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PERMUTATIONS WHOSE REVERSE SHARES THE SAME
RECORDING TABLEAU IN THE RS CORRESPONDENCE

TUCKER J. ERVIN, BLAKE JACKSON, JAY LANE, KYUNGYONG LEE, SON DANG NGUYEN,

JACK O’DONOHUE, AND MICHAEL VAUGHAN

Abstract. The RS correspondence is a bijection between permutations and pairs of

standard Young tableaux with identical shape, where the tableaux are commonly denoted

P (insertion) and Q (recording). It has been an open problem to demonstrate

|{w ∈ Sn | Q(w) = Q(wr)}| =


2

n−1
2

(
n− 1
n−1
2

)
, n odd,

0, n even,

where wr is the reverse permutation of w. First we show that for each w where Q(w) =

Q(wr) the recording tableau Q(w) has a symmetric hook shape and satisfies a certain

simple property. From these two results, we succeed in proving the desired identity.

1. Introduction

The bijection known as the Robinson–Schensted (RS) correspondence was first described

in 1938 by Robinson [2] as a method for proving the Littlewood–Richardson rule. In 1961,

Schensted [4] gave a much simpler description of the algorithm, and it is the one we will use

throughout our paper. Even though the two descriptions are very different, the correspon-

dence usually credits both authors. Knuth [1] extended the RS correspondence in 1970 to

one between non-negative integer matrices and semi-standard Young tableaux. The gen-

eralized bijection is referred to as the Robinson–Schensted–Knuth (RSK) correspondence.

While Knuth’s formulation and results are important to the theory and have been widely

used, we keep our focus solely on permutations, which we write using one line notation.

Given a permutation w, there are three operations we can perform: the reverse wr, the

complement wc, and the inverse w−1.

All authors were supported by the University of Alabama. KL was supported by the NSF grant DMS-

2042786 and Korea Institute for Advanced Study.
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Definition 1.1. Let w = w1 . . . wn ∈ Sn. Then we define the reverse permutation wr =

wn . . . w1, the complement permutation wc = (n+ 1−w1) . . . (n+ 1−wn), and the reverse-

complement permutation wrc = wcr = (n+ 1− wn) . . . (n+ 1− w1).

There exist several relations between the recording and insertion tableaux of w and its

image under the three operations. The insertion tableaux of w and wr are transposes of

each other, written as P (w) = P (wr)T [3, Theorem 3.2.3]. Similarly, the recording tableaux

are related by Q(w) = ε(Q(wr))T [3, Theorem 3.9.4], where ε is the evacuation map. Other

relations exist with regards to the inverse and complement operations, such as P (w) =

Q(w−1), Q(w) = P (w−1), P (w) = ε(P (wc))T , and Q(w) = Q(wc)T [6, Theorem 4.1.1].

To summarize, the RS correspondence takes w and its images under the operations to the

following:

RS(w) = (P (w), Q(w)),

RS(wc) = (ε(P (w))T , Q(w)T ),

RS(wr) = (P (w)T , ε(Q(w))T ),

RS(wrc) = (ε(P (w)), ε(Q(w))),

RS(w−1) = (Q(w), P (w)),

RS(w−1c) = (ε(Q(w))T , P (w)T ),

RS(w−1r) = (Q(w)T , ε(P (w))T ),

RS(w−1rc) = (ε(Q(w)), ε(P (w))).

Every combination of the three operations reduces to one of the eight options above. This

then brings up two interesting questions: what kind of and how many permutations have

their recording tableaux fixed by these operations?

