Descents - variations on a theme

Ron Adin
Bar-Ilan University

Based on joint works with
Francesco Brenti (U Roma), Pál Hegedűs (Rényi Inst.), Vic Reiner (UMN), and Yuval Roichman (BIU)

$$
(-1,5,-7,-3,2,6,4) \quad(1,5,7,3,2,6,4)
$$

Brenti Fest, SLC 89, Bertinoro, March 28, '23

Outline

Flag statistics

Variants and extensions

Cyclic descents

Summary and open problems

Flag statistics

Descent number and major index

Descent number and major index

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group S_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1]
$$

where $[m]:=\{1,2, \ldots, m\}$.

Descent number and major index

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group S_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1]
$$

where $[m]:=\{1,2, \ldots, m\}$. Its descent number is

$$
\operatorname{des}(\pi):=|\operatorname{Des}(\pi)|
$$

Descent number and major index

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group S_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1]
$$

where $[m]:=\{1,2, \ldots, m\}$. Its descent number is

$$
\operatorname{des}(\pi):=|\operatorname{Des}(\pi)|
$$

and its major index is

$$
\operatorname{maj}(\pi):=\sum_{i \in \operatorname{Des}(\pi)} i
$$

Descent number and major index

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group S_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1],
$$

where $[m]:=\{1,2, \ldots, m\}$. Its descent number is

$$
\operatorname{des}(\pi):=|\operatorname{Des}(\pi)|
$$

and its major index is

$$
\operatorname{maj}(\pi):=\sum_{i \in \operatorname{Des}(\pi)} i
$$

Example:
$\pi=231564$:

Descent number and major index

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group S_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1]
$$

where $[m]:=\{1,2, \ldots, m\}$. Its descent number is

$$
\operatorname{des}(\pi):=|\operatorname{Des}(\pi)|
$$

and its major index is

$$
\operatorname{maj}(\pi):=\sum_{i \in \operatorname{Des}(\pi)} i
$$

Example:
$\pi=231564: \operatorname{Des}(\pi)=\{2,5\}$,

Descent number and major index

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group S_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1],
$$

where $[m]:=\{1,2, \ldots, m\}$. Its descent number is

$$
\operatorname{des}(\pi):=|\operatorname{Des}(\pi)|
$$

and its major index is

$$
\operatorname{maj}(\pi):=\sum_{i \in \operatorname{Des}(\pi)} i
$$

Example:

$$
\pi=231564: \operatorname{Des}(\pi)=\{2,5\}, \operatorname{des}(\pi)=2
$$

Descent number and major index

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group S_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1],
$$

where $[m]:=\{1,2, \ldots, m\}$. Its descent number is

$$
\operatorname{des}(\pi):=|\operatorname{Des}(\pi)|
$$

and its major index is

$$
\operatorname{maj}(\pi):=\sum_{i \in \operatorname{Des}(\pi)} i
$$

Example:
$\pi=231564: \operatorname{Des}(\pi)=\{2,5\}, \operatorname{des}(\pi)=2, \operatorname{maj}(\pi)=2+5=7$.

Type B

Type B

The symmetric group is the Coxeter group of type A.

Type B

The symmetric group is the Coxeter group of type A.
The Coxeter group of type B (hyperoctahedral group, group of signed permutations) is the group B_{n} consisting of all the permutations σ of the set $[\pm n]=\{-n, \ldots,-1\} \cup\{1, \ldots, n\}$ which satisfy

$$
\sigma(-i)=-\sigma(i) \quad(1 \leq i \leq n)
$$

It is generated by (simple reflections)

$$
s_{i}=(i, i+1)(-i,-(i+1)) \quad(1 \leq i \leq n-1)
$$

together with

$$
s_{0}=(1,-1)
$$

Type B

The symmetric group is the Coxeter group of type A.
The Coxeter group of type B (hyperoctahedral group, group of signed permutations) is the group B_{n} consisting of all the permutations σ of the set $[\pm n]=\{-n, \ldots,-1\} \cup\{1, \ldots, n\}$ which satisfy

$$
\sigma(-i)=-\sigma(i) \quad(1 \leq i \leq n)
$$

It is generated by (simple reflections)

$$
s_{i}=(i, i+1)(-i,-(i+1)) \quad(1 \leq i \leq n-1)
$$

together with

$$
s_{0}=(1,-1)
$$

Question: Are there analogues of descent number and major index for the Coxeter group of type B?

Type B

Type B

There is a natural length function

$$
\ell(\sigma):=\min \left\{m \geq 0: \sigma=s_{i_{1}} \cdots s_{i_{m}}\right\}
$$

Type B

There is a natural length function

$$
\ell(\sigma):=\min \left\{m \geq 0: \sigma=s_{i_{1}} \cdots s_{i_{m}}\right\}
$$

with a corresponding Coxeter descent set

$$
\operatorname{Des}_{B}(\sigma):=\left\{i: \ell\left(\sigma s_{i}\right)<\ell(\sigma)\right\} \subseteq[0, n-1]
$$

Type B

There is a natural length function

$$
\ell(\sigma):=\min \left\{m \geq 0: \sigma=s_{i_{1}} \cdots s_{i_{m}}\right\}
$$

with a corresponding Coxeter descent set

$$
\operatorname{Des}_{B}(\sigma):=\left\{i: \ell\left(\sigma s_{i}\right)<\ell(\sigma)\right\} \subseteq[0, n-1]
$$

and Coxeter descent number

$$
\operatorname{des}_{B}(\sigma):=\left|\operatorname{Des}_{B}(\sigma)\right| .
$$

Type B

There is a natural length function

$$
\ell(\sigma):=\min \left\{m \geq 0: \sigma=s_{i_{1}} \cdots s_{i_{m}}\right\}
$$

with a corresponding Coxeter descent set

$$
\operatorname{Des}_{B}(\sigma):=\left\{i: \ell\left(\sigma s_{i}\right)<\ell(\sigma)\right\} \subseteq[0, n-1]
$$

and Coxeter descent number

$$
\operatorname{des}_{B}(\sigma):=\left|\operatorname{Des}_{B}(\sigma)\right| .
$$

How about major index?

Type B

There is a natural length function

$$
\ell(\sigma):=\min \left\{m \geq 0: \sigma=s_{i_{1}} \cdots s_{i_{m}}\right\}
$$

with a corresponding Coxeter descent set

$$
\operatorname{Des}_{B}(\sigma):=\left\{i: \ell\left(\sigma s_{i}\right)<\ell(\sigma)\right\} \subseteq[0, n-1]
$$

and Coxeter descent number

$$
\operatorname{des}_{B}(\sigma):=\left|\operatorname{Des}_{B}(\sigma)\right| .
$$

How about major index?
Several candidates for a type B major index have been proposed.

Type B

Type B

Rephrased question: Is there an analogue of major index for type B which has good combinatorial and algebraic properties?

Type B

Rephrased question: Is there an analogue of major index for type B which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

Type B

Rephrased question: Is there an analogue of major index for type B which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

- MacMahon's theorem

Type B

Rephrased question: Is there an analogue of major index for type B which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

- MacMahon's theorem
- Carlitz' identity

Type B

Rephrased question: Is there an analogue of major index for type B which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

- MacMahon's theorem
- Carlitz' identity
- Diagonal invariants

Type B

Rephrased question: Is there an analogue of major index for type B which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

- MacMahon's theorem
- Carlitz' identity
- Diagonal invariants
- Coinvariant algebra

MacMahon's Theorem

MacMahon's Theorem

Theorem: (MacMahon, 1916)

$$
\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}=\sum_{\pi \in S_{n}} q^{\ell(\pi)}
$$

MacMahon's Theorem

Theorem: (MacMahon, 1916)

$$
\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}=\sum_{\pi \in S_{n}} q^{\ell(\pi)}
$$

We write this as: $\operatorname{maj} \sim_{s_{n}} \ell$.

MacMahon's Theorem

Theorem: (MacMahon, 1916)

$$
\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}=\sum_{\pi \in S_{n}} q^{\ell(\pi)}
$$

We write this as: $\operatorname{maj} \sim_{S_{n}} \ell$.
Note that, for S_{n}, Coxeter length is the same as inversion number.

MacMahon's Theorem

Theorem: (MacMahon, 1916)

$$
\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}=\sum_{\pi \in S_{n}} q^{\ell(\pi)}
$$

We write this as: maj $\sim_{S_{n}} \ell$.
Note that, for S_{n}, Coxeter length is the same as inversion number.
Rephrased question: Is there an analogue of major index for type B which is equi-distributed with length?

MacMahon's Theorem

Theorem: (MacMahon, 1916)

$$
\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}=\sum_{\pi \in S_{n}} q^{\ell(\pi)}
$$

We write this as: $\operatorname{maj} \sim_{S_{n}} \ell$.
Note that, for S_{n}, Coxeter length is the same as inversion number.
Rephrased question: Is there an analogue of major index for type B which is equi-distributed with length?

