# THE FULLY PARAMETRIZED ASYMMETRIC EXCLUSION PROCESS WITH ANNIHILATION 

VOLKER STREHL

For Christian@60


#### Abstract

An algebraic framework is presented for the investigation of a fully parametrized version of the model of an asymmetric exclusion process with annihilation, as introduced by A. Ayyer and K. Mallick. It features a skewed tensor product and its behavior under the transformation with Hadamard matrices. The eigenvalues of the generator matrices are obtained from a more general determinant evaluation in this algebraic context. The partition functions in the fully parametrized model are obtained with the help of transfer matrices, along the lines drawn by Ayyer and Mallick, taking advantage of the algebraic setting.


## Contents

1. Introduction
2. An asymmetric exclusion process with annihilation 3
3. Technical preliminaries 8
4. Hadamard-special matrices 14
5. A determinant evaluation related to very special matrices 18
6. Structure of the AEPA transition matrices 21
7. The partition function of the fully parametrized AEPA model 24
8. The Hadamard conjugates of the transfer matrices 29
9. Another approach to the partition function 31

References 35

## 1. Introduction

1.1. History and motivation. It happened in Bertinoro (Italy) in 2009, at the 62 nd meeting of the Séminaire Lotharingien de Combinatoire, that Christian introduced me to Arvind Ayyer, a young colleague from India, who at that time was working as a postdoc at Saclay (France) with the theoretical physicist Kirone Mallick. They had been studying a model in combinatorial statistical physics, similar to the familiar ASEP and TASEP models, see, e.g., [3, 4] and the references in the cited articles, where particles living on a linear array of sites are moving in a Markovian way in one direction ('to the right') only, from one site to the next, provided this site is not occupied. The additional feature was that particles occupying neighboring sites may annihilate each other. A more detailed description will be given below. Ayyer and Mallick obtained many results about their model, published in [1], but for the eigenvalues of the Markovian generator matrix they only had a (precise) conjecture. Christian suggested that Arvind should
tell me about their conjecture, knowing that I had successfully tackled problems of that kind in the past. I was lucky: it did not take me too long to discover a way to positively settle the conjecture. The main idea was the Hadamard trick (my terminology), which is an orthogonal basis change using Hadamard matrices for the space in which the problem lives. But publishing together with Arvind the article [2] on the solution of the eigenvalue conjecture was not the end of the story. Four aspects kept me busy with that model over the years:
(1) My solution of the conjecture had a technical part which at that time for me had an ad-hoc character. It worked, but I felt that I did not really understand what made it working. Algebraic ideas should help to clarify this.
(2) I generalized the original model to what I call the fully parametrized model, for which the Hadamard trick would still work - which it did smoothly for the eigenvalues, but obtaining the generalized partition functions turned out quite difficult. (Actually, the fully parametrized model has already been described and used in our article [2] for the eigenvalues, but not in an easily digestible way, and not dealing with the partition functions at all.)
(3) The Hadamard trick should lead to a very different approach to the partition function, completely avoiding the laborious technique of determining transfer matrices, which was used in the original work and (2).
(4) The efforts of (3) led me, quite unexpectedly, into the realm of symmetric functions, notably Schur functions.
Over the years I have repeatedly presented parts of my investigations in seminar and colloquium talks, but until recently I have not set out to write all this down in a definitive form - partly because I was still dissatisfied with my understanding of the whole matter, partly because I had the results, but the proofs were incomplete or appeared too complicated. The 60th birthdays in 2018 of both Peter Paule and Christian Krattenthaler encouraged me to step up my efforts for bringing the material into shape for publication.

At this point I wish to express my gratitude to Christian, generally for an enduring lotharingian collegiality and friendship over decades, and in particular for bringing me into contact with Arvind Ayyer and his problem 10 years ago, which still keeps me busy.
1.2. Outline. The present article deals with aspects (1) and (2) mentioned above, whereas aspect (3) is briefly sketched in the last section. Aspect (4) is treated in the parallel article [9].

In Section 2, the model introduced by Ayyer and Mallick will be described with all the features that are relevant for the present work: transitions, generator matrices, transfer matrices, partition functions, eigenvalues, etc. The Hadamard trick alluded to above will be sketched without going into the details, because they will appear anyway in later parts of the article. Finally the fully parametrized model will be described and the results already obtained in [2] and the new results presented here will be sketched.

The material of Section 3 consists of notational and technical matters. The matrices used in this article are indexed by binary strings of fixed length, and many operations on matrices are based on this. As part of the particular algebraic framework for dealing
with the fully parametrized combinatorial model with its generator and transfer matrices, I define what I call a 'skewed tensor product' for matrices, related to the usual (Kronecker) product via indexing functions.

Starting with Section 4, the Hadamard transform comes into play. Special matrices are defined as matrices that are transposed by conjugation with Hadamard matrices. Very special matrices are triangular special matrices. The interplay between skewed tensor products, special matrices, and their Hadamard transforms is investigated in detail. As a quite general outcome of this approach, a determinant evaluation for skewed tensor products of special matrices is presented as Corollary 3 in Section 5. Up to this point, there is no mention of the particular application for which the set-up has been established.

In Section 6, the structure of the generator matrices of the model for the exclusion process is described using very special matrices. Together with the determinant evaluation of the previous section, one obtains the eigenvalues for the fully parametrized model.

The goal of Section 7 is the determination of the partition functions for the fully parametrized model (Theorem 7). It makes heavy use of the skewed tensor product framework, both for the generator and transfer matrices, and although the procedure is not easy, it should give an impression of 'how and why it works'. The work in this section makes no use of the Hadamard transform. However, it is then natural to ask what the transfer matrices would look like under the Hadamard transform? In Section 8, it is shown they are 'easier' (i.e., sparser and with entries factoring nicely) than in the standard transfer matrices. Even more than that: one gets the impression that in the Hadamard-transformed picture one may be able to determine the partition functions without referring to transfer matrices altogether. This idea - still not worked out in full detail - is sketched in the last section.

## 2. An ASYMmetric exclusion process with annihilation

In this section, the model for an asymmetric exclusion process with annihilation (or AEPA process, for short), as introduced by A. Ayyer and K. Mallick in [1], will be described briefly, together with the main ideas from the article [2] by A. Ayyer and myself, in which the eigenvalue conjecture from [1] has been solved.
2.1. The model. Consider a discrete line of $n$ positions, numbered from left to right, called sites, where each site may or may not be occupied by a particle. The particles are of one sort and they are indistinguishable. See Figure 1 for an illustration with 8 sites, where sites $2,5,6$ and 8 are occupied. Additional virtual sites (0) at the left and (9) at the right end are displayed, where sites (0) and $(9)=(n+1)$ may be thought of as "always occupied". Thus there are $2^{n}$ possible configurations (states) for a model with $n$ sites.


Figure 1. A model with 8 sites, 4 occupied (black) and 4 not occupied (white).

The dynamics of this model is that of a continuous time Markov chain, where the possible transitions between states are specified as follows (see Figure 2 for an illustration):

- right shift

A particle may move from the site it occupies to the neighboring site to the right, provided this site is empty.

- annihilation

If two neighboring sites are both occupied, the particles they contain may annihilate themselves, so that both sites become empty.

- left creation

A new particle may enter the system provided site 1 is empty - this can be seen as a right shift of the virtual particle at site 0 .

- left annihilation

A particle occupying the leftmost site 1 may vanish due to annihilation with the virtual particle on site 0 .

- right annihilation

A particle occupying the rightmost site $n$ my leave the system, which may be seen as an annihilation with the virtual particle on site $n+1$.

- right shift

- annihilation

- left creation

- left annihilation

- right annihilation


Figure 2. The dynamics of the process (configurations before and after a transition).

In order to fully specify the Markov chain and its generator matrix, one has to specify transition rates for the possible transitions, possibly depending on the site where the action happens.

The generator matrix for the Markov process is thus a $\left(2^{n} \times 2^{n}\right)$-matrix, indexed by binary vectors of length $n$ (written in lexicographic order), where in the original paper:

- transitions "in the bulk" have rate 1

$$
\begin{array}{rlrl}
u .10 . v & \mapsto u .01 . v & \text { (right shift) } \\
u .11 . v & \mapsto u .00 . v & & \text { (annihilation) }
\end{array}
$$

- transitions at the left end have rate $\alpha$

$$
\begin{array}{lr}
0 . v & \mapsto 1 . v \\
1 . v & (\text { left creation) } \\
0 . v & \text { (left annihilation) }
\end{array}
$$

- transitions at the right end have rate $\beta$

$$
u .1 \mapsto u .0 \quad \text { (right annihilation) }
$$

Here, $u$ and $v$ are any binary vectors of the appropriate length.
For the case $n=3$, the generator matrix $M_{n}(\alpha, \beta)$ of the continuous-time Markov chain is displayed in Table 1, and the same information is given in tabular form in Table 2, while Figure 3 shows the diagram of the state transitions in this case.

$$
M_{3}(\alpha, \beta)=\left[\begin{array}{llllllll}
\star & \beta & & 1 & \alpha & & 1 & \\
& \star & 1 & & & & \alpha & \\
& & \star & \beta & 1 & & & \\
& & & \star & & 1 & & \\
& & & & & & \\
\alpha & & & & \star & \beta & & 1 \\
& \alpha & & & & \star & 1 & \\
& & \alpha & & & & \star & \beta \\
& & & \alpha & & & & \star
\end{array}\right]
$$

Table 1. The generator matrix $M_{3}(\alpha, \beta)$.

| $\begin{aligned} & \text { symbol/ } \\ & \text { rate } \end{aligned}$ | active positions | creation and right shift |  |  | annihilation |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\alpha$ | 1 | $0 x y$ | $\rightarrow$ | $1 x y$ | $1 x y$ | $\rightarrow$ | $0 x y$ |
| 1 | 1-2 | $10 x$ | $\rightarrow$ | $01 x$ | $11 x$ | $\rightarrow$ | $00 x$ |
| 1 | $2-3$ | $x 10$ | $\rightarrow$ | x 01 | x 11 | $\rightarrow$ | $x 00$ |
| $\beta$ | 3 |  |  |  | $x$ y 1 | $\rightarrow$ | $x y 0$ |

Table 2. Transitions for $n=3$, indicating the "active" positions.

For the example matrix $M_{3}(\alpha, \beta)$, the stars $(\star)$ along the main diagonal indicate that generally these elements have to be taken so that all column sums are equal to

0 , or equivalently: the all-1 (row) vector $\mathbf{1}_{n}$ of length $2^{n}$ is a left eigenvector for the eigenvalue 0 of the generator matrix $M_{n}(\alpha, \beta)$, viz.

$$
\mathbf{1}_{n} \cdot M_{n}(\alpha, \beta)=\mathbf{0}_{n}=0 \cdot \mathbf{1}_{n},
$$

where $\mathbf{0}_{n}$ denotes the zero (row) vector of length $2^{n}$.


Figure 3. State transition diagram for $n=3$. Solid arrows represent right shifts (including right annihilation), fat dashed arrows stand for annihilation in the bulk, thin dashed arrows indicate left creation and annihilation.

A major result of [1] is a formula for the partition function for this model, defined as the inner product $\mathbf{1}_{n} \cdot \boldsymbol{\phi}_{n}$ :

$$
\mathcal{Z}_{n}(\alpha, \beta)=\mathbf{1}_{n} \cdot \boldsymbol{\phi}_{n}=2^{\binom{n-1}{2}}(1+2 \alpha)^{n-1}(1+\beta)^{n-1}(2 \alpha+\beta)
$$

Here, $\boldsymbol{\phi}_{n}$ is a (correctly normalized) right kernel (column) vector of the matrix $M_{n}(\alpha, \beta)$, i.e., $M_{n}(\alpha, \beta) \cdot \boldsymbol{\phi}_{n}=\mathbf{0}_{n}^{\top}$, where $\mathbf{0}_{n}^{\top}$ denotes the transpose of the row vector $\mathbf{0}_{n}$. These eigenvectors $\phi_{n}$ are obtained from explicit knowledge of a family $\left(T_{n+1, n}\right)_{n \geq 1}$ of so-called transfer matrices $T_{n+1, n}$ of size $2^{n+1} \times 2^{n}$, which for $n \geq 1$ satisfy the transfer identities

$$
T_{n+1, n} \cdot M_{n}(\alpha, \beta)=M_{n+1}(\alpha, \beta) \cdot T_{n+1, n} .
$$

Once these transfer matrices are known, the eigenvectors are determined inductively by

$$
\phi_{n+1}=T_{n+1, n} \cdot \phi_{n}, \quad n \geq 1
$$

because $M_{n} \cdot \boldsymbol{\phi}_{n}=\mathbf{0}_{n}^{\top}$ implies that

$$
M_{n+1} \cdot \boldsymbol{\phi}_{n+1}=M_{n+1} \cdot T_{n+1, n} \cdot \boldsymbol{\phi}_{n}=T_{n+1, n} \cdot M_{n} \cdot \boldsymbol{\phi}_{n}=T_{n+1, n} \cdot \mathbf{0}_{n}^{\top}=\mathbf{0}_{n+1}^{\top} .
$$

The inductive process starts with the right eigenvector $\boldsymbol{\phi}_{1}=\left[\begin{array}{ll}\alpha+\beta & \alpha\end{array}\right]^{\top}$ of the matrix $M_{1}=\left[\begin{array}{cc}-\alpha & \alpha+\beta \\ \alpha & -\alpha-\beta\end{array}\right]$. It must however be mentioned that the explicit determination of the transfer matrices is a tedious task.
2.2. The Hadamard trick. A problem left open in [1] was the computation of the eigenvalues (or the characteristic polynomial) of the matrices $M_{n}=M_{n}(\alpha, \beta)$, which was conjectured by the authors of [1] to be

$$
A_{n}(z) A_{n}(z+2 \alpha+\beta) B_{n}(z+\beta) B_{n}(z+2 \alpha)
$$

where

$$
A_{n}(z)=\prod_{k \geq 0}(z+2 k)^{\binom{n-1}{2 k}} \quad \text { and } \quad B_{n}(z)=\prod_{k \geq 0}(z+2 k+1)^{\binom{n-1}{2 k+1}}
$$

I was lucky to obtain a proof of this conjecture, see [2], by employing an orthogonal transformation with Hadamard matrices ${ }^{1}$

$$
H_{n}=\frac{1}{2^{n / 2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]^{\otimes n}
$$

Indeed, it turns out that conjugation by Hadamard matrices of the correct size gives

$$
H_{n} \cdot M_{n} \cdot H_{n} \simeq \widetilde{M}_{n}
$$

where $\widetilde{M}_{n}$ is a lower triangular (!) matrix, very closely related to $M_{n}$, and where $\simeq$ means equality up to a further conjugation with a permutation matrix. The explicit knowledge of $\widetilde{M}_{n}$ immediately provides its characteristic polynomial, which is the characteristic polynomial of $M_{n}(\alpha, \beta)$ as well. See Table 5 for an illustration of this property in the more general context of the fully parametrized model, which is described next.
2.3. The fully parametrized model. When obtaining the solution of the eigenvalue problem just sketched, I realized that the Hadamard trick could be played with a model more general than the one described above. I was led introduce a separate parameter $x_{i}$ for the rate of transitions involving sites numbered $i$ and $i+1$, for $0 \leq i \leq n$. (This also includes the virtual sites (0) and $(n+1)$.) For $n=3$, the matrix of the model (writing $\alpha, \beta, \gamma, \delta$ in place of $\left.x_{0}, x_{1}, x_{2}, x_{3}\right)$ is shown in Table 3. The matrix $M_{3}(\alpha, \beta)$ of Section 2.1 is $M_{3}(\alpha, \beta, 1,1)$ in the present notation.

Again, the stars $(\star)$ along the main diagonal indicate that all these elements have to be taken in such a way that the column sums vanish. The symbols $\alpha, \beta, \gamma, \delta$ represent the rates of the possible transitions in the model. Tables 3 respectively 4 with $\gamma=1=\delta$ are precisely Tables 1 respectively 2.

As before, the symbol $\alpha$ represents the interactions between the virtual site (0) and site 1 of the model via creation and annihilation. Symbol $\delta$ (respectively $\gamma$ ) represents the interactions between sites 1 and 2, (respectively between sites 2 and 3 ): a value " 1 " from site $i$ can shift to the right if site $i+1$ was empty; the value " 1 " for two neighboring sites can lead to annihilation. At the right end, a value " 1 " at the last site can get annihilated with rate $\beta$.

[^0]\[

M_{3}(\alpha, \beta, \gamma, \delta)=\left[$$
\begin{array}{cccccccc}
\star & \beta & & & \gamma & \alpha & & \\
& \star & \gamma & & & & & \\
& & \star & \beta & & & & \\
& & & \star & & & & \\
& & & & & \\
\alpha & & & & & & & \\
& \alpha & & & & & & \\
& & \alpha & & & & & \\
& & & \alpha & & & & \\
& & & \alpha & & & & \\
& & & & \\
& &
\end{array}
$$\right]
\]

Table 3. The generator matrix $M_{3}$ in the fully parametrized model.

| $\begin{array}{c}\text { symbol } \\ \text { rate }\end{array}$ | $\begin{array}{c}\text { active } \\ \text { positions }\end{array}$ | creation and right shift | annihilation |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\alpha$ | 1 | 0 | $x$ | $y$ | $\rightarrow$ | 1 | $x$ | $y$ | 1 | $x$ | $y$ | $\rightarrow$ | 0 |$)$

TABLE 4. Table of transitions for $n=3$, for the fully parametrized model.

