

and the three-term recurrence relation

L
(α)
n+1(x) = (x− (2n+ α + 1))L(α)

n (x)− n(n+ α)L
(α)
n−1(x). (1.3)

The Laguerre polynomials L
(α)
n (x) are orthogonal with respect to the moments L(xn) =

(α+1)n, where (x)n = x(x+1) · · · (x+n−1) (n ≥ 1) is the shifted factorial with (x)0 = 1,
and L is the linear functional defined by

L(f) =
1

Γ(α + 1)

∫ ∞
0

f(x)xαe−xdx. (1.4)
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Figure 1. A Laguerre configuration (A, f) on [15] with A = [15] \ {3, 8, 9, 11}.

The linearization formula [23] reads as follows:

L(L(α)
n1

(x)L(α)
n2

(x)L(α)
n3

(x)) =
∑
s≥0

n1!n2!n3! 2n1+n2+n3−2s (α + 1)s
(s− n1)! (s− n2)! (s− n3)! (n1 + n2 + n3 − 2s)!

. (1.5)

A combinatorial model for Laguerre polynomials with parameter α was first given by
Foata and Strehl [7]. Recall that a Laguerre configuration on [n] := {1, . . . , n} is a pair
(A, f), where A ⊂ [n] and f is an injection from A to [n]. A Laguerre configuration can
be depicted by a digraph on [n] by drawing an edge i→ j if and only if f(i) = j. Clearly,
such a graph has two types of connected components called cycles and paths, see Figure 1.
Let LCn,k be the set of Laguerre configurations (A, f) on [n] with |A| = n−k. Then Foata
and Strehl’s interpretation [7] reads∑

(A,f)∈LCn,k

(α + 1)cyc(f) =
n!

k!

(
n+ α

n− k

)
, (1.6)

where cyc(f) is the number of cycles of f .
Note that one can derive (1.6) from any of the three formulas (1.1)–(1.3), see [1, 7].

The aim of this paper is to study combinatorial aspects of more general (q, y)-Laguerre

polynomials L
(α)
n (x; y | q) (n ≥ 0) defined by the three term-recurrence relation

L
(α)
n+1(x; y | q) = (x− (y[n+ α + 1]q + [n]q))L

(α)
n (x; y | q)

− y[n]q[n+ α]q L
(α)
n−1(x; y | q), α ≥ −1, n ≥ 1, (1.7)

with L
(α)
0 (x; y | q) = 1, L

(α)
−1 (x; y | q) = 0. Here and throughout this paper, we use the

standard q-notations: [n]q = 1−qn
1−q for n ≥ 0, the q-analogue of n-factorial n!q =

∏n
i=1[i]q,

and the q-binomial coefficient[
n
k

]
q

=
n!q

k!q (n− k)!q
for 0 ≤ k ≤ n.

Clearly we have L
(α)
n (x; 1 | 1) = L

(α)
n (x). Kasraoui et al. [17] gave a combinatorial inter-

pretation for the linearization coefficients of the polynomials L
(0)
n (x; y | q) and pointed out
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that a combinatorial model for L
(0)
n (x; y | q) can be derived from Simion and Stanton’s

model for octabasic q-Laguerre polynomials in [22]. For k ∈ Z, let

Nk := {n ∈ Z : n ≥ k}

and N := N1. Recently, using the theory of q-Riordan matrices, Cheon, Jung and Kim [3]

derived a combinatorial model for the q-Laguerre polynomials L
(α)
n (x; q | q) when α ∈ N0.

It is then natural to search for a combinatorial structure unifying the above two special
cases, as was alluded to at the end of [3]. Our first goal is to give such a combinatorial

model for L
(α)
n (x; y | q) with variable y and integer α ∈ N−1 by using a q-analogue of

Foata and Strehl’s Laguerre configurations. Moreover, for α ∈ N0, the (q, y)-Laguerre

polynomials L
(α)
n (x; y | q) are orthogonal polynomials. It is our second goal to give a

combinatorial interpretation for the moments of (q, y)-Laguerre polynomials and prove
that the linearization coefficients are polynomials in y and q with nonnegative integral
coefficients. We achieve this by making use of the combinatorial theory of continued
fractions.

By (1.7), the first few values of L
(α)
n (x; y | q) are

L
(α)
1 (x; y | q) = x− y[α + 1]q,

L
(α)
2 (x; y | q) = x2 − (y[α + 1]q + y[α + 2]q + 1)x+ [α + 1]q[α + 2]qy

2,

L
(α)
3 (x; y | q) = x3 −

(
y([α + 1]q + [α + 2]q + [α + 3]q) + 2 + q)x2

+
(
y2([α + 1]q[α + 2]q + [α + 2]q[α + 3]q + [α + 1]q[α + 3]q)

+ y([α + 3]q + [2]q[α + 1]q) + [2]q)x− y3[α + 1]q[α + 2]q[α + 3]q.