None of the previous candidates had this property.

Flag major index

Flag major index

Define

$$
t_{i}:=s_{i} s_{i-1} \cdots s_{0} \quad(0 \leq i \leq n-1) .
$$

Fact: Each element $\sigma \in B_{n}$ has a unique representation

$$
\sigma=t_{n-1}^{k_{n-1}} \cdots t_{1}^{k_{1}} t_{0}^{k_{0}} \quad\left(0 \leq k_{i} \leq 2(i+1), \quad \forall i\right)
$$

Definition: (A-Roichman, 2001) The flag major index of $\sigma \in B_{n}$ is

$$
\mathrm{fmaj}(\sigma):=\sum_{i=0}^{n-1} k_{i} .
$$

Flag major index

Define

$$
t_{i}:=s_{i} s_{i-1} \cdots s_{0} \quad(0 \leq i \leq n-1)
$$

Fact: Each element $\sigma \in B_{n}$ has a unique representation

$$
\sigma=t_{n-1}^{k_{n-1}} \cdots t_{1}^{k_{1}} t_{0}^{k_{0}} \quad\left(0 \leq k_{i} \leq 2(i+1), \quad \forall i\right)
$$

Definition: (A-Roichman, 2001) The flag major index of $\sigma \in B_{n}$ is

$$
\operatorname{fmaj}(\sigma):=\sum_{i=0}^{n-1} k_{i}
$$

Theorem: fmaj $\sim_{B_{n}} \ell$, namely

$$
\sum_{\sigma \in B_{n}} q^{\mathrm{fmaj}(\sigma)}=\sum_{\sigma \in B_{n}} q^{\ell(\sigma)}
$$

Signed enumeration

Signed enumeration

Recall

Theorem: (MacMahon)

$$
\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}=\sum_{\pi \in S_{n}} q^{\ell(\pi)}=[n]!_{q}=[1]_{q}[2]_{q} \cdots[n]_{q},
$$

where $[m]_{q}:=1+q+\ldots+q^{m-1}$.

Signed enumeration

Recall

Theorem: (MacMahon)

$$
\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}=\sum_{\pi \in S_{n}} q^{\ell(\pi)}=[n]!_{q}=[1]_{q}[2]_{q} \cdots[n]_{q},
$$

where $[m]_{q}:=1+q+\ldots+q^{m-1}$.
Theorem: (Gessel-Simion, 1992)

$$
\sum_{\pi \in S_{n}} \operatorname{sign}(\pi) q^{\operatorname{maj}(\pi)}=[1]_{q}[2]_{-q}[3]_{q}[4]_{-q} \cdots[n]_{ \pm q},
$$

Signed enumeration

Recall

Theorem: (MacMahon)

$$
\sum_{\pi \in S_{n}} q^{\operatorname{maj}(\pi)}=\sum_{\pi \in S_{n}} q^{\ell(\pi)}=[n]!_{q}=[1]_{q}[2]_{q} \cdots[n]_{q},
$$

where $[m]_{q}:=1+q+\ldots+q^{m-1}$.
Theorem: (Gessel-Simion, 1992)

$$
\sum_{\pi \in S_{n}} \operatorname{sign}(\pi) q^{\operatorname{maj}(\pi)}=[1]_{q}[2]_{-q}[3]_{q}[4]_{-q} \cdots[n]_{ \pm q},
$$

Theorem: (A-Gessel-Roichman, 2005)

$$
\sum_{\sigma \in B_{n}} \operatorname{sign}(\sigma) q^{\mathrm{fmaj}(\sigma)}=[2]_{-q}[4]_{q}[6]_{-q} \cdots[2 n]_{ \pm q},
$$

Carlitz' identity

Carlitz' identity

Theorem: (MacMahon, Carlitz 1975, Gessel 1977)

$$
\frac{\sum_{\pi \in S_{n}} t^{\operatorname{des}(\pi)} q^{\operatorname{maj}(\pi)}}{\prod_{i=0}^{n}\left(1-t q^{i}\right)}=\sum_{r \geq 0}[r+1]_{q}^{n} t^{r},
$$

where $[m]_{q}:=1+q+\ldots+q^{m-1}$.

Carlitz' identity

Theorem: (MacMahon, Carlitz 1975, Gessel 1977)

$$
\frac{\sum_{\pi \in S_{n}} t^{\operatorname{des}(\pi)} q^{\operatorname{maj}(\pi)}}{\prod_{i=0}^{n}\left(1-t q^{i}\right)}=\sum_{r \geq 0}[r+1]_{q}^{n} t^{r},
$$

where $[m]_{q}:=1+q+\ldots+q^{m-1}$.
In particular, for $q=1$:

$$
\frac{\sum_{\pi \in S_{n}} t^{\operatorname{des}(\pi)}}{(1-t)^{n+1}}=\sum_{r \geq 0}(r+1)^{n} t^{r}
$$

Carlitz' identity

Theorem: (MacMahon, Carlitz 1975, Gessel 1977)

$$
\frac{\sum_{\pi \in S_{n}} t^{\operatorname{des}(\pi)} q^{\operatorname{maj}(\pi)}}{\prod_{i=0}^{n}\left(1-t q^{i}\right)}=\sum_{r \geq 0}[r+1]_{q}^{n} t^{r}
$$

where $[m]_{q}:=1+q+\ldots+q^{m-1}$.
In particular, for $q=1$:

$$
\frac{\sum_{\pi \in S_{n}} t^{\operatorname{des}(\pi)}}{(1-t)^{n+1}}=\sum_{r \geq 0}(r+1)^{n} t^{r}
$$

Foata's question: Are there type B analogues of des and maj which satisfy a Carlitz-type bivariate distribution identity?

Flag descent number

Flag descent number

Observation: (A-Brenti-Roichman, 2001)
The above definition of fmaj on B_{n} is equivalent to

$$
\operatorname{fmaj}(\sigma)=2 \operatorname{maj}(\sigma)+\operatorname{neg}(\sigma),
$$

where

$$
\operatorname{maj}(\sigma):=\sum_{i: \sigma(i)>\sigma(i+1)} i
$$

and

$$
\operatorname{neg}(\sigma):=|\{i: \sigma(i)<0\}|,
$$

with " $<$ " the usual linear order on integers:

$$
-n<\cdots<-1<0<1<\cdots<n .
$$

Flag descent number

Observation: (A-Brenti-Roichman, 2001)
The above definition of fmaj on B_{n} is equivalent to

$$
\operatorname{fmaj}(\sigma)=2 \operatorname{maj}(\sigma)+\operatorname{neg}(\sigma),
$$

where

$$
\operatorname{maj}(\sigma):=\sum_{i: \sigma(i)>\sigma(i+1)} i
$$

and

$$
\operatorname{neg}(\sigma):=|\{i: \sigma(i)<0\}|,
$$

with " $<$ " the usual linear order on integers:

$$
-n<\cdots<-1<0<1<\cdots<n .
$$

Idea: Let us use, instead, the linear order

$$
-1<^{\prime} \cdots<^{\prime}-n<^{\prime} 0<^{\prime} 1<^{\prime} \cdots<^{\prime} n .
$$

Flag descent number

Flag descent number

Definition: (A-Brenti-Roichman, 2001)

Use the linear order

$$
-1<^{\prime} \cdots<^{\prime}-n<^{\prime} 0<^{\prime} 1<^{\prime} \cdots<^{\prime} n .
$$

Flag descent number

Definition: (A-Brenti-Roichman, 2001)
Use the linear order

$$
-1<^{\prime} \cdots<^{\prime}-n<^{\prime} 0<^{\prime} 1<^{\prime} \cdots<^{\prime} n .
$$

Define

$$
\operatorname{fdes}^{\prime}(\sigma):=2 \operatorname{des}^{\prime}(\sigma)+\varepsilon_{1}(\sigma)
$$

and

$$
\operatorname{fmaj}^{\prime}(\sigma):=2 \operatorname{maj}^{\prime}(\sigma)+\operatorname{neg}(\sigma),
$$

Flag descent number

Definition: (A-Brenti-Roichman, 2001)
Use the linear order

$$
-1<^{\prime} \cdots<^{\prime}-n<^{\prime} 0<^{\prime} 1<^{\prime} \cdots<^{\prime} n .
$$

Define

$$
\operatorname{fdes}^{\prime}(\sigma):=2 \operatorname{des}^{\prime}(\sigma)+\varepsilon_{1}(\sigma)
$$

and

$$
\operatorname{fmaj}^{\prime}(\sigma):=2 \operatorname{maj}^{\prime}(\sigma)+\operatorname{neg}(\sigma)
$$

where

$$
\begin{gathered}
\operatorname{des}^{\prime}(\sigma):=\left|\left\{i: \sigma(i)>^{\prime} \sigma(i+1)\right\}\right|, \\
\operatorname{maj}^{\prime}(\sigma):=\sum_{i: \sigma(i)>^{\prime} \sigma(i+1)} i,
\end{gathered}
$$