Again, the Hadamard trick can be played, and it gives

$$
H_{n} \cdot M_{n}\left(x_{0}, \ldots, x_{n}\right) \cdot H_{n} \simeq \widetilde{M}_{n}\left(x_{0}, \ldots, x_{n}\right)
$$

where $\widetilde{M}_{n}\left(x_{0}, \ldots, x_{n}\right)$ is closely related to $M_{n}\left(x_{0}, \ldots, x_{n}\right)$ - see Table 5 for the situation in the case $n=3$. Note that, for better comparison in this figure, the transpose of $\widetilde{M}_{n}\left(x_{0}, \ldots, x_{n}\right)$ has been displayed. Note also that the parameter $\alpha$ plays a special role, and that the order of the parameters $\beta, \gamma, \delta$ has apparently been reversed to $\delta, \gamma, \beta$. What happens in general is explained in full detail below. Here, it suffices to state that the characteristic polynomial of $M_{n}\left(x_{0}, \ldots, x_{n}\right)$ can be obtained in much the same way as that for $M_{n}(\alpha, \beta)$.

As for the partition function $\mathcal{Z}_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ in the generalized situation, one may try to determine transfer matrices as indicated above. This task is carried out in full detail in the present article. It is not so simple, and I have taken care to clearly explain the properties that make the whole procedure work, and to introduce a convenient framework which makes the approach transparent. The final result is again rather easy to state:

$$
\mathcal{Z}_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq j \leq n}\left(2 x_{0}+x_{j}\right) \cdot \prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right) .
$$

However, the Hadamard trick also offers an alternative way to the partition function. This aspect is sketched in the last section of this article.

## 3. Technical preliminaries



TABLE 5. Comparing $M_{3}$ (upper matrix) and $\left(\widetilde{M}_{3}\right)^{\top}$ (lower matrix) in the fully parametrized case.
3.1. Binary strings. As usual, $\mathbb{B}$ denotes the set $\{0,1\}$ of binary digits, with the addition operation $\oplus$ (exclusive-OR), making $(\mathbb{B}, \oplus)$ an Abelian group, and together with the multiplication operation $\wedge$ (minimum), making $(\mathbb{B}, \oplus, \wedge)$ a Boolean ring. The complementation operation is written as $\bar{b}=b \oplus 1$.

For each $n \geq 1$, the binary strings, or words, of length $n$, are written as $\boldsymbol{b}=$ $\left(b_{i}\right)_{1 \leq i \leq n}=b_{1} b_{2} \ldots b_{n}$ with $b_{i} \in \mathbb{B}$ (if no confusion is possible), or with concatenation dots as $\boldsymbol{b}=b_{1} . b_{2} \ldots b_{n}$ (if there is a danger of ambiguity). The set $\mathbb{B}^{n}$ of binary strings of length $n$ becomes a Boolean ring ( $\mathbb{B}^{n}, \oplus, \wedge$ ), with operations $\oplus$ and $\wedge$ acting component-wise. For $n=0$, the set $\mathbb{B}^{0}$ contains only the empty word $\varepsilon$. The concatenation operation for strings, denoted by the dot ".", identifies $\mathbb{B}^{k} \times \mathbb{B}^{\ell}$ with $\mathbb{B}^{k+\ell}$ and makes the set $\mathbb{B}^{*}=\bigcup_{n \geq 0} \mathbb{B}^{n}$ of all binary strings of finite length a monoid under the concatenation.

The following standard functions on binary strings will be used in the sequel: for $\boldsymbol{b}=b_{1} b_{2} \ldots b_{n} \in \mathbb{B}^{n}$ with $n>0$, we define

$$
\begin{aligned}
& \text { first: } \quad \mathbb{B}^{n} \rightarrow \mathbb{B}: \quad \boldsymbol{b} \mapsto \alpha(\boldsymbol{b})=b_{1} \\
& \text { last: } \quad \mathbb{B}^{n} \rightarrow \mathbb{B}: \quad \boldsymbol{b} \mapsto \omega(\boldsymbol{b})=b_{n} \\
& \text { most: } \quad \mathbb{B}^{n} \rightarrow \mathbb{B}^{n-1}: \quad \boldsymbol{b} \mapsto \quad \boldsymbol{b}^{\vee}=b_{1} b_{2} \ldots b_{n-1} \\
& \text { rest: } \quad \mathbb{B}^{n} \rightarrow \mathbb{B}^{n-1}: \quad \boldsymbol{b} \quad \mapsto \quad{ }^{\vee} \boldsymbol{b}=b_{2} \ldots b_{n-1} b_{n} \\
& \text { reverse : } \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}: \quad \boldsymbol{b} \mapsto \quad \overleftarrow{\boldsymbol{b}}=b_{n} b_{n-1} \ldots b_{2} b_{1} \\
& \text { prime : } \quad \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}: \quad \boldsymbol{b} \mapsto \quad \boldsymbol{b}^{\prime}=\left(1 \oplus b_{1}\right) \cdot \operatorname{rest}(\boldsymbol{b})
\end{aligned}
$$

The familiar Gray-code mapping

$$
\gamma_{n}: b_{1} b_{2} b_{3} \ldots b_{n} \mapsto b_{1} \cdot\left(b_{1} \oplus b_{2}\right) \cdot\left(b_{2} \oplus b_{3}\right) \ldots .\left(b_{n-1} \oplus b_{n}\right)
$$

is an automorphism of the group $\left(\mathbb{B}^{n}, \oplus\right)$. Its inverse is given by

$$
\lambda_{n}=\gamma_{n}^{-1}: b_{1} b_{2} b_{3} \ldots b_{n} \mapsto b_{1} \cdot\left(b_{1} \oplus b_{2}\right) \cdot\left(b_{1} \oplus b_{2} \oplus b_{3}\right) \ldots\left(b_{1} \oplus \cdots \oplus b_{n}\right)
$$

As an example, for $n=3$ this looks as follows:

$$
\begin{array}{ccccccccc}
\boldsymbol{b} & 000 & 001 & 010 & 011 & 100 & 101 & 110 & 111 \\
\gamma_{3}(\boldsymbol{b}) & 000 & 001 & 011 & 010 & 110 & 111 & 101 & 100 \\
\lambda_{3}(\boldsymbol{b}) & 000 & 001 & 011 & 010 & 111 & 110 & 100 & 101
\end{array}
$$

N.B. The index $n$ of $\lambda_{n}$ etc. will be dropped if the relevant value of $n$ is clear from the context.

Variants of the mappings $\gamma_{n}$ and $\lambda_{n}$ will occur. Related to the Gray-code mapping $\gamma_{n}$, we define the $\oplus$-morphisms

$$
\begin{aligned}
& \gamma_{n}^{\prime}: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}: \boldsymbol{b} \mapsto 0 . \operatorname{most}(\boldsymbol{b}), \\
& \lambda_{n}^{\prime}: \mathbb{B}^{n} \rightarrow \mathbb{B}^{n}: \boldsymbol{b} \mapsto 0 . \lambda_{n-1}(\operatorname{most}(\boldsymbol{b})) .
\end{aligned}
$$

It is easily checked that the relation between these mappings with respect to composition is

$$
\gamma_{n} \circ \lambda_{n}^{\prime}=\gamma_{n}^{\prime} \quad \text { and } \quad \lambda_{n} \circ \gamma_{n}^{\prime}=\lambda_{n}^{\prime}
$$

As a consequence, both mappings

$$
\Lambda_{n}:(\boldsymbol{u}, \boldsymbol{v}) \mapsto\left(\boldsymbol{u}, \lambda^{\prime} \boldsymbol{u}+\lambda \boldsymbol{v}\right) \quad \text { and } \quad \Gamma_{n}:(\boldsymbol{u}, \boldsymbol{v}) \mapsto\left(\boldsymbol{u}, \gamma^{\prime} \boldsymbol{u}+\gamma \boldsymbol{v}\right)
$$

are automorphisms of $\left(\mathbb{B}^{n} \times \mathbb{B}^{n}, \oplus\right)$.
3.2. A skewed tensor product. All vectors and matrices in this article will be objects indexed by binary strings $\boldsymbol{b}=b_{1} b_{2} \ldots b_{n} \in \mathbb{B}^{n}$ for some $n \geq 1$, where the ordering of $\mathbb{B}^{n}$ is understood to be lexicographic (like in the above example).

- A vector of length $2^{n}$ will be written as

$$
a=\left[a_{\boldsymbol{b}}\right]_{\boldsymbol{b} \in \mathbb{B}^{n}}=\left[\begin{array}{lllll}
a_{0^{n}} & a_{0^{n-1} .1} & a_{0^{n-2} .10} & \ldots & a_{1^{n}}
\end{array}\right] .
$$

Particular (row) vectors of length $2^{n}$ are the all-one vector $\mathbf{1}_{n}$ and the all-zero vector $\mathbf{0}_{n}$.

- A matrix $A$ of size $2^{m} \times 2^{n}$ will be written as

$$
A=\left[A_{\boldsymbol{u}, \boldsymbol{v}}\right]_{\substack{\boldsymbol{u} \in \mathbb{B}^{m} \\
\boldsymbol{\in} \in \mathbb{B}^{n}}}=\left[\begin{array}{ccc}
A_{0^{m}, 0^{n}} & \ldots & A_{0^{m}, 1^{n}} \\
\vdots & \ddots & \vdots \\
A_{1^{m}, 0^{n}} & \ldots & A_{1^{m}, 1^{n}}
\end{array}\right] .
$$

Particular matrices that will play a role are:

- For $n \geq 0$, the $2^{n} \times 2^{n}$-unit matrix, denoted by $\mathbb{I}_{n}$, and the $2^{n} \times 2^{n}$-all zero matrix, denoted by $\mathbb{O}_{n}$.
- For $n=1$, the matrices

$$
\mathbb{X}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \mathbb{Y}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad \mathbb{Z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

which together with the unit matrix $\mathbb{I}_{1}$ form a basis of the real vector space of $(2 \times 2)$-matrices (closely related to the familiar Pauli matrices).

New matrices will be constructed from given ones, using besides addition, multiplication, and tensoring (Kronecker product), composition with index mappings:

- If $A=\left[A_{\boldsymbol{u}, \boldsymbol{v}}\right]_{\substack{\boldsymbol{v} \in \mathbb{B}^{m} \\ \boldsymbol{v} \in \mathbb{B}^{n}}}$ is a matrix of size $2^{m} \times 2^{n}$, and if $\phi: \mathbb{B}^{p} \times \mathbb{B}^{q} \rightarrow \mathbb{B}^{m} \times \mathbb{B}^{n}$ is any mapping, then

$$
A^{\phi}=\left[A_{\phi(\boldsymbol{x}, \boldsymbol{y})}\right]_{\substack{\boldsymbol{x} \in \mathbb{B}^{p} \\ \boldsymbol{y} \in \mathbb{B}^{q}}}
$$

is a matrix of size $2^{p} \times 2^{q}$.
The usual (Kronecker) tensor product of matrices is notationally represented via the concatenation of binary strings:

$$
\left[A_{\boldsymbol{u}, \boldsymbol{v}}\right]_{\substack{\boldsymbol{u} \in \mathbb{B}^{m} \\ \boldsymbol{v} \in \mathbb{B}^{n}}} \otimes\left[B_{\boldsymbol{x}, \boldsymbol{y}}\right]_{\substack{\boldsymbol{x} \in \mathbb{B}^{p} \\ \boldsymbol{y} \in \mathbb{B}^{q}}}=\left[A_{\boldsymbol{u}, \boldsymbol{v}} \cdot B_{\boldsymbol{x}, \boldsymbol{y}}\right]_{\substack{\boldsymbol{u} \boldsymbol{x} \in \mathbb{B}^{m+p} \\ \boldsymbol{v} \in \mathbb{B}^{n+q}}} .
$$

For any $2^{m} \times 2^{n}$-matrix $A$, the matrix $A^{\prime}$ is defined by exchanging the first $2^{n-1}$ columns (as a block) with the last $2^{n-1}$ columns, i.e.,

$$
A^{\prime}=A \cdot\left(\mathbb{X} \otimes \mathbb{I}_{n-1}\right)
$$

which is the same as $A^{\phi}$ defined with the index mapping $\phi:(u, v) \mapsto\left(u, v^{\prime}\right)$.
Definition 1. For matrices $A, B$, the skewed tensor product $A \otimes^{\prime} B$ is defined as

$$
\left(A \otimes^{\prime} B\right)_{\boldsymbol{u} \cdot \boldsymbol{x}, \boldsymbol{v} \cdot \boldsymbol{y}}= \begin{cases}A_{\boldsymbol{u}, \boldsymbol{v}} \cdot B_{x, \boldsymbol{y}}, & \text { if } \omega(\boldsymbol{u})=\omega(\boldsymbol{v}) \\ A_{\boldsymbol{u}, \boldsymbol{v}} \cdot B_{x, \boldsymbol{y}^{\prime}}, & \text { otherwise }\end{cases}
$$

i.e., $A \otimes^{\prime} B=(A \otimes B)^{\phi}$ with the index mapping of $\mathbb{B}^{m+p} \times \mathbb{B}^{n+q}$ into itself given by

$$
\phi:(\boldsymbol{u} \cdot \boldsymbol{x}, \boldsymbol{v} \cdot \boldsymbol{y}) \mapsto \begin{cases}(\boldsymbol{u} \cdot \boldsymbol{x}, \boldsymbol{v} \cdot \boldsymbol{y}), & \text { if } \omega(\boldsymbol{u} \oplus \boldsymbol{v})=0 \\ \left(\boldsymbol{u} \cdot \boldsymbol{x}, \boldsymbol{v} \cdot \boldsymbol{y}^{\prime}\right) & \text { if } \omega(\boldsymbol{u} \oplus \boldsymbol{v})=1\end{cases}
$$

Schematically:

$$
\begin{aligned}
{\left[\begin{array}{llll}
A_{00,00} & A_{00,01} & A_{00,10} & A_{00,11} \\
A_{01,00} & A_{01,01} & A_{01,10} & A_{01,11} \\
A_{10,00} & A_{10,01} & A_{10,10} & A_{10,11} \\
A_{11,00} & A_{11,01} & A_{11,10} & A_{11,11}
\end{array}\right] } & \otimes^{\prime} B \\
& =\left[\begin{array}{ccccc}
A_{00,00} \cdot B & A_{00,01} \cdot B^{\prime} & A_{00,10} \cdot B & A_{00,11} \cdot B^{\prime} \\
A_{01,00} \cdot B^{\prime} & A_{01,01} \cdot B & A_{01,10} \cdot B^{\prime} & A_{01,11} \cdot B \\
A_{10,00} \cdot B & A_{10,01} \cdot B^{\prime} & A_{10,10} \cdot B & A_{10,11} \cdot B^{\prime} \\
A_{11,00} \cdot B^{\prime} & A_{11,01} \cdot B & A_{11,10} \cdot B^{\prime} & A_{11,11} \cdot B
\end{array}\right] .
\end{aligned}
$$

For illustration, we give a very small example:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \otimes^{\prime}\left[\begin{array}{ll}
e & f \\
g & h
\end{array}\right]=\left[\begin{array}{llll}
a e & a f & b f & b e \\
a g & a h & b h & b g \\
c f & c e & d e & d f \\
c h & c g & d g & d h
\end{array}\right]
$$

Obviously, $A \otimes^{\prime} B$ contains the same entries as $A \otimes B$, but the elements in each row are permuted with two different permutations. It must be remarked that the skewed tensor product $\otimes^{\prime}$ is no longer an associative operation, i.e., in general

$$
A \otimes^{\prime}\left(B \otimes^{\prime} C\right) \neq\left(A \otimes^{\prime} B\right) \otimes^{\prime} C
$$

which can e.g. be seen by checking what happens for $2 \times 2$-matrices $A, B, C$. It is not difficult to figure out what the difference between both sides is, but this will not be needed in the sequel.

As a consequence, by taking the operation $\otimes^{\prime}$ iteratively, one has to specify whether one means right- or left-association of the terms of a product. The following result gives the precise rule how the positions of the entries of an iterated $\oplus^{\prime}$-product are related to those of the iterated ordinary $\otimes$-product with the same factors.

For any list of $(2 \times 2)$-matrices

$$
\mathcal{A}=\left(A^{(j)}\right)_{1 \leq j \leq n}=\left(A^{(1)}, A^{2}, \ldots, A^{(n-1)}, A^{(n)}\right),
$$

denote

- the usual tensor product by

$$
\otimes \mathcal{A}=A^{(1)} \otimes A^{(2)} \otimes \cdots \otimes A^{(n-1)} \otimes A^{(n)}
$$

- the left-associated skewed tensor product by

$$
\otimes_{\ell}^{\prime} \mathcal{A}=\left(\left(\cdots\left(A^{(1)} \otimes^{\prime} A^{(2)}\right) \otimes^{\prime} \cdots \otimes^{\prime} A^{(n-1)}\right) \otimes^{\prime} A^{(n)}\right)
$$

- and the right-associated skewed tensor product by

$$
\otimes_{r}^{\prime} \mathcal{A}=\left(A^{(1)} \otimes^{\prime}\left(A^{(2)} \otimes^{\prime} \cdots \otimes^{\prime}\left(A^{(n-1)} \otimes^{\prime} A^{(n)}\right) \cdots\right)\right)
$$

Then, using the automorphisms $\Gamma_{n}$ and $\Lambda_{n}$ of $\left(\mathbb{B}^{n} \times \mathbb{B}^{n}, \oplus\right)$ from Section 3.1 as indexing functions, we obtain the following result.