For convenience, we introduce the signless (q, y)-Laguerre polynomials

L(α)
n (x; y | q) := (−1)nL(α)

n (−x; y | q) =
n∑
k=0

`
(α)
n,k(y; q)xk. (1.8)

For α ∈ N−1, we observe that `
(α)
n,k(y; q) is a polynomial in y, q with nonnegative integral

coefficients, which is far from obvious from the explicit Formula (2.8). For α ∈ N−1,
Formula (1.6) implies that `

(α)
n,k(1; 1) is equal to the number of Laguerre configurations in

LCn,k such that each cycle carries a color ∈ [1+α]. In particular, the number of Laguerre
configurations in LCn,k without cycles (i.e., consisting of only k paths) is equal to the Lah
numbers [18]:

`
(−1)
n,k (1; 1) =

n!

k!

(
n− 1

k − 1

)
.

Remark 1. Two different q-analogues of Lah numbers were defined and studied by Garsia
and Remmel [9] and Lindsay et al. [19], respectively. Moreover an elliptic analogue of
Garsia and Remmel’s q-Lah numbers was constructed by Schlosser and Yoo [21].
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The organization of this paper is as follows. In Section 2 we identify the (q, y)-Laguerre
polynomials as a rescaled version of Al-Salam–Chihara polynomials and derive several ex-
pansion formulas for (q, y)-Laguerre polynomials. In Section 3 we present a combinatorial
interpretation for the (q, y)-Laguerre polynomials in terms of α-Laguerre configurations,
which are in essence the product structure of “cycles” and “paths”. In Section 4 we
give a combinatorial interpretation for the moments of (q, y)-Laguerre polynomials and
prove that the linearization coefficients are polynomials in y and q with nonnegative in-
tegral coefficients. As the Laguerre polynomials play an important role in the theory of
rook polynomials, we translate our α-Laguerre configurations in terms of rook placements
in Section 5 and set up the connection between our α-Laguerre configurations and the
matching model of complete bipartite graphs Kn,n+α (see Godsil and Gutman [12]).

2. A detour to Al-Salam–Chihara polynomials

The q-Pochhammer symbol or q-shifted factorial (a; q)n is defined by

(a; q)n =

{∏n−1
i=0 (1− aqi) for n ∈ Z+ ∪ {∞},

1 for n = 0.

The Al-Salam–Chihara polynomials Qn(x) := Qn(x; a, b | q) are defined by the generating
function (see [16, Chapter 14])

∞∑
n=0

Qn(x; a, b | q) tn

(q; q)n
=

(at, bt; q)∞
(teiθ, te−iθ; q)∞

, (2.1)

with (a, b; q)∞ = (a; q)∞(b; q)∞, and they satisfy the recurrence relation (op. cit.){
Q−1(x) = 0, Q0(x) = 1,

Qn+1(x) = (2x− (a+ b)qn)Qn(x)− (1− qn)(1− abqn−1)Qn−1(x), n ≥ 0.
(2.2)

We have the explicit formula

Qn(x; a, b | q) =
(ab; q)n
an

n∑
k=0

(q−n; q)k (au; q)k (au−1; q)k
(ab; q)k(q; q)k

qk, (2.3)

where x = u+u−1

2
or x = cos θ if u = eiθ.

Comparing (1.7) with (2.2) and using (1.8), we see that our polynomials L
(α)
n (x; y | q)

are a rescaled version of the Al-Salam–Chihara polynomials:

L(α)
n (x; y | q) =

( √
y

1− q

)n
Qn

(
(1− q)x+ y + 1

2
√
y

;
1
√
y
,
√
yqα+1

∣∣∣∣ q) . (2.4)
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The Al-Salam–Chihara polynomials (see [16, pp. 455–456] and [14]) are orthogonal with

respect to the linear functional L̂q defined by

L̂q(f) =
(q, ab; q)∞

2π

∫ +1

−1

f(x)dx√
1− x2

∞∏
k=0

1− 2(2x2 − 1)qk + q2k

[1− 2xaqk + a2q2k][1− 2xbqk + b2q2k]
. (2.5)

Hence, for α ∈ N0, the polynomials L
(α)
n (x; y | q) are orthogonal with respect to the linear

functional Lq given by

Lq(f) =
(q, qα+1; q)∞

2π

1− q
2
√
y

∫ B+

B−

f(x)dx√
1− v(x)2

×
∞∏
k=0

[1− 2(2v(x)2 − 1)qk + q2k]

[1− 2v(x)qk/
√
y + q2k/y][1− 2v(x)qk+α+1

√
y + q2k+2α+2y]

, (2.6)

where B± =
(1±√y)2

1−q and

v(x) =
1

2
√
y

((q − 1)x+ (y + 1)). (2.7)

Now, by (2.4), we may derive an explicit formula from (2.3), namely

L(α)
n (x; y | q) =

n∑
k=0

n!q
k!q

[
n+ α
k + α

]
q

qk(k−n)yn−k
k−1∏
j=0

(
x+ (1− yq−j)[j]q

)
, (2.8)

and, from (2.1), the generating function

L(α)(x; y; t | q) :=
∑
n≥0

L(α)
n (x; y | q) t

n

n!q

=
(t; q)∞ (ytqα+1; q)∞∏∞

k=0 [1− ((1− q)x+ y + 1)tqk + yt2q2k]
, (2.9)

which can be written as

L(α)(x; y; t | q) = L(α)(0; y; t | q) · L(−1)(x; y; t | q). (2.10)

