Descents - variations on a theme

Ron Adin Bar-Ilan University

Based on joint works with Francesco Brenti (U Roma), Pál Hegedűs (Rényi Inst.), Vic Reiner (UMN), and Yuval Roichman (BIU)

(-1,5,-7,-3,2,6,4) (1,5,7,3,2,6,4)

Brenti Fest, SLC 89, Bertinoro, March 28, '23

/ariants and extensions

Cyclic descents

/ariants and extensions

Cyclic descents

Variants and extensions 00000

Cyclic descents

Summary and open problems

Flag statistics

Variants and extensions

Cyclic descents

/ariants and extensions

Cyclic descents

Summary and open problems 0000

Flag statistics

/ariants and extensions

Cyclic descents

Summary and open problems

Descent number and major index

Cyclic descents

Summary and open problems

Descent number and major index

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group S_n is

 $\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1],$ where $[m] := \{1, 2, \dots, m\}.$

Cyclic descents

Summary and open problems

Descent number and major index

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group S_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}$. Its descent number is

 $\mathsf{des}(\pi) := |\mathsf{Des}(\pi)|$

Cyclic descents

Summary and open problems

Descent number and major index

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group S_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}$. Its descent number is

 $\mathsf{des}(\pi) := |\operatorname{Des}(\pi)|$

and its major index is

$$\mathsf{maj}(\pi) := \sum_{i \in \mathsf{Des}(\pi)} i.$$

Cyclic descents

Summary and open problems

Descent number and major index

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group S_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 \, : \, \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}$. Its descent number is

 $\mathsf{des}(\pi) := |\mathsf{Des}(\pi)|$

and its major index is

$$\mathsf{maj}(\pi) := \sum_{i \in \mathsf{Des}(\pi)} i.$$

Example: $\pi = 231564$:

Cyclic descents

Summary and open problems

Descent number and major index

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group S_n is

$$\mathsf{Des}(\pi) := \{1 \leq i \leq n-1 \, : \, \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}$. Its descent number is

 $\mathsf{des}(\pi) := |\mathsf{Des}(\pi)|$

and its major index is

$$\mathsf{maj}(\pi) := \sum_{i \in \mathsf{Des}(\pi)} i.$$

Example: $\pi = 231564$: $Des(\pi) = \{2, 5\},$

Cyclic descents

Summary and open problems

Descent number and major index

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group S_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 \, : \, \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}$. Its descent number is

 $\mathsf{des}(\pi) := |\mathsf{Des}(\pi)|$

and its major index is

$$\mathsf{maj}(\pi) := \sum_{i \in \mathsf{Des}(\pi)} i.$$

Example: $\pi = 231564$: Des $(\pi) = \{2, 5\}$, des $(\pi) = 2$,

Cyclic descents

Summary and open problems

Descent number and major index

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group S_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}$. Its descent number is

 $\mathsf{des}(\pi) := |\mathsf{Des}(\pi)|$

and its major index is

$$\mathsf{maj}(\pi) := \sum_{i \in \mathsf{Des}(\pi)} i.$$

Example: $\pi = 231564$: Des $(\pi) = \{2, 5\}$, des $(\pi) = 2$, maj $(\pi) = 2 + 5 = 7$.

Variants and extensions

Cyclic descents

Variants and extensions 00000 Cyclic descents

Summary and open problems

Type B

The symmetric group is the Coxeter group of type A.

Cyclic descents

Summary and open problems

Type B

The symmetric group is the Coxeter group of type A.

The Coxeter group of type *B* (hyperoctahedral group, group of signed permutations) is the group B_n consisting of all the permutations σ of the set $[\pm n] = \{-n, \ldots, -1\} \cup \{1, \ldots, n\}$ which satisfy

$$\sigma(-i) = -\sigma(i) \qquad (1 \le i \le n).$$

It is generated by (simple reflections)

$$s_i = (i, i+1)(-i, -(i+1))$$
 $(1 \le i \le n-1)$

together with

$$s_0 = (1, -1).$$

Cyclic descents

Summary and open problems

Type B

The symmetric group is the Coxeter group of type A.

The Coxeter group of type *B* (hyperoctahedral group, group of signed permutations) is the group B_n consisting of all the permutations σ of the set $[\pm n] = \{-n, \ldots, -1\} \cup \{1, \ldots, n\}$ which satisfy

$$\sigma(-i) = -\sigma(i) \qquad (1 \le i \le n).$$

It is generated by (simple reflections)

$$s_i = (i, i+1)(-i, -(i+1))$$
 $(1 \le i \le n-1)$

together with

$$s_0 = (1, -1).$$

Question: Are there analogues of descent number and major index for the Coxeter group of type *B*?

Variants and extensions

Cyclic descents

Variants and extensions

Cyclic descents

Summary and open problems

Type B

There is a natural length function

$$\ell(\sigma) := \min\{m \ge 0 : \sigma = s_{i_1} \cdots s_{i_m}\},\$$

Variants and extensions 00000 Cyclic descents

Summary and open problems

Type B

There is a natural length function

$$\ell(\sigma) := \min\{m \ge 0 : \sigma = s_{i_1} \cdots s_{i_m}\},\$$

with a corresponding Coxeter descent set

$$\mathsf{Des}_{\mathcal{B}}(\sigma) := \{i \, : \, \ell(\sigma s_i) < \ell(\sigma)\} \subseteq [0, n-1]$$

Variants and extensions

Cyclic descents

Summary and open problems

Type B

There is a natural length function

$$\ell(\sigma) := \min\{m \ge 0 : \sigma = s_{i_1} \cdots s_{i_m}\},\$$

with a corresponding Coxeter descent set

$$\mathsf{Des}_B(\sigma) := \{i : \ell(\sigma s_i) < \ell(\sigma)\} \subseteq [0, n-1]$$

and Coxeter descent number

 $\operatorname{\mathsf{des}}_{B}(\sigma) := |\operatorname{\mathsf{Des}}_{B}(\sigma)|.$

Variants and extensions

Cyclic descents

Summary and open problems

Type B

There is a natural length function

$$\ell(\sigma) := \min\{m \ge 0 : \sigma = s_{i_1} \cdots s_{i_m}\},\$$

with a corresponding Coxeter descent set

$$\mathsf{Des}_{B}(\sigma) := \{i : \ell(\sigma s_{i}) < \ell(\sigma)\} \subseteq [0, n-1]$$

and Coxeter descent number

 $\operatorname{\mathsf{des}}_B(\sigma) := |\operatorname{\mathsf{Des}}_B(\sigma)|.$

How about major index?

Variants and extensions 00000

Cyclic descents

Summary and open problems

Type B

There is a natural length function

$$\ell(\sigma) := \min\{m \ge 0 : \sigma = s_{i_1} \cdots s_{i_m}\},\$$

with a corresponding Coxeter descent set

$$\mathsf{Des}_B(\sigma) := \{i \ : \ \ell(\sigma s_i) < \ell(\sigma)\} \subseteq [0, n-1]$$

and Coxeter descent number

$$\operatorname{\mathsf{des}}_{B}(\sigma) := |\operatorname{\mathsf{Des}}_{B}(\sigma)|.$$

How about major index?

Several candidates for a type B major index have been proposed.

Variants and extensions 00000

Cyclic descents

Variants and extensions

Cyclic descents

Summary and open problems 0000

Type B

Rephrased question: Is there an analogue of major index for type *B* which has good combinatorial and algebraic properties?

Variants and extensions

Cyclic descents

Summary and open problems

Type B

Rephrased question: Is there an analogue of major index for type *B* which has good combinatorial and algebraic properties?

Variants and extensions

Cyclic descents

Summary and open problems

Type B

Rephrased question: Is there an analogue of major index for type *B* which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

MacMahon's theorem

Variants and extensions

Cyclic descents

Summary and open problems

Rephrased question: Is there an analogue of major index for type *B* which has good combinatorial and algebraic properties?

- MacMahon's theorem
- Carlitz' identity

Variants and extensions

Cyclic descents 0000000000000000 Summary and open problems

Rephrased question: Is there an analogue of major index for type *B* which has good combinatorial and algebraic properties?

- MacMahon's theorem
- Carlitz' identity
- Diagonal invariants

Variants and extensions

Cyclic descents

Summary and open problems

Rephrased question: Is there an analogue of major index for type *B* which has good combinatorial and algebraic properties?

- MacMahon's theorem
- Carlitz' identity
- Diagonal invariants
- Coinvariant algebra

Variants and extensions

Cyclic descents

Summary and open problems 0000

MacMahon's Theorem

/ariants and extensions

Cyclic descents

Summary and open problems

MacMahon's Theorem

Theorem: (MacMahon, 1916)

$$\sum_{\pi\in \mathcal{S}_n}q^{{\operatorname{\mathsf{maj}}}(\pi)}=\sum_{\pi\in \mathcal{S}_n}q^{\ell(\pi)}.$$

/ariants and extensions

Cyclic descents

Summary and open problems

MacMahon's Theorem

Theorem: (MacMahon, 1916)

$$\sum_{\pi\in \mathcal{S}_n} q^{\mathsf{maj}(\pi)} = \sum_{\pi\in \mathcal{S}_n} q^{\ell(\pi)}.$$

We write this as: maj $\sim_{S_n} \ell$.