Flag descent number

Definition: (A-Brenti-Roichman, 2001)
Use the linear order

$$
-1<^{\prime} \cdots<^{\prime}-n<^{\prime} 0<^{\prime} 1<^{\prime} \cdots<^{\prime} n .
$$

Define

$$
\operatorname{fdes}^{\prime}(\sigma):=2 \operatorname{des}^{\prime}(\sigma)+\varepsilon_{1}(\sigma)
$$

and

$$
\operatorname{fmaj}^{\prime}(\sigma):=2 \operatorname{maj}^{\prime}(\sigma)+\operatorname{neg}(\sigma),
$$

where

$$
\begin{gathered}
\operatorname{des}^{\prime}(\sigma):=\left|\left\{i: \sigma(i)>^{\prime} \sigma(i+1)\right\}\right|, \\
\operatorname{maj}^{\prime}(\sigma):=\sum_{i: \sigma(i)>^{\prime} \sigma(i+1)} i,
\end{gathered}
$$

and

$$
\varepsilon_{1}(\sigma):= \begin{cases}1, & \text { if } \sigma(1)<0 \\ 0, & \text { otherwise }\end{cases}
$$

MacMahon and Carlitz

MacMahon and Carlitz

Theorem: (A-Brenti-Roichman, 2001)

$$
\sum_{\sigma \in B_{n}} q^{\text {fmaj }(\sigma)}=\sum_{\sigma \in B_{n}} q^{\ell(\sigma)} \quad \text { (MacMahon) }
$$

and

$$
\frac{\sum_{\sigma \in B_{n}} t^{\mathrm{fdes}(\sigma)} q^{\mathrm{fmaj}}(\sigma)}{(1-t) \prod_{i=1}^{n}\left(1-t^{2} q^{2 i}\right)}=\sum_{r \geq 0}[r+1]_{q}^{n} t^{r}
$$

(Carlitz)

MacMahon and Carlitz

Theorem: (A-Brenti-Roichman, 2001)

$$
\sum_{\sigma \in B_{n}} q^{\mathrm{fmaj}} \mathrm{j}^{\prime}(\sigma)=\sum_{\sigma \in B_{n}} q^{\ell(\sigma)} \quad \text { (MacMahon) }
$$

and

$$
\frac{\sum_{\sigma \in B_{n}} t^{\mathrm{fdes}(\sigma)} q^{\mathrm{fmaj}(\sigma)}}{(1-t) \prod_{i=1}^{n}\left(1-t^{2} q^{2 i}\right)}=\sum_{r \geq 0}[r+1]_{q}^{n} t^{r}
$$

(Carlitz)

This answers affirmatively Foata's question.

Diagonal invariants

Diagonal invariants

S_{n} and B_{n} act on the polynomial algebra $P_{n}:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by permuting variables (and $s_{0}\left(x_{1}\right)=-x_{1}$).

Diagonal invariants

S_{n} and B_{n} act on the polynomial algebra $P_{n}:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by permuting variables (and $s_{0}\left(x_{1}\right)=-x_{1}$). If a group G acts on P_{n}, then $G^{\times t}=G \times \cdots \times G$ acts on $P_{n}^{\otimes t}=P_{n} \otimes \cdots \otimes P_{n}$ (tensor action), and therefore G also acts on $P_{n}^{\otimes t}$ (diagonal action).

Diagonal invariants

S_{n} and B_{n} act on the polynomial algebra $P_{n}:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by permuting variables (and $s_{0}\left(x_{1}\right)=-x_{1}$). If a group G acts on P_{n}, then $G^{\times t}=G \times \cdots \times G$ acts on $P_{n}^{\otimes t}=P_{n} \otimes \cdots \otimes P_{n}$ (tensor action), and therefore G also acts on $P_{n}^{\otimes t}$ (diagonal action). The diagonal invariant algebra DIA is a free module over the tensor invariant algebra TIA, both multi-graded by x_{i} degrees. Let

$$
F_{\mathrm{TIA}}(\bar{q}):=\sum_{n_{1}, \ldots, n_{t} \geq 0} \operatorname{dim}_{\mathbb{C}}\left(\mathrm{TIA}_{n_{1}, \ldots, n_{t}}\right) q_{1}^{n_{1}} \cdots q_{t}^{n_{t}}
$$

be the Hilbert series of TIA, and similarly for DIA.

Diagonal invariants

S_{n} and B_{n} act on the polynomial algebra $P_{n}:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by permuting variables (and $s_{0}\left(x_{1}\right)=-x_{1}$). If a group G acts on P_{n}, then $G^{\times t}=G \times \cdots \times G$ acts on $P_{n}^{\otimes t}=P_{n} \otimes \cdots \otimes P_{n}$ (tensor action), and therefore G also acts on $P_{n}^{\otimes t}$ (diagonal action). The diagonal invariant algebra DIA is a free module over the tensor invariant algebra TIA, both multi-graded by x_{i} degrees. Let

$$
F_{\mathrm{TIA}}(\bar{q}):=\sum_{n_{1}, \ldots, n_{t} \geq 0} \operatorname{dim}_{\mathbb{C}}\left(\mathrm{TIA}_{n_{1}, \ldots, n_{t}}\right) q_{1}^{n_{1}} \cdots q_{t}^{n_{t}}
$$

be the Hilbert series of TIA, and similarly for DIA.
Theorem: (Essentially Garsia-Gessel, 1979) For S_{n},

$$
\frac{F_{\mathrm{DIA}}(\bar{q})}{F_{\mathrm{TIA}}(\bar{q})}=\sum_{\pi_{1} \cdots \pi_{t}=1} \prod_{i=1}^{t} q_{i}^{\operatorname{maj}\left(\pi_{i}\right)}
$$

Diagonal invariants

S_{n} and B_{n} act on the polynomial algebra $P_{n}:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ by permuting variables (and $s_{0}\left(x_{1}\right)=-x_{1}$). If a group G acts on P_{n}, then $G^{\times t}=G \times \cdots \times G$ acts on $P_{n}^{\otimes t t}=P_{n} \otimes \cdots \otimes P_{n}$ (tensor action), and therefore G also acts on $P_{n}^{\otimes t}$ (diagonal action). The diagonal invariant algebra DIA is a free module over the tensor invariant algebra TIA, both multi-graded by x_{i} degrees. Let

$$
F_{\mathrm{TIA}}(\bar{q}):=\sum_{n_{1}, \ldots, n_{t} \geq 0} \operatorname{dim}_{\mathbb{C}}\left(\operatorname{TIA}_{n_{1}, \ldots, n_{t}}\right) q_{1}^{n_{1}} \cdots q_{t}^{n_{t}},
$$

be the Hilbert series of TIA, and similarly for DIA.
Theorem: (Essentially Garsia-Gessel, 1979) For S_{n},

$$
\frac{F_{\mathrm{DIA}}(\bar{q})}{F_{\mathrm{TIA}}(\bar{q})}=\sum_{\pi_{1} \cdots \pi_{t}=1} \prod_{i=1}^{t} q_{i}^{\mathrm{maj}\left(\pi_{i}\right)} .
$$

Theorem: (A-R, 2001) Same for B_{n}, with maj replaced by fmaj.

Coinvariant algebra

Coinvariant algebra

The coinvariant algebra of type A is the quotient $R_{n}^{A}=P_{n} / I_{n}^{A}$, where $P_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and I_{n}^{A} is the ideal of P_{n} generated by the S_{n}-invariant (i.e., symmetric) polynomials without a constant term.