Proposition 1. The left-associated and right-associated skewed tensor products are related to the usual tensor product by

$$
\bigotimes_{\ell}^{\prime} \mathcal{A}=(\otimes \mathcal{A})^{\Gamma_{n}} \quad \text { and } \quad \bigotimes_{r}^{\prime} \mathcal{A}=(\otimes \mathcal{A})^{\Lambda_{n}}
$$

Proof. We first consider the right-associated case and proceed by induction on $n$, which starts at $n=2$, where for $x, y, u, v \in \mathbb{B}$ we have

$$
\begin{aligned}
\left(A \otimes^{\prime} B\right)_{x \cdot u, y \cdot v} & =A_{x, y} \cdot B_{u, x \oplus y \oplus v} \\
& =(A \otimes B)_{x \cdot u, y \cdot(x \oplus y \oplus v)} \\
& =(A \otimes B)_{x \cdot u, \lambda^{\prime}(x . u) \oplus \lambda(x . v)}
\end{aligned}
$$

because $\lambda^{\prime}(x . u)=0 . x$ and $\lambda(y \cdot v)=y \cdot(y \oplus v)$.
Now let $n \geq 3$ and assume that the assertion has been proved for skew tensor products with less than $n$ factors and consider

$$
A^{(1)} \otimes^{\prime}\left(\otimes_{r}^{\prime} \widetilde{\mathcal{A}}\right), \text { where } \widetilde{\mathcal{A}}=\left(A^{(2)}, \ldots, A^{(n)}\right)
$$

Put $B=\bigotimes \widetilde{\mathcal{A}}$ and $\widetilde{B}=\bigotimes_{r}^{\prime} \widetilde{\mathcal{A}}$, so that by induction we have $\widetilde{B}=B^{\Lambda_{n-1}}$, i.e.,

$$
\widetilde{B}_{\boldsymbol{u}, \boldsymbol{v}}=B_{\boldsymbol{u}, \lambda_{n-1}^{\prime}(\boldsymbol{u})+\lambda_{n-1}(\boldsymbol{v})}, \quad \boldsymbol{u}, \boldsymbol{v} \in \mathbb{B}^{n-1}
$$

Now let $x, y \in \mathbb{B}$ and consider

$$
\left(A^{(1)} \otimes^{\prime} \widetilde{B}\right)_{x \cdot \boldsymbol{u}, y \cdot \boldsymbol{v}}=A_{x, y}^{(1)} \cdot \widetilde{B}_{\boldsymbol{u}, \boldsymbol{v}^{\prime}(x, y)},
$$

where $v^{\prime}(x, y)=(x \oplus y) \cdot 0^{n-1} \oplus v$ means that the first (highest) bit of $v$ is complemented precisely when $x$ and $y$ are distinct. By induction, we have

$$
\widetilde{B}_{\boldsymbol{u}, \boldsymbol{v}^{\prime}(x, y)}=B_{\boldsymbol{u}, \lambda^{\prime}(\boldsymbol{u}) \oplus \lambda\left(\boldsymbol{v}^{\prime}(x, y)\right)},
$$

and hence

$$
\left(A^{(1)} \otimes^{\prime} \widetilde{B}\right)_{x \cdot \boldsymbol{u}, y \cdot \boldsymbol{v}}=\left(A_{x, y}^{(1)} \otimes \widetilde{B}\right)_{x \cdot \boldsymbol{u}, y \cdot\left(\lambda^{\prime}(\boldsymbol{u}) \oplus \lambda\left(\boldsymbol{v}^{\prime}(x, y)\right)\right.} .
$$

We are done if we can show that

$$
y \cdot\left(\lambda^{\prime}(\boldsymbol{u}) \oplus \lambda\left(\boldsymbol{v}^{\prime}(x, y)\right)\right) \stackrel{!}{=} \lambda^{\prime}(x . \boldsymbol{u}) \oplus \lambda(y . \boldsymbol{v})
$$

Indeed, writing $\boldsymbol{u}^{\vee}$ for the binary string $\boldsymbol{u}$ with its last element discarded, the left-hand side expands into

$$
\begin{aligned}
y \cdot\left(\lambda^{\prime}(\boldsymbol{u}) \oplus \lambda\left(\boldsymbol{v}^{\prime}(x, y)\right)\right) & =y \cdot \lambda\left(0 \cdot \boldsymbol{u}^{\vee} \oplus(x+y) \cdot 0^{n-2} \oplus \boldsymbol{v}\right) \\
& =y \cdot \lambda\left(y \cdot 0^{n-2}\right)+0 \cdot \lambda\left(0 \cdot \boldsymbol{u}^{\vee}+x \cdot 0^{n-2}+\boldsymbol{v}\right) \\
& =y^{n} \oplus 0 \cdot \lambda\left(x \cdot u^{\vee}+v\right) .
\end{aligned}
$$

The right-hand side gives the same:

$$
\begin{aligned}
\lambda^{\prime}(x . \boldsymbol{u}) \oplus \lambda(y . \boldsymbol{v}) & =\lambda\left(0 . x . \boldsymbol{u}^{\vee}\right) \oplus \lambda\left(y .0^{n-1}\right) \oplus \lambda(0 . \boldsymbol{v}) \\
& =\lambda\left(y .0^{n-1}\right) \oplus \lambda\left(0 . x \cdot \boldsymbol{u}^{\vee}+0 . \boldsymbol{v}\right) \\
& =y^{n} \oplus 0 . \lambda\left(x \cdot \boldsymbol{u}^{\vee}+\boldsymbol{v}\right) .
\end{aligned}
$$

This completes the proof of the right-associated case.
The proof of the left-associated case is similar. The induction base for $n=2$ is the same as before because the functions $\gamma_{2}$ and $\lambda_{2}$ agree on binary strings of length 2 . For the induction step, assume again that $n \geq 3$ and that the assertion has been proved for $\otimes^{\prime}$ products with less than $n$ factors. Let

$$
\widetilde{\mathcal{A}}=\left(A^{(1)}, A^{(2)}, \ldots, A^{(n-1)}\right), \quad B=\bigotimes \widetilde{\mathcal{A}}, \quad \widetilde{B}=\bigotimes_{\ell}^{\prime} \widetilde{\mathcal{A}}
$$

Then, by induction, $\widetilde{B}=B^{\Gamma_{n-1}}$, i.e.,

$$
\widetilde{B}_{\boldsymbol{x}, \boldsymbol{y}}=B_{\boldsymbol{x}, \gamma^{\prime}(\boldsymbol{x}) \oplus \gamma(\boldsymbol{y})}=B_{\boldsymbol{x},\left(0 . \boldsymbol{x}^{\vee}\right) \oplus \gamma(\boldsymbol{y})}, \quad \boldsymbol{x}, \boldsymbol{y} \in \mathbb{B}^{n-1}
$$

For $u, v \in \mathbb{B}$ (where $v^{\prime}(\boldsymbol{x}, \boldsymbol{y})$ complements the bit $v$ if and only if $\omega(\boldsymbol{x})$ and $\omega(\boldsymbol{y})$ are distinct, so that $\left.v^{\prime}(\boldsymbol{x}, \boldsymbol{y})=\omega(\boldsymbol{x}) \oplus \omega(\boldsymbol{y}) \oplus v\right)$, we get

$$
\begin{aligned}
\left(\widetilde{B} \otimes^{\prime} A^{(n)}\right)_{\boldsymbol{x} \cdot u, \boldsymbol{y} \cdot v} & =\widetilde{B}_{\boldsymbol{x}, \boldsymbol{y}} \cdot A_{u, v^{\prime}(\boldsymbol{x}, \boldsymbol{y})}^{(n)} \\
& =B_{\boldsymbol{x},\left(0 . \boldsymbol{x}^{\vee}\right) \oplus \gamma(y)} \cdot A_{u, \omega(\boldsymbol{x}) \oplus \omega(\boldsymbol{y}) \oplus v}^{(n)} \\
& =\left((\otimes \widetilde{A}) \otimes A^{(n)}\right)_{\boldsymbol{x} \cdot u,\left(\left(0 . x^{\vee}\right) \oplus \gamma(\boldsymbol{y})\right) \cdot(\omega(\boldsymbol{x}) \oplus \omega(\boldsymbol{y}) \oplus v)} .
\end{aligned}
$$

It remains to be shown that

$$
\gamma^{\prime}(\boldsymbol{x} \cdot u) \oplus \gamma(\boldsymbol{y} \cdot v)=0 . \boldsymbol{x} \oplus \gamma(\boldsymbol{y}) .(\omega(\boldsymbol{y}) \oplus v) \stackrel{!}{=}\left(\left(0 . \boldsymbol{x}^{\vee}\right) \oplus \gamma(\boldsymbol{y})\right) \cdot(\omega(\boldsymbol{x}) \oplus \omega(\boldsymbol{y}) \oplus v) .
$$

Clearly both sides agree on the first $n-1$ bits. The last bit on both sides is $\omega(\boldsymbol{x}) \oplus$ $\omega(\boldsymbol{y}) \oplus v$.

## 4. Hadamard-SPECIAL MATRICES

Special matrices are defined in terms of the familiar Hadamard matrices, which are inductively constructed by iterated tensoring, starting with the matrix $H$ as basis:

$$
H_{1}=H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right], \quad H_{n+1}=H_{1} \otimes H_{n}, \quad n \geq 1 .
$$

It is easy to see that

$$
H_{n}=\frac{1}{2^{n / 2}}\left[(-1)^{\boldsymbol{u} \cdot \boldsymbol{v}}\right]_{\boldsymbol{u}, \boldsymbol{v} \in \mathbb{B}^{n}}
$$

where $\boldsymbol{u} \cdot \boldsymbol{v}$ denotes the inner product of the binary vectors $\boldsymbol{u}$ and $\boldsymbol{v}$. The Hadamard matrices $H_{n}$ are all symmetric ( $H_{n}^{\top}=H_{n}$, where the superscript $\top$ denotes transposition) and self-inverse $\left(H_{n}^{-1}=H_{n}\right)$, hence orthogonal.

Definition 2. A matrix $A$ of size $2^{n} \times 2^{n}$ is said to be $H$-special or special, for short, if its Hadamard transform is equal to its transpose:

$$
H_{n} \cdot A \cdot H_{n}=A^{\top},
$$

or equivalently: $A$ is special if and only if the product $H_{n} \cdot A$ is symmetric.
A matrix $A$ is called very special if it is special and upper-triangular.
Let $\mathcal{S}_{n}$ denote the set of special matrices of size $2^{n} \times 2^{n}$. The following are easily checked properties of special matrices.

## Lemma 1.

(1) $A$ (real) $2 \times 2$-matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is special if and only if $a=b+c+d$.
(2) For any two matrices of size $2^{n} \times 2^{n}$, we have $A \cdot B+B \cdot A \in \mathcal{S}_{n}$.
(3) For $A, B \in \mathcal{S}_{n}$, we have $A+B \in \mathcal{S}_{n}$, and $A \cdot B \in \mathcal{S}_{n}$ if and only if $A$ and $B$ commute.
(4) For $A \in \mathcal{S}_{m}, B \in \mathcal{S}_{n}$, we have $A \otimes B \in \mathcal{S}_{m+n}$.
(5) For any $A \in \mathcal{S}_{n}$, the mapping $v \mapsto H \cdot v$ maps (right) eigenvectors of $A$ to (right) eigenvectors $A^{\top}$ (for the same eigenvalue), and similarly for left eigenvectors.

Consider now, for any list of special $(2 \times 2)$-matrices

$$
\mathcal{A}=\left(A^{(1)}, A^{(2)}, \ldots, A^{(n)}\right) \in \mathcal{S}_{1}^{n}
$$

the usual tensor product

$$
\otimes \mathcal{A}=A^{(1)} \otimes A^{(2)} \otimes \cdots \otimes A^{(n)}
$$

and the skewed tensor product with the right-associated order of tensoring

$$
\otimes_{r}^{\prime} \mathcal{A}=A^{(1)} \otimes^{\prime} A^{(2)} \otimes^{\prime} \cdots \otimes^{\prime} A^{(n)}
$$

We know that

$$
H_{n} \cdot \otimes \mathcal{A} \cdot H_{n}=\bigotimes_{1 \leq j \leq n}\left(H_{1} \cdot A^{(j)} \cdot H_{1}\right)=\bigotimes_{1 \leq j \leq n}\left(A^{(j)^{\top}}\right)=\left(\bigotimes_{1 \leq j \leq n}\left(A^{(j)}\right)\right)^{\top}
$$

So the question is: how is $H_{n} \cdot \bigotimes_{r}^{\prime} \mathcal{A} \cdot H_{n}$ related to $\left(\bigotimes_{r}^{\prime} \mathcal{A}\right)^{\top}$ ?

As an example, let us look at a simple "very special" case:
let $A^{(1)}=A^{(2)}=A^{(3)}=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$. Then

$$
\left.\begin{array}{rl}
A=A^{(1)} \otimes^{\prime} A^{(2)} \otimes^{\prime} A^{(3)} & =\left[\begin{array}{llllllll}
8 & 4 & 2 & 4 & 1 & 2 & 4 & 2 \\
0 & 4 & 2 & 0 & 1 & 0 & 0 & 2 \\
0 & 0 & 4 & 2 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 2 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \\
B=H_{3} \cdot A^{(1)} \otimes^{\prime} A^{(2)} \otimes^{\prime} A^{(3)} \cdot H_{3} & =\left[\begin{array}{lllllll}
8 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 \\
4 & 2 & 0 & 1 & 0 & 0 & 0 \\
1 \\
4 & 0 & 2 & 0 & 0 & 0 & 2 \\
0 \\
2 & 0 & 1 & 2 & 0 & 0 & 1 \\
4 & 0 & 0 & 0 & 4 & 0 & 0 \\
2 & 1 & 0 & 0 & 2 & 1 & 0 \\
2 \\
2 & 0 & 0 & 0 & 2 & 0 & 4 \\
1 & 0 & 0 & 0 & 1 & 0 & 2
\end{array}\right]
\end{array}\right] .
$$

The matrix $B$ is far from being upper (or lower) triangular, but it seems that the matrices $A$ and $B$ are quite similar: the entries of both matrices are the same (as multisets), and even more precisely: for any row of $A$ there is a column of $B$ which contains the same elements, albeit in a different order. The same phenomenon would be observed by taking, e.g., the special, but not very special matrix $\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$ instead.

Before stating and proving the intended result, a technical fact is needed.
Lemma 2. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a $(2 \times 2)$-matrix and $B$ a $\left(2^{n-1} \times 2^{n-1}\right)$-matrix. Write $H_{n-1} \cdot B \cdot H_{n-1}=[U \mid V]$, where $U$ and $V$ are $\left(2^{n-1} \times 2^{n-2}\right)$-matrices. Then:
(1) The Hadamard conjugate of the skewed product $A \otimes^{\prime} B$ is

$$
\begin{aligned}
& H_{n} \cdot\left(A \otimes^{\prime} B\right) \cdot H_{n} \\
& \quad=\frac{1}{2}\left[\begin{array}{llll}
(a+b+c+d) U & (a-b-c+d) V & (a-b+c-d) U & (a+b-c-d) V \\
(a+b-c-d) U & (a-b+c-d) V & (a-b-c+d) U & (a+b+c+d) V
\end{array}\right] .
\end{aligned}
$$

(2) If, in addition, $A$ is special, then

$$
H_{n} \cdot\left(A \otimes^{\prime} B\right) \cdot H_{n}=\left[\begin{array}{llll}
a U & d V & c U & b V \\
b U & c V & d U & a V
\end{array}\right]
$$

Proof. It is convenient to use the basis (from Section 3.2) $\mathbb{I}_{1}, \mathbb{X}, \mathbb{Y}, \mathbb{Z}$ of the vector space of $2 \times 2$-matrices (essentially the Pauli matrices).

It is easily checked that

$$
H_{1} \cdot A \cdot H_{1}=\frac{a+d}{2} \mathbb{I}_{1}+\frac{a-d}{2} \mathbb{X}+\frac{c-b}{2} \mathbb{Y}+\frac{c+b}{2} \mathbb{Z}
$$

With $B^{\prime}=B \cdot\left(\mathbb{X} \otimes \mathbb{I}_{n-2}\right)$, we get

$$
\begin{aligned}
H_{n-1} \cdot B^{\prime} \cdot H_{n-1} & =H_{n-1} \cdot B \cdot\left(\mathbb{X} \otimes \mathbb{I}_{n-2}\right) \cdot H_{n-1} \\
& =H_{n-1} \cdot B \cdot H_{n-1} \cdot H_{n-1} \cdot\left(\mathbb{X} \otimes \mathbb{I}_{n-2}\right) \cdot H_{n-1} \\
& =[U \mid V] \cdot\left(\mathbb{Z} \otimes \mathbb{I}_{n-2}\right)=[U \mid-V] .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
H_{n} \cdot & \left(A \otimes^{\prime} B\right) \cdot H_{n} \\
= & \left(H_{1} \cdot\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right] \cdot H_{1}\right) \otimes\left(H_{n-1} \cdot B \cdot H_{n-1}\right)+\left(H_{1} \cdot\left[\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right] \cdot H_{1}\right) \otimes\left(H_{n-1} \cdot B^{\prime} \cdot H_{n-1}\right) \\
= & \left(\frac{a+d}{2} \mathbb{I}_{1}+\frac{a-d}{2} \mathbb{X}\right) \otimes[U \mid V]+\left(\frac{c-b}{2} \mathbb{Y}+\frac{c+b}{2} \mathbb{Z}\right) \otimes[U \mid-V] \\
= & \frac{a+d}{2}\left[\begin{array}{lll}
U & V & U \\
& V
\end{array}\right]+\frac{a-d}{2}\left[\begin{array}{lll}
U & V & V
\end{array}\right] \\
& +\frac{c-b}{2}\left[\begin{array}{llll}
U & U & -V \\
-U & V &
\end{array}\right]+\frac{c+b}{2}\left[\begin{array}{lll}
U & -V & \\
& & -U
\end{array}\right],
\end{aligned}
$$

which is precisely the assertion stated in (1). Assertion (2) is an immediate consequence by using $a=b+c+d$.