/ariants and extensions

Cyclic descents

Summary and open problems

MacMahon's Theorem

Theorem: (MacMahon, 1916)

$$\sum_{\pi\in \mathcal{S}_n} q^{{\mathsf{maj}}(\pi)} = \sum_{\pi\in \mathcal{S}_n} q^{\ell(\pi)}.$$

We write this as: maj $\sim_{S_n} \ell$.

Note that, for S_n , Coxeter length is the same as inversion number.

/ariants and extensions

Cyclic descents

Summary and open problems

MacMahon's Theorem

Theorem: (MacMahon, 1916)

$$\sum_{\pi\in\mathcal{S}_n}q^{{\operatorname{\mathsf{maj}}}(\pi)}=\sum_{\pi\in\mathcal{S}_n}q^{\ell(\pi)}.$$

We write this as: maj $\sim_{S_n} \ell$.

Note that, for S_n , Coxeter length is the same as inversion number.

Rephrased question: Is there an analogue of major index for type *B* which is equi-distributed with length?

/ariants and extensions

Cyclic descents

Summary and open problems

MacMahon's Theorem

Theorem: (MacMahon, 1916)

$$\sum_{\pi\in\mathcal{S}_n}q^{{ extsf{maj}}(\pi)}=\sum_{\pi\in\mathcal{S}_n}q^{\ell(\pi)}$$

We write this as: maj $\sim_{S_n} \ell$.

Note that, for S_n , Coxeter length is the same as inversion number.

Rephrased question: Is there an analogue of major index for type *B* which is equi-distributed with length?

None of the previous candidates had this property.
Variants and extensions

Cyclic descents

 $\begin{array}{l} \text{Summary and open problems} \\ \text{0000} \end{array}$

Flag major index

Cyclic descents

Summary and open problems

Flag major index

Define

$$t_i := s_i s_{i-1} \cdots s_0 \qquad (0 \le i \le n-1).$$

Fact: Each element $\sigma \in B_n$ has a unique representation

$$\sigma = t_{n-1}^{k_{n-1}} \cdots t_1^{k_1} t_0^{k_0} \qquad (0 \le k_i \le 2(i+1), \quad \forall i).$$

Definition: (A-Roichman, 2001) The flag major index of $\sigma \in B_n$ is

$$\mathsf{fmaj}(\sigma) := \sum_{i=0}^{n-1} k_i.$$

Cyclic descents

Summary and open problems

Flag major index

Define

$$t_i := s_i s_{i-1} \cdots s_0 \qquad (0 \le i \le n-1).$$

Fact: Each element $\sigma \in B_n$ has a unique representation

$$\sigma = t_{n-1}^{k_{n-1}} \cdots t_1^{k_1} t_0^{k_0} \qquad (0 \le k_i \le 2(i+1), \quad \forall i).$$

Definition: (A-Roichman, 2001) The flag major index of $\sigma \in B_n$ is

$$\mathsf{fmaj}(\sigma) := \sum_{i=0}^{n-1} k_i.$$

Theorem: fmaj $\sim_{B_n} \ell$, namely

$$\sum_{\sigma\in B_n}q^{\mathsf{fmaj}(\sigma)}=\sum_{\sigma\in B_n}q^{\ell(\sigma)}.$$

Variants and extensions

Cyclic descents

 $\begin{array}{l} \text{Summary and open problems} \\ \text{0000} \end{array}$

Signed enumeration

Variants and extensions

Cyclic descents

Summary and open problems

Signed enumeration

Recall Theorem: (MacMahon)

$$\sum_{\pi \in S_n} q^{\max(\pi)} = \sum_{\pi \in S_n} q^{\ell(\pi)} = [n]!_q = [1]_q [2]_q \cdots [n]_q,$$

where $[m]_q := 1 + q + \ldots + q^{m-1}$.

Cyclic descents

Summary and open problems

Signed enumeration

Recall Theorem: (MacMahon)

$$\sum_{\pi \in S_n} q^{\mathsf{maj}(\pi)} = \sum_{\pi \in S_n} q^{\ell(\pi)} = [n]!_q = [1]_q [2]_q \cdots [n]_q,$$

where $[m]_q := 1 + q + \ldots + q^{m-1}$.

Theorem: (Gessel-Simion, 1992)

$$\sum_{\pi \in S_n} \operatorname{sign}(\pi) q^{\operatorname{maj}(\pi)} = [1]_q [2]_{-q} [3]_q [4]_{-q} \cdots [n]_{\pm q},$$

Cyclic descents

Summary and open problems

Signed enumeration

Recall Theorem: (MacMahon)

$$\sum_{\pi \in S_n} q^{\mathsf{maj}(\pi)} = \sum_{\pi \in S_n} q^{\ell(\pi)} = [n]!_q = [1]_q [2]_q \cdots [n]_q,$$

where $[m]_q := 1 + q + \ldots + q^{m-1}$.

Theorem: (Gessel-Simion, 1992)

$$\sum_{\pi \in S_n} \operatorname{sign}(\pi) q^{\operatorname{maj}(\pi)} = [1]_q [2]_{-q} [3]_q [4]_{-q} \cdots [n]_{\pm q},$$

Theorem: (A-Gessel-Roichman, 2005)

$$\sum_{\sigma\in\mathcal{B}_n}\operatorname{sign}(\sigma)q^{\operatorname{fmaj}(\sigma)} = [2]_{-q}[4]_q[6]_{-q}\cdots[2n]_{\pm q},$$

Variants and extensions 00000

Cyclic descents

 $\begin{array}{l} \text{Summary and open problems} \\ \text{0000} \end{array}$

Carlitz' identity

Cyclic descents

Summary and open problems

Carlitz' identity

Theorem: (MacMahon, Carlitz 1975, Gessel 1977)

$$\frac{\sum_{\pi \in S_n} t^{\text{des}(\pi)} q^{\text{maj}(\pi)}}{\prod_{i=0}^n (1 - tq^i)} = \sum_{r \ge 0} [r+1]_q^n t^r,$$

where $[m]_q := 1 + q + \ldots + q^{m-1}$.

Cyclic descents

Summary and open problems

Carlitz' identity

Theorem: (MacMahon, Carlitz 1975, Gessel 1977)

$$\frac{\sum_{\pi \in S_n} t^{\text{des}(\pi)} q^{\text{maj}(\pi)}}{\prod_{i=0}^n (1 - tq^i)} = \sum_{r \ge 0} [r+1]_q^n t^r,$$

where $[m]_q := 1 + q + \ldots + q^{m-1}$.

In particular, for q = 1:

$$\frac{\sum_{\pi \in S_n} t^{\mathsf{des}(\pi)}}{(1-t)^{n+1}} = \sum_{r \ge 0} (r+1)^n t^r.$$

Cyclic descents

Summary and open problems

Carlitz' identity

Theorem: (MacMahon, Carlitz 1975, Gessel 1977)

$$\frac{\sum_{\pi \in S_n} t^{\text{des}(\pi)} q^{\text{maj}(\pi)}}{\prod_{i=0}^n (1 - tq^i)} = \sum_{r \ge 0} [r+1]_q^n t^r,$$

where $[m]_q := 1 + q + \ldots + q^{m-1}$.

In particular, for q = 1:

$$\frac{\sum_{\pi \in S_n} t^{\operatorname{des}(\pi)}}{(1-t)^{n+1}} = \sum_{r \ge 0} (r+1)^n t^r.$$

Foata's question: Are there type *B* analogues of des and maj which satisfy a Carlitz-type bivariate distribution identity?

