Minimal elements of Shi regions in affine Weyl groups. SLC 89, Bertiniro, Italy

Balthazar Charles, LISN, Université Paris-Saclay

March 26, 2023

Root System

Let Φ be an irreducible essential crystallographic root system in an Euclidean Space $(V,\langle\cdot \mid \cdot\rangle)$.

Φ is a finite set of roots st:

- Stable by orthogonal reflection through the roots.
- $\forall \alpha \in \Phi, \mathbb{R} \alpha=\{ \pm \alpha\}$.
- Span $\phi=V$.
- $\{0\} \subsetneq U \subsetneq V \Longrightarrow(\Phi \cap U) \sqcup\left(\Phi \cap U^{\perp}\right) \neq \Phi$.
- $\forall \alpha, \beta \in \Phi, 2\langle\alpha \mid \beta\rangle /\langle\alpha \mid \alpha\rangle \in \mathbb{Z}$.

Root System

Φ is a root system that is irreducible and essential and crystallographic. There are not many such objects:

Positive and simple roots

Choose $f \in V^{*}$ such that $0 \notin f(\Phi)$.

- The positive roots Φ^{+}are the roots $\rho \in \Phi$ such that $f(\rho)>0$.
- The simple roots Δ are the roots generating the extreme rays of cone $\left(\Phi^{+}\right)$.

Simple roots

Choose $f \in V^{*}$ such that $0 \notin f(\Phi)$.

- The positive roots ϕ^{+}are the roots $\rho \in \Phi$ such that $f(\rho)>0$.
- The simple roots Δ are the roots generating the extreme rays of cone $\left(\Phi^{+}\right)$.

Root poset

The root poset is Φ^{+}ordered by $\alpha \leq \beta \Leftrightarrow \beta-\alpha \in \mathbb{N} \Delta$.

Under our hypotheses:

The root poset has a unique maximal element denoted α_{0}.

Finite Weyl groups and Coxeter arrangement

We have the root system, and the set of hyperplanes $H_{\alpha, 0}=\{v \in V \mid\langle v \mid \alpha\rangle=0\}$ called the Coxeter arrangement.

The Weyl group associated to Φ is the group generated by $\forall \rho \in \Phi$:

$$
s_{\rho}=x \mapsto x-2(\langle x \mid \rho\rangle-0) \frac{\rho}{\langle\rho \mid \rho\rangle}
$$

It can be seen both as reflection through the roots and through the hyperplanes

We must go affine: through the roots.

We must go affine: the affine root system.

We must go affine: the affine root system.

We must go affine: the affine root system.

The projective picture

We cut the previous picture along the affine hyperplane spanned by

$$
\Delta_{a}=\Delta \cup\left\{-\alpha_{0}+\delta\right\} .
$$

We get a cut of the positive (affine) root system

$$
\Phi_{a}^{+}=\left(\Phi^{+}+\mathbb{N} \delta\right) \sqcup\left(\Phi^{-}+\mathbb{N}^{*} \delta\right) .
$$

Each positive affine root is encoded by a $\rho \in \Phi^{+}$ (\sim direction), a sign (\sim side of δ) and a integer ($\sim \delta$-height).

We must go affine: through the hyperplanes.

The affine Coxeter arrangement

Each $H_{\rho, k}=\{v \in V \mid\langle v \mid \rho\rangle=k\}$ is encoded by a $\rho \in \Phi^{+}$ (\sim direction), a sign (\sim side of the 0 intersection) and an integer (\sim number of translations).

The affine Weyl group associated to Φ is the group generated by $\forall \rho \in \Phi, k \in \mathbb{Z}$:

$$
s_{\rho}^{k}=x \mapsto x-2(\langle x \mid \rho\rangle-k) \frac{\rho}{\langle\rho \mid \rho\rangle}
$$

The two points of view are dual!

Shi encoding

For $\rho \in \Phi^{+}, k \in \mathbb{Z}$, denote :

$$
H_{\rho, k}^{+}=\{x \mid\langle x \mid \rho\rangle>k\}, \quad H_{\rho, k}=\{x \mid\langle x \mid \rho\rangle=k\}
$$

■ The chambers are the connected components of the complement $\bigcup_{\rho} H_{\rho, 0}$.

- The alcoves are the connected components of the complement $\bigcup_{\rho, k} H_{\rho, k}$.