Now the effect of Hadamard conjugation on right-associated skewed products of special matrices can be described precisely.
Theorem 1. Let $\mathcal{A}=\left(A^{(1)}, A^{(2)}, \ldots, A^{(n-1)}, A^{(n)}\right) \in \mathcal{S}_{1}^{n}$ be a list of special $(2 \times 2)$ matrices. Then the ordinary and the right-associated products

$$
\begin{aligned}
\otimes \mathcal{A} & =A^{(1)} \otimes A^{(2)} \otimes \cdots \otimes A^{(n-1)} \otimes A^{(n)} \\
\otimes_{r}^{\prime} \mathcal{A} & =A^{(1)} \otimes^{\prime}\left(A^{(2)} \otimes^{\prime} \cdots \otimes^{\prime}\left(A^{(n-1)} \otimes^{\prime} A^{(n)}\right) \cdots\right),
\end{aligned}
$$

are related by

$$
H_{n} \cdot \bigotimes_{r}^{\prime} \mathcal{A} \cdot H_{n}=(\bigotimes \mathcal{A})^{\rho_{n}}
$$

where $\rho_{n}$ is the indexing function

$$
\rho_{n}: \mathbb{B}^{n} \times \mathbb{B}^{n} \rightarrow \mathbb{B}^{n} \times \mathbb{B}^{n}:(\boldsymbol{u}, \boldsymbol{v}) \mapsto\left(\overleftarrow{\gamma_{n}} \boldsymbol{v}, \boldsymbol{u} \oplus \boldsymbol{v} \oplus \overleftarrow{\gamma_{n}} \boldsymbol{v}\right)
$$

Here, $\overleftarrow{\gamma_{n}} \boldsymbol{v}$ means the application of the $\gamma_{n}$-mapping to $\boldsymbol{v} \in \mathbb{B}^{n}$ in the reverse direction, i.e., from right to left: $\overleftarrow{\gamma_{n}}\left(v_{1}, v_{2}, \ldots v_{n}\right)=\left(v_{1} \oplus v_{2}, v_{2} \oplus v_{2}, \ldots, v_{n-1} \oplus v_{n}, v_{n}\right)$.

Proof. The case $n=1$ is easy to check, because for a special matrix $A=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$ we have

$$
H_{1} \cdot A \cdot H_{1}=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=A^{\top}
$$

and for $u, v \in \mathbb{B}$ the mapping

$$
\rho_{1}:(u, v) \mapsto\left(\overleftarrow{\gamma_{1}} v, u+v+\overleftarrow{\gamma_{1}} v\right)=(v, u)
$$

means just the transposition of the matrix.
For the induction step, taking $\widetilde{\mathcal{A}}=\left(A^{(2)}, \ldots, A^{(n)}\right)$, let

$$
\otimes \mathcal{A}=A^{(1)} \otimes(\otimes \widetilde{\mathcal{A}}), \quad \otimes_{r}^{\prime} \mathcal{A}=A^{(1)} \otimes^{\prime}\left(\otimes_{r}^{\prime} \widetilde{\mathcal{A}}\right)
$$

and write $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{B}^{n}$ as $\boldsymbol{u}=u_{1} . u_{2} \ldots . . u_{n}=u_{1} .{ }^{\vee} \boldsymbol{u}$ and $\boldsymbol{v}=v_{1} . v_{2} \ldots . . v_{n}=v_{1} .{ }^{\vee} \boldsymbol{v}$. Taking into account

$$
\overleftarrow{\gamma_{n}} \boldsymbol{v}=\left(v_{1} \oplus v_{2}, v_{2} \oplus v_{3}, \ldots, v_{n-1} \oplus v_{n}, v_{n}\right)=\left(v_{1}+v_{2}\right) \cdot \overleftarrow{\gamma_{n-1}}\left({ }^{\vee} \boldsymbol{v}\right)
$$

we get

$$
\begin{aligned}
(\otimes \mathcal{A})_{\overleftarrow{\gamma_{n}} \boldsymbol{v}, \boldsymbol{u} \oplus \boldsymbol{v} \oplus \overleftarrow{\gamma_{n}} \boldsymbol{v}} & =\left(A^{(1)} \otimes(\otimes \widetilde{\mathcal{A}})\right)_{\left.\left(v_{1} \oplus v_{2}\right) \cdot \overleftarrow{\gamma_{n-1}}(\vee \boldsymbol{v})\right),\left(u_{1} \oplus v_{2}\right) \cdot\left(\vee \boldsymbol{v} \oplus^{\vee} \boldsymbol{v} \oplus \overleftarrow{\gamma_{n-1}}(\vee \boldsymbol{v})\right.} \\
& =A_{v_{1}+v_{2}, u_{1}+v_{2}}^{(1)} \cdot(\otimes \widetilde{\mathcal{A}})_{\rho_{n-1}(\vee \boldsymbol{v}, \vee \boldsymbol{v})} .
\end{aligned}
$$

By induction, we may assume that

$$
(\otimes \widetilde{\mathcal{A}})^{\rho_{n-1}}=H_{n-1} \cdot\left(\bigotimes_{r}^{\prime} \widetilde{\mathcal{A}}\right) \cdot H_{n-1}
$$

Write the matrix $H_{n-1} \cdot\left(\bigotimes_{r}^{\prime} \widetilde{\mathcal{A}}\right) \cdot H_{n-1}$ as $[U \mid V]$, where now $U$ and $V$ are matrices of size $2^{n-1} \times 2^{n-2}$, as in Lemma 2. Note that the cases where $v_{2}=0$ (respectively $v_{2}=1$ ) refer to the submatrices $U$ (respectively $V$ ), because $v_{2}$ is the leading symbol of the column index ${ }^{\vee} \boldsymbol{v}$.

Continuing to refer to Lemma 2, we write $A^{(1)}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and construct a $(2 \times 4)$ matrix $\widehat{A^{(1)}}=\left(A^{(1)}\right)^{\alpha}$ by using the indexing function

$$
\begin{aligned}
\alpha: \mathbb{B} & \times \mathbb{B}^{2} \rightarrow \mathbb{B} \times \mathbb{B} \\
\left(u_{1}, v_{1} v_{2}\right) & \mapsto\left(v_{1} \oplus v_{2}, u_{1} \oplus v_{2}\right) .
\end{aligned}
$$

We check what $\widehat{A^{(1)}}$ is:

|  | $u_{1}=0$ |  |  |  | $u_{1}=1$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v_{1} v_{2}$ | 00 | 01 | 10 | 11 | 00 | 01 | 10 | 11 |
| $v_{1}+v_{2}$ | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
| $u_{1}+v_{2}$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| $A_{v_{1}+v_{2}, u_{1}+v_{2}}^{(1)}$ | $a$ | $d$ | $b$ | $c$ | $b$ | $c$ | $d$ | $a$ |

This shows that

$$
\widehat{A^{(1)}}=\left[\begin{array}{llll}
a & d & b & c \\
b & c & d & a
\end{array}\right],
$$

and that

$$
\left[\begin{array}{llll}
a U & d V & b U & c V \\
b U & c V & d U & a V
\end{array}\right]=H_{n} \cdot\left(A^{(1)} \otimes^{\prime}\left(\bigotimes_{r}^{\prime} \tilde{\mathcal{A}}\right)\right) \cdot H_{n}=(\otimes \mathcal{A})^{\rho_{n}}
$$

A more elegant way of presenting this result is as follows.
Corollary 2. With a list $\mathcal{A}=\left(A^{(1)}, A^{(2)}, \ldots, A^{(n-1)}, A^{(n)}\right) \in \mathcal{S}_{1}^{n}$, as before, and denoting its reversal by $\overleftarrow{\mathcal{A}}=\left(A^{(n)}, A^{(n-1)}, \ldots, A^{(2)}, A^{(1)}\right)$, we have

$$
H_{n} \cdot \bigotimes_{r}^{\prime} \mathcal{A} \cdot H_{n}=\left(\bigotimes_{r}^{\prime} \overleftarrow{\mathcal{A}}\right)^{\beta_{n}}
$$

where $\beta_{n}$ is the indexing function

$$
\begin{aligned}
\beta_{n}: \mathbb{B}^{n} & \times \mathbb{B}^{n} \rightarrow \mathbb{B}^{n} \times \mathbb{B}^{n} \\
(\boldsymbol{u}, \boldsymbol{v}) & \mapsto\left(\gamma_{n} \overleftarrow{\boldsymbol{v}}, \gamma_{n} \overleftarrow{\boldsymbol{u}}\right)
\end{aligned}
$$

Proof. We will just write $\gamma$ and $\lambda$ etc. in place of $\gamma_{n}$ and $\lambda_{n}$. From Theorem 1, by simply reverting the order in the ordinary tensor product $A^{(1)} \otimes A^{(2)} \otimes \cdots \otimes A^{(n-1)} \otimes A^{(n)}$, we can write

$$
\left(H_{n} \cdot \bigotimes_{r}^{\prime} \mathcal{A} \cdot H_{n}\right)_{\boldsymbol{u}, \boldsymbol{v}}=(\otimes \mathcal{A})_{\overleftarrow{\gamma} \boldsymbol{v}, \boldsymbol{u} \oplus \boldsymbol{v} \oplus \overleftarrow{\gamma} \boldsymbol{v}}=(\otimes \overleftarrow{\mathcal{A}})_{\overleftarrow{\zeta} \boldsymbol{v} \boldsymbol{v}, \overleftarrow{\boldsymbol{u} \oplus \boldsymbol{v} \oplus \overleftarrow{\gamma} \boldsymbol{v}}}
$$

A simple check shows that $\overleftarrow{\gamma} \boldsymbol{v}=\gamma \overleftarrow{\boldsymbol{v}}$ and

$$
\overleftarrow{\boldsymbol{u} \oplus \boldsymbol{v} \oplus \overleftarrow{\gamma} \boldsymbol{v}}=\overleftarrow{\boldsymbol{u}} \oplus \overleftarrow{\boldsymbol{v}} \oplus \overleftarrow{\gamma} \boldsymbol{v}=\overleftarrow{\boldsymbol{u}} \oplus \overleftarrow{\boldsymbol{v}} \oplus \gamma \overleftarrow{\boldsymbol{v}}=\lambda \gamma \overleftarrow{\boldsymbol{u}} \oplus \lambda^{\prime} \gamma_{\boldsymbol{v}}
$$

Invoking now Theorem 1, we get

$$
\left(H_{n} \cdot \otimes_{r}^{\prime} \mathcal{A} \cdot H_{n}\right)_{u, v}=(\otimes \overleftarrow{\mathcal{A}})_{\gamma \overleftarrow{\gamma^{2}, \lambda^{\prime} \gamma \overleftarrow{v} \oplus \lambda \gamma \overleftarrow{u}}}=\left(\otimes_{r}^{\prime} \overleftarrow{\mathcal{A}}\right)_{\gamma \overleftarrow{v}, \gamma \frac{\gamma}{\bar{u}}}
$$

The interesting feature of this result is that in the final term $\left(\bigotimes_{r}^{\prime} \overleftarrow{\mathcal{A}}\right)_{\gamma \overleftarrow{v}, \gamma \overleftarrow{u}}$ besides the transposition showing up (because now $\boldsymbol{u}$ appears for the column indices and $\boldsymbol{v}$ appears for the row indices), the permutations acting on the row and on the column indices are the same! In particular, the diagonal elements of $H_{n} \cdot \bigotimes_{r}^{\prime} \mathcal{A} \cdot H_{n}$ and of $\bigotimes_{r}^{\prime} \overleftarrow{\mathcal{A}}$ are the same, and the change in their respective ordering is mediated by reversal and the $\gamma$ mapping.

## 5. A determinant evaluation related to very special matrices

The following is a known fact about Hadamard matrices.
Lemma 3. The matrices of size $2^{n} \times 2^{n}$ which are diagonalized by the Hadamard matrix $H_{n}$ are precisely the matrices

$$
\Xi_{n}=\sum_{b=b_{1} \ldots b_{n} \in \mathbb{B}^{n}} \xi_{b} \bigotimes_{1 \leq i \leq n} \mathbb{X}^{b_{i}}
$$

where $\boldsymbol{\xi}_{n}=\left(\xi_{\boldsymbol{b}}\right)_{\boldsymbol{b} \in \mathbb{B}^{n}}$ is a (column) vector of arbitrary constants or just variables. Indeed,

$$
H_{n} \cdot \Xi_{n} \cdot H_{n}=\operatorname{diag}\left(H_{n} \cdot \boldsymbol{\xi}_{n}\right),
$$

where $\operatorname{diag}(\boldsymbol{v})$ of a vector $\boldsymbol{v}$ denotes the diagonal matrix with the vector components along the diagonal.

As an example, for $n=2$ we have

$$
\Xi_{2}=\left[\begin{array}{llll}
\xi_{00} & \xi_{01} & \xi_{10} & \xi_{11} \\
\xi_{01} & \xi_{00} & \xi_{11} & \xi_{10} \\
\xi_{10} & \xi_{11} & \xi_{00} & \xi_{01} \\
\xi_{11} & \xi_{10} & \xi_{01} & \xi_{00}
\end{array}\right]
$$

and the eigenvalues of $\Xi_{2}$ are the entries of

$$
H_{n} \cdot \boldsymbol{\xi}_{2}=\left[\begin{array}{l}
\xi_{00}+\xi_{01}+\xi_{10}+\xi_{11} \\
\xi_{00}-\xi_{01}+\xi_{10}-\xi_{11} \\
\xi_{00}+\xi_{01}-\xi_{10}-\xi_{11} \\
\xi_{00}-\xi_{01}-\xi_{10}+\xi_{11}
\end{array}\right]
$$

Let now $B$ be a $\left(2^{n} \times 2^{n}\right)$-matrix with the property that $H_{n} \cdot B \cdot H_{n}$ is a lower (or upper) triangular matrix, with $\left(\beta_{\boldsymbol{b}}\right)_{\boldsymbol{b} \in \mathbb{B}^{n}}$ along the main diagonal. Then

$$
\begin{aligned}
\operatorname{det}\left(\Xi_{n}+B\right) & =\operatorname{det}\left(H_{n} \cdot\left(\Xi_{n}+B\right) \cdot H_{n}\right) \\
& =\operatorname{det}\left(H_{n} \cdot \Xi_{n} \cdot H_{n}+H_{n} \cdot B \cdot H_{n}\right) \\
& =\prod_{\boldsymbol{b} \in B^{n}}\left(\left(H_{n} \cdot \boldsymbol{\xi}_{n}\right)_{\boldsymbol{b}}+\beta_{\boldsymbol{b}}\right) .
\end{aligned}
$$

A similar statement could be made about the characteristic polynomial of $\Xi_{n}+B$.
For an immediate extension, assume that $H_{n} \cdot B \cdot H_{n}$ is not necessarily triangular, but can be turned into a triangular matrix by acting with the same permutation $\rho$ of $\mathbb{B}^{n}$ on rows and columns, that is:

$$
P_{\rho}^{\top} \cdot H_{n} \cdot B \cdot H_{n} \cdot P_{\rho}
$$

is triangular, where $P_{\rho}$ is the $\left(2^{n} \times 2^{n}\right)$-permutation matrix for $\rho$, still writing $\left(\beta_{\boldsymbol{b}}\right)_{\boldsymbol{b} \in \mathbb{B}^{n}}$ for the vector of terms in its main diagonal. Then

$$
\operatorname{det}\left(\Xi_{n}+B\right)=\prod_{\boldsymbol{b} \in \mathbb{B}^{n}}\left(\left(H_{n} \cdot \boldsymbol{\xi}_{n}\right)_{\rho(\boldsymbol{b})}+\beta_{\boldsymbol{b}}\right) .
$$

From the previous sections, we have candidates for this situation!
Let now $\mathcal{A}=\left(A^{(1)}, A^{(2)}, \ldots, A^{(n-1)}, A^{(n)}\right)$ be a sequence of very special matrices, i.e., special matrices which in addition are upper triangular. Then, obviously, the three matrices

$$
\begin{aligned}
\otimes \mathcal{A} & =A^{(1)} \otimes A^{(2)} \otimes \cdots \otimes A^{(n-1)} \otimes A^{(n)} \\
\otimes_{r}^{\prime} \mathcal{A} & =A^{(1)} \otimes^{\prime}\left(A^{(2)} \otimes^{\prime}\left(\cdots \otimes^{\prime}\left(A^{(n-1)} \otimes^{\prime} A^{(n)}\right) \cdots\right)\right) \\
\otimes_{r}^{\prime} \overleftarrow{\mathcal{A}} & =A^{(n)} \otimes^{\prime}\left(A^{(n-1)} \otimes^{\prime}\left(\cdots \otimes^{\prime}\left(A^{(2)} \otimes^{\prime} A^{(1)}\right) \cdots\right)\right)
\end{aligned}
$$

are upper triangular matrices. More specifically, let

$$
A^{(i)}=\left[\begin{array}{cc}
a_{0}^{(i)} & a_{0}^{(i)}-a_{1}^{(i)} \\
0 & a_{1}^{(i)}
\end{array}\right], \quad 1 \leq i \leq n .
$$

The vectors of the main diagonal for $\otimes \mathcal{A}$, as well as for $\otimes_{r}^{\prime} \mathcal{A}$, are

$$
\left(a_{0}^{(1)}, a_{1}^{(1)}\right) \otimes\left(a_{0}^{(2)}, a_{1}^{(2)}\right) \otimes \cdots \otimes\left(a_{0}^{(n)}, a_{1}^{(n)}\right)=\bigotimes_{1 \leq i \leq n}\left(a_{0}^{(i)}, a_{1}^{(i)}\right),
$$

whereas for $\bigotimes_{r}^{\prime} \overleftarrow{\mathcal{A}}$ the order of the factors in the tensor product has to be reversed. This gives

$$
(\otimes \mathcal{A})_{\boldsymbol{b}, \boldsymbol{b}}=\left(\bigotimes_{r}^{\prime} \mathcal{A}\right)_{\boldsymbol{b}, \boldsymbol{b}}=\prod_{i=1}^{n} a_{b_{i}}^{(i)}=\left(\bigotimes_{r}^{\prime} \overleftarrow{\mathcal{A}}\right)_{\overleftarrow{b}, \overleftarrow{\boldsymbol{b}}}, \quad \boldsymbol{b} \in \mathbb{B}^{n}
$$

Corollary 2 tells us precisely what the relation between $H_{n} \cdot \bigotimes_{r}^{\prime} \mathcal{A} \cdot H_{n}$ and $\bigotimes_{r}^{\prime} \overleftarrow{\mathcal{A}}$ is. In particular, by transposition and acting on rows and columns with the same permutation, viz.

$$
(\boldsymbol{u}, \boldsymbol{v}) \mapsto(\overleftarrow{\lambda \boldsymbol{v}}, \overleftarrow{\lambda \boldsymbol{u}}), \quad \boldsymbol{u}, \boldsymbol{v} \in \mathbb{B}^{n}
$$

the matrix $H_{n} \cdot \bigotimes_{r}^{\prime} \mathcal{A} \cdot H_{n}$ can be turned into a lower triangular matrix:

$$
\left(H_{n} \cdot \bigotimes_{r}^{\prime} \mathcal{A} \cdot H_{n}\right)_{\overleftarrow{\lambda}, \overleftarrow{\lambda v}}=\left(\bigotimes_{r}^{\prime} \overleftarrow{\mathcal{A}}\right)_{\boldsymbol{v}, u}, \quad \boldsymbol{u}, \boldsymbol{v} \in \mathbb{B}^{n}
$$

Corollary 3. With very special matrices $A^{(i)}$, for $1 \leq i \leq n$, and $\mathcal{A}$ and $\Xi_{n}$ as before, with $B=\bigotimes_{r}^{\prime} \mathcal{A}$ and $\overleftarrow{B}=\bigotimes_{r}^{\prime} \overleftarrow{\mathcal{A}}$, we have

$$
\operatorname{det}\left(\Xi_{n}+B\right)=\prod_{\boldsymbol{b} \in \mathbb{B}^{n}}\left(\left(H_{n} \cdot \boldsymbol{\xi}_{n}\right)_{\overleftarrow{\lambda} \boldsymbol{b}}+\beta_{\boldsymbol{b}}\right),
$$

where $\beta$ is the vector of diagonal entries of $\overleftarrow{B}$. Equivalently, the characteristic polynomial of $\Xi_{n}+B$ is

$$
\chi\left(\Xi_{n}+B ; z\right)=\prod_{\boldsymbol{b} \in \mathbb{B}^{n}}\left(z-\left(H_{n} \cdot \boldsymbol{\xi}_{n}\right)_{\overleftarrow{\lambda \boldsymbol{b}}}-\beta_{\boldsymbol{b}}\right) .
$$

Furthermore, by linearity this result extends to the situation where $B$ is a linear combination of matrices of type $\bigotimes_{r}^{\prime} \mathcal{A}$.