Variants and extensions

Cyclic descents

 $\begin{array}{l} \text{Summary and open problems} \\ \text{0000} \end{array}$

Flag descent number

/ariants and extensions

Cyclic descents

Summary and open problems

Flag descent number

Observation: (A-Brenti-Roichman, 2001) The above definition of fmaj on B_n is equivalent to

$$\mathsf{fmaj}(\sigma) = 2 \operatorname{maj}(\sigma) + \operatorname{neg}(\sigma),$$

where

$$\mathsf{maj}(\sigma) := \sum_{i:\,\sigma(i) > \sigma(i+1)} i$$

and

$$\operatorname{\mathsf{neg}}(\sigma) := |\{i : \sigma(i) < 0\}|,$$

with "<" the usual linear order on integers:

$$-n < \cdots < -1 < 0 < 1 < \cdots < n.$$

/ariants and extensions

Cyclic descents

Summary and open problems

Flag descent number

Observation: (A-Brenti-Roichman, 2001) The above definition of fmaj on B_n is equivalent to

$$\mathsf{fmaj}(\sigma) = 2 \operatorname{maj}(\sigma) + \operatorname{neg}(\sigma),$$

where

$$\mathsf{maj}(\sigma) := \sum_{i:\,\sigma(i) > \sigma(i+1)} i$$

and

$$\operatorname{\mathsf{neg}}(\sigma):=|\{i\,:\,\sigma(i)<0\}|,$$

with "<" the usual linear order on integers:

$$-n < \cdots < -1 < 0 < 1 < \cdots < n.$$

Idea: Let us use, instead, the linear order

$$-1 < \cdots < -n < 0 < 1 < \cdots < n.$$

Variants and extensions

Cyclic descents

 $\begin{array}{l} \text{Summary and open problems} \\ \text{0000} \end{array}$

Flag descent number

Variants and extensions 00000 Cyclic descents

Summary and open problems

Flag descent number

Definition: (A-Brenti-Roichman, 2001) Use the linear order

 $-1 < \cdots < -n < 0 < 1 < \cdots < n$

/ariants and extensions

Cyclic descents

Summary and open problems

Flag descent number

Definition: (A-Brenti-Roichman, 2001) Use the linear order

$$-1 <' \cdots <' -n <' 0 <' 1 <' \cdots <' n.$$

Define

$$\mathsf{fdes}'(\sigma) := 2 \operatorname{des}'(\sigma) + \varepsilon_1(\sigma)$$

and

$$\mathsf{fmaj}'(\sigma) := 2 \operatorname{maj}'(\sigma) + \operatorname{neg}(\sigma),$$

/ariants and extensions

Cyclic descents

Summary and open problems

Flag descent number

Definition: (A-Brenti-Roichman, 2001) Use the linear order

$$-1 <' \cdots <' -n <' 0 <' 1 <' \cdots <' n.$$

Define

$$\mathsf{fdes}'(\sigma) := 2\,\mathsf{des}'(\sigma) + \varepsilon_1(\sigma)$$

and

$$\mathsf{fmaj}'(\sigma) := 2 \operatorname{maj}'(\sigma) + \operatorname{neg}(\sigma),$$

where

$$\begin{split} \mathsf{des}'(\sigma) &:= |\{i \,:\, \sigma(i) >' \sigma(i+1)\}|,\\ \mathsf{maj}'(\sigma) &:= \sum_{i \,:\, \sigma(i) >' \sigma(i+1)} i, \end{split}$$

/ariants and extensions

Cyclic descents

Summary and open problems

Flag descent number

Definition: (A-Brenti-Roichman, 2001) Use the linear order

$$-1 <' \cdots <' -n <' 0 <' 1 <' \cdots <' n.$$

Define

$$\mathsf{fdes}'(\sigma) := 2 \operatorname{des}'(\sigma) + \varepsilon_1(\sigma)$$

and

$$\mathsf{fmaj}'(\sigma) := 2 \operatorname{maj}'(\sigma) + \operatorname{neg}(\sigma),$$

where

$$\begin{split} \mathsf{des}'(\sigma) &:= |\{i \,:\, \sigma(i) >' \sigma(i+1)\}|,\\ \mathsf{maj}'(\sigma) &:= \sum_{i \,:\, \sigma(i) >' \sigma(i+1)} i, \end{split}$$

and

$$arepsilon_{1}(\sigma):=egin{cases} 1, & ext{if } \sigma(1)<0; \ 0, & ext{otherwise}. \end{cases}$$

/ariants and extensions

Cyclic descents

Summary and open problems

MacMahon and Carlitz

/ariants and extensions

Cyclic descents

Summary and open problems

MacMahon and Carlitz

Theorem: (A-Brenti-Roichman, 2001)

$$\sum_{\sigma\in B_n}q^{\mathsf{fmaj}'(\sigma)} = \sum_{\sigma\in B_n}q^{\ell(\sigma)}$$
 (MacMahon)

and

$$\frac{\sum_{\sigma \in B_n} t^{\mathsf{fdes}'(\sigma)} q^{\mathsf{fmaj}'(\sigma)}}{(1-t) \prod_{i=1}^n (1-t^2 q^{2i})} = \sum_{r \ge 0} [r+1]_q^n t^r.$$
 (Carlitz)

/ariants and extensions

Cyclic descents

Summary and open problems

MacMahon and Carlitz

Theorem: (A-Brenti-Roichman, 2001)

$$\sum_{\sigma\in B_n}q^{\mathsf{fmaj}'(\sigma)} = \sum_{\sigma\in B_n}q^{\ell(\sigma)}$$
 (MacMahon)

and

$$\frac{\sum_{\sigma \in B_n} t^{\mathsf{fdes}'(\sigma)} q^{\mathsf{fmaj}'(\sigma)}}{(1-t) \prod_{i=1}^n (1-t^2 q^{2i})} = \sum_{r \ge 0} [r+1]_q^n t^r.$$
 (Carlitz)

This answers affirmatively Foata's question.

Variants and extensions 00000 Cyclic descents

 $\begin{array}{l} \text{Summary and open problems} \\ \text{0000} \end{array}$

Diagonal invariants

Variants and extensions

Cyclic descents

Summary and open problems

Diagonal invariants

 S_n and B_n act on the polynomial algebra $P_n := \mathbb{C}[x_1, \ldots, x_n]$ by permuting variables (and $s_0(x_1) = -x_1$).

Cyclic descents

Summary and open problems

Diagonal invariants

 S_n and B_n act on the polynomial algebra $P_n := \mathbb{C}[x_1, \ldots, x_n]$ by permuting variables (and $s_0(x_1) = -x_1$). If a group G acts on P_n , then $G^{\times t} = G \times \cdots \times G$ acts on $P_n^{\otimes t} = P_n \otimes \cdots \otimes P_n$ (tensor action), and therefore G also acts on $P_n^{\otimes t}$ (diagonal action).

Cyclic descents

Summary and open problems

Diagonal invariants

 S_n and B_n act on the polynomial algebra $P_n := \mathbb{C}[x_1, \ldots, x_n]$ by permuting variables (and $s_0(x_1) = -x_1$). If a group G acts on P_n , then $G^{\times t} = G \times \cdots \times G$ acts on $P_n^{\otimes t} = P_n \otimes \cdots \otimes P_n$ (tensor action), and therefore G also acts on $P_n^{\otimes t}$ (diagonal action). The diagonal invariant algebra DIA is a free module over the tensor invariant algebra TIA, both multi-graded by x_i degrees. Let

$$\mathcal{F}_{\mathsf{TIA}}(\bar{q}) := \sum_{n_1, \dots, n_t \ge 0} \dim_{\mathbb{C}}(\mathsf{TIA}_{n_1, \dots, n_t}) q_1^{n_1} \cdots q_t^{n_t},$$

be the Hilbert series of TIA, and similarly for DIA.

Cyclic descents

Summary and open problems

Diagonal invariants

 S_n and B_n act on the polynomial algebra $P_n := \mathbb{C}[x_1, \ldots, x_n]$ by permuting variables (and $s_0(x_1) = -x_1$). If a group G acts on P_n , then $G^{\times t} = G \times \cdots \times G$ acts on $P_n^{\otimes t} = P_n \otimes \cdots \otimes P_n$ (tensor action), and therefore G also acts on $P_n^{\otimes t}$ (diagonal action). The diagonal invariant algebra DIA is a free module over the tensor invariant algebra TIA, both multi-graded by x_i degrees. Let

$$\mathsf{F}_{\mathsf{TIA}}(\bar{q}) := \sum_{n_1,\ldots,n_t \ge 0} \dim_{\mathbb{C}}(\mathsf{TIA}_{n_1,\ldots,n_t}) q_1^{n_1} \cdots q_t^{n_t},$$

be the Hilbert series of TIA, and similarly for DIA.

Theorem: (Essentially Garsia-Gessel, 1979) For S_n ,

$$\frac{F_{\mathsf{DIA}}(\bar{q})}{F_{\mathsf{TIA}}(\bar{q})} = \sum_{\pi_1 \cdots \pi_t = 1} \prod_{i=1}^t q_i^{\mathsf{maj}(\pi_i)}.$$

Cyclic descents

Summary and open problems

Diagonal invariants

 S_n and B_n act on the polynomial algebra $P_n := \mathbb{C}[x_1, \ldots, x_n]$ by permuting variables (and $s_0(x_1) = -x_1$). If a group G acts on P_n , then $G^{\times t} = G \times \cdots \times G$ acts on $P_n^{\otimes t} = P_n \otimes \cdots \otimes P_n$ (tensor action), and therefore G also acts on $P_n^{\otimes t}$ (diagonal action). The diagonal invariant algebra DIA is a free module over the tensor invariant algebra TIA, both multi-graded by x_i degrees. Let

$$\mathsf{F}_{\mathsf{TIA}}(\bar{q}) := \sum_{n_1,\ldots,n_t \ge 0} \dim_{\mathbb{C}}(\mathsf{TIA}_{n_1,\ldots,n_t}) q_1^{n_1} \cdots q_t^{n_t},$$

be the Hilbert series of TIA, and similarly for DIA.