Define the “vertical generating function”

L(α)
k (y; t | q) := [xk]L(α)(x; y; t | q) =

∑
n≥k

`
(α)
n,k(y, q)

tn

n!q
, (2.11)

and the q-derivative operator Dq for f(t) ∈ R[[t]] by

Dq(f(t)) =
f(t)− f(qt)

(1− q)t
,

where R = C[[x, y, q, . . .]]. Thus Dq(1) = 0 and Dq(tn) = [n]qt
n−1 for n > 0.
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It follows from (2.9) that

DqL(−1)(x; y; t | q) =
x

(1− t)(1− yt)
L(−1)(x; y; t | q), (2.12)

which in particular gives

DqL(−1)
1 (y; t | q) = [x]DqL(−1)(x; y; t | q)

=
1

(1− t)(1− ty)

=
∑
n≥0

n!q [n+ 1]y
tn

n!q
. (2.13)

So we can rewrite (2.12) as

DqL(−1)(x; y; t | q) = x · DqL(−1)
1 (y; t | q) · L(−1)(x; y; t | q), (2.14)

which is equivalent to the following result.

Proposition 2. For n ∈ N, we have

L
(−1)
n+1 (x; y | q) = x

n∑
k=0

[
n
k

]
q

k!q [k + 1]y L
(−1)
n−k (x; y | q). (2.15)

Now, applying the q-binomial formula (see [10, Chapter 1])∑
n≥0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

with a = qα+1 and z = yt, we have

L(α)(0; y; t | q) =
(ytqα+1; q)∞

(yt; q)∞
=
∑
n≥0

( n∏
k=1

[α + k]q

)
(yt)n

n!q
. (2.16)

Substitution of the latter into (2.10) gives the following result.

Proposition 3. For n ∈ N, we have

L(α)
n (x; y | q) =

n∑
k=0

[
n
k

]
q

( k∏
j=1

[α + j]q

)
ykL

(−1)
n−k (x; y | q). (2.17)

Remark 4. (1) More generally we can prove the following connection formula for α ≥
β ≥ −1:

L(α)
n (x; y | q) =

n∑
k=0

[
n
k

]
q

( k−1∏
j=0

[α− β + j]q

)
(yqβ+1)kL

(β)
n−k(x; y | q). (2.18)
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(2) For q → 1, Identity (2.9) reduces to∑
n≥0

L(α)
n (x; y | 1)

tn

n!
= (1− yt)−(α+1)

(
1− (1− y)t

1− yt

)−x/(1−y)
.

Comparing with the generating function of the Meixner polynomials (see [16,
Equation (1.9.11)])

∞∑
n=0

(β)n
n!

Mn(x; β, c)tn = (1− t)−x−β(1− t/c)x,

we derive

L(α)
n (x; y | 1) = yn(α + 1)nMn

(
−x

1− y
;α + 1, y

)
.

Hence the (q, y)-Laguerre polynomials L
(α)
n (x; y | q) are a q-analogue of rescaled

Meixner polynomials.

3. Combinatorial interpretation of (q, y)-Laguerre polynomials

The reader is referred to [1, 6, 13] for the general combinatorial theory of exponential
generating functions for labeled structures. For our purpose we need only a q-version of
this theory for special labeled structures. A labeled structure on a (finite) set A ⊂ N is a
graph with vertex set A. Consider a family of labeled F -structures F =

⋃∞
n=0Fn, where

Fn consists of the F -structures on [n]. If A = {a1, . . . , an} ⊂ N, where a1 < · · · < an, an
F -structure on A is obtained by replacing i by ai for i = 1, . . . , n in the elements of Fn.
Let F [A] denote the set of F -structures on A and associate a weight u(f) to each object
f ∈ F . For the set of weighted F -structures Fu (where the valuation u may involve the
parameter q), the q-generating function is defined as

Fu(t) =
∑
f∈F

u(f)
t|f |

|f |!q
,

where |f | = n if f ∈ F [n]. If Fu and Gv are two weighted structures, we denote by
(F · G)w[n] the set of pairs (f, g) ∈ F [S]× G[T ] with weight

w(f, g) = u(f) · v(g) · qinv(S,T ),

where (S, T ) is an ordered bipartition of [n] and inv(S, T ) is the number of pairs (i, j) ∈
S × T such that i > j. Recall (see [13, p. 98]) that∑

(S,T )

qinv(S,T ) =

[
n
k

]
q

,
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where the sum is over all ordered bipartitions (S, T ) of [n] with |S| = k. It is folklore and
immediately checked that

(F · G)w(t) = Fu(t) · Gv(t). (3.1)

We need some further definitions.

(a) For a permutation σ of a set A ⊂ N, let the word σ̂ denote its linear representation
in the usual sense, i.e., σ̂ = σ(i1) . . . σ(in) if A = {i1, . . . , in} with i1 < · · · < in.

(b) A list of (nonnegative) integers, taken as a word over N, is strict if no element
occurs more than once. For a strict list ρ let rl(ρ) be the number of elements that
come after the maximum element.

(c) For a set λ of k non-empty and disjoint strict lists of integers, order these lists
according to their minimum element (increasing). This gives a list of k words
(λ1, . . . , λk), which will be identified with λ. Then λ = λ1 . . . λk denotes the
concatenation of these lists.

