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OUTLINE

» Primitive Eulerian polynomial of type A and B.

» Definition for central hyperplane arrangements.

» Coefficient interpretation for simplicial arrangements.

» Types ABD revisited.



THE EULERIAN POLYNOMIAL

The classical Eulerian polynomial enumerates permutations of [n] by descents.

An(z): Z Zdes(w)’

weS,
where
des(w) :==[{i € [n — 1] : w; > wiq1}|.
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Delined Lor all fintke Coxeker groups



THE PRIMITIVE EULERIAN POLYNOMIAL
A, (z) also enumerates permutations by excedances.
exc(w) = [{i € [n—1] : w; > i}|.
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THE PRIMITIVE EULERIAN POLYNOMIAL
A, (z) also enumerates permutations by excedances.

exc(w) = [{i € [n—1] : w; > i}|.
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THE PRIMITIVE EULERIAN POLYNOMIAL OF TYPE B — APPETIZER VERSION
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CENTRAL REAL ARRANGEMENTS

L[A] — Flats of A:

intersections of hyperplanes in A
Finite collection of linear hyperplanes in R" ( yPerp )

L om /\\
i, \\/

R[A] — Regions of A:
(connected components of R™ \ A)

» G regions

NA Y[A] — Faces of A:

A R (faces of closed regions)
‘i
rrangement in > 6 rays

» 1 central face



THE PRIMITIVE EULERIAN POLYNOMIAL

Definition (BHS ’22+)

The Primitive Eulerian polynomial of A is

Pa(z) = Y 1u({0}, X)|(z — 1))

Xel
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WHERE DID P4 COME FROM?

A linear arrangement — 7 dual zonotope

» TI(Z) polytope algebra of Z [McMullen '93] is a module over RX[A] [B "21].

osk me lodter

Theorem (B 21, BHS ’22+)
If A is a simplicial arrangement, then P4(z) has nonnegative coefficients.

Goal: Find a geometric proof/interpretation.



WHAT COULD WE BE COUNTING?
The sum of the coefficients is |pu({0}, R™)].

Pu(z) := Z ({0}, X)| (2 — 1)codimX)

XeL




WHAT COULD WE BE COUNTING? Pa(z) = Z ({0}, X)|(z — 1)ﬂodim(X)
The sum of the coefficients is |u({0}, R™)]. xee

Theorem (Greene, Zaslavsky '83)

Let H be a generic halfspace wrt A, then

[u({0},R™)[ = #{C € R[A] : C C H}.

A halfspace H is generic wrt A if it contains {0} but no other flat of A.

L

A non-generic halfspace A generic halfspace




GENERIC HALFSPACES

If the halfspace H is generic wrt A, then

ba(z) =3 ({0}, X)|AmE) = F7 ain(F)

XeLl FCH

Y .4(z) is the cocharacteristic polynomial of A [Novik-Postnikov-Sturmfels "02]



GENERIC HALFSPACES
If the halfspace H is generic wrt A, then

- Z ({0}, X)[z4™X) = Z dim(F)

XeLl FCH

Y 4(2) is the cocharacteristic polynomial of A [Novik-Postnikov-Sturmfels '02]

‘ N,
R 4N

Ya(z) =623 +1222 + 72 +1 Pa(z) = (z— D)pa(Ly) = 2B 4422+ 2

\\‘//

Updated goal: Use 1 4(2) to understand the coefficients of P4(z).



THE WEAK ORDER

Fix a base region B € R[A]. For C € R[A],
sep(B,C) :={H € A : H separates B and C'}
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P4(z) AND THE WEAK ORDER

"cloxed qeing “’?\\

Let A be a simplicial arrangement.

Proposition (BHS ’22+)

Let H be a generic halfspace such that {C € R : C C H} is an order ideal of <p,

then
Py(z) = Z z3es=p(C),
CCH

Can be proved using

S‘A&“a‘o'LL7 or The L&D 0£ "‘“C@S



P4(z) AND THE WEAK ORDER

/&)
>V

Recall that for we had Py(z) = 23 + 422 + 2.

This H does not induce an order ideal This H induces an order ideal




WHEN IS THE PAIR (B, H) “GOOD”?
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Let A be a simplicial arrangement.
We say A is sharp if the angle between the facets of any region is at most 7.

Reflection arrangements are sharp.



WHEN IS THE PAIR (B, H) “GOOD”?

Let A be a simplicial arrangement.
We say A is sharp if the angle between the facets of any region is at most 7.
Reflection arrangements are sharp.

Theorem (BHS ’'22+)

Let A be a sharp arrangement. Then, for any generic vector v € R™,

Pa(z)= Y 242009,
CCH,

where B(v) € R[A] is the region containing v and H, = {x € R : (v,z) < 0}.