For the complement, there are no non-trivial permutations such that Q(w) = Q(wc), as

Q(wc) = Q(w)T . The only possible such permutation is 1 ∈ S1. The set of permutations

such that Q(w) = Q(w−1) is the set of involutions of Sn. Its cardinality is given by∑
λ`n f

λ, where fλ is the number of standard Young tableaux of shape λ. As Q(w) =

Q(w−1c) only when Q(w) = P (w)T , its cardinality is the sum of all fλ
′
, where λ′ is a shape

of size n preserved by transposition. Additionally, it is straightforward to show that the

sets of permutations where Q(w) = Q(w−1rc) or Q(w) = Q(w−1r) are respectively equal

to the previous two sets under the reverse operation. This leaves only permutations which

have fixed recording tableaux under the reverse and the reverse complement maps to count.
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The question of what permutations have fixed recording tableaux under the reverse map

may have been posed previously, but we first encountered the problem when using Jeremy

L. Martin’s “Lecture Notes on Algebraic Combinatorics” [5, Exercise 9.8(b)]. In this paper

we describe and count the permutations, w, such that Q(w) = Q(wr). Our main theorem

is as follows.

Theorem 1.2. Let w ∈ Sn. Then Q(w) = Q(wr) if and only if Q(w) satisfies both of the

following properties:

• Q(w) has a symmetric hook shape,

• The element i in the first row of Q(w) implies that n − i + 2 belongs to the first

column of Q(w) for all i ∈ [n] with i > 1.

In particular, we have the formula

|{w ∈ Sn | Q(w) = Q(wr)}| =

2
n−1
2

(
n− 1
n−1

2

)
, n odd,

0, n even.

A forthcoming paper will attempt to answer Martin’s additional question of what per-

mutations satisfy Q(w) = Q(wrc).

As for the structure of this paper, Section 2 covers background, notation, and definitions

needed throughout the paper. Section 3 introduces a family of maps Φn and a function

θn which map symmetric groups to “neighboring” symmetric groups. These maps further

allow us to prove Theorem 1.2 in Section 4.

Acknowledgements. We thank Nick Loehr, Jeremy Martin, Bruce Sagan, and Richard Stan-

ley for their correspondence and insight on earlier drafts. We also thank the anonymous

referee for their detailed reports, which greatly improved the paper.

2. Background, Notation, and Definitions

As the RS correspondence is a bijection from permutations to standard Young tableaux,

we begin by fixing our notation. Let [n] denote the set of letters 1, 2, . . . , n. We write

permutations of [n] in one-line notation so that

Sn = {w = w1 . . . wn | {w1, . . . , wn} = [n]}.

In other words, w represents the permutation

σ =

(
1 2 · · · n

w1 w2 · · · wn

)
.
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A shape λ of size n, denoted λ ` n, is a tuple λ = (λ1, λ2, . . . , λk) for some 1 ≤ k ≤ n

such that
∑k

i=1 λi = n and λ1 ≥ λ2 ≥ · · · ≥ λk. A Young diagram of shape λ is formed

from left justified boxes, where the ith row from the top has λi empty boxes. We often refer

to boxes or cells by their coordinates (i, j), where i and j respectively count the number

of rows from the top and the number of columns from the left. For example, the shape

λ = (3, 1, 1) gives us the Young diagram of shape λ:

.

We call any cell of a Young diagram whose removal would produce a smaller Young diagram

an inner corner. The last cell in the top row and the first cell in the third row — located at

coordinates (1, 3) and (3, 1) respectively — of the Young diagram above are inner corners.

A tableau T of shape λ is a filling of a Young diagram of shape λ with positive integers

that is increasing left-to-right and top-to-bottom. The entry at cell (i, j) is denoted by

Ti,j. If λ is of size n, then we say that a tableau of shape λ is of size n as well. When

λ = (3, 1, 1), the following are all tableaux of shape λ:

1 2 3
4
5

1 2 6
4
7

1 3 4
2
5

.

In the case where a tableau is of size n and the filling uses each of the integers in [n]

exactly once, we say that the tableau is a standard Young tableau. The previous example

consists of two standard Young tableaux–the first and third. Finally, we denote the set of

all standard Young tableaux of shape λ by SYT(λ). We can now describe the method by

which we turn a permutation into a pair of standard Young tableaux.

Definition 2.1. Let T be a tableau and let x be a positive integer that is not already an

entry of T . Then the Schensted insertion or row-insertion algorithm T ← x is defined as

follows:

• If T = ∅, then T ← x = x .