We illustrate this result by presenting the cases $n=2$ and $n=3$.
Case $n=2$ : Write

$$
A^{(1)}=\left[\begin{array}{cc}
a & a-b \\
0 & b
\end{array}\right], A^{(2)}=\left[\begin{array}{cc}
c & c-d \\
0 & d
\end{array}\right] .
$$

Then

$$
\begin{aligned}
& B=A^{(1)} \otimes^{\prime} A^{(2)}=\left[\begin{array}{cccc}
a c & a(c-d) & (a-b)(c-d) & (a-b) c \\
0 & a d & (a-b) d & 0 \\
0 & 0 & b c & b(c-d) \\
0 & 0 & 0 & b d
\end{array}\right], \\
& \overleftarrow{B}=A^{(2)} \otimes^{\prime} A^{(1)}=\left[\begin{array}{cccc}
a c & (a-b) c & (a-b)(c-d) & a(c-d) \\
0 & b c & b(c-d) & 0 \\
0 & 0 & a d & (a-b) d \\
0 & 0 & 0 & b d
\end{array}\right],
\end{aligned}
$$

hence

$$
\beta=\left[\begin{array}{llll}
a c & c b & d a & d b
\end{array}\right]^{\top} .
$$

The matrix $\Xi_{2}$ has the diagonal (see the example after Lemma 3)

$$
H_{2} \cdot \boldsymbol{\xi}_{2}=\left[\begin{array}{l}
\xi_{00}+\xi_{01}+\xi_{10}+\xi_{11} \\
\xi_{00}-\xi_{01}+\xi_{10}-\xi_{11} \\
\xi_{00}+\xi_{01}-\xi_{10}-\xi_{11} \\
\xi_{00}-\xi_{01}-\xi_{10}+\xi_{11}
\end{array}\right]
$$

The relevant information is

| $\boldsymbol{b}$ | $\lambda \boldsymbol{b}$ | $\overleftarrow{\lambda \boldsymbol{b}}$ | $\left[H_{2} \cdot \boldsymbol{\xi}\right]_{\overleftarrow{\delta b}}$ | $\beta_{\boldsymbol{b}}$ |
| :---: | :---: | :---: | :---: | :--- |
| 00 | 00 | 00 | $\xi_{00}+\xi_{01}+\xi_{10}+\xi_{11}$ | $a c$ |
| 01 | 01 | 10 | $\xi_{00}+\xi_{10}-\xi_{01}-\xi_{11}$ | $b c$ |
| 10 | 11 | 11 | $\xi_{00}-\xi_{01}-\xi_{10}+\xi_{11}$ | $a d$ |
| 11 | 10 | 01 | $\xi_{00}-\xi_{01}+\xi_{10}-\xi_{11}$ | $b d$ |

Thus the eigenvalues of $\Xi_{n}+B$ are

$$
\begin{aligned}
& \xi_{00}+\xi_{01}+\xi_{10}+\xi_{11}+a c \\
& \xi_{00}-\xi_{01}-\xi_{10}+\xi_{11}+a d \\
& \xi_{00}+\xi_{01}-\xi_{10}-\xi_{11}+b c \\
& \xi_{00}-\xi_{01}+\xi_{10}-\xi_{11}+b d
\end{aligned}
$$

CASE $n=3$ : Extending the case $n=2$, we have the additional matrix

$$
A^{(3)}=\left[\begin{array}{cc}
e & e-f \\
0 & f
\end{array}\right] .
$$

The relevant scheme reads

| $\boldsymbol{b}$ | $\lambda \boldsymbol{u}$ | $\overleftarrow{\lambda \boldsymbol{u}}$ | $\left[H_{3} \cdot \boldsymbol{\xi}_{3}\right]_{\overleftarrow{\lambda b}}$ | $\beta_{\boldsymbol{b}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 000 | 000 | 000 | $\xi_{000}+\xi_{001}+\xi_{010}+\xi_{011}+\xi_{100}+\xi_{101}+\xi_{110}+\xi_{111}$ | $a c e$ |
| 001 | 001 | 100 | $\xi_{000}+\xi_{001}+\xi_{010}+\xi_{011}-\xi_{100}-\xi_{101}-\xi_{110}-\xi_{111}$ | $b c e$ |
| 010 | 011 | 110 | $\xi_{000}+\xi_{001}-\xi_{010}-\xi_{011}-\xi_{100}-\xi_{101}+\xi_{110}+\xi_{111}$ | $a d e$ |
| 011 | 010 | 010 | $\xi_{000}+\xi_{001}-\xi_{010}-\xi_{011}+\xi_{100}+\xi_{101}-\xi_{110}-\xi_{111}$ | $b d e$ |
| 100 | 111 | 111 | $\xi_{000}-\xi_{001}-\xi_{010}+\xi_{011}-\xi_{100}+\xi_{101}+\xi_{110}-\xi_{111}$ | $a c f$ |
| 110 | 100 | 001 | $\xi_{000}-\xi_{001}-\xi_{010}+\xi_{011}+\xi_{100}-\xi_{101}-\xi_{110}+\xi_{111}$ | $b c f$ |
| 110 | 100 | 001 | $\xi_{000}-\xi_{001}+\xi_{010}-\xi_{011}+\xi_{100}-\xi_{101}+\xi_{110}-\xi_{111}$ | $a d f$ |
| 111 | 101 | 101 | $\xi_{000}-\xi_{001}+\xi_{010}-\xi_{011}-\xi_{100}+\xi_{101}-\xi_{110}+\xi_{111}$ | $b d f$ |

and the eigenvalues of $\Xi_{3}+B$ are

$$
\begin{gathered}
\xi_{000}+\xi_{001}+\xi_{010}+\xi_{011}+\xi_{100}+\xi_{101}+\xi_{110}+\xi_{111}+a c e \\
\xi_{000}-\xi_{001}-\xi_{010}+\xi_{011}-\xi_{100}+\xi_{101}+\xi_{110}-\xi_{111}+a c f \\
\xi_{000}+\xi_{001}-\xi_{010}-\xi_{011}-\xi_{100}-\xi_{101}+\xi_{110}+\xi_{111}+a d e \\
\xi_{000}-\xi_{001}+\xi_{010}-\xi_{011}+\xi_{100}-\xi_{101}+\xi_{110}-\xi_{111}+a d f \\
\xi_{000}+\xi_{001}+\xi_{010}+\xi_{011}-\xi_{100}-\xi_{101}-\xi_{110}-\xi_{111}+b c e \\
\xi_{000}-\xi_{001}-\xi_{010}+\xi_{011}+\xi_{100}-\xi_{101}-\xi_{110}+\xi_{111}+b c f \\
\xi_{000}+\xi_{001}-\xi_{010}-\xi_{011}+\xi_{100}+\xi_{101}-\xi_{110}-\xi_{111}+b d e \\
\xi_{000}-\xi_{001}+\xi_{010}-\xi_{011}-\xi_{100}+\xi_{101}-\xi_{110}+\xi_{111}+b d f
\end{gathered}
$$

## 6. Structure of the AEPA transition matrices

Let us look again at the AEPA for $n=3$. The fully parametrized generator matrix, together with its indexing, as already shown in Table 3, is

|  | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | $\star$ | $\beta$ |  | $\gamma$ | $\alpha$ |  | $\delta$ |  |
| 001 |  | $\star$ | $\gamma$ |  |  | $\alpha$ |  | $\delta$ |
| 010 |  |  | $\star$ | $\beta$ | $\delta$ |  | $\alpha$ |  |
| 011 |  |  |  | $\star$ |  | $\delta$ |  | $\alpha$ |
| 100 | $\alpha$ |  |  |  | $\star$ | $\beta$ |  | $\gamma$ |
| 101 |  | $\alpha$ |  |  |  | $\star$ | $\gamma$ |  |
| 110 |  |  | $\alpha$ |  |  |  | $\star$ | $\beta$ |
| 111 |  |  |  | $\alpha$ |  |  |  | $\star$ |.

Compare now with Figure 4, showing the patterns underlying the submatrices for each of the four types of transitions. The relevant matrices are easily described with the help of the skewed tensor product $\otimes^{\prime}$ and very special $(2 \times 2)$-matrices.


Figure 4. The support pattern of the submatrices for $\alpha, \beta, \gamma, \delta$ transitions.

Important: From now on all iterated $\otimes^{\prime}$-products will be right-associated.
Generally, denote a generic very special $(2 \times 2)$-matrix by

$$
\Delta(x, y)=\left[\begin{array}{cc}
x+y & x \\
0 & y
\end{array}\right]
$$

so that in particular

$$
\Delta(0,1)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \Delta(1,-1)=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]
$$

It is readily checked that

- the $\alpha$ submatrix of $M_{3}(\alpha, \beta, \gamma, \delta)$ is

$$
M_{3}(1,0,0,0)=\mathbb{I}_{3}^{\prime}-\mathbb{I}_{3},=\mathbb{X} \otimes \mathbb{I}_{2}-\mathbb{I}_{3}
$$

- the $\beta$ submatrix of $M_{3}(\alpha, \beta, \gamma, \delta)$ is

$$
M_{3}(0,1,0,0)=\Delta(0,1) \otimes^{\prime} \Delta(0,1) \otimes^{\prime} \Delta(1,-1)=\mathbb{I}_{2} \otimes^{\prime} \Delta(1,-1)
$$

- the $\gamma$ submatrix of $M_{3}(\alpha, \beta, \gamma, \delta)$ is

$$
M_{3}(0,0,1,0)=\Delta(0,1) \otimes^{\prime} \Delta(1,-1) \otimes^{\prime} \Delta(0,1)=\mathbb{I}_{1} \otimes^{\prime} \Delta(1,-1) \otimes^{\prime} \mathbb{I}_{1}
$$

- the $\delta$ submatrix of $M_{3}(\alpha, \beta, \gamma, \delta)$ is

$$
M_{3}(0,0,0,1)=\Delta(1,-1) \otimes^{\prime} \Delta(0,1) \otimes^{\prime} \Delta(0,1)=\Delta(1,-1) \otimes^{\prime} \mathbb{I}_{2}
$$

It should be clear that this pattern generalizes in a straightforward way to the decomposition of the generator matrix for the generalized AEPA with any number $n$ of sites.

We now use variables $x_{0}, x_{1}, \ldots, x_{n}$ to denote the site parameters of the $n$-site model. In order to state the results, we use the very special matrices $\Delta(x, y)$ and the right associated $\otimes^{\prime}$-product to define the $\left(2^{n} \times 2^{n}\right)$-matrices

$$
\begin{aligned}
\Delta_{1}(y) & =\Delta_{1}\left(x_{1} ; y\right)=\Delta\left(x_{1}, y\right) \\
\Delta_{n}(y) & =\Delta_{n}\left(x_{1}, x_{2}, \ldots, x_{n} ; y\right)=\bigotimes_{r}^{\prime}\left(\Delta\left(x_{n}, y\right), \Delta\left(x_{n-1}, y\right), \ldots, \Delta\left(x_{1}, y\right)\right)
\end{aligned}
$$

Proposition 2. The generator matrix for the fully parametrized AEPA model with $n$ sites is

$$
M_{n}=M_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=x_{0} \cdot\left(\mathbb{X} \otimes \mathbb{I}_{n-1}-\mathbb{I}_{n}\right)-\sum_{1 \leq k \leq n} x_{k} \cdot M_{n, k},
$$

where, using the shorthand $0^{m}=0,0, \ldots, 0$ ( $m$ zeros),

$$
M_{n, k}=\Delta_{n}\left(0^{n-k},-1,0^{k-1} ; 1\right)=\mathbb{I}_{n-k} \otimes^{\prime} \Delta(-1,1) \otimes^{\prime} \mathbb{I}_{k-1}
$$

Theorem 4. The characteristic polynomial $\chi\left(M_{n} ; z\right)$ of the generator matrix $M_{n}=$ $M_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ is

$$
\chi\left(M_{n} ; z\right)=\prod_{\substack{\boldsymbol{b} \in \mathbb{B}^{n} \\|b| \text { even }}}\left(z+x_{\boldsymbol{b}}\right) \cdot \prod_{\substack{\boldsymbol{b} \in \mathbb{B}^{n} \\|\boldsymbol{b}| \text { odd }}}\left(z+2 x_{0}+x_{\boldsymbol{b}}\right),
$$

where $x_{\boldsymbol{b}}=\sum_{i: b_{i}=1} x_{i}$ and $|\boldsymbol{b}|=\sharp\left\{i: b_{i}=1\right\}$ for $\boldsymbol{b}=b_{1} b_{2} \ldots b_{n} \in \mathbb{B}^{n}$.
Proof. Referring to Proposition 2, we write

$$
M_{n}\left(x_{0}, x_{1}, \ldots, x_{m}\right)=A_{n}+B_{n}
$$

with

$$
A_{n}=x_{0} \cdot\left(\mathbb{X} \otimes \mathbb{I}_{n-1}-\mathbb{I}_{n}\right) \quad \text { and } \quad B_{n}=-\sum_{1 \leq k \leq n} x_{k} M_{n, k} .
$$

Here, $B_{n}$ is a linear combination of matrices of type $\bigotimes_{r}^{\prime} \mathcal{A}$ with very special matrices, see the statement of Corollary 3. More precisely, from

$$
M_{n, k}=\Delta_{n}\left(0^{n-k},-1,0^{k-1} ; 1\right)=\mathbb{I}_{n-k} \otimes^{\prime} \Delta(-1,1) \otimes^{\prime} \mathbb{I}_{k-1}
$$

by reverting the order in the $\otimes^{\prime}$-product, we get

$$
\Delta_{n}\left(0^{k-1},-1,0^{n-k} ; 1\right)=\mathbb{I}_{k-1} \otimes^{\prime} \Delta(-1,1) \otimes^{\prime} \mathbb{I}_{n-k}=M_{n, n-k+1},
$$

and, after reversal, the matrix $B_{n}$ turns into

$$
\overleftarrow{B_{n}}=-\sum_{1 \leq k \leq n} x_{k} M_{n-k+1}
$$

It is easily seen that elements of the main diagonal of $M_{n, k}$ are given by the vector $\left[b_{n-k+1}\right]_{b_{1} b_{2} \ldots b_{n} \in \mathbb{B}^{n}}$. Hence the vector $\beta$ of the diagonal elements of $\overleftarrow{B_{n}}$ is

$$
\begin{equation*}
\beta=-\sum_{1 \leq k \leq n} x_{k}\left[b_{k}\right]_{b_{1} b_{2} \ldots b_{n} \in \mathbb{B}^{n}}=-\left[x_{\boldsymbol{b}}\right]_{\boldsymbol{b} \in \mathbb{B}^{n}} \tag{*}
\end{equation*}
$$

As for $A_{n}$, we have $A_{n}=\Xi_{n}\left(\xi_{0^{n}}, \ldots, \xi_{1^{n}}\right)$ with

$$
\xi_{\boldsymbol{b}}=\xi_{b_{1} b_{2} \ldots b_{n}}= \begin{cases}-x_{0}, & \text { if } \boldsymbol{b}=0^{n} \\ x_{0}, & \text { if } \boldsymbol{b}=1.0^{n-1} \\ 0, & \text { otherwise }\end{cases}
$$

for $\boldsymbol{b} \in \mathbb{B}^{n}$. It is easy to check that

$$
H_{n} \cdot \xi_{n}=\left(-2 x_{0}\right) \cdot\left[b_{1}\right]_{\boldsymbol{b} \in \mathbb{B}^{n}},
$$

and therefore

$$
\left(H_{n} \cdot \xi_{n}\right)_{\overleftarrow{\lambda} \boldsymbol{b}}= \begin{cases}\left(-2 x_{0}\right), & \text { if }|\boldsymbol{b}| \text { is odd }  \tag{**}\\ 0, & \text { otherwise }\end{cases}
$$

for $\boldsymbol{b} \in \mathbb{B}^{n}$. Putting $(*)$ and $(* *)$ together, we obtain the result.
Thus, it has been shown how the eigenvalues of the fully parametrized AEPA model are obtained from a more general determinant evaluation involving Hadamard very special matrices and the skewed tensor product.