Two particular structures will be used to interpret the (q, y)-Laguerre polynomials.

(d) The structures S(α) consist of permutations σ, where each cycle carries a color ∈
{0, 1, 2, . . . , α}. Write σ as a product of unicolored permutations, σ = σ0 ·σ1 · · ·σα,
where σi is the product of cycles with color i. Now consider the concatenation

σ = σ̂0 · σ̂1 · · · σ̂α
and the word with letters from {0, 1} given by

σ = 0|σ̂0|10|σ̂1|1 · · · 10|σ̂α|.

Define the valuation u on S(α) by

u(σ) = y|σ|qinv(σ)+inv(σ).

(e) The structures Lin(k) consist of sets λ = (λ1, . . . , λk) of k nonempty and disjoint
strict lists (cf. (c)). Define the valuation v on Lin(k) by

v(λ) = yrl(λ)qinv(λ)−rl(λ),

where rl(λ) =
∑k

i=1 rl(λi).

Let LC(α)n,k := S(α) · Lin(k)[n]. For any α-Laguerre configuration (σ, λ) ∈ S(α)[A] ×
Lin(k)[B] with A∩B = ∅ and A∪B = [n], in order to invoke the folklore statement (3.1),
one should use as valuation

w(σ, λ) = u(λ) · v(λ) · qinv(A,B)

= y|σ|qinv(σ)+inv(σ)yrl(λ)qinv(λ)−rl(λ)qinv(A,B)

= y|σ|+rl(λ)qinv(σ)+inv(σ)+inv(λ)−rl(λ)qinv(A,B)

= y|σ|+rl(λ)qinv(σ.λ)−rl(λ)+inv(σ). (3.2)
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Figure 2. A 1-Laguerre configuration (σ, λ) ∈ LC(1)15,4, which is the La-
guerre configuration in Figure 1 of which each cycle gets a color 0 or 1.

The essential point is inv(σ) + inv(λ) + inv(A,B) = inv(σ.λ). This describes the weighted

configurations (LC(α)n,k)w. An element of (LC(α)n,k)w is called an α-Laguerre configuration on
[n], see Figure 2.

Lemma 5. For α ∈ N, we have

S(α)
u (t) = L(α)(0; y; t | q).

Proof. Let P(n, α) be the set of words of length n+α with n 0’s and α 1’s, i.e., lattice paths
from (0, 0) to (n, α). For σ ∈ S(α)[n], the word σ can be seen as the linear representation
of an (ordinary) permutation σ̃ ∈ S(0)[n], whereas σ ∈ P(n, α). The mapping

S(α)[n]→ S(0)[n]× P(n, α)

σ 7→ (σ̃, σ)

is a bijection, and from summing both contributions separately, one obtains∑
σ∈S(α)[n]

qinv(σ)+inv(σ) =
∑

σ∈S(0)[n]

qinv(σ)
∑

σ∈P (n,α)

qinv(σ)

= n!q

[
n+ α
α

]
q

,

which is
∏n

i=1[α + i]q. So we get

S(α)
u (t) =

∑
n≥0

( n∏
i=1

[α + i]q

)
(yt)n.

The result then follows from (2.16). �

Lemma 6. For integers k ≥ 1, we have

Lin(k)
v (t) = L(−1)

k (y; t | q).

Proof. We proceed by induction on k ≥ 1.
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• The case k = 1. For a single list λ = λ ∈ Lin(1)[n + 1], let jλ be the position of
the maximum element, let λ′ = λ′ ∈ Lin(1)[n] be the list obtained by deleting this
maximum element. Then

Lin(1)[n+ 1]→ Lin(1)[n]× [n+ 1]

λ 7→ (λ′, jλ)

is a bijection such that inv(λ) = inv(λ′) + rl(λ). Furthermore, we have∑
λ∈Lin(1)[n+1]

yrl(λ)qinv(λ)−rl(λ) =
∑

λ′∈Lin(1)[n]

qinv(λ
′)
∑

j∈[n+1]

yn+1−j,

and thus ∑
λ∈Lin(1)[n+1]

v(λ) = n!q [n+ 1]y,

which, in view of (2.13), gives

DqLin(1)
v (t) = DqL(−1)

1 (y; t | q),
and by q-integration

Lin(1)
v (t) = L(−1)

1 (y; t | q)
because the series on both sides have a zero constant term.
• The case k > 1. Assuming that Lin(k)

v (t) = L(−1)
k (y; t | q) has already been proved

for k ≥ 1, the goal is to show

Lin(k+1)
v (t) = L(−1)

k+1 (y; t | q).

Comparing the coefficients of xk+1 on both sides of Equation (2.14), we obtain

DqL(−1)
k+1 (y; t | q) = DqL(−1)

1 (y; t | q) · L(−1)
k (y; t | q).

