Maximal Unrefinable Partitions into Distinct Parts
 Lorenzo Campioni

 Università degli studi dell'Aquila

 Università degli studi dell'Aquila
 Joint work with R.Aragona, R.Civino and M.Lauria
 89. Seminaire Lotharingien de Combinatoire, Bertinoro March 272023

Urefinable Partitions

Definition

A partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right)$ of $N \in N$ is such that $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{t}$ and $\sum_{i=1}^{t} \lambda_{i}=N$. We write $\lambda \vdash N$.
A partition into distinct parts is a partition such that $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{t}$. Let D_{N} the set of partition into distinct parts of N.
We call missing parts of λ the positive integers belonging to:

$$
\mathcal{M}_{\lambda}=\left\{1,2,3, \ldots, \lambda_{t}\right\} \backslash\left\{\lambda_{1}, \ldots, \lambda_{t}\right\}
$$

A partition into distinct parts $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ is refinable if there exist $\lambda_{i} \in \lambda$ and $m_{j}, m_{k} \in \mathcal{M}_{\lambda}$ such that $m_{j}+m_{k}=\lambda_{i}$.
Otherwise the partition is unrefinable
The set U_{N} denotes the set of unrefinable partitions of N

Strategy

If $N \geq 3$ we can take the corresponding π_{n} or $\pi_{n, d}$ and to obtain a new unrefinable partition $\lambda \vdash N$ we start to remove $1 \leq a_{1}<a_{2}<\ldots<a_{h} \leq n$ and to add $n+1 \leq \alpha_{1}<\alpha_{2}<\ldots<\alpha_{j}$ (if $N=T_{n, d}$ α_{1} might be equal to d) such that:

$$
\sum_{i=1}^{h} a_{i}=\sum_{l=1}^{j} \alpha_{l}
$$

Now we can estimate the value of $\lambda_{t}=\alpha$

$$
\mathcal{M}_{\lambda}=h+\left(\lambda_{t}-n-j\right) \leq\left\lfloor\frac{\lambda_{t}}{2}\right\rfloor
$$

It is easy to think that if one partition has fewer missing parts than another then it is more likely to be unrefinable, but if we take:

$$
\lambda=(1,2,3,5,6,8,12) \quad \lambda^{\prime}=(1,2,3,5,6,8,11,12)
$$

we can observe that λ is unrefinable and λ^{\prime} is refinable because $\lambda_{7}^{\prime}=11=4+7$ despite $\left|\mathcal{M}_{\lambda}\right|>\left|\mathcal{M}_{\lambda^{\prime}}\right|$

$$
\begin{gathered}
\text { Simple Properties } \\
\text { - If }\left|\mathcal{M}_{\lambda}\right|=\{0,1\} \text { then } \lambda \text { is clearly unrefinable.We define: } \\
\pi_{n}=(1,2, \ldots, n-1, n) \vdash \frac{n(n+1)}{2}=T_{n} \\
\pi_{n, d}=(1,2, \ldots, \widehat{d}, \ldots, n) \vdash T_{n}-d=T_{n, d}
\end{gathered}
$$

We can conclude that every integer $n \geq 3$ admits at least one unrefinable partition.

- The anti-symmetric property: if $m \in \mathcal{M}_{\lambda}$ and $m \neq \frac{\lambda_{t}}{2}$ then the element $\lambda_{t}-m$ must be a part of λ, otherwise the partition is refinable. We obtain:

$$
\left|\mathcal{M}_{\lambda}\right| \leq\left\lfloor\frac{\lambda_{t}}{2}\right\rfloor
$$

Upper Bound

Proposition 1:

If $\lambda \vdash T_{n}$ necessarily $h>j$ and we have: $\mathbf{n} \leq \lambda_{t} \leq \mathbf{2 n - 4}$
Proposition 2:

If $\lambda \vdash T_{n, d}$ we obtain:

Maximal Unrefinable Partitions

Definition

Let $N \in N$. An unrefinable partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ is called maximal if

$$
\lambda_{t}=\max _{\left(\lambda_{1}^{\prime}, \lambda_{2}^{2}, \ldots, \lambda_{t}^{\prime}\right) \in U_{N}} \lambda_{t}^{\prime}
$$

We denote by $\widetilde{\mathcal{U}}_{N}$ the set of the maximal unrefinable partitions of N

If we observe an unrefinable partition we can define three areas:

- The a_{i} s elements are all in the First area and in the Free area;
- The α_{l} elements are all in the Last area, except when $\alpha_{1}=d$;
- If exists an a_{i} in the First area necessarily must exist a corresponding $\alpha_{i}=$ $\lambda_{t}-a_{i}$ in the Last area.

T_{n} Existence

Theorem 1:

Let $N=T_{n}$ such that $n \geq 6$:

- if $j=h-1$ only one maximal unrefinable partition
$\widetilde{\pi}_{n}=(1,2, \ldots, n-3, n+1,2 n-4) ;(\boldsymbol{n}-\mathbf{4}, \boldsymbol{n}-\mathbf{3}, \boldsymbol{n}-\mathbf{2}),(\boldsymbol{n}-\mathbf{3}, \boldsymbol{n}-\mathbf{2}, \boldsymbol{n})$

$$
(n-4, n-2, n-1),(n-2, n-1, n) .
$$

- if $j=h-2$ maximal unrefinable partitions exist if and only if n is an odd number and we can divide them into 4 families according to the removed elements in the Free area

$T_{n, d}$	Existence
Theorem 2: When $N=T_{n, d}$ we obtain: - only one maximal partition when $d=1, d=2$: $\begin{aligned} & (1,2, \ldots, n-2,2 n-2) ; \\ & (1,2, \ldots, n-2,2 n-3) ; \end{aligned}$ - if $d=3$ and n is odd exist only one maximal partition $(1,2,3, \ldots, n-2,2 n-4)$ - when $d=4$ and n is even exist the maximal partition $(1,2,3,4, \ldots, n-2,2 n-5) ;$	- When $d=n-(2 k-1)$ we found 4 families of maximal unrefinable partitions: $\begin{array}{ll} (n-4, n-3, n-2), & (n-3, n-2, n), \\ (n-4, n-2, n-1), & (n-2, n-1, n) . \end{array}$ - If $d=n-2 k$ we have 8 families, the first 4 when h is even, and the other when is odd: $\begin{array}{ll} (n-5, n-4, n-3) & (n-4, n-2, n) \\ (n-5, n-2, n-1) & (n-3, n-1, n) \\ (n-5, n-4, n-2) & (n-4, n-3, n) \\ (n-5, n-3, n-1) & (n-2, n-1, n) \end{array}$

A New Representation

We observe that all the maximal unrefinable partitions that belong to families may be represented considering only the $a_{i} \mathrm{~s}<\frac{\lambda_{t}}{2}$ by the anti-symmetric property. For example if we take
$\lambda=(1,2,3,4,5,6,7,8,9,11,13,16,18,20,30) \in \widetilde{\mathcal{U}}_{T_{17}}$ we have:
$\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$
$\bullet \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet \quad \circ \quad \bullet \quad \bullet$
2928272625242322212019181716 and we can write $\lambda \sim \lambda^{*}=(10,12,14)$

The Bijections

By the new representation we can describe two func-
tions:

- if $\lambda_{t}=2 n-4$ we define ϕ such that $\phi\left(\lambda_{i}^{*}\right)=\left\lfloor\frac{\lambda_{t}}{2}\right\rfloor-\lambda_{i}^{*}$
\bullet if $\lambda_{t}=2 n-5$ we define ψ as $\psi\left(\lambda_{i}^{*}\right)=2 \lambda_{i}^{*}-1$
$\begin{array}{llllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14\end{array}$
$\circ \circ \circ$ • \circ • \circ •
\vee_{ϕ}

First	Free	Last
area	area	area