Theorem: (Essentially Garsia-Gessel, 1979) For S_n ,

$$\frac{F_{\mathsf{DIA}}(\bar{q})}{F_{\mathsf{TIA}}(\bar{q})} = \sum_{\pi_1 \cdots \pi_t = 1} \prod_{i=1}^t q_i^{\mathsf{maj}(\pi_i)}$$

Theorem: (A-R, 2001) Same for B_n , with maj replaced by fmaj.

Variants and extensions

Cyclic descents

 $\begin{array}{l} \text{Summary and open problems} \\ \text{0000} \end{array}$

Coinvariant algebra

Variants and extensions 00000 Cyclic descents

Summary and open problems

Coinvariant algebra

The coinvariant algebra of type A is the quotient $R_n^A = P_n/I_n^A$, where $P_n = \mathbb{C}[x_1, \dots, x_n]$ and I_n^A is the ideal of P_n generated by the S_n -invariant (i.e., symmetric) polynomials without a constant term.

Variants and extensions 00000 Cyclic descents

Summary and open problems

Coinvariant algebra

The coinvariant algebra of type A is the quotient $R_n^A = P_n/I_n^A$, where $P_n = \mathbb{C}[x_1, \dots, x_n]$ and I_n^A is the ideal of P_n generated by the S_n -invariant (i.e., symmetric) polynomials without a constant term.

Theorem: (Garsia-Stanton, 1984) The set $\{a_{\pi} + I_n^A : \pi \in S_n\}$ is a monomial basis for R_n^A , where

$$a_{\pi} := \prod_{i \in \mathsf{Des}(\pi)} (x_{\pi(1)} \cdots x_{\pi(i)}).$$

Variants and extensions 00000 Cyclic descents

Summary and open problems

Coinvariant algebra

The coinvariant algebra of type A is the quotient $R_n^A = P_n/I_n^A$, where $P_n = \mathbb{C}[x_1, \dots, x_n]$ and I_n^A is the ideal of P_n generated by the S_n -invariant (i.e., symmetric) polynomials without a constant term.

Theorem: (Garsia-Stanton, 1984) The set $\{a_{\pi} + I_n^A : \pi \in S_n\}$ is a monomial basis for R_n^A , where

$$a_{\pi} := \prod_{i \in \mathsf{Des}(\pi)} (x_{\pi(1)} \cdots x_{\pi(i)}).$$

Observation: The Garsia-Stanton descent basis can be written as

$$a_{\pi}=\prod_{i=1}^n x_{\pi(i)}^{d_i(\pi)},$$

where

$$d_i(\pi) := |\{j \in \mathsf{Des}(\pi) : j \ge i\}.$$

Cyclic descents

Summary and open problems

Coinvariant algebra

The coinvariant algebra of type A is the quotient $R_n^A = P_n/I_n^A$, where $P_n = \mathbb{C}[x_1, \dots, x_n]$ and I_n^A is the ideal of P_n generated by the S_n -invariant (i.e., symmetric) polynomials without a constant term.

Theorem: (Garsia-Stanton, 1984) The set $\{a_{\pi} + I_n^A : \pi \in S_n\}$ is a monomial basis for R_n^A , where

$$a_{\pi} := \prod_{i \in \mathsf{Des}(\pi)} (x_{\pi(1)} \cdots x_{\pi(i)}).$$

Observation: The Garsia-Stanton descent basis can be written as

$$a_{\pi}=\prod_{i=1}^n x_{\pi(i)}^{d_i(\pi)},$$

where

$$d_i(\pi) := |\{j \in \mathsf{Des}(\pi) : j \ge i\}.$$

Example: For $\pi = (3, 6, 1, 5, 2, 4) \in S_6$, $a_{\pi} = x_3^2 x_6^2 x_1 x_5$.

Variants and extensions

Cyclic descents

 $\begin{array}{l} \text{Summary and open problems} \\ \text{0000} \end{array}$

Coinvariant algebra

Variants and extensions

Cyclic descents

Summary and open problems

Coinvariant algebra

The coinvariant algebra of type *B* is defined similarly: $R_n^B := P_n / I_n^B$.

Variants and extensions

Cyclic descents

Summary and open problems

Coinvariant algebra

The coinvariant algebra of type *B* is defined similarly: $R_n^B := P_n/I_n^B$. Define also, for $\sigma \in B_n$:

$$arepsilon_i(\sigma) := egin{cases} 1, & ext{if } \sigma(i) < 0; \ 0, & ext{otherwise}, \ f_i(\sigma) := 2d_i(\sigma) + arepsilon_i(\sigma). \end{cases}$$
Variants and extensions

Cyclic descents

Summary and open problems

Coinvariant algebra

The coinvariant algebra of type *B* is defined similarly: $R_n^B := P_n/I_n^B$. Define also, for $\sigma \in B_n$:

$$arepsilon_i(\sigma) := egin{cases} 1, & ext{if } \sigma(i) < 0; \ 0, & ext{otherwise}, \ f_i(\sigma) := 2d_i(\sigma) + arepsilon_i(\sigma). \end{cases}$$

Theorem: (A-Brenti-Roichman, 2005) The set $\{b_{\sigma} + I_n^B : \sigma \in B_n\}$ is a monomial basis for R_n^B , where

$$\mathbf{b}_{\sigma} := \prod_{i=1}^{n} x_{|\sigma(i)|}^{f_i(\sigma)}.$$

Cyclic descents

Summary and open problems

Coinvariant algebra

The coinvariant algebra of type *B* is defined similarly: $R_n^B := P_n/I_n^B$. Define also, for $\sigma \in B_n$:

$$arepsilon_i(\sigma) := egin{cases} 1, & ext{if } \sigma(i) < 0; \ 0, & ext{otherwise}, \ f_i(\sigma) := 2d_i(\sigma) + arepsilon_i(\sigma). \end{cases}$$

Theorem: (A-Brenti-Roichman, 2005) The set $\{b_{\sigma} + I_n^B : \sigma \in B_n\}$ is a monomial basis for R_n^B , where

$$\boldsymbol{b}_{\boldsymbol{\sigma}} := \prod_{i=1}^{n} \boldsymbol{x}_{|\boldsymbol{\sigma}(i)|}^{f_i(\boldsymbol{\sigma})}.$$

Example: For $\sigma = (-3, 6, -1, 5, 2, 4) \in B_6$, $b_{\sigma} = x_3^3 x_6^2 x_1^2 x_5$.

Variants and extensions

Cyclic descents

 $\begin{array}{l} \text{Summary and open problems} \\ \text{0000} \end{array}$

Coinvariant algebra

Variants and extensions 00000 Cyclic descents

Summary and open problems

Coinvariant algebra

Note that the $d_i(\pi)$ form a partition of maj (π) :

$$\mathsf{des}(\pi) = d_1(\pi) \geq \ldots \geq d_n(\pi) = 0$$

and

$$d_1(\pi) + \ldots + d_n(\pi) = \operatorname{maj}(\pi).$$

Variants and extensions 00000 Cyclic descents

Summary and open problems

Coinvariant algebra

Note that the $d_i(\pi)$ form a partition of maj (π) :

$$\mathsf{des}(\pi) = d_1(\pi) \geq \ldots \geq d_n(\pi) = 0$$

and

$$d_1(\pi) + \ldots + d_n(\pi) = \operatorname{maj}(\pi).$$

Example: For $\pi = (3, 6, 1, 5, 2, 4) \in S_6$, $\text{Des}(\pi) = \{2, 4\}$, $a_{\pi} = x_3^2 x_6^2 x_1 x_5$ and indeed $(2, 2, 1, 1) \vdash 6 = \text{maj}(\pi)$.

Cyclic descents 0000000000000000 Summary and open problems

Coinvariant algebra

Note that the $d_i(\pi)$ form a partition of maj (π) :

$$\mathsf{des}(\pi) = d_1(\pi) \geq \ldots \geq d_n(\pi) = 0$$

and

$$d_1(\pi) + \ldots + d_n(\pi) = \operatorname{maj}(\pi).$$

Example: For $\pi = (3, 6, 1, 5, 2, 4) \in S_6$, $\text{Des}(\pi) = \{2, 4\}$, $a_{\pi} = x_3^2 x_6^2 x_1 x_5$ and indeed $(2, 2, 1, 1) \vdash 6 = \text{maj}(\pi)$.

Similarly, the $f_i(\sigma)$ form a partition of fmaj (σ) for $\sigma \in B_n$.