• If x > u for all entries u in the top row of T , then append x to the end of the top

row of T .

• Otherwise, find the leftmost entry u such that x < u. Replace u with x, and then

perform the row-insertion with u in the subtableau consisting of the second and

succeeding rows. In this case, we say x bumps u.

• Repeat until the bumping stops.
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To obtain the promised pair of standard Young tableaux, we let P (w) be the insertion

tableau given by ((∅ ← w1) ← w2) ← · · · ← wn and let the recording tableau Q(w)

be the standard tableau of the same shape as P (w) that records where the new box

appears in the underlying Young diagram at each step. The RS correspondence is the map

w 7→ (P (w), Q(w)).

Example 2.2. Consider 52314 ∈ S5.

Step 1: The initial tableau is empty.

P = 5 Q = 1

Step 2: 2 bumps 5.

P = 2
5

Q = 1
2

Step 3: 3 appends to the first row.

P = 2 3
5

Q = 1 3
2

Step 4: 1 bumps 2, 2 bumps 5.

P =
1 3
2
5

Q =
1 3
2
4

Step 5: 4 appends to the first row.

P =
1 3 4
2
5

Q =
1 3 5
2
4

One can easily check that w = 52314 satisfies Q(w) = Q(wr). We next define the

evacuation process, beginning with the concept of a skew shape and skew tableau. A skew

shape λ/µ is defined for any shapes λ and µ such that the Young diagram of shape µ is

contained in the Young diagram of shape λ, i.e., we have µi ≤ λi for all i. If λ = µ, then

λ/µ = ∅ is the diagram with no cells. Skew diagrams are given by the removal of the

cells belonging to the diagram of shape µ from the diagram of shape λ. For example, if

λ = (3, 1, 1) and µ = (2), the skew diagram of shape λ/µ is

.

A skew tableau is any tableau of skew shape λ/µ.
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Definition 2.3 ([3, Definition 3.7.2]). A forward jeu de taquin slide of a skew tableau

T of shape λ/µ is given by:

• Pick α to be an inner corner of µ. Note that if α does not share at least one cell of

λ as a neighbor in λ/µ, then it must also be an inner corner of λ.

• While α is not an inner corner of λ do:

– Suppose that α = (i, j). As α is not an inner corner of λ, at least one of the

cells (i+ 1, j) and (i, j + 1) must exist in λ.

– If only the cell (i + 1, j) exists in λ, let α′ be the cell (i + 1, j). Similarly, if

only the cell (i, j + 1) exists in λ, let α′ be the cell (i, j + 1).

– If both (i+1, j) and (i, j+1) exist in λ, let α′ be the cell of min{Ti+l,j, Ti,j+1},
where Ti+1,j and Ti,j+1 are the fillings at cells (i+1, j) and (i, j+1) respectively.

– Slide Tα′ into cell α and let α := α′.

The resulting tableau is denoted jα(T ).

Definition 2.4 ([3, Definition 3.9.1]). For any tableau Q with distinct entries, let m be

the minimal element of Q. Then the delta operator applied to Q yields a new tableau,

∆Q, given by performing the following steps:

• Erase m from its cell, α, in Q.

• Perform the slide jα on the resultant tableau.

Definition 2.5 ([3, Definition 3.9.1]). For any standard Young tableau Q on n elements,

we define the evacuation tableau, ε(Q), as the vacating tableau for the sequence

Q,∆Q,∆2Q, . . . ,∆nQ.

That is, the cell α of ε(Q) contains n− i if cell α was vacated when passing from ∆iQ to

∆i+1Q.

Again, we return to our previous example to demonstrate evacuation.

Example 2.6. Consider Q(52314), which was calculated in Example 2.2.

Step 1: Cell (3,1) is vacated.

∆Q = 2 3 5
4

ε(Q) =
5

Step 2: Cell (1,3) is vacated.

∆2Q = 3 5
4

ε(Q) =
4

5
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Step 3: Cell (2,1) is vacated.

∆3Q = 4 5 ε(Q) =
4

3
5

Step 4: Cell (1,2) is vacated.