Coinvariant algebra

The coinvariant algebra of type A is the quotient $R_{n}^{A}=P_{n} / I_{n}^{A}$, where $P_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and I_{n}^{A} is the ideal of P_{n} generated by the S_{n}-invariant (i.e., symmetric) polynomials without a constant term.
Theorem: (Garsia-Stanton, 1984)
The set $\left\{a_{\pi}+I_{n}^{A}: \pi \in S_{n}\right\}$ is a monomial basis for R_{n}^{A}, where

$$
a_{\pi}:=\prod_{i \in \operatorname{Des}(\pi)}\left(x_{\pi(1)} \cdots x_{\pi(i)}\right) .
$$

Coinvariant algebra

The coinvariant algebra of type A is the quotient $R_{n}^{A}=P_{n} / I_{n}^{A}$, where $P_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and I_{n}^{A} is the ideal of P_{n} generated by the S_{n}-invariant (i.e., symmetric) polynomials without a constant term.
Theorem: (Garsia-Stanton, 1984)
The set $\left\{a_{\pi}+I_{n}^{A}: \pi \in S_{n}\right\}$ is a monomial basis for R_{n}^{A}, where

$$
a_{\pi}:=\prod_{i \in \operatorname{Des}(\pi)}\left(x_{\pi(1)} \cdots x_{\pi(i)}\right)
$$

Observation: The Garsia-Stanton descent basis can be written as

$$
a_{\pi}=\prod_{i=1}^{n} x_{\pi(i)}^{d_{i}(\pi)}
$$

where

$$
d_{i}(\pi):=\mid\{j \in \operatorname{Des}(\pi): j \geq i\} .
$$

Coinvariant algebra

The coinvariant algebra of type A is the quotient $R_{n}^{A}=P_{n} / I_{n}^{A}$, where $P_{n}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and I_{n}^{A} is the ideal of P_{n} generated by the S_{n}-invariant (i.e., symmetric) polynomials without a constant term.
Theorem: (Garsia-Stanton, 1984)
The set $\left\{a_{\pi}+I_{n}^{A}: \pi \in S_{n}\right\}$ is a monomial basis for R_{n}^{A}, where

$$
a_{\pi}:=\prod_{i \in \operatorname{Des}(\pi)}\left(x_{\pi(1)} \cdots x_{\pi(i)}\right)
$$

Observation: The Garsia-Stanton descent basis can be written as

$$
a_{\pi}=\prod_{i=1}^{n} x_{\pi(i)}^{d_{i}(\pi)}
$$

where

$$
d_{i}(\pi):=\mid\{j \in \operatorname{Des}(\pi): j \geq i\} .
$$

Example: For $\pi=(3,6,1,5,2,4) \in S_{6}, a_{\pi}=x_{3}^{2} x_{6}^{2} x_{1} x_{5}$.

Coinvariant algebra

Coinvariant algebra

The coinvariant algebra of type B is defined similarly: $R_{n}^{B}:=P_{n} / I_{n}^{B}$.

Coinvariant algebra

The coinvariant algebra of type B is defined similarly: $R_{n}^{B}:=P_{n} / I_{n}^{B}$. Define also, for $\sigma \in B_{n}$:

$$
\begin{aligned}
\varepsilon_{i}(\sigma) & := \begin{cases}1, & \text { if } \sigma(i)<0 \\
0, & \text { otherwise }\end{cases} \\
f_{i}(\sigma) & :=2 d_{i}(\sigma)+\varepsilon_{i}(\sigma)
\end{aligned}
$$

Coinvariant algebra

The coinvariant algebra of type B is defined similarly: $R_{n}^{B}:=P_{n} / I_{n}^{B}$. Define also, for $\sigma \in B_{n}$:

$$
\begin{aligned}
\varepsilon_{i}(\sigma) & := \begin{cases}1, & \text { if } \sigma(i)<0 \\
0, & \text { otherwise }\end{cases} \\
f_{i}(\sigma) & :=2 d_{i}(\sigma)+\varepsilon_{i}(\sigma)
\end{aligned}
$$

Theorem: (A-Brenti-Roichman, 2005)
The set $\left\{b_{\sigma}+I_{n}^{B}: \sigma \in B_{n}\right\}$ is a monomial basis for R_{n}^{B}, where

$$
b_{\sigma}:=\prod_{i=1}^{n} x_{|\sigma(i)|}^{f_{i}(\sigma)} .
$$

Coinvariant algebra

The coinvariant algebra of type B is defined similarly: $R_{n}^{B}:=P_{n} / I_{n}^{B}$. Define also, for $\sigma \in B_{n}$:

$$
\begin{aligned}
\varepsilon_{i}(\sigma) & := \begin{cases}1, & \text { if } \sigma(i)<0 \\
0, & \text { otherwise }\end{cases} \\
f_{i}(\sigma) & :=2 d_{i}(\sigma)+\varepsilon_{i}(\sigma)
\end{aligned}
$$

Theorem: (A-Brenti-Roichman, 2005)
The set $\left\{b_{\sigma}+I_{n}^{B}: \sigma \in B_{n}\right\}$ is a monomial basis for R_{n}^{B}, where

$$
b_{\sigma}:=\prod_{i=1}^{n} x_{|\sigma(i)|}^{f_{i}(\sigma)} .
$$

Example: For $\sigma=(-3,6,-1,5,2,4) \in B_{6}, b_{\sigma}=x_{3}^{3} x_{6}^{2} x_{1}^{2} x_{5}$.

Coinvariant algebra

Coinvariant algebra

Note that the $d_{i}(\pi)$ form a partition of $\operatorname{maj}(\pi)$:

$$
\operatorname{des}(\pi)=d_{1}(\pi) \geq \ldots \geq d_{n}(\pi)=0
$$

and

$$
d_{1}(\pi)+\ldots+d_{n}(\pi)=\operatorname{maj}(\pi)
$$

Coinvariant algebra

Note that the $d_{i}(\pi)$ form a partition of $\operatorname{maj}(\pi)$:

$$
\operatorname{des}(\pi)=d_{1}(\pi) \geq \ldots \geq d_{n}(\pi)=0
$$

and

$$
d_{1}(\pi)+\ldots+d_{n}(\pi)=\operatorname{maj}(\pi)
$$

Example: For $\pi=(3,6,1,5,2,4) \in S_{6}, \operatorname{Des}(\pi)=\{2,4\}$, $a_{\pi}=x_{3}^{2} x_{6}^{2} x_{1} x_{5}$ and indeed $(2,2,1,1) \vdash 6=\operatorname{maj}(\pi)$.

Coinvariant algebra

Note that the $d_{i}(\pi)$ form a partition of $\operatorname{maj}(\pi)$:

$$
\operatorname{des}(\pi)=d_{1}(\pi) \geq \ldots \geq d_{n}(\pi)=0
$$

and

$$
d_{1}(\pi)+\ldots+d_{n}(\pi)=\operatorname{maj}(\pi)
$$

Example: For $\pi=(3,6,1,5,2,4) \in S_{6}, \operatorname{Des}(\pi)=\{2,4\}$, $a_{\pi}=x_{3}^{2} x_{6}^{2} x_{1} x_{5}$ and indeed $(2,2,1,1) \vdash 6=\operatorname{maj}(\pi)$.

Similarly, the $f_{i}(\sigma)$ form a partition of $\operatorname{fmaj}(\sigma)$ for $\sigma \in B_{n}$.

Coinvariant algebra

Coinvariant algebra

The descent basis can be used to give a new construction of Solomon's descent representations (for type A), and a suitable refinement (for type B). In fact, if R_{k} is the k-th homogeneous component of $R=P_{n} / I_{n}^{A}$, then

Coinvariant algebra

The descent basis can be used to give a new construction of Solomon's descent representations (for type A), and a suitable refinement (for type B). In fact, if R_{k} is the k-th homogeneous component of $R=P_{n} / I_{n}^{A}$, then
Theorem: For every $0 \leq k \leq\binom{ n}{2}$,

$$
R_{k} \cong \bigoplus_{S} R_{\lambda_{S}}
$$

as S_{n}-modules, where the sum is over all subsets $S \subseteq[n-1]$ such that $\sum_{i \in S} i=k$, and λ_{S} is a partition of k naturally associated with S.

Coinvariant algebra

Coinvariant algebra

Similarly,

Theorem: (A-Brenti-Roichman, 2005)
For every $0 \leq k \leq n^{2}$,

$$
R_{k}^{B} \cong \bigoplus_{S_{1}, S_{2}} R_{\lambda_{S_{1}, S_{2}}^{B}}
$$

as B_{n}-modules, where the sum is over all subsets $S_{1} \subseteq[n-1]$ and $S_{2} \subseteq[n]$ such that $\lambda_{S_{1}, S_{2}}:=2 \lambda_{S_{1}}+1_{S_{2}}$ is a partition and $2 \cdot \sum_{i \in S_{1}} i+\left|S_{2}\right|=k$.

Coinvariant algebra

Similarly,
Theorem: (A-Brenti-Roichman, 2005)
For every $0 \leq k \leq n^{2}$,

$$
R_{k}^{B} \cong \bigoplus_{S_{1}, S_{2}} R_{\lambda_{1_{1}, S_{2}}^{B}}
$$

as B_{n}-modules, where the sum is over all subsets $S_{1} \subseteq[n-1]$ and $S_{2} \subseteq[n]$ such that $\lambda_{S_{1}, S_{2}}:=2 \lambda_{S_{1}}+1_{S_{2}}$ is a partition and $2 \cdot \sum_{i \in S_{1}} i+\left|S_{2}\right|=k$.