If we can show that similarly

DqLin(k+1)
v (t) = DqLin(1)

v (t) · Lin(k)
v (t), (3.3)

then we would be done. Again, the final integration step poses no problem because

in both Lin(k+1)
v (t) and L(−1)

k+1 (y; t | q) the first k+ 1 coefficients vanish. Recall that

a configuration λ ∈ Lin(k+1)[n] consists of a list of k+1 disjoint strict lists, written
as a list λ = (λ0, λ1, . . . , λk), with λi ∈ Lin(1)[Ai], where

k⊎
i=0

Ai = [n] and minAi−1 < minAi, 1 ≤ i ≤ k.

We have a bijection

Lin(k+1)[A]→ Lin(1)[A0]× Lin(k)[A′]

λ 7→ (λ0, λ
′),
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where λ′ = (λ1, . . . , λk) and A′ =
⋃k
i=1Ai, which also satisfies the requirement for

applying the folklore statement (3.1):

v(λ) = v(λ0) · v(λ′) · qinv(A0,A′).

All this holds only if for the bipartition A = A0]A′ it is guaranteed that minA0 <
minA′. This is where the derivative Dq comes into play. Differentiation for a
collection of structures means that the minimum element of the underlying set of
a structure is tagged and no longer counted in the w-valuation of the base set. In
the present situation, this implies that only structures are considered where tagging
the minimum element of λ means the same as tagging the minimum element of
λ0. This shows that (3.3) holds. �

Theorem 7. For integers α ≥ −1, we have

`
(α)
n,k(y; q) =

∑
(σ;λ)∈LC(α)n,k

y|σ|+rl(λ)qinv(σ.λ)−rl(λ)+inv(σ).

Proof. From (2.10) we infer

L(α)
k (y; t | q) = L(α)(0; y; t | q)L(−1)

k (y; t | q),

and the result follows from Lemmas 1 and 2. �

Here we give an example to illustrate the α-Laguerre configurations.

Example 8. Consider the 1-Laguerre configuration (σ;λ) ∈ LC(1)15,4 in Figure 2. We have

σ = σ0 · σ1 with σ0 = (15)(7 4), σ1 = (14)(13 5 2);

λ = (λ1, λ2, λ3, λ4) with λ1 = 1 3, λ2 = 12 6 11, λ3 = 10 8, λ4 = 9.

Thus,

σ = σ̂0 · σ̂1 = 7 4 15 · 13 2 5 14,

σ = 03 1 04;

λ = 1 3 · 12 6 11 · 10 8 · 9.

We have |σ| = 7, rl(λ) = 3, inv(σ) = 4, and inv(σ · λ) = 52.

Remark 9. Our model of α-Laguerre configurations is simpler than the model in [3]. Ac-
tually, the α-Laguerre configurations are essentially the Laguerre configurations of which
each cycle has a color in {0, . . . , α}. A linear order of paths and colored cycles is needed
only for the valuation w in (3.2).
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4. Moments of (q, y)-Laguerre polynomials

For α ∈ N0, by (2.6) the moments of the (q, y)-Laguerre polynomials are defined by

µ(α)
n (q, y) := Lq(xn). (4.1)

According to the theory of orthogonal polynomials (see [4]) and the three-term recur-
rence relation (1.7), we have the orthogonality relation

Lq(L(α)
n (x; y | q)L(α)

m (x; y | q)) = ynn!q

( n∏
j=1

[α + j]q

)
δnm. (4.2)

Moreover, we have the following continued fraction expansion:∑
n≥0

µ(α)
n (q, y)tn =

1

1− b0t−
λ1t

2

1− b1t−
λ2t

2

. . .

, (4.3)

where bn = y[n+ α + 1]q + [n]q and λn = y[n]q[n+ α]q.
Let Sn be the set of permutations of {1, 2, . . . , n}. For σ ∈ Sn, we define three statistics,

namely:

• the number of weak excedances, wex(σ), given by

wex(σ) = |{i ∈ [n] : σ(i) ≥ i}|;

• the number of records (or left-to-right maxima), rec(σ), given by

rec(σ) = |{i ∈ [n] : σ(i) > σ(j) for all j < i}|;

• the number of crossings, cros(σ), given by

cros(σ) = |{(i, j) ∈ [n]× [n] : i < j ≤ σ(i) < σ(j) or σ(j) < σ(i) < j < i}|.

Theorem 10. Let β = [α + 1]q. Then

µ(α)
n (y, q) =

∑
σ∈Sn

βrec(σ)ywex(σ)qcros(σ). (4.4)

The first values of the moments are as follows:

µ
(α)
1 (y, q) = yβ,

µ
(α)
2 (y, q) = yβ + y2β2,

µ
(α)
3 (y, q) = yβ + β(1 + (2 + q)β)y2 + y3β3.
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Due to the contraction formula [13, p. 292], we can rewrite (4.3) as∑
n≥0

µ(α)
n (q, y)tn =

1

1− γ1t

1− γ2t
. . .

, (4.5)

where γ2n = [n]q and γ2n+1 = y[n+ α]q = y([n]q + [α + 1]qq
n) for n ≥ 0.