∆4Q = 5 ε(Q) =
2 4

3
5

Step 5: The final cell (1,1) is vacated.

∆5Q = ∅ ε(Q) =
1 2 4
3
5

Immediately, we see that ε(Q(w))T = Q(w) for w = 52314, as expected from Q(w) =

Q(wr). To prove Theorem 1.2, we first construct three sets that will be used to great effect

in Section 4.

Definition 2.7. Define two sets of permutations:

Rn = {w ∈ Sn | Q(w) = Q(wr)}

and

Hn = {w ∈ Sn | Q(w) is of symmetric hook shape},

where a symmetric shape is one that shares the same shape with its transpose as Young

diagrams and a hook shape tableau has an underlying Young diagram of shape µ =

(k, 1n−k), k < n. Note that Hn is empty for all even n, as there are no symmetric hook

shape tableaux for even n.

Concerning to sets of standard Young tableaux, for all shapes λ ` n define the sets

Mλ
n = {Q ∈ SYT(λ) | ε(Q)T = Q}.

We now split Theorem 1.2 into two parts. Theorem 2.8, combined with the fact that Hn

is empty for all even n, sheds light on some of the subtleties of the main result, specifically

the dependence on the parity of n.

Theorem 2.8. For all n ≥ 1, the set Rn is a subset of Hn, forcing Q(w) to have a

symmetric hook shape for all w ∈ Rn.

Finally, Theorem 2.9 — previously a conjecture — is what began our research direction.
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Theorem 2.9. The cardinality of the set Rn is given by

|Rn| =

2
n−1
2

(
n− 1
n−1

2

)
, n odd,

0, n even.

3. The Maps φa,b and Their Left Inverse

To begin proving Theorem 2.8, we define a family of maps that take permutations of

[n] to permutations of [n + 2] arising from the standardization of a sequence of distinct

integers.

Definition 3.1. Let v = v1v2 . . . vn be any sequence of distinct positive integers and

vi1 < vi2 < · · · < vin be the ordering of the integers vi. The standardization of v, denoted

std(v), is obtained by replacing each integer vij in v by the integer j.

Since both the reverse and complement operators will change increasing sequences to

decreasing and vice-versa, it is apparent that std(vr) = std(v)r and std(vc) = std(v)c for

all sequences of distinct positive integers v. We may then define our maps φa,b.

Definition 3.2. For any w ∈ Sn and any two distinct integers a, b ∈ [n + 2], let

v = v1v2 . . . vn be the unique sequence of integers from [n+2]\{a, b} such that std(v) = w.

Define the map φa,b : Sn 7→ Sn+2 by φa,b(w) = avb, where adjacency denotes concatena-

tion. These maps are then well-defined for all distinct a, b ∈ [n + 2]. Let Φn denote the

family of maps φa,b from Sn to Sn+2.

Example 3.3. Application of φ1,7 to 52314 ∈ S5 produces

φ1,7(52314) = 1634257.

As we saw previously, the permutation 52314 belongs to R5, but φ1,7(52314) does not

belong to R7. When w ∈ Rn implies φa,b(w) ∈ Rn+2 is explored in Lemma 4.2.

Remark 3.4. Now that we have seen the maps in action, we can speak more of their

properties.

• Each map φa,b is injective.

• In general, the maps φa,b are not group homomorphisms, as φa,b only sends the

identity element to the identity element when a = 1 and b = n + 2. However, the

map φ1,n+2 is a group monomorphism.

• If φa,b(w) = φx,y(w) for any w ∈ Sn, then a = x and b = y.
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• The set Sn+2 is partitioned by the images of the functions φa,b.

The Φn maps go “up” the symmetric groups, but we need a function to go “down” from

Sn+2 to Sn. We then construct a left inverse function shared by every φa,b ∈ Φn.

Definition 3.5. We define the map θn : Sn+2 7→ Sn as follows. If w = w1w2 . . . wn+1wn+2 ∈
Sn+2, form the subword w′ = w2w3 . . . wnwn+1. Then θn(w) = std(w′). These maps are

well defined for all positive integers n.