There are also decompositions of $R_{\lambda_{S}}$ and $R_{\lambda_{S_{1}, S_{2}}^{B}}$ into irreducibles, with multiplicities equal to the number of standard Young tableaux with prescribed shape and descent set. This refines results of Stanley and Lusztig (for type A), and Stembridge (for type B).

Variants and extensions

Neg statistics: ndes and nmaj

Neg statistics: ndes and nmaj

There is another pair of naturally-defined statistics on B_{n}, with the same nice combinatorial properties.

Neg statistics: ndes and nmaj

There is another pair of naturally-defined statistics on B_{n}, with the same nice combinatorial properties.

Definition: (A-Brenti-Roichman, 2001)
Define the multiset

$$
\operatorname{NDes}(\sigma):=\operatorname{Des}^{\prime}(\sigma) \cup\{|\sigma(i)|: \sigma(i)<0\}
$$

and let

$$
\begin{aligned}
\operatorname{ndes}(\sigma) & :=|\operatorname{NDes}(\sigma)| \\
\operatorname{nmaj}(\sigma) & :=\sum_{i \in \operatorname{NDes}(\sigma)} i
\end{aligned}
$$

Neg statistics: ndes and nmaj

There is another pair of naturally-defined statistics on B_{n}, with the same nice combinatorial properties.

Definition: (A-Brenti-Roichman, 2001)
Define the multiset

$$
\operatorname{NDes}(\sigma):=\operatorname{Des}^{\prime}(\sigma) \cup\{|\sigma(i)|: \sigma(i)<0\}
$$

and let

$$
\begin{aligned}
\operatorname{ndes}(\sigma) & :=|\operatorname{NDes}(\sigma)| \\
\operatorname{nmaj}(\sigma) & :=\sum_{i \in \operatorname{NDes}(\sigma)} i
\end{aligned}
$$

Theorem: (A-B-R, 2001)

$$
\begin{gathered}
\text { nmaj } \sim \text { fmaj }^{\prime} \sim \ell \quad(\text { MacMahon }), \\
(\text { ndes, nmaj }) \sim\left(\text { fdes }^{\prime}, \text { fmaj }^{\prime}\right) \quad(\text { Carlitz })
\end{gathered}
$$

The Chow-Gessel variant

The Chow-Gessel variant

Recall that the pair of statistics (fdes, fmaj) satisfies a Carlitz-type identity:

$$
\frac{\sum_{\sigma \in B_{n}} t^{\mathrm{fdes}(\sigma)} q^{\mathrm{fmaj}(\sigma)}}{(1-t) \prod_{i=1}^{n}\left(1-t^{2} q^{2 i}\right)}=\sum_{r \geq 0}[r+1]_{q}^{n} t^{r}
$$

The Chow-Gessel variant

Recall that the pair of statistics (fdes, fmaj) satisfies a Carlitz-type identity:

$$
\frac{\sum_{\sigma \in B_{n}} t^{\mathrm{fdes}(\sigma)} q^{\mathrm{fmaj}(\sigma)}}{(1-t) \prod_{i=1}^{n}\left(1-t^{2} q^{2 i}\right)}=\sum_{r \geq 0}[r+1]_{q}^{n} t^{r}
$$

Chow and Gessel (2007) proved that the pair (des_{B}, fmaj) satisfies a slightly different Carlitz-type identity:

$$
\frac{\sum_{\sigma \in B_{n}} t^{\operatorname{des}_{B}(\sigma)} q^{f \operatorname{maj}(\sigma)}}{\prod_{i=0}^{n}\left(1-t q^{2 i}\right)}=\sum_{r \geq 0}[2 r+1]_{q}^{n} t^{r}
$$

Extensions to other groups

Extensions to other groups

After types A and B, the natural next step is type D.

Extensions to other groups

After types A and B, the natural next step is type D.
Biagioli (2003) defined ddes and dmaj for type D, and proved MacMahon and Carlitz type theorems.

Extensions to other groups

After types A and B, the natural next step is type D.
Biagioli (2003) defined ddes and dmaj for type D, and proved MacMahon and Carlitz type theorems.
Biagioli and Caselli (2004) defined two other pairs of (des, maj) analogues for type D, satisfying MacMahon and Carlitz, and one of them also the diagonal invariant Hilbert series formula (exactly for odd n, almost for even n).

Extensions to other groups

After types A and B, the natural next step is type D.
Biagioli (2003) defined ddes and dmaj for type D, and proved MacMahon and Carlitz type theorems.
Biagioli and Caselli (2004) defined two other pairs of (des, maj) analogues for type D, satisfying MacMahon and Carlitz, and one of them also the diagonal invariant Hilbert series formula (exactly for odd n, almost for even n).
In another work, they extended the descent basis and descent representation construction to type D.

Extensions to other groups

After types A and B, the natural next step is type D.
Biagioli (2003) defined ddes and dmaj for type D, and proved MacMahon and Carlitz type theorems.
Biagioli and Caselli (2004) defined two other pairs of (des, maj) analogues for type D, satisfying MacMahon and Carlitz, and one of them also the diagonal invariant Hilbert series formula (exactly for odd n, almost for even n).
In another work, they extended the descent basis and descent representation construction to type D.

An extension in a different direction is to wreath products $G(r, n)=C_{r}$ $\left\langle S_{n}\right.$, where C_{r} is cyclic of order r.

Extensions to other groups

After types A and B, the natural next step is type D.
Biagioli (2003) defined ddes and dmaj for type D, and proved MacMahon and Carlitz type theorems.
Biagioli and Caselli (2004) defined two other pairs of (des, maj) analogues for type D, satisfying MacMahon and Carlitz, and one of them also the diagonal invariant Hilbert series formula (exactly for odd n, almost for even n).
In another work, they extended the descent basis and descent representation construction to type D.

An extension in a different direction is to wreath products $G(r, n)=C_{r}$ 2 S_{n}, where C_{r} is cyclic of order r. In fact, the initial definition of fmaj and the diagonal invariant results (AR, 2001) were in this generality.

Extensions to other groups

After types A and B, the natural next step is type D.
Biagioli (2003) defined ddes and dmaj for type D, and proved MacMahon and Carlitz type theorems.
Biagioli and Caselli (2004) defined two other pairs of (des, maj) analogues for type D, satisfying MacMahon and Carlitz, and one of them also the diagonal invariant Hilbert series formula (exactly for odd n, almost for even n).
In another work, they extended the descent basis and descent representation construction to type D.

An extension in a different direction is to wreath products $G(r, n)=C_{r}$ 2 S_{n}, where C_{r} is cyclic of order r. In fact, the initial definition of fmaj and the diagonal invariant results (AR, 2001) were in this generality.
Chow and Mansour (2011) defined a new fmaj ${ }_{r}$ for $G(r, n)$, extending the Chow-Gessel variant.

Extensions to other groups

Extensions to other groups

Bagno and Biagioli (2007) extended the descent basis and descent representations to the complex reflection groups $G(r, p, n)$. They include the Coxeter group of type $D(=G(2,2, n))$.

Extensions to other groups

Bagno and Biagioli (2007) extended the descent basis and descent representations to the complex reflection groups $G(r, p, n)$. They include the Coxeter group of type $D(=G(2,2, n))$.

Projective (complex) reflection groups $G(r, p, q, n)$ were defined by Caselli (2011). They include $G(r, p, n)$ (for $q=1$). He proved that the combinatorics of $G=G(r, p, q, n)$ governs the algebra of the dual group $G^{*}=G(r, q, p, n)$

Extensions to other groups

Bagno and Biagioli (2007) extended the descent basis and descent representations to the complex reflection groups $G(r, p, n)$. They include the Coxeter group of type $D(=G(2,2, n))$.

Projective (complex) reflection groups $G(r, p, q, n)$ were defined by Caselli (2011). They include $G(r, p, n)$ (for $q=1$). He proved that the combinatorics of $G=G(r, p, q, n)$ governs the algebra of the dual group $G^{*}=G(r, q, p, n)$
Biagioli and Caselli (2012) extended almost everything to $G(r, p, q, n)$.

Cyclic descents

Descents and cyclic descents of permutations

Descents and cyclic descents of permutations

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group S_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1],
$$

where $[m]:=\{1,2, \ldots, m\}$.