## 7. The partition function of the fully parametrized AEPA model

We will now construct matrices $T_{n+1, n}$ of size $2^{n+1} \times 2^{n}$, for $n \geq 1$, which satisfy the transfer matrix identities

$$
T_{n+1, n} \cdot M_{n}=M_{n+1} \cdot T_{n+1, n}, \quad n \geq 1,
$$

for the generator matrices $M_{n}=M_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of the fully parametrized model. The construction uses the matrices $\Delta_{n}(y)$ and $\Delta_{n}^{\prime}(y)$ from the previous section. Define the $\left(2^{n+1} \times 2^{n}\right)$-matrices

$$
\begin{aligned}
T_{n+1, n} & =x_{0} \cdot\left[\begin{array}{l}
\Delta_{n}^{\prime}\left(x_{n+1}\right) \\
\Delta_{n}\left(x_{n+1}\right)
\end{array}\right]+x_{n+1} \cdot\left[\begin{array}{c}
\Delta_{n}\left(x_{n+1}\right) \\
\mathbb{O}_{n}
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{n+1} \\
x_{0}
\end{array}\right] \otimes \Delta_{n}\left(x_{n+1}\right)+\left[\begin{array}{c}
x_{0} \\
0
\end{array}\right] \otimes \Delta_{n}^{\prime}\left(x_{n+1}\right), \quad \text { for } n \geq 1 .
\end{aligned}
$$

In order to give an idea on how these matrices look like, we reproduce the matrices $T_{2,1}$ and $T_{3,2}$. The former is given by

$$
T_{2,1}=\left[\begin{array}{cc}
x_{0} x_{1}+x_{2}\left(x_{1}+x_{2}\right) & x_{1} x_{2}+x_{0}\left(x_{1}+x_{2}\right) \\
x_{0} x_{2} & x_{2}^{2} \\
x_{0}\left(x_{1}+x_{2}\right) & x_{0} x_{1} \\
0 & x_{0} x_{2}
\end{array}\right]
$$

The first two columns of $T_{3,2}$ are

$$
\left[\begin{array}{cc}
x_{0} x_{1} x_{2}+x_{3}\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right) & x_{0} x_{2}\left(x_{1}+x_{3}\right)+x_{1} x_{3}\left(x_{2}+x_{3}\right) \\
x_{0} x_{2} x_{3} & x_{3}^{2}\left(x_{2}+x_{3}\right) \\
x_{0} x_{3}\left(x_{1}+x_{3}\right) & x_{0} x_{1} x_{3} \\
0 & x_{0} x_{3}^{2} \\
x_{0}\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right) & x_{0} x_{1}\left(x_{2}+x_{3}\right) \\
0 & x_{0} x_{3}\left(x_{2}+x_{3}\right) \\
0 & 0 \\
0 & 0
\end{array}\right],
$$

while the last two columns are

$$
\left[\begin{array}{cc}
x_{1} x_{2} x_{3}+x_{0}\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right) & x_{2} x_{3}\left(x_{1}+x_{3}\right)+x_{0} x_{1}\left(x_{2}+x_{3}\right) \\
x_{2} x_{3}^{2} & x_{0} x_{3}\left(x_{2}+x_{3}\right) \\
x_{3}^{2}\left(x_{1}+x_{3}\right) & x_{1} x_{3}^{2} \\
0 & x_{3}^{3} \\
x_{0} x_{1} x_{2} & x_{0} x_{2}\left(x_{1}+x_{3}\right) \\
x_{0} x_{2} x_{3} & 0 \\
x_{0} x_{3}\left(x_{1}+x_{3}\right) & x_{0} x_{1} x_{3} \\
0 & x_{0} x_{3}^{2}
\end{array}\right] .
$$

Furthermore, we set

$$
\mathcal{E}_{n}=\sum_{1 \leq k \leq n} x_{k} \cdot M_{n, k}
$$

where the matrices $M_{n, k}$ are the 'local' generator matrices from the previous section.
The following commutation rules, where $[A, B]=A \cdot B-B \cdot A$, are crucial.
Proposition 3. For the matrices $\Delta_{n}$ and $\mathcal{E}_{n}$, the following rules hold:
$(* * *) \quad\left[\mathcal{E}_{n}, \Delta_{n}\right]=\mathbb{O}_{n}$,
$(* * * *)$
$\left[\mathcal{E}_{n}, \Delta_{n}^{\prime}\right]=y \cdot\left[\Delta_{n}(y), \mathbb{I}_{n}^{\prime}\right]$.
Proof. To start with, let us verify the case $n=1$. We have

$$
\mathcal{E}_{1}=\left[\begin{array}{cc}
0 & -x_{1} \\
0 & x_{1}
\end{array}\right], \Delta_{1}=\left[\begin{array}{cc}
x_{1}+y & x_{1} \\
0 & y
\end{array}\right], \Delta_{1}^{\prime}=\left[\begin{array}{cc}
x_{1} & x_{1}+y \\
y & 0
\end{array}\right],
$$

and it is readily checked that

$$
\mathcal{E}_{1} \cdot \Delta_{1}=\left[\begin{array}{cc}
0 & -x_{1} y \\
0 & x_{1} y
\end{array}\right]=\Delta_{1}(y) \cdot \mathcal{E}_{1}
$$

and

$$
\mathcal{E}_{1} \cdot \Delta_{1}^{\prime}-\Delta_{1}^{\prime} \cdot \mathcal{E}_{1}=\left[\begin{array}{cc}
x_{1} y & x_{1} y \\
-x_{1} y & -x_{1} y
\end{array}\right]=y \cdot\left(\Delta_{1} \cdot I_{1}^{\prime}-I_{1}^{\prime} \cdot \Delta_{1}\right)
$$

In order to perform the induction step, note that

$$
\mathcal{E}_{n+1}=\mathbb{I}_{1} \otimes^{\prime} \mathcal{E}_{n}+x_{n+1} \cdot \Delta(1,-1) \otimes^{\prime} \mathbb{I}_{n}
$$

and

$$
\Delta_{n+1}=\Delta\left(x_{n+1}, y\right) \otimes^{\prime} \Delta_{n}
$$

As for $(* * *)$, we check that

$$
\begin{aligned}
\mathcal{E}_{n+1} \cdot & \Delta_{n+1} \\
& =\left(\left[\begin{array}{cc}
\mathcal{E}_{n} & \mathbb{O}_{n} \\
\mathbb{O}_{n} & \mathcal{E}_{n}
\end{array}\right]+x_{n+1}\left[\begin{array}{cc}
\mathbb{O}_{n} & \mathbb{I}_{n}^{\prime} \\
\mathbb{O}_{n} & -\mathbb{I}_{n}
\end{array}\right]\right) \cdot\left[\begin{array}{cc}
\left(x_{n+1}+y\right) \cdot \Delta_{n} & x_{n+1} \cdot \Delta_{n}^{\prime} \\
\mathbb{O}_{n} & y \cdot \Delta_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(x_{n+1}+y\right) \cdot \mathcal{E}_{n} \cdot \Delta_{n} & x_{n+1} \cdot \mathcal{E}_{n} \cdot \Delta_{n}^{\prime}+x_{n+1} \cdot y \cdot \mathbb{I}_{n}^{\prime} \cdot \Delta_{n} \\
\mathbb{O}_{n} & y \cdot \mathcal{E}_{n} \cdot \Delta_{n}-x_{n+1} \cdot y \cdot \Delta_{n}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \Delta_{n+1} \cdot \mathcal{E}_{n+1} \\
& \quad=\left[\begin{array}{cc}
\left(x_{n+1}+y\right) \cdot \Delta_{n} & x_{n+1} \cdot \Delta_{n}^{\prime} \\
\mathbb{O}_{n} & y \cdot \Delta_{n}
\end{array}\right] \cdot\left(\left[\begin{array}{cc}
\mathcal{E}_{n} & \mathbb{O}_{n} \\
\mathbb{O}_{n} & \mathcal{E}_{n}
\end{array}\right]+x_{n+1}\left[\begin{array}{cc}
\mathbb{O}_{n} & \mathbb{I}_{n}^{\prime} \\
\mathbb{O}_{n} & -\mathbb{I}_{n}
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
\left(x_{n+1}+y\right) \cdot \Delta_{n} \cdot \mathcal{E}_{n} & x_{n+1} \cdot \Delta_{n}^{\prime} \cdot \mathcal{E}_{n}+\left(x_{n+1}+y\right) \cdot x_{n+1} \cdot \Delta_{n} \cdot \mathbb{I}_{n}^{\prime}-x_{n+1}^{2} \cdot \Delta_{n}^{\prime} \\
\mathbb{O}_{n} & y \cdot \Delta_{n} \cdot \mathcal{E}_{n}-x_{n+1} \cdot y \cdot \Delta_{n}
\end{array}\right] .
\end{aligned}
$$

The difference $\mathcal{E}_{n+1} \cdot \Delta_{n+1}-\Delta_{n+1} \cdot \mathcal{E}_{n+1}$ simplifies, using induction for both $(* * *)$ and $(* * * *)$, to

$$
\left[\begin{array}{cc}
\left(x_{n+1}+y\right)\left[\mathcal{E}_{n}, \Delta_{n}\right] & \left.x_{n+1} \cdot\left[\begin{array}{c}
\left.\mathcal{E}_{n}, \Delta_{n}^{\prime}\right]+x_{n+1} \cdot y \cdot\left[\mathbb{I}_{n}^{\prime}, \Delta_{n}\right] \\
\mathbb{O}_{n}
\end{array}\right]=\left[\begin{array}{ll}
\mathbb{O}_{n} & \mathbb{O}_{n} \\
\mathbb{O}_{n} & \mathbb{O}_{n}
\end{array}\right] . \text {. } . \text { 敢, }, \Delta_{n}\right]
\end{array}\right]
$$

As for $(* * * *)$, we have, using induction for both cases,

$$
\begin{aligned}
\mathcal{E}_{n+1} \cdot \Delta_{n+1}^{\prime} & =\left[\begin{array}{cc}
\mathcal{E}_{n} & x_{n+1} \mathbb{I}_{n}^{\prime} \\
\mathbb{O}_{n} & \mathcal{E}_{n}-x_{n+1} \mathbb{I}_{n}
\end{array}\right] \cdot\left[\begin{array}{cc}
x_{n+1} \cdot \Delta_{n}^{\prime} & \left(x_{n+1}+y\right) \cdot \Delta_{n} \\
y \cdot \Delta_{n} & \mathbb{O}_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
x_{n+1} \cdot \mathcal{E}_{n} \cdot \Delta_{n}^{\prime}+x_{n+1} \cdot y \cdot \mathbb{I}_{n}^{\prime} \cdot \Delta_{n} & \left(x_{n+1}+y\right) \cdot \mathcal{E}_{n} \cdot \Delta_{n} \\
y \cdot \mathcal{E}_{n} \cdot \Delta_{n}-x_{n+1} \cdot y \cdot \Delta_{n} & \mathbb{O}_{n}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta_{n+1}^{\prime} \cdot \mathcal{E}_{n+1} & =\left[\begin{array}{cc}
x_{n+1} \cdot \Delta_{n}^{\prime} & \left(x_{n+1}+y\right) \cdot \Delta_{n} \\
y \cdot \Delta_{n} & \mathbb{O}_{n}
\end{array}\right] \cdot\left[\begin{array}{cc}
\mathcal{E}_{n} & x_{n+1} \cdot \mathbb{I}_{n}^{\prime} \\
\mathbb{O}_{n} & \mathcal{E}_{n}-x_{n+1} \cdot \mathbb{I}_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
x_{n+1} \cdot \Delta_{n}^{\prime} \cdot \mathcal{E}_{n} & x_{n+1}^{2} \Delta_{n}^{\prime} \cdot \mathbb{I}_{n}^{\prime}+\left(x_{n+1}+y\right)\left(\Delta_{n} \cdot \mathcal{E}_{n}-x_{n+1} \cdot \Delta_{n}\right) \\
y \cdot \Delta_{n} \cdot \mathcal{E}_{n} & x_{n+1} \cdot y \cdot \Delta_{n} \cdot \mathbb{I}_{n}^{\prime}
\end{array}\right] .
\end{aligned}
$$

Now we evaluate the entries of the four (block-matrix) positions of the commutator $\mathcal{E}_{n+1} \cdot \Delta_{n+1}^{\prime}-\Delta_{n+1}^{\prime} \cdot \mathcal{E}_{n+1}$, using induction for both $(* * *)$ and $(* * * *)$ :

- upper left

$$
\begin{aligned}
x_{n+1} \cdot \mathcal{E}_{n} \cdot \Delta_{n}^{\prime}+x_{n+1} \cdot y \cdot \mathbb{I}_{n}^{\prime} \cdot \Delta_{n} & -x_{n+1} \cdot \Delta_{n}^{\prime} \cdot \mathcal{E}_{n} \\
& =x_{n+1}\left(\left[\mathcal{E}_{n}, \Delta_{n}^{\prime}\right]+x_{n+1} \cdot y \cdot \mathbb{I}_{n}^{\prime} \cdot \Delta_{n}\right) \\
& \left.=x_{n+1} \cdot y \cdot\left[\Delta_{n}, \mathbb{I}_{n}^{\prime},\right]+x_{n+1} \cdot y \cdot \mathbb{I}_{n}^{\prime} \cdot \Delta_{n}\right) \\
& =x_{n+1} \cdot y \cdot \Delta_{n} \cdot \mathbb{I}_{n}^{\prime}=x_{n+1} \cdot y \cdot \Delta_{n}^{\prime},
\end{aligned}
$$

- upper right

$$
\begin{aligned}
\left(x_{n+1}+y\right) \cdot \mathcal{E}_{n} \cdot \Delta_{n}-x_{n+1}^{2} \Delta_{n}^{\prime} & \cdot \mathbb{I}_{n}^{\prime}-\left(x_{n+1}+y\right)\left(\Delta_{n} \cdot \mathcal{E}_{n}-x_{n+1} \cdot \Delta_{n}\right) \\
& =\left(x_{n+1}+y\right)\left[\mathcal{E}_{n}, \Delta_{n}\right]+x_{n+1} \cdot y \cdot \Delta_{n}=x_{n+1} \cdot y \cdot \Delta_{n}
\end{aligned}
$$

- lower left
$y \cdot \mathcal{E}_{n} \cdot \Delta_{n}-x_{n+1} \cdot y \cdot \Delta_{n}-y \cdot \Delta_{n} \cdot \mathcal{E}_{n}=y \cdot\left[\mathcal{E}_{n}, \Delta_{n}\right]-x_{n+1} \cdot y \cdot \Delta_{n}=-x_{n+1} \cdot y \cdot \Delta_{n}$,
- lower right

$$
\mathbb{O}_{n}-x_{n+1} \cdot y \cdot \Delta_{n} \cdot \mathbb{I}_{n}^{\prime}=-x_{n+1} \cdot y \cdot \Delta_{n}^{\prime}
$$

Thus we have shown that

$$
\mathcal{E}_{n+1} \cdot \Delta_{n+1}^{\prime}-\Delta_{n+1}^{\prime} \cdot \mathcal{E}_{n+1}=x_{n+1} \cdot y \cdot\left[\begin{array}{cc}
\Delta_{n}^{\prime} & \Delta_{n} \\
-\Delta_{n} & -\Delta_{n}^{\prime}
\end{array}\right]
$$

and the claim $(* * * *)$ for $n+1$ follows from

$$
\begin{aligned}
{\left[\Delta_{n+1}, \mathbb{I}_{n+1}^{\prime}\right]=} & {\left[\begin{array}{cc}
\left(x_{k+1}+y\right) \cdot \Delta_{n} & x_{n+1} \cdot \Delta_{n}^{\prime} \\
\mathbb{O}_{n} & y \cdot \Delta_{n}
\end{array}\right] \cdot\left[\begin{array}{ll}
\mathbb{O}_{n} & \mathbb{I}_{n} \\
\mathbb{I}_{n} & \mathbb{O}_{n}
\end{array}\right] } \\
& -\left[\begin{array}{cc}
\mathbb{O}_{n} & \mathbb{I}_{n} \\
\mathbb{I}_{n} & \mathbb{O}_{n}
\end{array}\right] \cdot\left[\begin{array}{cc}
\left(x_{n+1}+y\right) \cdot \Delta_{n} & x_{n+1} \cdot \Delta_{n}^{\prime} \\
\mathbb{O}_{n} & y \cdot \Delta_{n}
\end{array}\right] \\
= & x_{n+1}\left[\begin{array}{cc}
\Delta_{n}^{\prime} & \Delta_{n} \\
-\Delta_{n} & -\Delta_{n}^{\prime}
\end{array}\right]=x_{n+1}\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right] \otimes^{\prime} \Delta_{n} .
\end{aligned}
$$

Theorem 5. The generator matrices $M_{n}$ and the matrices $T_{n+1, n}$ satisfy the transfer matrix relations

$$
T_{n+1, n} \cdot M_{n}=M_{n+1} \cdot T_{n+1, n}, \quad n \geq 1
$$

Proof. The proof proceeds by taking the purported identity $M_{n+1} \cdot T_{n+1, n}=T_{n+1, n} \cdot M_{n}$, inserting the expressions for $M_{n}$ and $M_{n+1}$, and for $T_{n+1, n}$, and then comparing the coefficients of $x_{0}^{i}, i \in\{0,1,2\}$ on both sides and verifying the resulting identities.