Recall that a Dyck path of length 2n is a sequence of points (ω0, . . . , ω2n) in N0 × N0

satisfying ω0 = (0, 0), ω2n = (2n, 0) and ωi+1−ωi = (1, 1) or (1,−1) for i = 0, . . . , 2n− 1.
Clearly we can also identify a Dyck path with its sequence of steps (or Dyck word)
s = s1 . . . s2n on the alphabet {u, d}, and we use |s|u and |s|d to denote the number of
u’s and d’s, respectively, in s. So, for a Dyck word s, we have |s|u = |s|d = n and
|s1 . . . sk|u ≥ |s1 . . . sk|d for k ∈ [2n]. The height hk of step sk is defined to be h1 = 0 and

hk = |s1 . . . sk−1|u − |s1 . . . sk−1|d for k = 2, . . . , 2n.

A Laguerre history of length 2n is a pair (s, ξ), where s is a Dyck word of length 2n and
ξ = (ξ1, . . . , ξ2n) is a sequence of integers such that ξi = 1 if si = u and 1 ≤ ξi ≤ dhi/2e if
si = d. Let LHn be the set of Laguerre histories of length 2n. We essentially use Biane’s
bijection [2] to construct a bijection Φ from Sn to LHn.

Proof of Theorem 10. We identify a permutation σ ∈ Sn with the bipartite graph G on
{1, . . . , n; 1′, . . . , n′} with an edge (i, j′) if and only if σ(i) = j. We display the vertices
on two rows called top row and bottom row as follows:(

1 2 · · · n
1′ 2′ · · · n′

)
,

and we read the graph column by column from left to right and from top to bottom. In
other words, the order of vertices is v1 = 1, v2 = 1′, . . . , v2n−1 = n, v2n = n′.

For k = 1, . . . , 2n, the k-th restriction of G is the graph Gk on {v1, v2, . . . , vk} with edge
(vi, vj) in Gk if and only if i, j ∈ [k], so isolated vertices may exist in Gk.

For i = 1, . . . , n, the Dyck path s = s1 . . . s2n is defined as follows:

• if σ−1(i) > i < σ(i) (i.e., i is a cycle valley), then s2i−1s2i = uu;
• if σ−1(i) < i < σ(i) (i.e., i is a cycle double ascent), then s2i−1s2i = ud;
• if σ−1(i) > i > σ(i) (i.e., i is a cycle double descent), then s2i−1s2i = du;
• if σ−1(i) < i > σ(i) (i.e., i is a cycle peak), then s2i−1s2i = dd;
• if σ−1(i) = i = σ(i) (i.e., i is a fixed point), then s2i−1s2i = ud.

It is easy to see that

• s is a Dyck path;
• the height hi is the number of isolated vertices in Gi−1 for i ∈ [2n] with Gi−1 = ∅;

thus h2i−1 (respectively h2i) is even (respectively odd) for i = 1, . . . , n and there
are dhi/2e isolated vertices in the top row.

Next, the sequence ξ = (ξ1, . . . , ξ2n) is defined as follows:
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• si = u then ξi = 1;
• si = d, then

– if σ(i) < i (i.e., i is a cycle double descent or cycle peak), then h2i−1 > 0;
let ξi = m if σ(2i) is the m-th isolated vertex in the bottom row of G2i−2
from right-to-left (1 ≤ m ≤ dh2i/2e); clearly the value i will contribute m− 1
crossings l < k < i < j such that l = σ(i), k = σ(j);

– if σ(−1)(i) ≤ i (i.e., i is a cycle double ascent, cycle peak or fixed point), then
h2i > 0; let ξi = m if σ(−1)(i) is the m-th isolated vertex in the top row of
G2i−2 from right-to-left, so 1 ≤ m ≤ dh2i/2e; clearly the value i will contribute
m − 1 crossings l < k < i < j such that l = σ−1)(i), k = σ(j), and i is a
record if and only if m = dh2i/2e.

Let Φ(σ) = (s, ξ). Then

wex(σ) = |{i ∈ [n] : s2i = d}|,
rec(σ) = |{i ∈ [n] : s2i = d, ξ2i = dh2i/2e}|,

cros(σ) =
∑
i:si=d

(ξi − 1).

Therefore, ∑
σ∈Sn

βrec(σ)ywex(σ)qcros(σ) =
∑

(s,ξ)∈LHn

∏
i:si=d

qξi−1
∏

i:s2i=d

yβχ(ξ2i=dh2i/2e)

=
∑

s∈Dyckn

∏
i:si=d

w(si), (4.6)

where Dyckn denotes the set of Dyck paths of semilength n, and the weight of each down
step si = d is defined by

w(si) =

{
1 + q + · · ·+ qk−1, if hi = 2k,

y(1 + q + · · ·+ qk−1 + βqk), if hi = 2k + 1.

A folklore theorem [5] implies that the generating function of (4.6) has the continued
fraction expansion (4.5), and we are done. �

Example 11. If σ = 4 1 2 7 9 6 5 8 3 ∈ S9, then the Laguerre history Φ(σ) = (s, ξ) is given
by (

s
ξ

)
=

(
u u d u d u u d u u u d d d u d d d
1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1

)
.

Theorem 12. Let α ∈ N0. For nonnegative integers n1, . . . , nk, the linearization coeffi-
cient

Lq

(
m∏
k=1

L(α)
nk

(x; y | q)

)
(4.7)
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is a polynomial in N[y, q].