Descents and cyclic descents of permutations

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group S_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1],
$$

where $[m]:=\{1,2, \ldots, m\}$.
The cyclic descent set is defined, with the convention $\pi_{n+1}:=\pi_{1}$, by

$$
\operatorname{cDes}(\pi):=\left\{1 \leq i \leq n: \pi_{i}>\pi_{i+1}\right\} \subseteq[n]
$$

Descents and cyclic descents of permutations

The descent set of a permutation $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ in the symmetric group S_{n} is

$$
\operatorname{Des}(\pi):=\left\{1 \leq i \leq n-1: \pi_{i}>\pi_{i+1}\right\} \subseteq[n-1],
$$

where $[m]:=\{1,2, \ldots, m\}$.
The cyclic descent set is defined, with the convention $\pi_{n+1}:=\pi_{1}$, by

$$
\operatorname{cDes}(\pi):=\left\{1 \leq i \leq n: \pi_{i}>\pi_{i+1}\right\} \subseteq[n] .
$$

Introduced by Klyachko ['74] and Cellini ['95]. Further studied by Fulman ['00],
Petersen ['05, '07], Dilks-Petersen-Stembridge ['09], Rhoades ['10], Visontai-Williams ['13], Pechenik ['14], Zhang ['14], Aguiar-Petersen ['15], Elizalde-Roichman ['17], Ahlbach-Swanson ['18], A-Reiner-Roichman ['18],

Bloom-Elizalde-R ['20], Huang ['20], A-Gessel-Reiner-Roichman ['20], Khachatryan ['21], ...

Descents and cyclic descents of permutations

Example

Descents and cyclic descents of permutations

Example
 $$
\pi=23154:
$$

Descents and cyclic descents of permutations

Example

$$
\pi=23154: \quad \operatorname{Des}(\pi)=\{2,4\}
$$

Descents and cyclic descents of permutations

Example

$$
\pi=23154: \quad \operatorname{Des}(\pi)=\{2,4\}, \quad c \operatorname{Des}(\pi)=\{2,4,5\}
$$

Descents and cyclic descents of permutations

Example

$$
\begin{aligned}
& \pi=23154: \quad \operatorname{Des}(\pi)=\{2,4\}, \quad \operatorname{cDes}(\pi)=\{2,4,5\} . \\
& \pi=34152:
\end{aligned}
$$

Descents and cyclic descents of permutations

Example

$$
\begin{array}{ll}
\pi=23154: & \operatorname{Des}(\pi)=\{2,4\}, \quad \operatorname{CDes}(\pi)=\{2,4,5\} \\
\pi=34152: & \operatorname{Des}(\pi)=\{2,4\},
\end{array}
$$

Descents and cyclic descents of permutations

Example

$$
\begin{array}{ll}
\pi=23154: & \operatorname{Des}(\pi)=\{2,4\},
\end{array} \quad \operatorname{cDes}(\pi)=\{2,4,5\} . \quad\left\{\begin{array}{ll}
\pi=34152: & \operatorname{Des}(\pi)=\{2,4\},
\end{array} \quad \operatorname{Des}(\pi)=\{2,4\} .\right.
$$

Standard Young Tableaux

A shape λ of size n is a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$. It has a corresponding diagram.

Example

$$
\lambda=(4,3,1)
$$

Standard Young Tableaux

A shape λ of size n is a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \vdash n$. It has a corresponding diagram.

Example

$$
\lambda=(4,3,1)
$$

A standard Young tableau (SYT) T of shape λ is a filling of the diagram of λ by the numbers $1, \ldots, n$, each one appearing once, such that the entries increase along rows (from left to right) and along columns (from top to bottom).

Example

$$
\lambda=(4,3,1) \quad \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 4 & 8 \\
\hline 3 & 5 & 7 & \\
\hline 6 & & & \\
\end{array}
$$

Standard Young Tableaux

A diagram of skew shape λ / μ is the set difference of the diagrams of shapes λ and μ, assuming that $\mu \subseteq \lambda$, i.e. $\mu_{i} \leq \lambda_{i}(\forall i)$.

Standard Young Tableaux

A diagram of skew shape λ / μ is the set difference of the diagrams of shapes λ and μ, assuming that $\mu \subseteq \lambda$, i.e. $\mu_{i} \leq \lambda_{i}(\forall i)$.

A SYT of skew shape λ / μ is defined as for shape λ.

Standard Young Tableaux

A diagram of skew shape λ / μ is the set difference of the diagrams of shapes λ and μ, assuming that $\mu \subseteq \lambda$, i.e. $\mu_{i} \leq \lambda_{i}(\forall i)$.

A SYT of skew shape λ / μ is defined as for shape λ.
Example

$$
\begin{array}{l|l|l|l|}
& 2 & 3 \\
\hline \begin{array}{|l|l|}
\hline 1 & 5 \\
\hline
\end{array} \\
\hline 4 & 7 & 8 \\
\hline 6 & & &
\end{array}
$$

Standard Young Tableaux

A diagram of skew shape λ / μ is the set difference of the diagrams of shapes λ and μ, assuming that $\mu \subseteq \lambda$, i.e. $\mu_{i} \leq \lambda_{i}(\forall i)$.

A SYT of skew shape λ / μ is defined as for shape λ.
Example

$$
\begin{array}{l|l|l|l|}
& 2 & 3 \\
\hline \begin{array}{|l|l|}
\hline 1 & 5 \\
\hline
\end{array} \\
\hline 4 & 7 & 8 \\
\hline 6 & & &
\end{array}
$$

Denote the set of all standard Young tableaux of shape λ / μ by $\operatorname{SYT}(\lambda / \mu)$.

Descents and cyclic descents of SYT

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\} .
$$

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\}
$$

Example

$$
T=\begin{array}{|l|l|l}
\hline & 2 & 4 \\
\hline & 3 & 6 \\
\hline 5 &
\end{array} \in \operatorname{SYT}((4,3,1) /(1,1))
$$

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\} .
$$

Example

$$
T=\begin{array}{|l|l|l}
\hline & 2 & 4 \\
\hline & 3 & 6 \\
\hline 5 &
\end{array} \in \operatorname{SYT}((4,3,1) /(1,1))
$$

$$
\operatorname{Des}(T)=\{2,4\}
$$

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\} .
$$

Example

$$
T=\begin{array}{|l|l|l}
\hline & 2 & 4 \\
\hline & 3 & 6 \\
\hline 5 &
\end{array} \in \operatorname{SYT}((4,3,1) /(1,1))
$$

$$
\operatorname{Des}(T)=\{2,4\}
$$

Problem:

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\}
$$

Example

$$
T=\begin{array}{|l|l|l}
\hline & 2 & 4 \\
\hline & 3 & 6 \\
\hline
\end{array} \quad \in \operatorname{SYT}((4,3,1) /(1,1))
$$

$$
\operatorname{Des}(T)=\{2,4\}
$$

Problem:
Define a cyclic descent set for SYT of any shape λ / μ.

Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

$$
\operatorname{Des}(T):=\{i: i+1 \text { is in a lower row than } i\}
$$

Example

$$
T=\begin{array}{|l|l|l}
\hline & 2 & 4 \\
\hline & 3 & 6 \\
\hline
\end{array} \quad \in \operatorname{SYT}((4,3,1) /(1,1))
$$

$$
\operatorname{Des}(T)=\{2,4\}
$$

Problem:
Define a cyclic descent set for SYT of any shape λ / μ.

SYT of rectangular shapes

SYT of rectangular shapes

SYT of rectangular shapes

Theorem (Rhoades '10)
For $r \mid n$, let $\lambda=\left(r^{n / r}\right)=(r, \ldots, r) \vdash n$ be a rectangular shape. Then there exists a cyclic descent map cDes: $\operatorname{SYT}(\lambda) \rightarrow 2^{[n]}$ s.t. for all $T \in \operatorname{SYT}(\lambda)$:

$$
\operatorname{cDes}(T) \cap[n-1]=\operatorname{Des}(T)
$$

SYT of rectangular shapes

Theorem (Rhoades '10)
For $r \mid n$, let $\lambda=\left(r^{n / r}\right)=(r, \ldots, r) \vdash n$ be a rectangular shape. Then there exists a cyclic descent map cDes: $\operatorname{SYT}(\lambda) \rightarrow 2^{[n]}$ s.t. for all $T \in \operatorname{SYT}(\lambda)$:

$$
\begin{aligned}
\operatorname{cDes}(T) \cap[n-1] & =\operatorname{Des}(T) \\
\operatorname{cDes}(p(T)) & =\operatorname{cDes}(T))+1(\bmod n)
\end{aligned}
$$

where p is Schützenberger's jeu-de-taquin promotion operator.

SYT of rectangular shapes

Example $\lambda=(3,3) \vdash 6$.

SYT of rectangular shapes

Example $\lambda=(3,3) \vdash 6$.