Example 3.6. If we apply θ3 to our permutation 52314, then we arrive at

θ3(52314) = 231.

Note that θn seems to send Rn+2 to Rn, as every permutation, w, above has Q(w) =

Q(wr). This relation is further explored in Lemma 4.1.

Remark 3.7. As before, we will now list some of the important properties of θn.

• Each map θn is surjective.

• For all φa,b ∈ Φn and w ∈ Sn, θn acts as a left inverse, i.e.,

θn(φa,b(w)) = w.

• If i, j ∈ [n], then wi+1 < wj+1 implies that θn(w)i < θn(w)j, following directly from

our definition of standardization.

Because θn is a left inverse and the images of the Φn maps partition Sn+2, we immediately

see that

θ−1
n (w) =

⊎
φa,b∈Φn

φa,b(w).

Combined with the next two lemmas, this fact is instrumental in proving Theorem 2.8.

Lemma 3.8. For any w ∈ Sn+2,

θn(wr) = θn(w)r

and

θn(wc) = θn(w)c.

Proof. From the definition of θn, we know that θn(wr) equals the standardization of the

sequence wn+1wn . . . w3w2. Additionally, the permutation θn(w)r = std(w2w3 . . . wnwn+1)r.

As std(wn+1wn . . . w3w2) = std(w2w3 . . . wnwn+1)r, we must have

θn(wr) = θn(w)r.
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By a similar argument, we know that std((n+ 3−w2)(n+ 3−w3) . . . (n+ 3−wn)(n+

3− wn+1)) = std(w2w3 . . . wnwn+1)c. Hence

θn(wc) = θn(w)c,

proving our desired result. �

Lemma 3.9. Choose φa,b ∈ Φn and w ∈ Hn for odd n. Then either φa,b(w) ∈ Hn+2 or

Q(φa,b(w)) is not of symmetric shape.

Proof. Let w ∈ Hn. Suppose that φa,b(w) /∈ Hn+2 for some φa,b ∈ Φn. As φa,b preserves all

the relative orderings of w by its construction, longest increasing and longest decreasing

subsequences of φa,b(w) are the same length or longer than respective longest increasing

and longest decreasing subsequences of w. It is well-known that the lengths of the first row

and the first column of Q(w) equal the lengths of longest increasing and longest decreasing

subsequences respectively of w [3, Theorem 3.3.2]. The first row and the first column of

Q(w) both have length n+1
2

as Q(w) is of symmetric hook shape. Hence, longest increasing

and longest decreasing subsequences of φa,b(w) must have length at least n+1
2

. If Q(φa,b(w))

is of symmetric shape, then the length of longest increasing and longest decreasing sub-

sequences of φa,b(w) must equal each other. Since φa,b(w) /∈ Hn+2, longest increasing and

decreasing subsequences necessarily have length n+1
2

. Thus two cells were added to the

second row or column of Q(φa,b(w)), contradicting the symmetry of Q(φa,b(w)). Therefore,

either φa,b(w) ∈ Hn+2 or Q(φa,b(w)) is not of symmetric shape. �

As an example of the possibilities discussed in Lemma 3.9, we give the following.

Example 3.10. Consider the Young diagram of symmetric hook shape

.

After an application of a φa,b ∈ Φn, two new cells will be added to the diagram. There are

four possibilities — up to transposition — for the resulting shape:

.

Clearly, only the tableau in H7 has symmetric shape.
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4. Proof of Theorems 2.8 and 2.9

To begin our proof of Theorem 2.8, we first prove the two lemmas we mentioned previ-

ously when exploring the actions of the Φn and θn maps.

Lemma 4.1. If w ∈ Rn+2, then θn(w) ∈ Rn.