- For the coefficient of $x_{0}^{2}$, the identity to verify is

$$
\left(\mathbb{X} \otimes^{\prime} \mathbb{I}_{n}\right) \cdot\left[\begin{array}{l}
\Delta_{n}^{\prime} \\
\Delta_{n}
\end{array}\right] \stackrel{!}{=}\left[\begin{array}{l}
\Delta_{n}^{\prime} \\
\Delta_{n}
\end{array}\right] \cdot\left(\mathbb{X} \otimes^{\prime} \mathbb{I}_{n-1}\right)
$$

which is true since both sides equal $\left[\begin{array}{c}\Delta_{n} \\ \Delta_{n}^{\prime}\end{array}\right]$.

- For the coefficient of $x_{0}^{0}$, the identity to verify is

$$
\sum_{1 \leq k \leq n+1} x_{k} \cdot E_{k, n+1} \cdot x_{k+1}\left[\begin{array}{c}
\Delta_{n} \\
\mathbb{O}_{n}
\end{array}\right] \stackrel{!}{=} x_{k+1}\left[\begin{array}{c}
\Delta_{n} \\
\mathbb{O}_{n}
\end{array}\right] \cdot \sum_{1 \leq k \leq n} x_{k} \cdot M_{n, k} .
$$

Note that the term for $k=n+1$ does not contribute to the sum on the left-hand side because

$$
E_{n+1, n+1}=\Delta(1,-1) \otimes^{\prime} \mathbb{I}_{n}=\left[\begin{array}{cc}
\mathbb{O}_{n} & \mathbb{I}_{n}^{\prime} \\
\mathbb{O}_{n} & -\mathbb{I}_{n}
\end{array}\right]
$$

and thus

$$
E_{n+1, n+1} \cdot\left[\begin{array}{l}
\Delta_{n} \\
\mathbb{O}_{n}
\end{array}\right]=\left[\begin{array}{l}
\mathbb{O}_{n} \\
\mathbb{O}_{n}
\end{array}\right] .
$$

In view of $E_{k, n+1}=\mathbb{I}_{1} \otimes^{\prime} M_{n, k}$, it turns out that one is left with an identity to prove that is equivalent to commutation relation $(* * *)$.

- For the coefficient of $x_{0}^{1}$, the identity to verify is

$$
\begin{aligned}
\left(\mathbb{X} \otimes \mathbb{I}_{n}\right) \cdot x_{n+1}\left[\begin{array}{c}
\Delta_{n} \\
0
\end{array}\right] & +\sum_{1 \leq k \leq n+1} x_{k} E_{k, n+1} \cdot\left[\begin{array}{l}
\Delta_{n}^{\prime} \\
\Delta_{n}
\end{array}\right] \\
& \stackrel{!}{=} x_{n+1}\left[\begin{array}{c}
\Delta_{n} \\
0
\end{array}\right] \cdot\left(\mathbb{X} \otimes^{\prime} \mathbb{I}_{n-1}\right)+\left[\begin{array}{c}
\Delta_{n}^{\prime} \\
\Delta_{n}
\end{array}\right] \cdot \sum_{1 \leq k \leq n} x_{k} M_{n, k} .
\end{aligned}
$$

Taking $E_{n+1, n+1}=\Delta(1,-1) \otimes^{\prime} \mathbb{I}_{n}$ into account, there are two identities to verify, one for the "upper part" (the top $\left(2^{n} \times 2^{n}\right)$-matrix) and the "lower part" (the bottom ( $2^{n} \times 2^{n}$ )-matrix).

- The upper part reads

$$
\mathbb{I}_{n}^{\prime} \cdot \Delta_{n}+\sum_{1 \leq k \leq n} x_{k} \cdot M_{n, k} \cdot \Delta_{n}^{\prime} \stackrel{!}{=} \Delta_{n} \cdot \mathbb{I}_{n}^{\prime}+\sum_{1 \leq k \leq n} x_{k} \cdot \Delta_{n}^{\prime} \cdot M_{n, k}
$$

which is commutation relation $(* * * *)$.

- The lower part reads

$$
\sum_{1 \leq k \leq n} x_{k} \cdot M_{n, k} \cdot \Delta_{n} \stackrel{!}{=} \Delta_{n} \cdot \sum_{1 \leq k \leq n} x_{k} \cdot M_{n, k},
$$

which is commutation relation $(* * *)$.
The proof clearly also applies if in place of $M_{n}$ we take $M_{n}(z)=z \cdot \mathbb{I}_{n}+M_{n}$. This has the following consequence.

Corollary 6. For $n \geq 1$, we have

$$
M_{n+1}(z) \cdot T_{n+1, n}=T_{n+1, n} \cdot M_{n}(z) .
$$

## Lemma 4.

(1) The all-one vector $\mathbf{1}_{1}=(1,1)$ of length 2 is a left eigenvector for the eigenvalue $a+b$ for all very special $2 \times 2$-matrices $A=\Delta(a, b)$, as well as for the matrix $A^{\prime}$.
(2) Let $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$, with $A_{i}=\Delta\left(a_{i}, b_{i}\right)$, be a list of very special $2 \times 2$-matrices, Then the all-one vector $\mathbf{1}_{n}$ of length $2^{n}$ is a left eigenvector for the eigenvalue $\prod_{1 \leq i \leq n}\left(a_{i}+b_{i}\right)$ for $A=\bigotimes_{r}^{\prime}\left(A_{1}, A_{2}, \ldots, A_{n}\right)$, as well as for the matrix $A^{\prime}$.
(3) In particular, this applies to the matrices $\Delta_{n}(y)=\Delta_{n}\left(x_{1}, x_{2}, \ldots, x_{n} ; y\right)$ with eigenvalues $\prod_{1 \leq i \leq n}\left(x_{i}+y\right)$.

Proof. For the induction basis $n=1$, this is obvious.
Let $A=A_{1} \otimes^{\prime} B$, where $B=\bigotimes_{r}^{\prime}\left(A_{2}, \ldots, A_{n}\right)$. By induction, $B$ and $B^{\prime}$ have $\mathbf{1}_{n-1}$ as left eigenvector for the eigenvalue $\lambda=\prod_{2 \leq i \leq n}\left(a_{1}+b_{i}\right)$. Then

$$
\begin{aligned}
\mathbf{1}_{n} \cdot A & =\mathbf{1}_{n} \cdot\left[\begin{array}{cc}
\left(a_{1}+b_{1}\right) B & a_{1} B^{\prime} \\
0 & b_{1} B
\end{array}\right] \\
& =\left[\left(a_{1}+b_{1}\right) \cdot \mathbf{1}_{n-1} \cdot B, a_{1} \cdot \mathbf{1}_{n-1} \cdot B^{\prime}+b_{1} \cdot \mathbf{1}_{n-1} \cdot B\right] \\
& =\left(a_{1}+b_{1}\right) \cdot \lambda \cdot\left[\mathbf{1}_{n-1}, \mathbf{1}_{n-1}\right] \\
& =\prod_{1 \leq i \leq n}\left(a_{i}+b_{i}\right) \cdot \mathbf{1}_{n},
\end{aligned}
$$

and similarly for $A^{\prime}$.
Now define (column) vectors $\phi_{n}$ of length $2^{n}$ inductively by

$$
\boldsymbol{\phi}_{1}=\left[\begin{array}{c}
x_{0}+x_{1} \\
x_{0}
\end{array}\right], \quad \boldsymbol{\phi}_{n+1}=T_{n+1, n} \cdot \boldsymbol{\phi}_{n}, \quad n \geq 1
$$

The vector $\phi_{1}$ is obviously a right kernel vector (right eigenvector for the eigenvalue 0 ) of the matrix

$$
M_{1}=\left[\begin{array}{cc}
-x_{0} & x_{0}+x_{1} \\
x_{0} & -x_{0}-x_{1}
\end{array}\right],
$$

and, as in the case of the original AEPA model, due to the transfer matrix identities this applies to all matrices $M_{n}$ and vectors $\boldsymbol{\phi}_{n}$. Namely, by assuming that $M_{n} \cdot \boldsymbol{\phi}_{n}=\mathbf{0}_{n}^{\top}$, we get

$$
M_{n+1} \cdot \boldsymbol{\phi}_{n+1}=M_{n+1} \cdot T_{n+1, n} \cdot \boldsymbol{\phi}_{n}=T_{n+1, n} \cdot M_{n} \cdot \boldsymbol{\phi}_{n}=T_{n+1, n} \cdot \mathbf{0}_{n}^{\top}=\mathbf{0}_{n+1}^{\top} .
$$

Definition 3. The partition function of the fully parametrized AEPA with $n$ sites is defined as the inner product $\mathcal{Z}_{n}=\mathbf{1}_{n} \cdot \boldsymbol{\phi}_{n}$.

Theorem 7. The partition function of the fully parametrized $A E P A$ with $n$ sites is

$$
\mathcal{Z}_{n}=\prod_{1 \leq i \leq n}\left(2 x_{0}+x_{i}\right) \cdot \prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)
$$

Proof. We proceed by induction, relying on Lemma 4. The induction basis $\mathcal{Z}_{n}=$ $\mathbf{1}_{1} \cdot \boldsymbol{\phi}_{1}=2 x_{0}+x_{1}$ is obvious. Then

$$
\begin{aligned}
\mathcal{Z}_{n+1} & =\mathbf{1}_{n+1} \cdot \boldsymbol{\phi}_{n+1} \\
& =\left(\mathbf{1}_{1} \otimes \mathbf{1}_{n}\right) \cdot T_{n+1, n} \cdot \boldsymbol{\phi}_{n} \\
& =\left(\mathbf{1}_{1} \otimes \mathbf{1}_{n}\right) \cdot\left(\left[\begin{array}{c}
x_{n+1} \\
x_{0}
\end{array}\right] \otimes \Delta_{n}\left(x_{n+1}\right)+\left[\begin{array}{c}
x_{0} \\
0
\end{array}\right] \otimes \Delta_{n}^{\prime}\left(x_{n+1}\right)\right) \cdot \phi_{n} \\
& =\left(x_{0}+x_{n+1}\right) \cdot\left(\mathbf{1}_{n} \cdot \Delta_{n}\left(x_{n+1}\right)+x_{0} \cdot \mathbf{1}_{n} \cdot \Delta_{n}^{\prime}\left(x_{n+1}\right)\right) \cdot \boldsymbol{\phi}_{n} \\
& =\left(2 x_{0}+x_{n+1}\right) \cdot \prod_{1 \leq i \leq n}\left(x_{i}+x_{n+1}\right) \cdot \mathbf{1}_{n} \cdot \boldsymbol{\phi}_{n} \\
& =\left(2 x_{0}+x_{n+1}\right) \cdot \prod_{1 \leq i \leq n}\left(x_{i}+x_{n+1}\right) \cdot \mathcal{Z}_{n} \\
& =\prod_{1 \leq i \leq n+1}\left(2 x_{0}+x_{i}\right) \cdot \prod_{1 \leq i<j \leq n+1}\left(x_{i}+x_{j}\right) .
\end{aligned}
$$

The structure of the transfer matrices $T_{n, n+1}$ is simple, even though they appear complicated if fully written out. Under the base change by the Hadamard matrices, the transfer matrix relation turns into

$$
\left(H_{n+1} T_{n+1, n} H_{n}\right) \cdot\left(H_{n} M_{n} H_{n}\right)=\left(H_{n+1} M_{n+1} H_{n+1}\right) \cdot\left(H_{n+1} T_{n+1, n} H_{n}\right) .
$$

The matrices $H_{n} M_{n} H_{n}$ are well known by now, recall Table 5 for an illustration in the case $n=3$. It suggests itself to ask what the matrices $H_{n+1} T_{n+1, n} H_{n}$ look like. This will be explored in the next section.

## 8. The Hadamard conjugates of the transfer matrices

Define matrices $U_{n}(y)=U_{n}\left(x_{1}, \ldots, x_{n} ; y\right)$ and $V_{n}(y)=V_{n}\left(x_{1}, \ldots, x_{n} ; y\right)$ of size $2^{n} \times$ $2^{n-1}$ by splitting $H_{n} \cdot \Delta_{n}(y) \cdot H_{n}$ into two parts:

$$
H_{n} \cdot \Delta_{n}(y) \cdot H_{n}=\left[U_{n}(y) \mid V_{n}(y)\right] .
$$

The following result is a simple consequence of Lemma 2, observing (see the proof of that lemma) that

$$
H_{n} \cdot \Delta_{n}^{\prime}(y) \cdot H_{n}=\left[U_{n}(y) \mid-V_{n}(y)\right]
$$

using

$$
\Delta_{n+1}(y)=\Delta\left(x_{n+1}, y\right) \otimes^{\prime} \Delta_{n}(y)=\left[\begin{array}{cc}
\left(x_{n+1}+y\right) \Delta_{n}(y) & x_{n+1} \Delta_{n}^{\prime}(y) \\
0 & y \Delta_{n}(y)
\end{array}\right]
$$

for the induction step.
Proposition 4. The matrices $U_{n}=U_{n}(y)$ and $V_{n}=V_{n}(y)$ satisfy the simultaneous recursion

$$
\begin{aligned}
U_{1} & =\left[\begin{array}{c}
x_{1}+y \\
x_{1}
\end{array}\right], & V_{1} & =\left[\begin{array}{l}
0 \\
y
\end{array}\right], \\
U_{n+1} & =\left[\begin{array}{cc}
\left(x_{n+1}+y\right) U_{n} & y V_{n} \\
x_{n+1} U_{n} & \mathbb{O}_{n, n-1}
\end{array}\right], & V_{n+1} & =\left[\begin{array}{cc}
\mathbb{O}_{n, n-1} & x_{n+1} V_{n} \\
y U_{n} & \left(x_{n+1}+y\right) V_{n}
\end{array}\right],
\end{aligned}
$$

for $n \geq 1$, where $\mathbb{O}_{n, n-1}$ denotes the all-zero matrix of size $2^{n} \times 2^{n-1}$.

From this fact, information can be obtained on the first row and on the first column of the matrix $H_{n} \cdot \Delta_{n}(y) \cdot H_{n}$.

## Corollary 8.

(1) The first row of both the matrices $H_{n} \cdot \Delta_{n}(y) \cdot H_{n}$ and $H_{n} \cdot \Delta_{n}^{\prime}(y) \cdot H_{n}$ is

$$
\prod_{i=1}^{n}\left(x_{i}+y\right) \cdot\left[\begin{array}{lllll}
1 & 0 & 0 & \ldots & 0
\end{array}\right]
$$

(2) The first column of both the matrices $H_{n} \cdot \Delta_{n}(y) \cdot H_{n}$ and $H_{n} \cdot \Delta_{n}^{\prime}(y) \cdot H_{n}$ is the transpose of the vector $\left[\varepsilon_{\overleftarrow{b}}(y)\right]_{b \in \mathbb{B}^{n}}$, where

$$
\varepsilon_{\boldsymbol{b}}(y)=\prod_{b_{i}=1} x_{i} \cdot \prod_{b_{j}=0}\left(x_{j}+y\right)
$$

We will now look at the Hadamard conjugates $H_{n+1} \cdot T_{n+1, n} \cdot H_{n}$ of the transfer matrices $T_{n+1, n}$. From

$$
T_{n+1, n}=x_{0}\left[\begin{array}{c}
\Delta_{n}^{\prime}\left(x_{n+1}\right) \\
\Delta_{n}\left(x_{n+1}\right)
\end{array}\right]+x_{n+1}\left[\begin{array}{c}
\Delta_{n}\left(x_{n+1}\right) \\
\mathbb{O}_{n, n}
\end{array}\right],
$$

we obtain

$$
H_{n+1} \cdot T_{n+1, n} \cdot H_{n}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\left(2 x_{0}+x_{n+1}\right) U_{n}\left(x_{n+1}\right) & x_{n+1} V_{n}\left(x_{n+1}\right) \\
x_{n+1} U_{n}\left(x_{n+1}\right) & -\left(2 x_{0}-x_{n+1}\right) V_{n}\left(x_{n+1}\right)
\end{array}\right] .
$$

A look at the examples $H_{2} \cdot T_{2,1} \cdot H_{1}$ and $H_{3} \cdot T_{3,2} \cdot H_{2}$ indicates that the matrices $H_{n+1} \cdot T_{n+1, n} \cdot H_{n}$ are simpler than the matrices $T_{n+1, n}$ : they are sparser and all entries factor into a product of variables and binomials! For example, we have

$$
\sqrt{2} H_{2} \cdot T_{2,1} \cdot H_{1}=\left[\begin{array}{cc}
\left(2 x_{0}+x_{2}\right)\left(x_{1}+x_{2}\right) & 0 \\
\left(2 x_{0}+x_{2}\right) x_{1} & x_{2}^{2} \\
x_{2}\left(x_{1}+x_{2}\right) & 0 \\
x_{2} x_{1} & -\left(2 x_{0}-x_{2}\right) x_{2}
\end{array}\right] .
$$

The first two columns of $\sqrt{2} H_{3} \cdot T_{3,2} \cdot H_{2}$ are

$$
\left[\begin{array}{cc}
\left(2 x_{0}+x_{3}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right) & 0 \\
\left(2 x_{0}+x_{3}\right) x_{1}\left(x_{2}+x_{3}\right) & \left(2 x_{0}+x_{3}\right) x_{3}^{2} \\
\left(2 x_{0}+x_{3}\right) x_{2}\left(x_{1}+x_{3}\right) & 0 \\
\left(2 x_{0}+x_{3}\right) x_{1} x_{2} & 0 \\
x_{3}\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right) & 0 \\
x_{3} x_{1}\left(x_{2}+x_{3}\right) & x_{3}^{3} \\
x_{3} x_{2}\left(x_{1}+x_{3}\right) & 0 \\
x_{3} x_{1} x_{2} & 0
\end{array}\right],
$$

while the last two columns are

$$
\left[\begin{array}{cc}
0 & 0 \\
0 & x_{3}^{2} x_{2} \\
x_{3}^{2}\left(x_{1}+x_{3}\right) & 0 \\
x_{3}^{2} x_{1} & x_{3}^{2}\left(x_{2}+x_{3}\right) \\
0 & 0 \\
0 & -\left(2 x_{0}-x_{3}\right) x_{2} x_{3} \\
-\left(2 x_{0}-x_{3}\right) x_{3}\left(x_{1}+x_{3}\right) & 0 \\
-\left(2 x_{0}-x_{3}\right) x_{1} x_{3} & -\left(2 x_{0}-x_{3}\right) x_{3}\left(x_{2}+x_{3}\right)
\end{array}\right]
$$

The following are immediate consequences of the preceding statements.