Jeu-de-taquin promotion:

SYT of rectangular shapes

Example $\lambda=(3,3) \vdash 6$.
Jeu-de-taquin promotion:

1	3	4				
2	5	6	\rightarrow	1	3	4
:---	:---	:---				
2	5		\rightarrow	1	3	4
:---	:---	:---				
2		5	\rightarrow	1		4
:---	:---	:---				
2	3	5	\rightarrow		1	4
:---	:---	:---				
2	3	5	\rightarrow	1	2	5
:---	:---	:---				
3	4	6				

SYT of rectangular shapes

Example $\lambda=(3,3) \vdash 6$.
Jeu-de-taquin promotion:

1	3	4				
2	5	6	\rightarrow	1	3	4
:---	:---	:---				
2	5		\rightarrow	1	3	4
:---	:---	:---				
2		5	\rightarrow	1		4
:---	:---	:---				
2	3	5	\rightarrow		1	4
:---	:---	:---				
2	3	5	\rightarrow	1	2	5
:---	:---	:---				
3	4	6				

The orbits of p on SYT (λ) :

SYT of rectangular shapes

Example $\lambda=(3,3) \vdash 6$.
Jeu-de-taquin promotion:

1	3	4				
2	5	6	\rightarrow	1	3	4
:---	:---	:---				
2	5		\rightarrow	1	3	4
:---	:---	:---				
2		5	\rightarrow	1		4
:---	:---	:---				
2	3	5	\rightarrow		1	4
:---	:---	:---				
2	3	5	\rightarrow	1	2	5
:---	:---	:---				
3	4	6				

The orbits of p on SYT (λ) :

$$
\begin{aligned}
& \begin{array}{|l|l|l|}
\hline 1 & 3 & 4 \\
\hline 2 & 5 & 6 \\
\hline
\end{array} \\
& \{1,4\} \\
& \{2,5\} \\
& \{3,6\} \\
& \{1,3,5\} \\
& \{2,4,6\}
\end{aligned}
$$

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman, 2020)
Given a set \mathcal{T} and map Des: $\mathcal{T} \rightarrow 2^{[n-1]}$,

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman, 2020)
Given a set \mathcal{T} and map Des: $\mathcal{T} \rightarrow 2^{[n-1]}$, a cyclic extension of Des

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman, 2020)
Given a set \mathcal{T} and map Des: $\mathcal{T} \rightarrow 2^{[n-1]}$, a cyclic extension of Des is a pair (cDes, p), where cDes: $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p: \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms:

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman, 2020)
Given a set \mathcal{T} and map Des: $\mathcal{T} \rightarrow 2^{[n-1]}$, a cyclic extension of Des is a pair (cDes, p), where cDes: $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p: \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all T in \mathcal{T},
(extension) $\quad \operatorname{cDes}(T) \cap[n-1]=\operatorname{Des}(T)$, (equivariance) $\mathrm{cDes}(p(T))=1+\mathrm{cDes}(T)(\bmod n)$, (non-Escher) $\quad \varnothing \subsetneq \mathrm{cDes}(T) \subsetneq[n]$.

Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman, 2020)
Given a set \mathcal{T} and map Des: $\mathcal{T} \rightarrow 2^{[n-1]}$, a cyclic extension of Des is a pair (cDes, p), where cDes: $\mathcal{T} \longrightarrow 2^{[n]}$ is a map and $p: \mathcal{T} \longrightarrow \mathcal{T}$ is a bijection, satisfying the following axioms: for all T in \mathcal{T},
(extension) $\quad \operatorname{cDes}(T) \cap[n-1]=\operatorname{Des}(T)$, (equivariance) $\mathrm{cDes}(p(T))=1+\mathrm{cDes}(T)(\bmod n)$, (non-Escher) $\quad \varnothing \subsetneq \mathrm{cDes}(T) \subsetneq[n]$.

Examples

- $\mathcal{T}=S_{n}$, cDes $=$ Cellini's cyclic descent set, and $p=$ cyclic rotation.
- $\mathcal{T}=\operatorname{SYT}\left(r^{n / r}\right)$, cDes $=$ Rhoades' cyclic descent set, and $p=$ promotion.

Examples

Examples

$\{\operatorname{Des}(T): T \in \operatorname{SYT}(3,2)\}=\{\{1,3\},\{2,4\},\{3\},\{4,1\},\{2\}\}$

Examples

$\{\operatorname{Des}(T): T \in \operatorname{SYT}(3,2)\}=\{\{1,3\},\{2,4\},\{3\},\{4,1\},\{2\}\}$
There exists a cyclic descent extenstion (CDE):

Examples

$\{\operatorname{Des}(T): T \in \operatorname{SYT}(3,2)\}=\{\{1,3\},\{2,4\},\{3\},\{4,1\},\{2\}\}$
There exists a cyclic descent extenstion (CDE):
$\{\operatorname{cDes}(T): T \in \operatorname{SYT}(3,2)\}=\{\{1,3\},\{2,4\},\{3,5\},\{4,1\},\{2,5\}\}$

Examples

$\{\operatorname{Des}(T): T \in \operatorname{SYT}(3,2)\}=\{\{1,3\},\{2,4\},\{3\},\{4,1\},\{2\}\}$
There exists a cyclic descent extenstion (CDE):
$\{\operatorname{cDes}(T): T \in \operatorname{SYT}(3,2)\}=\{\{1,3\},\{2,4\},\{3,5\},\{4,1\},\{2,5\}\}$

$$
\begin{aligned}
& \{\operatorname{Des}(T): T \in \operatorname{SYT}(4,1)\}=\{\{1\},\{2\},\{3\},\{4\}\}
\end{aligned}
$$

Examples

$\{\operatorname{Des}(T): T \in \operatorname{SYT}(3,2)\}=\{\{1,3\},\{2,4\},\{3\},\{4,1\},\{2\}\}$
There exists a cyclic descent extenstion (CDE):
$\{\operatorname{cDes}(T): T \in \operatorname{SYT}(3,2)\}=\{\{1,3\},\{2,4\},\{3,5\},\{4,1\},\{2,5\}\}$

$$
\begin{aligned}
& \{\operatorname{Des}(T): T \in \operatorname{SYT}(4,1)\}=\{\{1\},\{2\},\{3\},\{4\}\}
\end{aligned}
$$

No CDE

Connected ribbons

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 square.

Connected ribbons

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 square.

Examples

Connected ribbons

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 square.

Examples

Connected ribbons

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 square.

Examples

Proposition A connected ribbon does not have a cyclic descent extension.

Connected ribbons

A connected skew shape λ / μ is a ribbon if it does not contain a 2×2 square.

Examples

Proposition A connected ribbon does not have a cyclic descent extension.

Oops !!!

Theorem (A-Reiner-Roichman, 2020)
The set $\operatorname{SYT}(\lambda / \mu)$ has a cyclic descent extension if and only if λ / μ is not a connected ribbon.

Theorem (A-Reiner-Roichman, 2020)
The set SYT (λ / μ) has a cyclic descent extension if and only if λ / μ is not a connected ribbon.

- The proof is algebraic (involves Postnikov's toric Schur functions and Gromov-Witten invariants).

Theorem (A-Reiner-Roichman, 2020)
The set SYT (λ / μ) has a cyclic descent extension if and only if λ / μ is not a connected ribbon.

- The proof is algebraic (involves Postnikov's toric Schur functions and Gromov-Witten invariants).
- A constructive combinatorial proof was given by Brice Huang.

Uniqueness

Uniqueness

The actual extended map cDes is almost never unique;

Uniqueness

The actual extended map cDes is almost never unique; however, its distribution is always unique:

Uniqueness

The actual extended map cDes is almost never unique; however, its distribution is always unique:

Theorem

1. If λ / μ is not a connected ribbon then all cyclic descent extensions cDes: $\operatorname{SYT}(\lambda / \mu) \rightarrow 2^{[n]}$ have the same fiber sizes $\left|\mathrm{cDes}^{-1}(J)\right|$, uniquely determined by λ / μ and $\varnothing \subsetneq J \subsetneq[n]$.

Uniqueness

The actual extended map cDes is almost never unique; however, its distribution is always unique:
Theorem

1. If λ / μ is not a connected ribbon then all cyclic descent extensions cDes: $\operatorname{SYT}(\lambda / \mu) \rightarrow 2^{[n]}$ have the same fiber sizes $\left|\mathrm{cDes}^{-1}(J)\right|$, uniquely determined by λ / μ and $\varnothing \subsetneq J \subsetneq[n]$.
2. (A-Elizalde-Roichman) If λ / μ is a near-hook, namely has distance one from a hook, then the cyclic extension cDes on $\operatorname{SYT}(\lambda / \mu)$ is unique.

Uniqueness

The actual extended map cDes is almost never unique; however, its distribution is always unique:
Theorem

1. If λ / μ is not a connected ribbon then all cyclic descent extensions cDes: $\operatorname{SYT}(\lambda / \mu) \rightarrow 2^{[n]}$ have the same fiber sizes $\left|\mathrm{cDes}^{-1}(J)\right|$, uniquely determined by λ / μ and $\varnothing \subsetneq J \subsetneq[n]$.
2. (A-Elizalde-Roichman) If λ / μ is a near-hook, namely has distance one from a hook, then the cyclic extension cDes on $\operatorname{SYT}(\lambda / \mu)$ is unique.

