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Descent number and major index

The descent set of a permutation π = (π1, . . . , πn) in the
symmetric group Sn is

Des(π) := {1 ≤ i ≤ n − 1 : πi > πi+1} ⊆ [n − 1],

where [m] := {1, 2, . . . ,m}. Its descent number is

des(π) := |Des(π)|

and its major index is

maj(π) :=
∑

i∈Des(π)

i .

Example:
π = 231564 : Des(π) = {2, 5}, des(π) = 2, maj(π) = 2 + 5 = 7.
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Type B

The symmetric group is the Coxeter group of type A.

The Coxeter group of type B (hyperoctahedral group, group of
signed permutations) is the group Bn consisting of all the
permutations σ of the set [±n] = {−n, . . . ,−1} ∪ {1, . . . , n} which
satisfy

σ(−i) = −σ(i) (1 ≤ i ≤ n).

It is generated by (simple reflections)

si = (i , i + 1)(−i ,−(i + 1)) (1 ≤ i ≤ n − 1)

together with
s0 = (1,−1).

Question: Are there analogues of descent number and major index
for the Coxeter group of type B?
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Type B

There is a natural length function

`(σ) := min{m ≥ 0 : σ = si1 · · · sim},

with a corresponding Coxeter descent set

DesB(σ) := {i : `(σsi ) < `(σ)} ⊆ [0, n − 1]

and Coxeter descent number

desB(σ) := |DesB(σ)|.

How about major index?

Several candidates for a type B major index have been proposed.
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Type B

Rephrased question: Is there an analogue of major index for type B
which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

• MacMahon’s theorem

• Carlitz’ identity

• Diagonal invariants

• Coinvariant algebra



Flag statistics Variants and extensions Cyclic descents Summary and open problems

Type B

Rephrased question: Is there an analogue of major index for type B
which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

• MacMahon’s theorem

• Carlitz’ identity

• Diagonal invariants

• Coinvariant algebra



Flag statistics Variants and extensions Cyclic descents Summary and open problems

Type B

Rephrased question: Is there an analogue of major index for type B
which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

• MacMahon’s theorem

• Carlitz’ identity

• Diagonal invariants

• Coinvariant algebra



Flag statistics Variants and extensions Cyclic descents Summary and open problems

Type B

Rephrased question: Is there an analogue of major index for type B
which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

• MacMahon’s theorem

• Carlitz’ identity

• Diagonal invariants

• Coinvariant algebra



Flag statistics Variants and extensions Cyclic descents Summary and open problems

Type B

Rephrased question: Is there an analogue of major index for type B
which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

• MacMahon’s theorem

• Carlitz’ identity

• Diagonal invariants

• Coinvariant algebra



Flag statistics Variants and extensions Cyclic descents Summary and open problems

Type B

Rephrased question: Is there an analogue of major index for type B
which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

• MacMahon’s theorem

• Carlitz’ identity

• Diagonal invariants

• Coinvariant algebra



Flag statistics Variants and extensions Cyclic descents Summary and open problems

Type B

Rephrased question: Is there an analogue of major index for type B
which has good combinatorial and algebraic properties?

We shall consider two combinatorial and two algebraic properties:

• MacMahon’s theorem

• Carlitz’ identity

• Diagonal invariants

• Coinvariant algebra



Flag statistics Variants and extensions Cyclic descents Summary and open problems

MacMahon’s Theorem

Theorem: (MacMahon, 1916)∑
π∈Sn

qmaj(π) =
∑
π∈Sn

q`(π).

We write this as: maj ∼Sn `.

Note that, for Sn, Coxeter length is the same as inversion number.

Rephrased question: Is there an analogue of major index for type B
which is equi-distributed with length?

None of the previous candidates had this property.
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Flag major index

Define
ti := si si−1 · · · s0 (0 ≤ i ≤ n − 1).

Fact: Each element σ ∈ Bn has a unique representation

σ = t
kn−1

n−1 · · · t
k1
1 tk00 (0 ≤ ki ≤ 2(i + 1), ∀i).

Definition: (A-Roichman, 2001) The flag major index of σ ∈ Bn is

fmaj(σ) :=
n−1∑
i=0

ki .

Theorem: fmaj ∼Bn `, namely∑
σ∈Bn

qfmaj(σ) =
∑
σ∈Bn

q`(σ).
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Signed enumeration

Recall
Theorem: (MacMahon)∑

π∈Sn

qmaj(π) =
∑
π∈Sn

q`(π) = [n]!q = [1]q[2]q · · · [n]q,

where [m]q := 1 + q + . . .+ qm−1.