## Corollary 9.

(1) The first row of the matrix $\sqrt{2} H_{n+1} \cdot T_{n+1, n} \cdot H_{n}$ is

$$
\left(2 x_{0}+x_{n+1}\right) \prod_{i=1}^{n}\left(x_{i}+x_{n+1}\right)\left[\begin{array}{lllll}
1 & 0 & 0 & \ldots & 0
\end{array}\right] .
$$

(2) The first column of the matrix $\sqrt{2} H_{n+1} \cdot T_{n+1, n} \cdot H_{n}$ is the transpose of the concatenation of the two vectors

$$
\left[\left(2 x_{0}+x_{n+1}\right) \varepsilon_{\overleftarrow{\boldsymbol{b}}}\left(x_{n+1}\right)\right]_{\boldsymbol{b} \in \mathbb{B}^{n}} \text { and }\left[x_{n+1} \varepsilon_{\overleftarrow{\boldsymbol{b}}}\left(x_{n+1}\right)\right]_{\boldsymbol{b} \in \mathbb{B}^{n}}
$$

For $n>k \geq 0$, we now define

$$
T_{n, k}=T_{n, n-1} \cdot T_{n-1, n-2} \cdot \ldots \cdot T_{k+1, k}
$$

together with the plausible convention that $T_{1,0}=\boldsymbol{\phi}_{1}=\left[\begin{array}{c}x_{0}+x_{1} \\ x_{0}\end{array}\right]$. Then

$$
H_{n} \cdot T_{n, k} \cdot H_{k}=\prod_{j=n . . k+1} H_{j} \cdot T_{j, j-1} \cdot H_{j-1}
$$

Corollary 10. The first row of the matrix $2^{(n-k) / 2} H_{n} \cdot T_{n, k} \cdot H_{k}$ is

$$
\left.\prod_{k<j \leq n} \prod_{0 \leq i<j \leq n}\left(x_{i}+x_{j}\right)\right|_{x_{0} \mapsto 2 x_{0}} \cdot\left[\begin{array}{lllll}
1 & 0 & 0 & \ldots & 0
\end{array}\right] .
$$

In particular, the partition function $\mathcal{Z}_{n}$ appears in the top position of the (column) vector $2^{n / 2} H_{n} \cdot T_{n, 0}=2^{n / 2} \boldsymbol{\phi}_{n}$.

The fact that the Hadamard-transformed picture 'looks simpler' brings up the idea that in this manner it might be possible to determine the partition function directly, without using transfer matrices.

## 9. Another approach to the partition function

Recall that in the original AEPA model with $n$ sites the partition function is the sum of the entries of a right kernel vector of the generator matrix $M_{n}(\alpha, \beta)$, viz.

$$
M_{n}(\alpha, \beta) \cdot \boldsymbol{\phi}_{n}=\mathbf{0}_{n}^{\top} .
$$

The same holds for the fully parametrized AEPA and the generator matrices $M_{n}=$ $M_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)$. Recall also that the partition function is given by $\mathcal{Z}_{n}=\mathbf{1}_{n} \cdot \boldsymbol{\phi}_{n}$, so that using the Hadamard matrix $H_{n}$ we can write

$$
\mathcal{Z}_{n}=\mathbf{1}_{n} \cdot \boldsymbol{\phi}_{n}=\mathbf{1}_{n} \cdot H_{n} \cdot H_{n} \cdot \boldsymbol{\phi}_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0
\end{array}\right] \cdot H_{n} \cdot \boldsymbol{\phi}_{n}
$$

where

$$
\left(H_{n} \cdot M_{n} \cdot H_{n}\right) \cdot\left(H_{n} \cdot \boldsymbol{\phi}_{n}\right)=H_{n} \cdot M_{n} \cdot \boldsymbol{\phi}_{n}=\mathbf{0}_{n}^{\top},
$$

i.e., $\boldsymbol{\psi}_{n}=H_{n} \cdot \boldsymbol{\phi}_{n}$ is a right kernel vector (with polynomial coefficients) of the Hadamard conjugate of $M_{n}$, and that the partition function $\mathcal{Z}_{n}$ is just the first component of this vector - this is the same as the statement in Corollary 10. Now recall further that a certain permutation conjugate $\widetilde{M}_{n}$ of $H_{n} \cdot M_{n} \cdot H_{n}$ is a lower triangular matrix - and its transpose is almost identical to $M_{n}$. Let $\widetilde{\boldsymbol{\psi}}_{n}$ denote the vector obtained from $\boldsymbol{\psi}_{n}$ by permuting its components in the same way as $\widetilde{M}_{n}$ is related to $H_{n} \cdot M_{n} \cdot H_{n}$. Then

$$
\widetilde{M}_{n} \cdot \widetilde{\boldsymbol{\psi}}_{n}=\mathbf{0}_{n}^{\top}
$$

One important fact must be noted: the permutation just mentioned leaves the first position of vectors (and matrices) fixed. This follows from the explicit description of this reordering given in Corollary 2. Hence the first component of $\boldsymbol{\psi}_{n}$ and of $\widetilde{\boldsymbol{\psi}}_{n}$ are the same, and thus the partition function appears as the first component of the solution of the triangular system

$$
\mathcal{L}_{n}: \quad \widetilde{M}_{n} \cdot \boldsymbol{y}=\mathbf{0}_{n}^{\top} .
$$

Here is the system $\mathcal{L}_{3}$, with a vector of unknowns $\boldsymbol{y}=\left[\begin{array}{llll}y_{0} & y_{1} & \ldots & y_{7}\end{array}\right]^{\top}$ :

$$
\begin{aligned}
y_{0} & =y_{0} \\
(2 \alpha+\delta) y_{1} & =\delta y_{0} \\
(2 \alpha+\gamma) y_{2} & =\gamma y_{1} \\
(\delta+\gamma) y_{3} & =\delta y_{2}+\gamma y_{0} \\
(2 \alpha+\beta) y_{4} & =\beta y_{2} \\
(\delta+\beta) y_{5} & =\delta y_{4}+\beta y_{3} \\
(\gamma+\beta) y_{6} & =\gamma y_{5}+\beta y_{0} \\
(2 \alpha+\delta+\gamma+\beta) y_{7} & =\delta y_{6}+\gamma y_{4}+\beta y_{1}
\end{aligned}
$$

The solution $\mathcal{L}_{3}$ is then a vector of rational functions in the variables $\alpha, \beta, \gamma, \delta$. Here, $y_{0}$ is a free parameter - actually this is the value that we are after! - which has to be chosen so that the solution vector has polynomial coefficients. This means that one may compute the solution for $y_{0}=1$, say, and then multiply through with the least common multiple of the denominators of $y_{1}, \ldots, y_{7}$. In this way, the first component $y_{0}$ will become the least common multiple of the denominators, and this is precisely the partition function $\mathcal{Z}_{3}$ in the example, and in general $\mathcal{Z}_{n}$ for the system $\mathcal{L}_{n}$ for a model with $n$ sites!

Before describing the system $\mathcal{L}_{n}$ related to $M_{n}$ for arbitrary $n$, we make the convention to replace $2 \alpha$ by $\alpha$ and then, as usual, to replace the parameters $\alpha, \beta, \gamma, \delta, \ldots$ by $x_{0}, x_{1}, x_{2}, x_{3}, \ldots$ Note that the system $\mathcal{L}_{n}$ is the subsystem consisting of the first $2^{n}$ equations of the system $\mathcal{L}_{n+1}$. So it suffices to state generally what the equation is which determines $y_{k}$, independent of $n$ (provided $k<2^{n}$ ).

- Write nonnegative integers $k$ as binary (state) vectors, now starting the numbering at the right end: $\ldots k_{3} k_{2} k_{1}$ (i.e., $k=\cdots+k_{3} 2^{2}+k_{2} 2^{1}+k_{1} 2^{0}$ ).
- The relations $\ell \lessdot_{i} k$ (respectively $\ell \ll_{i} k$ ) mean that in the asymmetric exclusion process there is a one-step transition at position $i$ which leads from state " $k$ " to state " $\ell$ " via right shift (respectively via annihilation), viz.

$$
\begin{aligned}
\ell \lessdot_{i} k \Leftrightarrow\left(k_{i}, k_{i-1}\right) & =(1,0) \wedge\left(\ell_{i}, \ell_{i-1}\right)=(0,1) \wedge k_{j}=\ell_{j}, \\
\ell \nless_{i} k \Leftrightarrow\left(k_{i}, k_{i-1}\right) & =(1,1) \wedge\left(\ell_{i}, \ell_{i-1}\right)=(0,0) \wedge k_{j}=\ell_{j},
\end{aligned} \quad j \neq i, i-1 .
$$

For $i=1$, the relation $\ell \lessdot_{1} k$ just means $k_{1}=1, \ell_{1}=0 \wedge k_{j}=\ell_{j}, j>1$.

- The equation for $y_{k}$ is

$$
\left(\left(x_{0}+\right) \sum_{i: k_{i}=1} x_{i}\right) y_{k}=\sum_{\substack{i, \ell \\ \ell<_{i} k}} x_{i} y_{\ell}+z \cdot \sum_{\substack{i, \ell \\ \ell \lll i}} x_{i} y_{\ell}
$$

where $x_{0}$ on the left side appears if and only if $k$ has an odd number of binary digits $k_{i}=1$. The extra variable $z$ acts as a counting variable for annihilation steps.
The linear system $\mathcal{L}_{3}$ is visualized in Figure 5, where the solid arrows represent right shifts and the dashed arrows represent annihilation steps.


Figure 5. The system associated to $\widetilde{M}_{3}$, with states decorated by their equations, solid arrows for right shifts and dashed arrows for annihilation steps.

The solution of the system $\mathcal{L}_{3}$ (with $y_{0}=1$ ) is given in Table 6. As expected, the least common multiple of the denominators of $y_{1}, \ldots, y_{7}$ (up to changing $x_{0}$ into $2 x_{0}$ ) is the partition function $\mathcal{Z}_{3}$ of the AEPA with 3 sites. Indeed, this is the denominator $\prod_{0 \leq i<j \leq 3}\left(x_{i}+x_{j}\right)$ of $y_{7}$, as all other denominators are in fact divisors of this product. On the one hand, this is not surprising, because each step in computing $y_{k}$ from several $y_{\ell}$ that come "before" $k$ (in the sense of the relations $\lessdot_{i}$ respectively $<_{i}$ ) involves a division by $\left(x_{0}+\right) \sum_{i: k_{i}=1} x_{i}$. So denominators tend to have more factors. However, on

$$
\begin{aligned}
y_{1} & =\frac{x_{1}}{x_{0}+x_{1}} \\
y_{2} & =\frac{x_{1} x_{2}}{\left(x_{0}+x_{1}\right)\left(x_{0}+x_{2}\right)} \\
y_{3} & =\frac{x_{1}^{2} x_{2}}{\left(x_{0}+x_{1}\right)\left(x_{0}+x_{2}\right)\left(x_{1}+x_{2}\right)}+z \cdot \frac{x_{2}}{x_{1}+x_{2}} \\
y_{4} & =\frac{x_{1} x_{2} x_{3}}{\left(x_{0}+x_{1}\right)\left(x_{0}+x_{2}\right)\left(x_{0}+x_{3}\right)} \\
y_{5} & =\frac{x_{1}^{2} x_{2} x_{3}\left(x_{0}+x_{1}+x_{2}+x_{3}\right)}{\left(x_{0}+x_{1}\right)\left(x_{0}+x_{2}\right)\left(x_{1}+x_{2}\right)\left(x_{0}+x_{3}\right)\left(x_{1}+x_{3}\right)} \\
& +z \cdot \frac{x_{2} x_{3}}{\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)} \\
y_{6} & =\frac{x_{1}^{2} x_{2}^{2} x_{3}\left(x_{0}+x_{1}+x_{2}+x_{3}\right)}{\left(x_{0}+x_{1}\right)\left(x_{0}+x_{2}\right)\left(x_{1}+x_{2}\right)\left(x_{0}+x_{3}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)} \\
& +z \cdot\left(\frac{x_{1}^{2}}{\left(x_{1}+x_{2}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)}+\frac{x_{3}}{\left(x_{1}+x_{3}\right)}\right) \\
y_{7} & =\frac{x_{1}^{3} x_{2}^{2} x_{3}}{\left(x_{0}+x_{1}\right)\left(x_{0}+x_{2}\right)\left(x_{1}+x_{2}\right)\left(x_{0}+x_{3}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)} \\
& +z \cdot\left(\frac{x_{1}^{3} x_{3}\left(x_{0}-x_{2}\right)}{\left(x_{0}+x_{1}\right)\left(x_{1}+x_{2}\right)\left(x_{0}+x_{3}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)}\right. \\
& \left.+\frac{x_{0}^{2} x_{1} x_{3}}{\left(x_{0}+x_{1}\right)\left(x_{0}+x_{2}\right)\left(x_{0}+x_{3}\right)\left(x_{1}+x_{3}\right)}+\frac{x_{1} x_{3}}{\left(x_{0}+x_{1}\right)\left(x_{0}+x_{3}\right)}\right)
\end{aligned}
$$

TABLE 6. Solution of the system $\mathcal{L}_{3}$ (with $y_{0}=1$ ).
the other hand, existing numerators might get cancelled when adding several terms. And this happens indeed! Watch for the rule for computing $y_{7}$ :

$$
\left(x_{0}+x_{1}+x_{2}+x_{3}\right) y_{7}=x_{1} y_{6}+x_{2} x_{4} z+x_{3} y_{1} z
$$

The quadrinominal $x_{0}+x_{1}+x_{2}+x_{3}$ that goes into the denominator of $y_{7}$ gets cancelled, as the above explicit solution shows, because the numerator of $x_{1} y_{6}+x_{2} x_{4} z+x_{3} y_{1} z$ has $x_{0}+x_{1}+x_{2}+x_{3}$ as a divisor! (Look at the values for $y_{5}$ and $y_{6}$, which have this factor in the numerator).

From the results of the previous section it is clear that the property just observed for $n=3$, viz.

- The denominator of $y_{2^{n}-1}$ is the (modified) partition function

$$
\prod_{0 \leq i<j \leq n}\left(x_{i}+x_{j}\right)
$$

and this is the least common multiple of the denominators of all $y_{j}$ with $j<2^{n}$, holds in general. But the problem now is:

- How is it possible to explain this property by just looking at the linear system $\mathcal{L}_{n}$ ?

In other words: is it possible to obtain the partition function by just looking at the linear system $\mathcal{L}_{n}$, without taking the transfer matrices and all that into consideration?

An answer to this question has been given in the companion article [9] in the special case $z=0$, i.e., by disregarding the annihilation steps from the systems $\mathcal{L}_{n}$. Obtaining the answer leads to the more general question of what can be said about the numerators of the $y_{n}$ ? It is shown in [9] that there is a close relationship to symmetric functions in the variables $x_{0}, x_{1}, x_{2}, \ldots$, notably (variants of) Schur functions and to the method of divided differences. I am sure that it is possible to extend this approach from the $z=0$ case to the general case, but this remains to be done.

Thanks. I wish to thank two anonymous referees for their careful reading of the manuscript, their comments, corrections and suggestions for improvement. In particular, one of them spotted a notational inconsistency in the first version of the paper, that I was happy to correct.

## References

[1] A. Ayyer and K. Mallick. Exact results for an asymmetric annihilation process with open boundaries. J. Phys. A 43 (2010), no. 4, 045003, 22 pp.
[2] A. Ayyer and V. Strehl. The spectrum of an asymmetric annihilation process. 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), pp. 461-472, Discrete Math. Theor. Comput. Sci. Proc., AN, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2010.
[3] S. Corteel and L. Williams. Tableaux combinatorics for the asymmetric exclusion process and Askey-Wilson polynomials. Duke Math. J. 159 (2011), 385-415.
[4] B. Derrida, M.R. Evans, V. Hakim and V. Pasquier. Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A: Math. Gen. 26 (1993), 1493-1517.
[5] R.C. Gonzalez and R.E. Woods. Digital Image Processing. 3rd ed., Pearson Prentice Hall, 2008.
[6] N.D. Mermin. Quantum Computer Science. An Introduction. Cambridge University Press, 2007.
[7] M.A. Nielsen and I.L. Chang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
[8] H.L. Resnikoff and R.O. Wells, Jr. Wavelet Analysis. The Scalable Structure of Information. Springer-Verlag, 1998.
[9] V. Strehl. Trying to solve a linear system for strict partitions in 'closed form'. To appear in: Algorithmic Combinatorics: Enumerative Combinatorics, Special Functions and Computer Algebra, V. Pillwein and C. Schneider (eds.), Texts and Monographs in Symbolic Computation, SpringerVerlag, 2020.

Department Informatik, Friedrich-Alexander Universität Erlangen-Nürnberg, Martensstrasse 3, D-91058 Erlangen, Germany

Email address: volker.strehl@fau.de


[^0]:    ${ }^{1}$ The linear transformations associated to the Hadamard matrices $H_{n}$ belong to the family of Discrete Orthogonal Transforms like the Discrete Fourier Transform, with the distinction that the relevant underlying group action is not by a cyclic group, but by a product group of type $\mathbb{Z}_{2}^{n}$. Hadamard transforms and their variations are heavily used in Signal Processing, see [5] and [8] as exemplary references, and also in Quantum Computing, see [6] and [7], where Hadamard transforms are used to mathematically entangle and disentangle quantum states. By chance, at the time when I first learned about the AEPA model, I was teaching classes on Quantum Algorithms and on Wavelet Transforms. Thus, this led me to look at the AEPA eigenvalue problem from the Hadamard transform perspective. However, I did not consider a quantum version of the physical model that motivated the AEPA process.