Variants and extensions 00000 Cyclic descents

 $\begin{array}{l} \text{Summary and open problems} \\ \text{0000} \end{array}$

Coinvariant algebra

Cyclic descents

Summary and open problems

Coinvariant algebra

The descent basis can be used to give a new construction of Solomon's descent representations (for type A), and a suitable refinement (for type B). In fact, if R_k is the k-th homogeneous component of $R = P_n/I_n^A$, then

Cyclic descents

Summary and open problems

Coinvariant algebra

The descent basis can be used to give a new construction of Solomon's descent representations (for type A), and a suitable refinement (for type B). In fact, if R_k is the k-th homogeneous component of $R = P_n/I_n^A$, then

Theorem: For every $0 \le k \le {n \choose 2}$,

$$R_k \cong \bigoplus_S R_{\lambda_S}$$

as S_n -modules, where the sum is over all subsets $S \subseteq [n-1]$ such that $\sum_{i \in S} i = k$, and λ_S is a partition of k naturally associated with S.

Variants and extensions

Cyclic descents

 $\begin{array}{l} \text{Summary and open problems} \\ \text{0000} \end{array}$

Coinvariant algebra

Cyclic descents

Summary and open problems

Coinvariant algebra

Similarly, Theorem: (A-Brenti-Roichman, 2005) For every $0 \le k \le n^2$,

$$R_k^B \cong \bigoplus_{S_1, S_2} R_{\lambda_{S_1, S_2}^B}$$

as B_n -modules, where the sum is over all subsets $S_1 \subseteq [n-1]$ and $S_2 \subseteq [n]$ such that $\lambda_{S_1,S_2} := 2\lambda_{S_1} + 1_{S_2}$ is a partition and $2 \cdot \sum_{i \in S_1} i + |S_2| = k$.

Cyclic descents

Summary and open problems

Coinvariant algebra

Similarly, Theorem: (A-Brenti-Roichman, 2005) For every $0 \le k \le n^2$,

$$R_k^B \cong \bigoplus_{S_1, S_2} R_{\lambda_{S_1, S_2}^B}$$

as B_n -modules, where the sum is over all subsets $S_1 \subseteq [n-1]$ and $S_2 \subseteq [n]$ such that $\lambda_{S_1,S_2} := 2\lambda_{S_1} + 1_{S_2}$ is a partition and $2 \cdot \sum_{i \in S_1} i + |S_2| = k$.

There are also decompositions of R_{λ_S} and $R_{\lambda_{S_1,S_2}^B}$ into irreducibles, with multiplicities equal to the number of standard Young tableaux with prescribed shape and descent set. This refines results of Stanley and Lusztig (for type *A*), and Stembridge (for type *B*).

Variants and extensions • 0000

Cyclic descents

Summary and open problems 0000

Variants and extensions

Variants and extensions 0000

Cyclic descents

Summary and open problems

Neg statistics: ndes and nmaj

Cyclic descents

Summary and open problems

Neg statistics: ndes and nmaj

There is another pair of naturally-defined statistics on B_n , with the same nice combinatorial properties.

Cyclic descents

Summary and open problems

Neg statistics: ndes and nmaj

There is another pair of naturally-defined statistics on B_n , with the same nice combinatorial properties.

Definition: (A-Brenti-Roichman, 2001) Define the multiset

$$\mathsf{NDes}(\sigma) := \mathsf{Des}'(\sigma) \cup \{ |\sigma(i)| : \sigma(i) < 0 \}$$

and let

$$\mathsf{ndes}(\sigma) := |\mathsf{NDes}(\sigma)|,$$
$$\mathsf{nmaj}(\sigma) := \sum_{i \in \mathsf{NDes}(\sigma)} i.$$

Cyclic descents

Summary and open problems

Neg statistics: ndes and nmaj

There is another pair of naturally-defined statistics on B_n , with the same nice combinatorial properties.

Definition: (A-Brenti-Roichman, 2001) Define the multiset

$$\mathsf{NDes}(\sigma) := \mathsf{Des}'(\sigma) \cup \{ |\sigma(i)| \ : \ \sigma(i) < \mathsf{0} \}$$

and let

$$\mathsf{ndes}(\sigma) := |\mathsf{NDes}(\sigma)|,$$
$$\mathsf{nmaj}(\sigma) := \sum_{i \in \mathsf{NDes}(\sigma)} i.$$

Theorem: (A-B-R, 2001)

$$\mathsf{nmaj}\sim\mathsf{fmaj}'\sim\ell$$
 (MacMahon), $(\mathsf{ndes},\mathsf{nmaj})\sim(\mathsf{fdes}',\mathsf{fmaj}')$ (Carlitz).

Variants and extensions 00000

Cyclic descents

Summary and open problems 0000

The Chow-Gessel variant

Variants and extensions 00000

Cyclic descents

Summary and open problems

The Chow-Gessel variant

Recall that the pair of statistics (fdes, fmaj) satisfies a Carlitz-type identity:

$$\frac{\sum_{\sigma\in B_n} t^{\mathsf{fdes}(\sigma)} q^{\mathsf{fmaj}(\sigma)}}{(1-t)\prod_{i=1}^n (1-t^2 q^{2i})} = \sum_{r\geq 0} [r+1]_q^n t^r.$$

Cyclic descents

Summary and open problems

The Chow-Gessel variant

Recall that the pair of statistics (fdes, fmaj) satisfies a Carlitz-type identity:

$$\frac{\sum_{\sigma\in B_n} t^{\mathsf{fdes}(\sigma)} q^{\mathsf{fmaj}(\sigma)}}{(1-t)\prod_{i=1}^n (1-t^2 q^{2i})} = \sum_{r\geq 0} [r+1]_q^n t^r.$$

Chow and Gessel (2007) proved that the pair (des_B , fmaj) satisfies a slightly different Carlitz-type identity:

$$\frac{\sum_{\sigma\in B_n} t^{\operatorname{des}_B(\sigma)}q^{\operatorname{fmaj}(\sigma)}}{\prod_{i=0}^n (1-tq^{2i})} = \sum_{r\geq 0} [2r+1]_q^n t^r.$$

Variants and extensions 00000

Cyclic descents

Summary and open problems

Extensions to other groups

Cyclic descents

Summary and open problems

Extensions to other groups

After types A and B, the natural next step is type D.

Cyclic descents

Summary and open problems

Extensions to other groups

After types A and B, the natural next step is type D.

Biagioli (2003) defined ddes and dmaj for type D, and proved MacMahon and Carlitz type theorems.

Cyclic descents

Summary and open problems

Extensions to other groups

After types A and B, the natural next step is type D.

Biagioli (2003) defined ddes and dmaj for type D, and proved MacMahon and Carlitz type theorems.

Biagioli and Caselli (2004) defined two other pairs of (des, maj) analogues for type D, satisfying MacMahon and Carlitz, and one of them also the diagonal invariant Hilbert series formula (exactly for odd n, almost for even n).

Cyclic descents

Summary and open problems

Extensions to other groups

After types A and B, the natural next step is type D.

Biagioli (2003) defined ddes and dmaj for type D, and proved MacMahon and Carlitz type theorems.

Biagioli and Caselli (2004) defined two other pairs of (des, maj) analogues for type D, satisfying MacMahon and Carlitz, and one of them also the diagonal invariant Hilbert series formula (exactly for odd n, almost for even n).

In another work, they extended the descent basis and descent representation construction to type D.

Cyclic descents

Summary and open problems

Extensions to other groups

After types A and B, the natural next step is type D.

Biagioli (2003) defined ddes and dmaj for type D, and proved MacMahon and Carlitz type theorems.

Biagioli and Caselli (2004) defined two other pairs of (des, maj) analogues for type D, satisfying MacMahon and Carlitz, and one of them also the diagonal invariant Hilbert series formula (exactly for odd n, almost for even n).

In another work, they extended the descent basis and descent representation construction to type D.

An extension in a different direction is to wreath products $G(r, n) = C_r \wr S_n$, where C_r is cyclic of order r.

Cyclic descents

Summary and open problems

Extensions to other groups

After types A and B, the natural next step is type D.

Biagioli (2003) defined ddes and dmaj for type D, and proved MacMahon and Carlitz type theorems.

Biagioli and Caselli (2004) defined two other pairs of (des, maj) analogues for type D, satisfying MacMahon and Carlitz, and one of them also the diagonal invariant Hilbert series formula (exactly for odd n, almost for even n).

In another work, they extended the descent basis and descent representation construction to type D.

An extension in a different direction is to wreath products $G(r, n) = C_r \wr S_n$, where C_r is cyclic of order r. In fact, the initial definition of fmaj and the diagonal invariant results (AR, 2001) were in this generality.

Summary and open problems

Extensions to other groups

After types A and B, the natural next step is type D.

Biagioli (2003) defined ddes and dmaj for type D, and proved MacMahon and Carlitz type theorems.

Biagioli and Caselli (2004) defined two other pairs of (des, maj) analogues for type D, satisfying MacMahon and Carlitz, and one of them also the diagonal invariant Hilbert series formula (exactly for odd n, almost for even n).

In another work, they extended the descent basis and descent representation construction to type D.