Theorem: (Gessel-Simion, 1992)∑
π∈Sn

sign(π)qmaj(π) = [1]q[2]−q[3]q[4]−q · · · [n]±q,

Theorem: (A-Gessel-Roichman, 2005)∑
σ∈Bn

sign(σ)qfmaj(σ) = [2]−q[4]q[6]−q · · · [2n]±q,
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Carlitz’ identity

Theorem: (MacMahon, Carlitz 1975, Gessel 1977)∑
π∈Sn t

des(π)qmaj(π)∏n
i=0(1− tqi )

=
∑
r≥0

[r + 1]nq t
r ,

where [m]q := 1 + q + . . .+ qm−1.

In particular, for q = 1:∑
π∈Sn t

des(π)

(1− t)n+1
=
∑
r≥0

(r + 1)n tr .

Foata’s question: Are there type B analogues of des and maj which
satisfy a Carlitz-type bivariate distribution identity?
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Flag descent number

Observation: (A-Brenti-Roichman, 2001)
The above definition of fmaj on Bn is equivalent to

fmaj(σ) = 2 maj(σ) + neg(σ),

where
maj(σ) :=

∑
i :σ(i)>σ(i+1)

i

and
neg(σ) := |{i : σ(i) < 0}|,

with ”<” the usual linear order on integers:

−n < · · · < −1 < 0 < 1 < · · · < n.

Idea: Let us use, instead, the linear order

−1 <′ · · · <′ −n <′ 0 <′ 1 <′ · · · <′ n.
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Flag descent number

Definition: (A-Brenti-Roichman, 2001)
Use the linear order

−1 <′ · · · <′ −n <′ 0 <′ 1 <′ · · · <′ n.

Define
fdes′(σ) := 2 des′(σ) + ε1(σ)

and
fmaj′(σ) := 2 maj′(σ) + neg(σ),

where
des′(σ) := |{i : σ(i) >′ σ(i + 1)}|,

maj′(σ) :=
∑

i :σ(i)>′σ(i+1)

i ,

and

ε1(σ) :=

{
1, if σ(1) < 0;

0, otherwise.
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MacMahon and Carlitz

Theorem: (A-Brenti-Roichman, 2001)∑
σ∈Bn

qfmaj′(σ) =
∑
σ∈Bn

q`(σ) (MacMahon)

and ∑
σ∈Bn

t fdes
′(σ)qfmaj′(σ)

(1− t)
∏n

i=1(1− t2q2i )
=
∑
r≥0

[r + 1]nq t
r . (Carlitz)

This answers affirmatively Foata’s question.
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Diagonal invariants

Sn and Bn act on the polynomial algebra Pn := C[x1, . . . , xn] by
permuting variables (and s0(x1) = −x1). If a group G acts on Pn,
then G×t = G × · · · × G acts on P⊗tn = Pn ⊗ · · · ⊗ Pn (tensor
action), and therefore G also acts on P⊗tn (diagonal action). The
diagonal invariant algebra DIA is a free module over the tensor
invariant algebra TIA, both multi-graded by xi degrees. Let

FTIA(q̄) :=
∑

n1,...,nt≥0
dimC(TIAn1,...,nt )q

n1
1 · · · q

nt
t ,

be the Hilbert series of TIA, and similarly for DIA.

Theorem: (Essentially Garsia-Gessel, 1979) For Sn,

FDIA(q̄)

FTIA(q̄)
=

∑
π1···πt=1

t∏
i=1

q
maj(πi )
i .

Theorem: (A-R, 2001) Same for Bn, with maj replaced by fmaj.
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Coinvariant algebra

The coinvariant algebra of type A is the quotient RA
n = Pn/I

A
n ,

where Pn = C[x1, . . . , xn] and IAn is the ideal of Pn generated by the
Sn-invariant (i.e., symmetric) polynomials without a constant term.

Theorem: (Garsia-Stanton, 1984)
The set {aπ + IAn : π ∈ Sn} is a monomial basis for RA

n , where

aπ :=
∏

i∈Des(π)

(xπ(1) · · · xπ(i)).

Observation: The Garsia-Stanton descent basis can be written as

aπ =
n∏

i=1

x
di (π)
π(i) ,

where
di (π) := |{j ∈ Des(π) : j ≥ i}.