Proof. Suppose that w ∈ Rn+2. Let x = w2w3 . . . wn+2 and y = wn+1wn . . . w1. Then

Q(x) = ∆Q(w) and Q(y) = ∆Q(wr) [3, Proposition 3.9.3]. As w ∈ Rn+2, we have

Q(w) = Q(wr), showing that Q(x) = Q(y). Since n+ 1 occupies the same cell in Q(x) and

Q(y), not inserting wn+2 or w1 in the respective x and y cases produces the same recording

tableau. Hence,

Q(w2w3 . . . wn+1) = Q(wn+1wn . . . w2).

As θn preserves all the relative orderings among middle entries of permutations by our

definition of standardization, it follows that

Q(θn(w)) = Q(w2w3 . . . wn+1)

and

Q(θn(wr)) = Q(wn+1wn . . . w2).

As Lemma 3.8 proves Q(θn(w)r) = Q(θn(wr)), the equality

Q(θn(w)) = Q(θn(w)r)

holds. Therefore, the permutation θn(w) belongs to Rn for all w ∈ Rn+2. �

Lemma 4.2. For all n, we have

Rn+2 ⊆
⋃

φa,b∈Φn

φa,b(Rn).

Proof. If w ∈ Rn+2, Lemma 4.1 gives us that θn(w) ∈ Rn. Thus w ∈ φw1,wn+2(Rn). Hence,

Rn+2 ⊆
⋃

φa,b∈Φn

φa,b(Rn)

for all n. �

Theorem 4.3 (Theorem 2.8). For all n ≥ 1, the set Rn is a subset of Hn, forcing Q(w)

to have a symmetric hook shape for all w ∈ Rn.
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Proof. We split into two separate induction arguments, one odd and one even. In the odd

scenario, the base case of n = 1 is clear, as R1 = H1 = S1. As such, we assume that

Rn−2 ⊆ Hn−2 for n = 2`+1. If v ∈ Sn, then P (v) = P (vr)T [3, Theorem 3.2.3]. Hence the

shape of Q(v) must be symmetric for all v ∈ Rn. If φa,b(w) is not in Hn for a φa,b ∈ Φn−2

and some w ∈ Rn−2, then the shape of Q(φa,b(w)) is non-symmetric by Lemma 3.9. This

further implies that φa,b(w) is not in Rn. The contrapositive gives that φa,b(w) ∈ Rn

implies φa,b(w) ∈ Hn.

From Lemma 4.2, we have Rn ⊆
⋃
φa,b∈Φn−2

φa,b(Rn−2). Thus every element of Rn is of

the form φa,b(w) for φa,b ∈ Φn−2 and w ∈ Rn−2. Therefore Rn ⊆ Hn, completing the

inductive step.

In the even case, the base case of n = 2 is clear, as R2 = H2 = ∅. The set Hn is

empty for all even n. As such, we assume that Rn−2 is empty for n = 2`. If Rn is non-

empty, Lemma 4.1 gives us that θn−2(Rn) ⊆ Rn−2, creating a contradiction of our inductive

assumption. Hence Rn must be empty and a subset of Hn as well, completing the inductive

step. Therefore Rn ⊆ Hn for all n. �

Furthermore, if λ ` n is a symmetric hook shape for n > 1, then the tableau T of

shape λ with entries 1, 2, 3, . . . , n+1
2

in the first row and entries 1, n+3
2
, n+5

2
, . . . , n in the

first column can be readily seen to satisfy T = ε(T )T . Thus T ∈ Mλ
n . For n = 5, we have

the example

T =
1 2 3
4
5

.

Corollary 4.4. For all λ ` n, the set Mλ
n is non-empty if and only if λ is a symmetric

hook shape.

Remark 4.5. It should be stressed that Rn really is a proper subset of Hn for odd n ≥ 5.

In other words, there are w ∈ Sn that are of symmetric hook shape but do not have

fixed recording tableaux under the reverse operation. The permutation 34521 is such an

example.

Since we have shown that Mλ
n is only non-empty when n is odd and λ is a symmetric hook

shape, we may restrict ourselves to those conditions and begin to examine the properties

of Q ∈Mλ
n .