An extension in a different direction is to wreath products $G(r, n) = C_r \wr S_n$, where C_r is cyclic of order r. In fact, the initial definition of fmaj and the diagonal invariant results (AR, 2001) were in this generality.

Chow and Mansour (2011) defined a new fmaj_r for G(r, n), extending the Chow-Gessel variant.

Variants and extensions $0000 \bullet$

Cyclic descents

Summary and open problems 0000

Extensions to other groups

Cyclic descents 0000000000000000 Summary and open problems

Extensions to other groups

Bagno and Biagioli (2007) extended the descent basis and descent representations to the complex reflection groups G(r, p, n). They include the Coxeter group of type D (= G(2, 2, n)).

Summary and open problems

Extensions to other groups

Bagno and Biagioli (2007) extended the descent basis and descent representations to the complex reflection groups G(r, p, n). They include the Coxeter group of type D (= G(2, 2, n)).

Projective (complex) reflection groups G(r, p, q, n) were defined by Caselli (2011). They include G(r, p, n) (for q = 1). He proved that the combinatorics of G = G(r, p, q, n) governs the algebra of the dual group $G^* = G(r, q, p, n)$

Summary and open problems

Extensions to other groups

Bagno and Biagioli (2007) extended the descent basis and descent representations to the complex reflection groups G(r, p, n). They include the Coxeter group of type D (= G(2, 2, n)).

Projective (complex) reflection groups G(r, p, q, n) were defined by Caselli (2011). They include G(r, p, n) (for q = 1). He proved that the combinatorics of G = G(r, p, q, n) governs the algebra of the dual group $G^* = G(r, q, p, n)$ Biagioli and Caselli (2012) extended almost everything to G(r, p, q, n).

/ariants and extensions

Cyclic descents

Summary and open problems 0000

Cyclic descents

/ariants and extensions

Cyclic descents

Summary and open problems

Descents and cyclic descents of permutations

Cyclic descents

Summary and open problems

Descents and cyclic descents of permutations

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group S_n is

 $\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1],$ where $[m] := \{1, 2, \dots, m\}.$

Cyclic descents

Summary and open problems

Descents and cyclic descents of permutations

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group S_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}.$

The cyclic descent set is defined, with the convention $\pi_{n+1} := \pi_1$, by

$$\mathsf{cDes}(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq [n].$$
Summary and open problems

Descents and cyclic descents of permutations

The descent set of a permutation $\pi = (\pi_1, \ldots, \pi_n)$ in the symmetric group S_n is

$$\mathsf{Des}(\pi) := \{1 \le i \le n-1 : \pi_i > \pi_{i+1}\} \subseteq [n-1],$$

where $[m] := \{1, 2, \dots, m\}.$

The cyclic descent set is defined, with the convention $\pi_{n+1} := \pi_1$, by

$$\mathsf{cDes}(\pi) := \{1 \le i \le n : \pi_i > \pi_{i+1}\} \subseteq [n].$$

Introduced by Klyachko ['74] and Cellini ['95]. Further studied by Fulman ['00], Petersen ['05, '07], Dilks-Petersen-Stembridge ['09], Rhoades ['10], Visontai-Williams ['13], Pechenik ['14], Zhang ['14], Aguiar-Petersen ['15], Elizalde-Roichman ['17], Ahlbach-Swanson ['18], A-Reiner-Roichman ['18], Bloom-Elizalde-R ['20], Huang ['20], A-Gessel-Reiner-Roichman ['20], Khachatryan ['21], ...

Cyclic descents

Summary and open problems

Descents and cyclic descents of permutations

Example

Summary and open problems

Descents and cyclic descents of permutations

Example

 $\pi = 23154$:

Summary and open problems

Descents and cyclic descents of permutations

Example

 $\pi = 23154$: $Des(\pi) = \{2, 4\}$,

Summary and open problems

Descents and cyclic descents of permutations

Example

 $\pi = 23154$: $Des(\pi) = \{2, 4\}$, $cDes(\pi) = \{2, 4, 5\}$.

Summary and open problems

Descents and cyclic descents of permutations

Example

 $\pi = 23154$: $Des(\pi) = \{2, 4\}$, $cDes(\pi) = \{2, 4, 5\}$. $\pi = 34152$:

Summary and open problems

Descents and cyclic descents of permutations

Example

$$\pi = 23154 : \text{Des}(\pi) = \{2,4\}, \text{ cDes}(\pi) = \{2,4,5\}.$$

$$\pi = 34152 : \text{Des}(\pi) = \{2,4\},$$

Summary and open problems

Descents and cyclic descents of permutations

Example

 $\pi = 23154 : \text{Des}(\pi) = \{2,4\}, \text{ cDes}(\pi) = \{2,4,5\}.$ $\pi = 34152 : \text{Des}(\pi) = \{2,4\}, \text{ cDes}(\pi) = \{2,4\}.$

/ariants and extensions

Cyclic descents

Summary and open problems

Standard Young Tableaux

A shape λ of size *n* is a partition $\lambda = (\lambda_1, \dots, \lambda_k) \vdash n$. It has a corresponding diagram.

Example

$$\lambda = (4, 3, 1)$$

Cyclic descents

Summary and open problems

Standard Young Tableaux

A shape λ of size *n* is a partition $\lambda = (\lambda_1, \dots, \lambda_k) \vdash n$. It has a corresponding diagram.

Example

$$\lambda = (4, 3, 1)$$

A standard Young tableau (SYT) T of shape λ is a filling of the diagram of λ by the numbers $1, \ldots, n$, each one appearing once, such that the entries increase along rows (from left to right) and along columns (from top to bottom).

Example

$$\lambda = (4,3,1)$$

/

Cyclic descents

Summary and open problems

Standard Young Tableaux

A diagram of skew shape λ/μ is the set difference of the diagrams of shapes λ and μ , assuming that $\mu \subseteq \lambda$, i.e. $\mu_i \leq \lambda_i$ ($\forall i$).

Cyclic descents

Summary and open problems

Standard Young Tableaux

A diagram of skew shape λ/μ is the set difference of the diagrams of shapes λ and μ , assuming that $\mu \subseteq \lambda$, i.e. $\mu_i \leq \lambda_i$ ($\forall i$).

A SYT of skew shape λ/μ is defined as for shape λ .

Cyclic descents

Summary and open problems

Standard Young Tableaux

A diagram of skew shape λ/μ is the set difference of the diagrams of shapes λ and μ , assuming that $\mu \subseteq \lambda$, i.e. $\mu_i \leq \lambda_i$ ($\forall i$).

A SYT of skew shape λ/μ is defined as for shape λ .

Example

$$\lambda/\mu = (4, 3, 3, 1)/(2, 1)$$

$$2 3$$

$$1 5$$

$$4 7 8$$

$$6$$

Cyclic descents

Summary and open problems

Standard Young Tableaux

A diagram of skew shape λ/μ is the set difference of the diagrams of shapes λ and μ , assuming that $\mu \subseteq \lambda$, i.e. $\mu_i \leq \lambda_i$ ($\forall i$).

A SYT of skew shape λ/μ is defined as for shape λ .

Example

$$\lambda/\mu = (4,3,3,1)/(2,1) \qquad \begin{array}{r} 2 & 3 \\ \hline 1 & 5 \\ \hline 4 & 7 & 8 \\ \hline 6 \\ \end{array}$$

Denote the set of all standard Young tableaux of shape λ/μ by SYT(λ/μ).

/ariants and extensions

Cyclic descents

Summary and open problems

Descents and cyclic descents of SYT

Summary and open problems

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Summary and open problems

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \end{array}}_{\text{SYT}((4,3,1)/(1,1))}$$

Summary and open problems

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \hline \end{array}}_{5} \in SYT((4,3,1)/(1,1))$$

 $Des(T) = \{2, 4\}.$

Summary and open problems

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \hline \end{array}}_{5} \in SYT((4,3,1)/(1,1))$$

$$Des(T) = \{2, 4\}.$$

Problem:

Summary and open problems

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \hline \end{array}}_{5} \in SYT((4,3,1)/(1,1))$$

$$Des(T) = \{2, 4\}.$$

Problem:

Define a cyclic descent set for SYT of any shape λ/μ .

Summary and open problems

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

 $Des(T) := \{i : i+1 \text{ is in a lower row than } i\}.$

Example

$$T = \underbrace{\begin{array}{c|c} 1 & 2 & 4 \\ \hline 3 & 6 \\ \hline 5 \\ \hline \end{array}}_{5} \in SYT((4,3,1)/(1,1))$$

$$Des(T) = \{2, 4\}.$$

Problem:

Define a cyclic descent set for SYT of any shape λ/μ .