Example: For π = (3, 6, 1, 5, 2, 4) ∈ S6, aπ = x23x
2
6x1x5.
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Coinvariant algebra

The coinvariant algebra of type B is defined similarly:
RB
n := Pn/I

B
n . Define also, for σ ∈ Bn:

εi (σ) :=

{
1, if σ(i) < 0;

0, otherwise,

fi (σ) := 2di (σ) + εi (σ).

Theorem: (A-Brenti-Roichman, 2005)
The set {bσ + IBn : σ ∈ Bn} is a monomial basis for RB

n , where

bσ :=
n∏

i=1

x
fi (σ)
|σ(i)|.

Example: For σ = (−3, 6,−1, 5, 2, 4) ∈ B6, bσ = x33x
2
6x

2
1x5.
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Coinvariant algebra

Note that the di (π) form a partition of maj(π):

des(π) = d1(π) ≥ . . . ≥ dn(π) = 0

and
d1(π) + . . .+ dn(π) = maj(π).

Example: For π = (3, 6, 1, 5, 2, 4) ∈ S6, Des(π) = {2, 4},
aπ = x23x

2
6x1x5 and indeed (2, 2, 1, 1) ` 6 = maj(π).

Similarly, the fi (σ) form a partition of fmaj(σ) for σ ∈ Bn.
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Coinvariant algebra

The descent basis can be used to give a new construction of
Solomon’s descent representations (for type A), and a suitable
refinement (for type B). In fact, if Rk is the k-th homogeneous
component of R = Pn/I

A
n , then

Theorem: For every 0 ≤ k ≤
(n
2

)
,

Rk
∼=
⊕
S

RλS

as Sn-modules, where the sum is over all subsets S ⊆ [n − 1] such
that

∑
i∈S i = k , and λS is a partition of k naturally associated

with S .
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Coinvariant algebra

Similarly,
Theorem: (A-Brenti-Roichman, 2005)
For every 0 ≤ k ≤ n2,

RB
k
∼=
⊕
S1,S2

RλBS1,S2

as Bn-modules, where the sum is over all subsets S1 ⊆ [n − 1] and
S2 ⊆ [n] such that λS1,S2 := 2λS1 + 1S2 is a partition and
2 ·
∑

i∈S1 i + |S2| = k .

There are also decompositions of RλS and RλBS1,S2
into irreducibles,

with multiplicities equal to the number of standard Young tableaux
with prescribed shape and descent set. This refines results of
Stanley and Lusztig (for type A), and Stembridge (for type B).
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Neg statistics: ndes and nmaj

There is another pair of naturally-defined statistics on Bn, with the
same nice combinatorial properties.

Definition: (A-Brenti-Roichman, 2001)
Define the multiset

NDes(σ) := Des′(σ) ∪ {|σ(i)| : σ(i) < 0}

and let
ndes(σ) := |NDes(σ)|,

nmaj(σ) :=
∑

i∈NDes(σ)

i .

Theorem: (A-B-R, 2001)

nmaj ∼ fmaj′ ∼ ` (MacMahon),

(ndes, nmaj) ∼ (fdes′, fmaj′) (Carlitz).
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The Chow-Gessel variant

Recall that the pair of statistics (fdes, fmaj) satisfies a Carlitz-type
identity: ∑

σ∈Bn
t fdes(σ)qfmaj(σ)

(1− t)
∏n

i=1(1− t2q2i )
=
∑
r≥0

[r + 1]nq t
r .

Chow and Gessel (2007) proved that the pair (desB , fmaj) satisfies
a slightly different Carlitz-type identity:∑

σ∈Bn
tdesB(σ)qfmaj(σ)∏n

i=0(1− tq2i )
=
∑
r≥0

[2r + 1]nq t
r .
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Extensions to other groups

After types A and B, the natural next step is type D.

Biagioli (2003) defined ddes and dmaj for type D, and proved
MacMahon and Carlitz type theorems.
Biagioli and Caselli (2004) defined two other pairs of (des,maj)
analogues for type D, satisfying MacMahon and Carlitz, and one of
them also the diagonal invariant Hilbert series formula (exactly for
odd n, almost for even n).
In another work, they extended the descent basis and descent
representation construction to type D.