Proof. In view of the orthogonality (4.2), it suffices to prove the m = 3 case. Indeed, we
can derive the following explicit formula from [17, Theorem 1]:

Lq(L(α)
n1

(x; y | q)L(α)
n2

(x; y | q)L(α)
n3

(x; y | q))

= n1!q n2!q n3!q
∑

s≥max(n1,n2,n3)

ys
[

s
n1 + n2 + n3 − 2s, s− n3, s− n2, s− n1

]
q

×
[
α + s
s

]
q

∑
k≥0

[
n1 + n2 + n3 − 2s

k

]
q

ykq(
k+1
2 )+(n1+n2+n3−2s−k

2 )+kα, (4.8)

where the q-multinomial coefficients[
a+ b+ c+ d
a, b, c, d

]
q

=
(a+ b+ c+ d)!q
a!q b!q c!q d!q

are known to be polynomials in N[q] for integral a, b, c, d ≥ 0, see [13]. Hence, the right-
hand side of (4.8) is a polynomial in N[y, q], and we are done. �

For arbitrary α, a combinatorial interpretation of (4.7) was given by Foata and Zeil-
berger [8] with y = q = 1, and generalized by the second author [23] to q = 1 (see
also [24]), while for α = 0 a combinatorial interpretation of (4.7) was given by Kasraoui
et al. [17]. Thus, the following problem suggests itself.

Problem. What is the combinatorial interpretation of (4.7) for α ∈ N0 unifying the two
special cases with α = 0 or q = 1?

5. Connection with rook polynomials and matching polynomials

In this section we show how the model of α-Laguerre configurations is connected with
the models of non-attacking rook placements and matchings of complete bipartite graphs.

5.1. Interpretation in rook polynomials. An m by n board B is a subset of an m×n
grid of cells (or squares). A rook is a chessboard piece which takes on rows and columns.
If rk is the number of ways of putting k non-attacking rooks on this board, then the
ordinary rook polynomial is defined by

Rm,n(x) =
∑
k

rkx
k.

Thus, the Laguerre polynomials (1.2) can be written as

L(α)
n (x) = (−1)nn!Rn,n+α(−x−1). (5.1)

A k-rook placement on a board B is a subset C ⊂ B of k cells such that no two cells
are in the same row or column of B. We refer the reader to Riordan’s classical book
[20, Chapters 7 and 8] for many problems formulated in terms of configurations of non-
attacking rooks on “chessboards” of various shapes.
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×××
Figure 3. The Ferrers board of shape µ = (4, 4, 3, 3, 1) and a placement C
of three non-attacking rooks with inv(C) = 3.

We label the rows of the grid from top to bottom and the columns from left to right in
the same way as referring to the entries of an m×n matrix. Recall that an integer partition
is a sequence of positive integers µ := (µ1, µ2, . . . , µl) such that µ1 ≥ µ2 ≥ · · · ≥ µl > 0.
We also use the notation µ = (nm1

1 , . . . , nmkk ) to denote the partition with mi parts equal
to ni for i = 1, . . . , k. For convenience, we shall identify µ with its Ferrers board Bµ,
which is defined as the subset {(i, j) : 1 ≤ i ≤ µj, 1 ≤ j ≤ l} of N× N. For a placement
C of rooks on Bµ, the inversion number inv(C) is defined as follows: for each rook (cell)
in C cross out all the cells which are below or to the right of the rook; then inv(C) is the
number of squares of Fµ that are not crossed out. An example is shown in Figure 3.

Definition 13. For integers n, k ≥ 0 and α ≥ −1, let m = (m0, . . . ,mα) and n =
(n1, . . . , nk) be nonnegative integer sequences such that m0+m1+· · ·+mα+n1+· · ·+nk = n

with mi ≥ 0 and nj ≥ 1. We define B(α)
n,k(m; n) as the set of n× n squares of color shape

B := (B(1);B(2)) with

B(1) :=(nm0 , . . . , nmα), (5.2a)

B(2) :=(nn1 , . . . , nnk). (5.2b)

By convention, if α = −1 (respectively k = 0), then B(1) = ∅ (respectively B(2) = ∅). Let

cw(B) =
α∑
i=0

mi and cd(B) =
α∑
i=0

i ·mi.

Let BC(α)n,k(m; n) denote the set of all ordered pairs R = (B,C), where B ∈ B(α)
n,k(m; n)

and C is an n-rook placement on B such that

min(C ∩B(2)
1 ) < min(C ∩B(2)

2 ) < · · · < min(C ∩B(2)
k ), (5.3)

where min(C ∩ B(2)
1 ) is the minimum row index of cells in C ∩ B(2)

1 . For each block

B
(2)
i = (nni), we define ind(C ∩ B(2)

i ) as the number of rooks in C ∩ B(2)
i whose column

indices are greater than the column index of the rook which has the maximum row index

in B
(2)
i , and let ind(R) =

∑k
i=1 ind(C ∩B(2)

i ). Let

BC(α)n,k =
⋃
m,n

BC(α)n,k(m; n) with
α∑
i=0

mi +
k∑
j=1

nj = n.
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Figure 4. The colored rook configuration R corresponding to the 1-
Laguerre configuration in Figure 2 with (m; n) = ((3, 4); (2, 3, 2, 1)).