Variants and extensions

Cyclic descents

Summary and open problems 0000

SYT of rectangular shapes

Variants and extensions

Cyclic descents

Summary and open problems

SYT of rectangular shapes

/ariants and extensions

Cyclic descents

Summary and open problems

SYT of rectangular shapes

Theorem (Rhoades '10)

For r|n, let $\lambda = (r^{n/r}) = (r, ..., r) \vdash n$ be a rectangular shape. Then there exists a cyclic descent map cDes : $SYT(\lambda) \rightarrow 2^{[n]}$ s.t. for all $T \in SYT(\lambda)$:

$$cDes(T) \cap [n-1] = Des(T),$$

/ariants and extensions

Cyclic descents

Summary and open problems

SYT of rectangular shapes

Theorem (Rhoades '10)

For r|n, let $\lambda = (r^{n/r}) = (r, ..., r) \vdash n$ be a rectangular shape. Then there exists a cyclic descent map cDes : $SYT(\lambda) \rightarrow 2^{[n]}$ s.t. for all $T \in SYT(\lambda)$:

$$cDes(T) \cap [n-1] = Des(T),$$

 $cDes(p(T)) = cDes(T)) + 1 \pmod{n}$

where p is Schützenberger's jeu-de-taquin promotion operator.

/ariants and extensions

Cyclic descents

Summary and open problems

SYT of rectangular shapes

Example $\lambda = (3,3) \vdash 6$.

/ariants and extensions

Cyclic descents

Summary and open problems

SYT of rectangular shapes

Example $\lambda = (3,3) \vdash 6$.

Jeu-de-taquin promotion:

/ariants and extensions

Cyclic descents

Summary and open problems

SYT of rectangular shapes

Example $\lambda = (3,3) \vdash 6$.

Jeu-de-taquin promotion:

/ariants and extensions

Cyclic descents

Summary and open problems

SYT of rectangular shapes

Example $\lambda = (3,3) \vdash 6$.

Jeu-de-taquin promotion:

The orbits of p on SYT(λ):

1	3	4	1	2	5	1	2	3	1	3	5	1	2	4
2	5	6	3	4	6	4	5	6	2	4	6	3	5	6

/ariants and extensions

Cyclic descents

Summary and open problems

SYT of rectangular shapes

Example $\lambda = (3,3) \vdash 6$.

Jeu-de-taquin promotion:

The orbits of p on SYT(λ):

Variants and extensions 00000 Cyclic descents

Summary and open problems

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman, 2020) Given a set \mathcal{T} and map Des : $\mathcal{T} \rightarrow 2^{[n-1]}$,

Variants and extensions 00000 Cyclic descents

Summary and open problems

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman, 2020) Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des

Cyclic descents

Summary and open problems

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman, 2020) Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair (cDes, p), where cDes : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms:

Variants and extensions 00000 Cyclic descents

Summary and open problems

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman, 2020) Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair (cDes, p), where cDes : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all \mathcal{T} in \mathcal{T} ,

$$\begin{array}{ll} (\text{extension}) & \text{cDes}(T) \cap [n-1] = \text{Des}(T), \\ (\text{equivariance}) & \text{cDes}(p(T)) = 1 + \text{cDes}(T) \pmod{n}, \\ (\text{non-Escher}) & \varnothing \subsetneq \text{cDes}(T) \subsetneq [n]. \end{array}$$

Cyclic descents

Summary and open problems

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman, 2020) Given a set \mathcal{T} and map Des : $\mathcal{T} \to 2^{[n-1]}$, a cyclic extension of Des is a pair (cDes, p), where cDes : $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p : \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all \mathcal{T} in \mathcal{T} ,

$$\begin{array}{ll} (\text{extension}) & \text{cDes}(T) \cap [n-1] = \text{Des}(T), \\ (\text{equivariance}) & \text{cDes}(p(T)) = 1 + \text{cDes}(T) \pmod{n}, \\ (\text{non-Escher}) & \varnothing \subsetneq \text{cDes}(T) \subsetneq [n]. \end{array}$$

Examples

- $T = S_n$, cDes = Cellini's cyclic descent set, and p = cyclic rotation.
- \$\mathcal{T}\$ = SYT(r^{n/r}), cDes = Rhoades' cyclic descent set, and \$p\$ = promotion.

Variants and extensions

Cyclic descents

Summary and open problems

Examples
Variants and extensions

Cyclic descents

Summary and open problems 0000

Examples

 ${\text{Des}(T): T \in \text{SYT}(3,2)} = { \{1,3\}, \{2,4\}, \{3\}, \{4,1\}, \{2\} \}$

Summary and open problems

Examples

 ${\text{Des}(T): T \in \text{SYT}(3,2)} = { \{1,3\}, \{2,4\}, \{3\}, \{4,1\}, \{2\} \}$

There exists a cyclic descent extension (CDE):

Summary and open problems

Examples

 ${\text{Des}(T): T \in \text{SYT}(3,2)} = { \{1,3\}, \{2,4\}, \{3\}, \{4,1\}, \{2\} \}$

There exists a cyclic descent extension (CDE):

 ${cDes(T): T \in SYT(3,2)} = { \{1,3\}, \{2,4\}, \{3,5\}, \{4,1\}, \{2,5\} }$

Summary and open problems

Examples

 ${\text{Des}(T): T \in \text{SYT}(3,2)} = { \{1,3\}, \{2,4\}, \{3\}, \{4,1\}, \{2\} \}$

There exists a cyclic descent extenstion (CDE):

 ${cDes(T): T \in SYT(3,2)} = { \{1,3\}, \{2,4\}, \{3,5\}, \{4,1\}, \{2,5\} }$

$$SYT(4,1) = \{ \begin{array}{c|c} 1 & 3 & 4 & 5 \\ \hline 2 & & \\ \end{array}, \begin{array}{c} 1 & 2 & 4 & 5 \\ \hline 3 & & \\ \end{array}, \begin{array}{c} 1 & 2 & 3 & 5 \\ \hline 4 & & \\ \end{array}, \begin{array}{c} 1 & 2 & 3 & 4 \\ \hline 5 & & \\ \end{array} \}$$
$$\{Des(T): \ T \in SYT(4,1)\} = \{ \ \{1\}, \ \{2\}, \ \{3\}, \ \{4\} \ \}$$

Summary and open problems 0000

Examples

 ${\text{Des}(T): T \in \text{SYT}(3,2)} = { \{1,3\}, \{2,4\}, \{3\}, \{4,1\}, \{2\} \}$

There exists a cyclic descent extenstion (CDE):

 ${cDes(T): T \in SYT(3,2)} = { \{1,3\}, \{2,4\}, \{3,5\}, \{4,1\}, \{2,5\} }$

$$SYT(4,1) = \{ \begin{array}{c} 1 & 3 & 4 & 5 \\ 2 & 3 & 3 \end{array}, \begin{array}{c} 1 & 2 & 4 & 5 \\ 4 & 5 & 5 & 5 \end{array} \}$$
$$\{Des(T): T \in SYT(4,1)\} = \{ \{1\}, \{2\}, \{3\}, \{4\} \}$$
No CDE

Variants and extensions

Cyclic descents

Summary and open problems

Connected ribbons

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square.

/ariants and extensions

Cyclic descents

Summary and open problems

Connected ribbons

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square.

Variants and extensions

Cyclic descents

Summary and open problems

Connected ribbons

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square.

/ariants and extensions

Cyclic descents

Summary and open problems

Connected ribbons

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square.

Examples

Proposition A connected ribbon does not have a cyclic descent extension.

/ariants and extensions

Cyclic descents

Summary and open problems

Connected ribbons

A connected skew shape λ/μ is a ribbon if it does not contain a 2×2 square.

Examples

Proposition A connected ribbon does not have a cyclic descent extension.

Oops !!!

Variants and extensions

Cyclic descents

Summary and open problems 0000

Theorem (A-Reiner-Roichman, 2020) The set SYT(λ/μ) has a cyclic descent extension if and only if λ/μ is not a connected ribbon.

/ariants and extensions

Cyclic descents

Summary and open problems

Theorem (A-Reiner-Roichman, 2020) The set SYT(λ/μ) has a cyclic descent extension if and only if λ/μ is not a connected ribbon.

• The proof is algebraic (involves Postnikov's toric Schur functions and Gromov-Witten invariants).

/ariants and extensions

Cyclic descents

Summary and open problems

Theorem (A-Reiner-Roichman, 2020) The set SYT(λ/μ) has a cyclic descent extension if and only if λ/μ is not a connected ribbon.

- The proof is algebraic (involves Postnikov's toric Schur functions and Gromov-Witten invariants).
- A constructive combinatorial proof was given by Brice Huang.

Variants and extensions

Cyclic descents

Summary and open problems

Uniqueness

Variants and extensions 00000 Cyclic descents

Summary and open problems

Uniqueness

The actual extended map cDes is almost never unique;

Variants and extensions 00000

Cyclic descents

Summary and open problems

Uniqueness

The actual extended map cDes is almost never unique; however, its distribution is always unique:

Summary and open problems

Uniqueness

The actual extended map cDes is almost never unique; however, its distribution is always unique:

Theorem

 If λ/μ is not a connected ribbon then all cyclic descent extensions cDes : SYT(λ/μ) → 2^[n] have the same fiber sizes |cDes⁻¹(J)|, uniquely determined by λ/μ and Ø ⊊ J ⊊ [n].