An extension in a different direction is to wreath products
G (r , n) = Cr o Sn, where Cr is cyclic of order r . In fact, the initial
definition of fmaj and the diagonal invariant results (AR, 2001)
were in this generality.
Chow and Mansour (2011) defined a new fmajr for G (r , n),
extending the Chow-Gessel variant.
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Extensions to other groups

Bagno and Biagioli (2007) extended the descent basis and descent
representations to the complex reflection groups G (r , p, n). They
include the Coxeter group of type D (= G (2, 2, n)).

Projective (complex) reflection groups G (r , p, q, n) were defined by
Caselli (2011). They include G (r , p, n) (for q = 1). He proved that
the combinatorics of G = G (r , p, q, n) governs the algebra of the
dual group G ∗ = G (r , q, p, n)
Biagioli and Caselli (2012) extended almost everything to
G (r , p, q, n).
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Descents and cyclic descents of permutations

The descent set of a permutation π = (π1, . . . , πn) in the
symmetric group Sn is

Des(π) := {1 ≤ i ≤ n − 1 : πi > πi+1} ⊆ [n − 1],

where [m] := {1, 2, . . . ,m}.

The cyclic descent set is defined, with the convention πn+1 := π1,
by

cDes(π) := {1 ≤ i ≤ n : πi > πi+1} ⊆ [n].

Introduced by Klyachko [’74] and Cellini [’95]. Further studied by Fulman [’00],

Petersen [’05, ’07], Dilks-Petersen-Stembridge [’09], Rhoades [’10], Visontai-Williams [’13], Pechenik [’14], Zhang

[’14], Aguiar-Petersen [’15], Elizalde-Roichman [’17], Ahlbach-Swanson [’18], A-Reiner-Roichman [’18],

Bloom-Elizalde-R [’20], Huang [’20], A-Gessel-Reiner-Roichman [’20], Khachatryan [’21], ...
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Descents and cyclic descents of permutations

Example

π = 23154 : Des(π) = {2, 4} , cDes(π) = {2, 4, 5}.
π = 34152 : Des(π) = {2, 4} , cDes(π) = {2, 4}.
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Standard Young Tableaux

A shape λ of size n is a partition λ = (λ1, . . . , λk) ` n. It has a
corresponding diagram.

Example

λ = (4, 3, 1)

A standard Young tableau (SYT) T of shape λ is a filling of the
diagram of λ by the numbers 1, . . . , n, each one appearing once,
such that the entries increase along rows (from left to right) and
along columns (from top to bottom).

Example

λ = (4, 3, 1)
1 2 4 8
3 5 7
6
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Standard Young Tableaux

A diagram of skew shape λ/µ is the set difference of the diagrams
of shapes λ and µ, assuming that µ ⊆ λ, i.e. µi ≤ λi (∀i).

A SYT of skew shape λ/µ is defined as for shape λ.

Example

λ/µ = (4, 3, 3, 1)/(2, 1)

2 3
1 5

4 7 8
6

Denote the set of all standard Young tableaux of shape λ/µ by
SYT(λ/µ).
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Descents and cyclic descents of SYT

The descent set of a standard Young tableau T is

Des(T ) := {i : i + 1 is in a lower row than i}.

Example

T =
1 2 4
3 6

5
∈ SYT((4, 3, 1)/(1, 1))

Des(T ) = {2, 4}.

Problem:

Define a cyclic descent set for SYT of any shape λ/µ.
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SYT of rectangular shapes

Theorem (Rhoades ’10)

For r |n, let λ = (rn/r ) = (r , . . . , r) ` n be a rectangular shape.
Then there exists a cyclic descent map cDes : SYT(λ)→ 2[n] s.t.
for all T ∈ SYT(λ):

cDes(T ) ∩ [n − 1] = Des(T ),

cDes(p(T )) = cDes(T )) + 1 (mod n)

where p is Schützenberger’s jeu-de-taquin promotion operator.
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SYT of rectangular shapes

Example λ = (3, 3) ` 6.