TYPE A REVISITED

Braid arrangement in R™:
T;=xj 1<i<ji<n

g

» v=(1,...,1,-n+1)+e

» Label region wB(v) by w

Pa(e)= 3 #ie

wWEG, tw1=n

5005

Intersection with the unit sphere in ), z; =0

> Py (2)=zAn-1(2)

Pa,(2) = 28 + 422 + 2



TYPE B REVISITED

desp(w) ={i € [0,n —1] : w; > w41} where wy :=0

v= (27,21, .. .1
By : x; =*x; z;, =0 ( )

VAR

BW?P = {w e B, : left-to-right-maxima

(in absolute value) are negative}

[Bjorner-Wachs ’04]
Corollary (BHS 22+)

Pg (z) _ Z ZdesB(w)

weBW,B

Pg,(2) = 2* +362° + 6022 + 82
Py (2) = 2 + 1022 + 4 Pp,(2) = 2° + 1162 4 5162° + 2962> + 162
B3 Z) ==z z z



NEw: TYPE D

D, ={w=w;...w, € B, : w has an even number of negations}

desp(w) =#{i € [0,n — 1] : w; > wiy1} where wg := —wa

v= (272"t 1)

BWP ={we®, : we BWF and w, # —n}

Corollary (BHS "22+)

Po(a)= D &0t

weBWP

Pp,(2) = 2* + 2023 + 202 + 42
Pp,(2) = 2° + 762" +2162° + 11622 + 112




GENERATING FUNCTIONS IN TYPE A, B AND D

Fuler 1755 (not in terms of descents)

z—1
» — er(z—1)"

Az, x) = ZAH(Z)%T =

n>0

Brenti "94] generating function for the Eulerian polynomials of type B and D.

BHS "224| generating function for the primitive Eulerian polynomials.

Type A Type B Type D

Eulerian Az, x) e A(z, 2x) (e®=1) — zz) A(2, 2)

Primitive | log A(z,2) | e* =V A(2,22)1/2 | (e*1) — 22) A(2, 22)1/2
L’—\f—_")
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RECURSION AND REAL-ROOTEDNESS

Theorem ( —in terms of 1 4)

Let H be a hyperplane of A. Then, restrichion

Pa(z) = (z — 1)Pau(2) + ZPAL

loox\'-’ba o
where the sum is over all rank 1 flats L € L[A] that are not contained in H.

» H

P, NL%)= (-0 2 +(n-y)2 = Ez,,(,\_L) 2

D ol |
In)= ) rohnes IK“ - ] AL =((/ E
! L




RECURSION AND REAL-ROOTEDNESS

Theorem ( —in terms of 1 4)

Let H be a hyperplane of A. Then, resthrichion

) Py(z)=(z—1)Pu(z) + ZPAL

\oox\'\ %nl—w'\
where the sum is over all rank 1 flats L € L[A] that are not contained in H.

Theorem (BHS ’22+)

Let A be an arrangement of rank at most 3. Then, P4(z) is real-rooted.

\

Note that the result includes non-simplicial arrangements.

Tf k=3, A" A arc dibedrod .
Ckoonu3 [ clwly, the fwo gmmands in (%) are in}a\acmﬁ,



RECURSION AND REAL-ROOTEDNESS

For type A, the recursion takes the form of a well-known formula:

An(z)=(1+2)A +zz( ) (2)An—1-k(2).

Theorem (BHS ’22+)

The following quadratic recursions for the primitive Eulerian polynomial hold:

Pon(2) = 2P, () + 3 (” N 1) 2"Pp, 1 ()Pasi (2)
k=1

Po, (2) = (2 = 1Py, ,(z +Z<"’2>zk( DPb, o (P ()4 2P0, ()P () Poy oy ()P (2))

k=0




REAL-ROOTEDNESS
In 1994, Brenti conjectured:

The Eulerian polynomial of a real reflection arrangement is real-rooted.
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REAL-ROOTEDNESS
In 1994, Brenti conjectured:

The Eulerian polynomial of a real reflection arrangement is real-rooted.

Proved 21 years later by Savage & Visontai.

Conjecture (BHS ’22+)

The primitive Eulerian polynomial of a real reflection arrangement is real-rooted.

» True for exceptional types (with help of SageMath)
» True for type A: [Frobenius 1910
» True for type B: [Savage-Visontai "15]
(in the form of 1/2-Eulerian polynomials [Savage-Viswanathan "12])
» Type D: Verified up to n = 300.

» Also verified for crystallographic simplicial arrangements and for arrangements
between B and D (n < 100). Cho 1 Park '

' de Fined fwexc
Still open: bot it doadl k:vc

[B renti 41| @ Define excedance in Coxeter terms (or at least for type D). | “right” dishe b, bon
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WHERE DID P4 COME FROM?
A linear arrangement — Z dual zonotope

» I1(Z) polytope algebra of Z [McMullen 93] is a module over RY:[A] [B "21].
(g-theorem, Chow ring)

A

PC




A NON-SIMPLICIAL EXAMPLE

An arrangement in R? intersected with the
unit sphere.

Pa(z) =1(z =13 +6(z —1)> +8(z — 1)! +3(2 — 1)°

=23 +322—2



A NON-SHARP ARRANGEMENT