Summary and open problems

Uniqueness

The actual extended map cDes is almost never unique; however, its distribution is always unique:

Theorem

- If λ/μ is not a connected ribbon then all cyclic descent extensions cDes : SYT(λ/μ) → 2^[n] have the same fiber sizes |cDes⁻¹(J)|, uniquely determined by λ/μ and Ø ⊊ J ⊊ [n].
- 2. (A-Elizalde-Roichman) If λ/μ is a near-hook, namely has distance one from a hook, then the cyclic extension cDes on SYT(λ/μ) is unique.

Summary and open problems

Uniqueness

The actual extended map cDes is almost never unique; however, its distribution is always unique:

Theorem

- If λ/μ is not a connected ribbon then all cyclic descent extensions cDes : SYT(λ/μ) → 2^[n] have the same fiber sizes |cDes⁻¹(J)|, uniquely determined by λ/μ and Ø ⊊ J ⊊ [n].
- 2. (A-Elizalde-Roichman) If λ/μ is a near-hook, namely has distance one from a hook, then the cyclic extension cDes on SYT(λ/μ) is unique.

Summary and open problems

Uniqueness

The actual extended map cDes is almost never unique; however, its distribution is always unique:

Theorem

- If λ/μ is not a connected ribbon then all cyclic descent extensions cDes : SYT(λ/μ) → 2^[n] have the same fiber sizes |cDes⁻¹(J)|, uniquely determined by λ/μ and Ø ⊊ J ⊊ [n].
- 2. (A-Elizalde-Roichman) If λ/μ is a near-hook, namely has distance one from a hook, then the cyclic extension cDes on SYT(λ/μ) is unique.

Summary and open problems

Uniqueness

The actual extended map cDes is almost never unique; however, its distribution is always unique:

Theorem

- If λ/μ is not a connected ribbon then all cyclic descent extensions cDes : SYT(λ/μ) → 2^[n] have the same fiber sizes |cDes⁻¹(J)|, uniquely determined by λ/μ and Ø ⊊ J ⊊ [n].
- 2. (A-Elizalde-Roichman) If λ/μ is a near-hook, namely has distance one from a hook, then the cyclic extension cDes on SYT(λ/μ) is unique.

/ariants and extensions

Cyclic descents

Summary and open problems

Cyclic descent extension on conjugacy classes

/ariants and extensions

Cyclic descents

Summary and open problems

Cyclic descent extension on conjugacy classes

We saw that S_n has a CDE (Cellini's). How about subsets of S_n ?

Summary and open problems

Cyclic descent extension on conjugacy classes

We saw that S_n has a CDE (Cellini's). How about subsets of S_n ? Problem:

Summary and open problems

Cyclic descent extension on conjugacy classes

We saw that S_n has a CDE (Cellini's). How about subsets of S_n ?

Problem:

Let $\mathcal{C}_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . Does it carry a CDE ?

We saw that S_n has a CDE (Cellini's). How about subsets of S_n ?

Problem:

Let $\mathcal{C}_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . Does it carry a CDE ?

Example. Consider the conjugacy class of 4-cycles in S_4 .

 $\mathcal{C}_4 = \{2341, 4123, 4312, 3421, 2413, 3142\}.$

We saw that S_n has a CDE (Cellini's). How about subsets of S_n ?

Problem:

Let $\mathcal{C}_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . Does it carry a CDE ?

Example. Consider the conjugacy class of 4-cycles in S_4 .

 $\mathcal{C}_4 = \{2341, 4123, 4312, 3421, 2413, 3142\}.$

 $\mbox{Cellini's cDes sets are $\{3\}, $\{1\}, $\{1,2\}, $\{2,3\}, $\{2,4\}, $\{1,3\}. $ \label{eq:cellini}$

We saw that S_n has a CDE (Cellini's). How about subsets of S_n ?

Problem:

Let $\mathcal{C}_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . Does it carry a CDE ?

Example. Consider the conjugacy class of 4-cycles in S_4 .

 $\mathcal{C}_4 = \{2341, 4123, 4312, 3421, 2413, 3142\}.$

Cellini's cDes sets are {3}, {1}, {1,2}, {2,3}, {2,4}, {1,3}. Not a CDE

We saw that S_n has a CDE (Cellini's). How about subsets of S_n ?

Problem:

Let $\mathcal{C}_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . Does it carry a CDE ?

Example. Consider the conjugacy class of 4-cycles in S_4 .

 $\mathcal{C}_4 = \{2341, 4123, 4312, 3421, 2413, 3142\}.$

Cellini's cDes sets are $\{3\}$, $\{1\}$, $\{1,2\}$, $\{2,3\}$, $\{2,4\}$, $\{1,3\}$. Not a CDE (not closed under cyclic shift);

We saw that S_n has a CDE (Cellini's). How about subsets of S_n ?

Problem:

Let $\mathcal{C}_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . Does it carry a CDE ?

Example. Consider the conjugacy class of 4-cycles in S_4 .

$$\mathcal{C}_4 = \{2341, 4123, 4312, 3421, 2413, 3142\}.$$

Cellini's cDes sets are $\{3\}$, $\{1\}$, $\{1,2\}$, $\{2,3\}$, $\{2,4\}$, $\{1,3\}$. Not a CDE (not closed under cyclic shift); but letting

 $cDes(2341) = \{3, 4\}, \ cDes(4123) = \{4, 1\}, \ cDes(4312) = \{1, 2\}$

 $cDes(3421) = \{2,3\}, \ cDes(2413) = \{2,4\}, \ cDes(3142) = \{1,3\}$ determines a CDE.

/ariants and extensions

Cyclic descents

Summary and open problems

Cyclic descent extension on conjugacy classes

Summary and open problems

Cyclic descent extension on conjugacy classes

Theorem (A-Hegedűs-Roichman)

Let $C_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . The following are equivalent:

(i) The descent map Des on C_{μ} has a cyclic extension (CDE).

Summary and open problems

Cyclic descent extension on conjugacy classes

Theorem (A-Hegedűs-Roichman)

Let $C_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . The following are equivalent:

(i) The descent map Des on C_μ has a cyclic extension (CDE).
(ii) μ is not of the form (r^s) for some square-free r.

Summary and open problems

Cyclic descent extension on conjugacy classes

Theorem (A-Hegedűs-Roichman)

Let $C_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . The following are equivalent:

(i) The descent map Des on C_{μ} has a cyclic extension (CDE).

(ii) μ is not of the form (r^s) for some square-free r.

The proof is algebraic (involves higher Lie characters).

Summary and open problems

Cyclic descent extension on conjugacy classes

Theorem (A-Hegedűs-Roichman)

Let $C_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . The following are equivalent:

(i) The descent map Des on C_{μ} has a cyclic extension (CDE).

(ii) μ is not of the form (r^{s}) for some square-free r.

The proof is algebraic (involves higher Lie characters). Problem:

Summary and open problems

Cyclic descent extension on conjugacy classes

Theorem (A-Hegedűs-Roichman)

Let $C_{\mu} \subset S_n$ be a conjugacy class of cycle type μ . The following are equivalent:

(i) The descent map Des on C_{μ} has a cyclic extension (CDE).

(ii) μ is not of the form (r^s) for some square-free r.

The proof is algebraic (involves higher Lie characters). Problem:

Find a constructive combinatorial proof.
/ariants and extensions

Cyclic descents

Summary and open problems

Variants and extensions

Cyclic descents

Variants and extensions

Cyclic descents

Summary and open problems 000

• Flag statistics and their relatives on B_n and other groups.

Cyclic descents

- Flag statistics and their relatives on B_n and other groups.
- Combinatorial and algebraic properties.

Cyclic descents

- Flag statistics and their relatives on B_n and other groups.
- Combinatorial and algebraic properties.
- Cyclic descent sets from an axiomatic point of view (CDE).

Cyclic descents

- Flag statistics and their relatives on B_n and other groups.
- Combinatorial and algebraic properties.
- Cyclic descent sets from an axiomatic point of view (CDE).
- Simple explicit criteria for the existence of CDE on SYT of a given skew shape and on conjugacy classes of permutations.

Variants and extensions

Cyclic descents

Summary and open problems 0000

Open problems

Cyclic descents

Summary and open problems

Open problems

• Combinatorial proofs.

Cyclic descents 0000000000000000 Summary and open problems

Open problems

- Combinatorial proofs.
- Cyclic major index.

Cyclic descents 0000000000000000 Summary and open problems

Open problems

- Combinatorial proofs.
- Cyclic major index.
- Cyclic descents for type *B*.

/ariants and extensions

Cyclic descents

Summary and open problems

Friends and colleagues congratulate you

and wish you many happy years !!!