Jeu-de-taquin promotion:

1 3 4
2 5 6

→ 1 3 4
2 5

→ 1 3 4
2 5

→ 1 4
2 3 5

→ 1 4
2 3 5

→ 1 2 5
3 4 6

The orbits of p on SYT(λ):

1 3 4
2 5 6

1 2 5
3 4 6

1 2 3
4 5 6

1 3 5
2 4 6

1 2 4
3 5 6

{1, 4} {2, 5} {3, 6} {1, 3, 5} {2, 4, 6}
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Cyclic Descent Extension (CDE)

Definition (A-Reiner-Roichman, 2020)
Given a set T and map Des : T → 2[n−1],

a cyclic extension of Des
is a pair (cDes, p), where cDes : T −→ 2[n] is a map and
p : T −→ T is a bijection, satisfying the following axioms:
for all T in T ,

(extension) cDes(T ) ∩ [n − 1] = Des(T ),
(equivariance) cDes(p(T )) = 1 + cDes(T ) (mod n),

(non-Escher) ∅ ( cDes(T ) ( [n].

Examples

• T = Sn, cDes = Cellini’s cyclic descent set, and p = cyclic
rotation.

• T = SYT(rn/r ), cDes = Rhoades’ cyclic descent set, and p =
promotion.
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Examples

SYT(3, 2) = { 1 3 5
2 4

, 1 2 4
3 5

, 1 2 3
4 5

, 1 3 4
2 5

, 1 2 5
3 4

}

{Des(T ) : T ∈ SYT(3, 2)} = { {1, 3}, {2, 4}, {3}, {4, 1}, {2} }

There exists a cyclic descent extenstion (CDE):

{cDes(T ) : T ∈ SYT(3, 2)} = { {1, 3}, {2, 4}, {3, 5}, {4, 1}, {2, 5} }

SYT(4, 1) = { 1 3 4 5
2

, 1 2 4 5
3

, 1 2 3 5
4

, 1 2 3 4
5

}

{Des(T ) : T ∈ SYT(4, 1)} = { {1}, {2}, {3}, {4} }

No CDE
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Connected ribbons

A connected skew shape λ/µ is a ribbon if it does not contain a
2× 2 square.

Examples

Proposition A connected ribbon does not have a cyclic descent
extension.

Oops !!!
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Theorem (A-Reiner-Roichman, 2020)

The set SYT(λ/µ) has a cyclic descent extension if and only if
λ/µ is not a connected ribbon.

• The proof is algebraic (involves Postnikov’s toric Schur
functions and Gromov-Witten invariants).

• A constructive combinatorial proof was given by Brice Huang.
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Uniqueness

The actual extended map cDes is almost never unique; however, its
distribution is always unique:

Theorem

1. If λ/µ is not a connected ribbon then all cyclic descent
extensions cDes : SYT(λ/µ)→ 2[n] have the same fiber sizes
| cDes−1(J)|, uniquely determined by λ/µ and ∅ ( J ( [n].

2. (A-Elizalde-Roichman) If λ/µ is a near-hook, namely has
distance one from a hook, then the cyclic extension cDes on
SYT(λ/µ) is unique.

Examples
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Cyclic descent extension on conjugacy classes

We saw that Sn has a CDE (Cellini’s). How about subsets of Sn?

Problem:

Let Cµ ⊂ Sn be a conjugacy class of cycle type µ.
Does it carry a CDE ?

Example. Consider the conjugacy class of 4-cycles in S4.

C4 = {2341, 4123, 4312, 3421, 2413, 3142}.

Cellini’s cDes sets are {3}, {1}, {1, 2}, {2, 3}, {2, 4}, {1, 3}.
Not a CDE (not closed under cyclic shift); but letting

cDes(2341) = {3, 4}, cDes(4123) = {4, 1}, cDes(4312) = {1, 2}

cDes(3421) = {2, 3}, cDes(2413) = {2, 4}, cDes(3142) = {1, 3}

determines a CDE.
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Cyclic descent extension on conjugacy classes

Theorem (A-Hegedűs-Roichman)

Let Cµ ⊂ Sn be a conjugacy class of cycle type µ.
The following are equivalent:

(i) The descent map Des on Cµ has a cyclic extension (CDE).

(ii) µ is not of the form (r s) for some square-free r .

The proof is algebraic (involves higher Lie characters).

Problem:

Find a constructive combinatorial proof.
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Summary

• Flag statistics and their relatives on Bn and other groups.

• Combinatorial and algebraic properties.

• Cyclic descent sets from an axiomatic point of view (CDE).

• Simple explicit criteria for the existence of CDE on SYT of a
given skew shape and on conjugacy classes of permutations.
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Open problems

• Combinatorial proofs.

• Cyclic major index.

• Cyclic descents for type B.
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Friends and colleagues congratulate you

and wish you many happy years !!!
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