An element R = (B,C) ∈ BC(α)n,h is called a colored rook configuration.

Remark 14. One can imagine that each column of a board in BC(α)n,k(m; n) is colored with
colors in {0, 1, . . . , α + k} from left to right as follows: the first m0 columns get color 0,
the next m1 columns get color 1, . . . , the last nk columns get color α + k.

Theorem 15. The coefficient `
(α)
n,k(y; q) in (1.8) is the following generating polynomial of

colored rook configurations in BC(α)n,k:

`
(α)
n,k(y; q) =

∑
R=(B,C)∈BC(α)n,k

ycw(B)+ind(R)qinv(C)+cd(B)−ind(R).

Proof. Let LC(α)n,k(m; n) be the set of ρ := (σ0, . . . , σα; λ1, . . . , λk) ∈ LC(α)n,k such that

|ρ| = (|σ0|, . . . , |σα|; |λ1|, . . . , |λk|) = (m; n). We define the map φ : LC(α)n,k(m; n) −→
BC(α)n,k(m; n) by φ(ρ) = (B,C) for ρ = (σ0, . . . , σα; λ1, . . . , λk) ∈ LC(α)n,k(m; n) as follows:

(i) The colored board B = (B(1), B(2)) is given by

B(1) = (n|σ0|, . . . , n|σα|) and B(2) = (n|λ1|, n|λ2|, . . . , n|λk|).

(ii) If w := σ̂0σ̂1 · · · σ̂αλ1λ2 · · ·λk = w1 . . . wn, which is a permutation of [n], let C =
{(j, wj) : j ∈ [n]}.
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It is clear that φ(ρ) ∈ BC(α)n,k, and the procedure is reversible. Hence φ is a bijection. It

is easy to verify that inv(C) = inv(ρ), ind(B
(2)
i ) = rl(λi), and cd(B) =

∑α
i=0 i|σi|, which

implies that

|σ|+ rl(λ) = cw(B) + ind(R);

inv(σ.λ)− rl(λ) + inv(σ) = inv(C) + cd(B)− ind(R).

The result then follows from Theorem 7. �

Example 16. Let ρ = ((7 4)(15), (13 2 5)(14); 1 3, 12 6 11, 10 8, 9) ∈ LC(1)15,4. Then φ maps ρ
to the placement of 15 rooks on the board B = (157; 152, 103, 82, 7) shown in Figure 4.
We find cw(B) = 1, cd(B) = 4; inv(C) = 52 and ind(R) = 3.

5.2. Interpretation in matching polynomials. Recall that a matching of a graph G
is a set of edges without common vertices. For any graph G with n vertices, the matching
polynomial of G is defined by

m(G, x) =

bn/2c∑
k=0

(−1)kmkx
n−2k,

where mk is the number of k-edge matchings of G. Let Kn,m denote the set of complete
bipartite graphs on the two disjoint sets A = [n] and B = {1′, . . . ,m′}, that is, there is
an edge (a, b) if and only if a ∈ A and b ∈ B. From the explicit formula (1.2) it is quite
easy to derive the connection formula

m(Kn,n+α, x) = xαL(α)
n (x2), α ≥ −1. (5.4)

Godsil and Gutman [12] proved (5.4) by showing that the matching polynomials satisfy
the same three-term recurrence relation (1.3). Here we give a simple bijection between
our α-Laguerre configuration model and the above matching model of complete bipartite
graphs. Let Mn−k

n,m be the set of matchings of Kn,m with n− k edges.

Proposition 17. For integers n, k ≥ 1 and α ≥ −1, there exists an explicit bijection

φ : LC(α)n,k −→ M
n−k
n,n+α.

Proof. We construct such a bijection φ. Let ρ = (σ0, σ1, . . . , σα;λ1, λ2, . . . , λk) ∈ LC(α)n,k be
an α-Laguerre configuration. We define a matching γ of Kn,n+α such that (a, b′) ∈ A×B
is an edge in γ if and only if (a, b) satisfies one of the following three conditions:

(1) σ0(a) = b, i.e., the image of a is b through the action of permutation σ0;
(2) a and b are consecutive letters in the word σ̂1(n+ 1)σ̂2(n+ 2) . . . σ̂α(n+ α);
(3) a and b are consecutive letters in the word λj for some j ∈ [k].

By convention, if α = −1 (respectively α = 0) there are no words of types (1) and (2)
(respectively type (2)). Since σ0σ1 . . . σαλ1 . . . λk is a permutation of [n], it is clear that
there are n− k such edges (a, b′). The above procedure is obviously reversible. �
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′ 11′ 12′ 13′ 14′ 15′ 16′

Figure 5. The matching corresponding to the 1-Laguerre configuration in Figure 2

Example 18. For the 1-Laguerre configuration

ρ = ((7 4)(15), (13 2 5)(14); 1 3, 12 6 11, 10 8, 9) ∈ LC(1)15,4

in Example 8, the corresponding matching γ of K11
15,16 is shown in Figure 5.

Remark 19. We leave it to the interested reader to find the (q, y)-version of the above

matching polynomials for (q, y)-Laguerre polynomials L
(α)
n (x; y | q).
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