Lemma 4.6. For odd n, let λ = (n+1
2
, 1

n−1
2 ). The standard Young tableau Q belongs to

Mλ
n if and only if i in the first row of Q implies that n− i+ 2 belongs to the first column

of Q for all i ∈ [n] with i > 1.
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Proof. Suppose that Q ∈Mλ
n . Additionally assume that i is in the first row of a symmetric

hook shape tableau, Q, where i ∈ [n] and i > 1. The cell vacated when passing from ∆i−2Q

to ∆i−1Q is filled with n− i + 2 in ε(Q). As i− 1 is minimal in ∆i−2Q, it appears in the

first cell of ∆i−2Q and i is in the cell to its right. Hence the cell vacated when passing

from ∆i−2Q to ∆i−1Q will be in the first row. Thus n − i + 2 appears in the first row of

ε(Q) if i appears in the first row of Q. As Q = ε(Q)T , the location of i in the first row of

Q implies that n− i+ 2 belongs to the first column of Q for all i ∈ [n] with i > 1 whenever

Q ∈Mλ
n .

Conversely, suppose that i in the first row of Q implies that n − i + 2 belongs to the

first column of Q for all i ∈ [n] with i > 1. Let 1, i2, i3, . . . , in+1
2

be the increasing sequence

that forms the first row of Q. Thus 1, n− in+1
2

+ 2, . . . , n− i3 + 2, n− i2 + 2 must be the

increasing sequence that forms the first column of Q. The cell erased when passing from

∆i−2Q to ∆i−1Q always contains i − 1 and is located in the uppermost left corner of the

tableau. This implies that the cell vacated from ∆i−2Q to ∆i−1Q will belong to the same

row or column in Q as i. Hence ε(Q) will have n− i+ 2 in its first row whenever i is in the

first row of Q. This further implies that 1, n− in+1
2

+ 2, . . . , n− i3 + 2, n− i2 + 2 must be

the increasing sequence that forms the first row of ε(Q). Similarly, the first row of Q and

the first column of ε(Q) must coincide. Hence Q = ε(Q)T whenever i in the first row of Q

implies that n− i+ 2 belongs to the first column of Q for all i ∈ [n] with i > 1. Therefore,

for odd n, the standard Young tableau Q belongs to Mλ
n if and only if i in the first row of

Q implies that n− i+ 2 belongs to the first column of Q for all i ∈ [n] with i > 1. �

Returning to the previous Example 2.2, we can verify that the tableau Q(52314) ∈Mλ
5

by Lemma 4.6. Lemma 4.7 follows immediately from Lemma 4.6, and it allows us to

correctly count the number of tableaux in Mλ
n .

Lemma 4.7. Let λ = (n+1
2
, 1

n−1
2 ). If n is odd, then

|Mλ
n | = 2

n−1
2 .

We may then prove Theorem 2.9.

Theorem 4.8 (Theorem 2.9). The cardinality of the set Rn is given by

|Rn| =

2
n−1
2

(
n− 1
n−1

2

)
, n odd,

0, n even.
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Proof. For even n, the result follows directly from Theorem 4.3 as Rn is empty. We then

focus on odd n. Let λ = (n+1
2
, 1

n−1
2 ). If w ∈ Rn, then Q(w) = Q(wr) = ε(Q(w))T [3,

Theorem 3.9.4]. Thus Q(w) ∈Mλ
n for all w ∈ Rn.

Let T ∈Mλ
n . The number of pairs of standard Young tableaux with T as the recording

tableau is equal to the number of standard Young tableaux of shape λ. As the RSK

correspondence is a bijection of permutations and pairs of standard Young tableaux, there

are fλ =
(
n−1
n−1
2

)
many w ∈ Sn such that Q(w) = T . If Q(w) ∈ Mλ

n , then Q(w) =

ε(Q(w))T = Q(wr). Thus w ∈ Rn. The cardinality of Rn must then be |Mλ
n |fλ for all odd

n.

Therefore,

|Rn| =

2
n−1
2

(
n− 1
n−1

2

)
, n odd,

0, n even.

proving the desired result. �

Theorems 4.3 and 4.8, along with Lemma 4.6, combine to prove Theorem 1.2.
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