Examples

Uniqueness

The actual extended map cDes is almost never unique; however, its distribution is always unique:
Theorem

1. If λ / μ is not a connected ribbon then all cyclic descent extensions cDes: $\operatorname{SYT}(\lambda / \mu) \rightarrow 2^{[n]}$ have the same fiber sizes $\left|\mathrm{cDes}^{-1}(J)\right|$, uniquely determined by λ / μ and $\varnothing \subsetneq J \subsetneq[n]$.
2. (A-Elizalde-Roichman) If λ / μ is a near-hook, namely has distance one from a hook, then the cyclic extension cDes on $\operatorname{SYT}(\lambda / \mu)$ is unique.

Examples

Uniqueness

The actual extended map cDes is almost never unique; however, its distribution is always unique:
Theorem

1. If λ / μ is not a connected ribbon then all cyclic descent extensions cDes: $\operatorname{SYT}(\lambda / \mu) \rightarrow 2^{[n]}$ have the same fiber sizes $\left|\mathrm{cDes}^{-1}(J)\right|$, uniquely determined by λ / μ and $\varnothing \subsetneq J \subsetneq[n]$.
2. (A-Elizalde-Roichman) If λ / μ is a near-hook, namely has distance one from a hook, then the cyclic extension cDes on $\operatorname{SYT}(\lambda / \mu)$ is unique.

Examples

Cyclic descent extension on conjugacy classes

Cyclic descent extension on conjugacy classes

We saw that S_{n} has a CDE (Cellini's). How about subsets of S_{n} ?

Cyclic descent extension on conjugacy classes

We saw that S_{n} has a CDE (Cellini's). How about subsets of S_{n} ?
Problem:

Cyclic descent extension on conjugacy classes

We saw that S_{n} has a CDE (Cellini's). How about subsets of S_{n} ?
Problem:

> Let $\mathcal{C}_{\mu} \subset S_{n}$ be a conjugacy class of cycle type μ. Does it carry a CDE ?

Cyclic descent extension on conjugacy classes

We saw that S_{n} has a CDE (Cellini's). How about subsets of S_{n} ?
Problem:

> Let $\mathcal{C}_{\mu} \subset S_{n}$ be a conjugacy class of cycle type μ. Does it carry a CDE ?

Example. Consider the conjugacy class of 4-cycles in S_{4}.

$$
\mathcal{C}_{4}=\{2341,4123,4312,3421,2413,3142\} .
$$

Cyclic descent extension on conjugacy classes

We saw that S_{n} has a CDE (Cellini's). How about subsets of S_{n} ?
Problem:

$$
\begin{gathered}
\text { Let } \mathcal{C}_{\mu} \subset S_{n} \text { be a conjugacy class of cycle type } \mu \text {. } \\
\text { Does it carry a CDE ? }
\end{gathered}
$$

Example. Consider the conjugacy class of 4-cycles in S_{4}.

$$
\mathcal{C}_{4}=\{2341,4123,4312,3421,2413,3142\} .
$$

Cellini's cDes sets are $\{3\},\{1\},\{1,2\},\{2,3\},\{2,4\},\{1,3\}$.

Cyclic descent extension on conjugacy classes

We saw that S_{n} has a CDE (Cellini's). How about subsets of S_{n} ?
Problem:

$$
\begin{gathered}
\text { Let } \mathcal{C}_{\mu} \subset S_{n} \text { be a conjugacy class of cycle type } \mu \text {. } \\
\text { Does it carry a CDE ? }
\end{gathered}
$$

Example. Consider the conjugacy class of 4-cycles in S_{4}.

$$
\mathcal{C}_{4}=\{2341,4123,4312,3421,2413,3142\} .
$$

Cellini's cDes sets are $\{3\},\{1\},\{1,2\},\{2,3\},\{2,4\},\{1,3\}$. Not a CDE

Cyclic descent extension on conjugacy classes

We saw that S_{n} has a CDE (Cellini's). How about subsets of S_{n} ?
Problem:

$$
\begin{gathered}
\text { Let } \mathcal{C}_{\mu} \subset S_{n} \text { be a conjugacy class of cycle type } \mu . \\
\text { Does it carry a CDE ? }
\end{gathered}
$$

Example. Consider the conjugacy class of 4-cycles in S_{4}.

$$
\mathcal{C}_{4}=\{2341,4123,4312,3421,2413,3142\} .
$$

Cellini's cDes sets are $\{3\},\{1\},\{1,2\},\{2,3\},\{2,4\},\{1,3\}$. Not a CDE (not closed under cyclic shift);

Cyclic descent extension on conjugacy classes

We saw that S_{n} has a CDE (Cellini's). How about subsets of S_{n} ?

Problem:

$$
\begin{gathered}
\text { Let } \mathcal{C}_{\mu} \subset S_{n} \text { be a conjugacy class of cycle type } \mu \text {. } \\
\text { Does it carry a CDE ? }
\end{gathered}
$$

Example. Consider the conjugacy class of 4-cycles in S_{4}.

$$
\mathcal{C}_{4}=\{2341,4123,4312,3421,2413,3142\} .
$$

Cellini's cDes sets are $\{3\},\{1\},\{1,2\},\{2,3\},\{2,4\},\{1,3\}$. Not a CDE (not closed under cyclic shift); but letting

$$
\begin{aligned}
& c \operatorname{Des}(2341)=\{3,4\}, \operatorname{cDes}(4123)=\{4,1\}, \operatorname{cDes}(4312)=\{1,2\} \\
& \operatorname{cDes}(3421)=\{2,3\}, \operatorname{cDes}(2413)=\{2,4\}, \operatorname{cDes}(3142)=\{1,3\}
\end{aligned}
$$ determines a CDE.

Cyclic descent extension on conjugacy classes

Cyclic descent extension on conjugacy classes

Theorem (A-Hegedús-Roichman)
Let $\mathcal{C}_{\mu} \subset S_{n}$ be a conjugacy class of cycle type μ.
The following are equivalent:
(i) The descent map Des on \mathcal{C}_{μ} has a cyclic extension (CDE).

Cyclic descent extension on conjugacy classes

Theorem (A-Hegedús-Roichman)
Let $\mathcal{C}_{\mu} \subset S_{n}$ be a conjugacy class of cycle type μ.
The following are equivalent:
(i) The descent map Des on \mathcal{C}_{μ} has a cyclic extension (CDE).
(ii) μ is not of the form $\left(r^{s}\right)$ for some square-free r.

Cyclic descent extension on conjugacy classes

Theorem (A-Hegedüs-Roichman)
Let $\mathcal{C}_{\mu} \subset S_{n}$ be a conjugacy class of cycle type μ.
The following are equivalent:
(i) The descent map Des on \mathcal{C}_{μ} has a cyclic extension (CDE).
(ii) μ is not of the form $\left(r^{s}\right)$ for some square-free r.

The proof is algebraic (involves higher Lie characters).

Cyclic descent extension on conjugacy classes

Theorem (A-Hegedüs-Roichman)
Let $\mathcal{C}_{\mu} \subset S_{n}$ be a conjugacy class of cycle type μ.
The following are equivalent:
(i) The descent map Des on \mathcal{C}_{μ} has a cyclic extension (CDE).
(ii) μ is not of the form $\left(r^{s}\right)$ for some square-free r.

The proof is algebraic (involves higher Lie characters).
Problem:

Cyclic descent extension on conjugacy classes

Theorem (A-Hegedüs-Roichman)
Let $\mathcal{C}_{\mu} \subset S_{n}$ be a conjugacy class of cycle type μ.
The following are equivalent:
(i) The descent map Des on \mathcal{C}_{μ} has a cyclic extension (CDE).
(ii) μ is not of the form $\left(r^{s}\right)$ for some square-free r.

The proof is algebraic (involves higher Lie characters).
Problem:
Find a constructive combinatorial proof.

Summary and open problems

Summary and open problems

Summary

Summary

- Flag statistics and their relatives on B_{n} and other groups.

Summary

- Flag statistics and their relatives on B_{n} and other groups.
- Combinatorial and algebraic properties.

Summary

- Flag statistics and their relatives on B_{n} and other groups.
- Combinatorial and algebraic properties.
- Cyclic descent sets from an axiomatic point of view (CDE).

Summary

- Flag statistics and their relatives on B_{n} and other groups.
- Combinatorial and algebraic properties.
- Cyclic descent sets from an axiomatic point of view (CDE).
- Simple explicit criteria for the existence of CDE on SYT of a given skew shape and on conjugacy classes of permutations.

Open problems

Open problems

- Combinatorial proofs.

Open problems

- Combinatorial proofs.
- Cyclic major index.

Open problems

- Combinatorial proofs.
- Cyclic major index.
- Cyclic descents for type B.

Friends and colleagues congratulate you

and wish you many happy years !!!