We can encode an alcove A by a vector in $\mathbb{Z}^{\Phi^{+}}$:

$$
\operatorname{Shi}(A)=\left(\max \left(k \in \mathbb{Z} \mid A \subset H_{\rho, k}^{+}\right)\right)_{\rho \in \Phi^{+}}
$$

Shi relations

Shi, '87, '99

For all crystallographic root systems, the Shi encoding is injective. Its image is the set integer vectors v such that:

$$
\forall \alpha, \beta, \gamma \in \Phi^{+}, \alpha+\beta=\gamma \Longrightarrow \exists \varepsilon \in\{0,1\}, v_{\alpha}+v_{\beta}+\varepsilon=v_{\gamma}
$$

Shi encoding of type \tilde{A}_{2} alcoves
(2)

The Shi arrangement

$$
\mathcal{A}_{1}=\bigcup_{\rho \in \phi^{+}} H_{\rho, 0} \sqcup \bigcup_{\rho \in \Phi^{+}} H_{\rho, 1}
$$

Shi ' 87

Any region R of the Shi arrangement contains a unique alcove A such that for all $\rho \in \Phi^{+}, A^{\prime} \subset R\left|\operatorname{Shi}(A)_{\rho}\right| \leq\left|\operatorname{Shi}\left(A^{\prime}\right)_{\rho}\right|$

The $\{-, 0,+\}$-signs of the Shi encoding is constant over a Shi region and no two Shi regions have the same sign type.

Question 1

Dyer, Hohlweg '16
Are the vertices of the polytopes corresponding to minimal elements of the Shi regions labeled with ± 1 ?

Question 2

Can we describe the Shi encoding of the minimal element of a given Shi region?

$$
\begin{gathered}
{ }_{c}^{+_{1,6}} \\
{ }_{c}+1,5 \quad+_{2,6} \\
+_{1,4} \quad 0_{2,5} \quad-3,6 \\
+_{1,3} \quad+_{2,4} \quad-3,5 \quad 0_{4,6} \\
0_{1,2} \quad+_{2,3} \quad-3,4 \quad-4,5 \quad+_{5,6}
\end{gathered}
$$

Type A: the Athanasiadis-Linusson bijection

Athanasiadis, Linusson '99
This defines a bijection between type A Shi regions and pairs (π, P) with π a permutation and P a non-nesting partition with sorted blocks.

Example: type A_{2}

Minimal element in type A

C. 22

Let R be a Shi region labeled by (π, P). Define η as $\forall 1 \leq i<j \leq n+1$:

$$
\eta_{i, j}=\max \text { number of non-crossing arcs between values } i \text { and } j
$$

Define v as $\forall 1 \leq i<j \leq n+1$:

$$
v_{i, j}=\left\{\begin{array}{cr}
\eta_{i, j} & \text { if } i, j \text { appear in order } \\
-\left(\eta_{i, j}+1\right) & \text { otherwise }
\end{array}\right.
$$

Then v is the minimal element of R.

Why does it work?

An obvious lemma.

Recall the Shi relations:

$$
\alpha+\beta=\gamma \Longrightarrow v_{\gamma}=v_{\alpha}+v_{\beta}+\varepsilon, \varepsilon \in\{0,1\}
$$

Fix a non-nesting partition. Let $\eta_{a, b}$ be the maximal number of non-crossing arcs that can be chosen between a and b. Then for every $a<b<c, \eta_{a, c}=\eta_{a, b}+\eta_{b, c}+\varepsilon$, $\varepsilon \in\{0,1\}$.

Type B

η defined as before.

Same result.

Type C

η defined as before.

Same result.

Type D

η^{+}defined as before for the top path.
η^{-}defined as before for the bottom path.
$\eta=\max \left(\eta^{+}, \eta^{-}\right)$
Same result.

A type free approach

Objective

In type A_{n} a region was encoded by:

- A permutation giving the position with respect to linear hyperplanes.

■ A "sorted" non-nesting partition giving the missing information on height 1 hyperplanes.

In other types we would want:

- An element of the associated Weyl group (reasonable)

■ A non-nesting partition of this type that is "sorted" (less clear)

Non-nesting partition

A non-nesting partition of type T associated to a root system Φ is an antichain of Φ^{+}.

Armstrong, Reiner, Rhoades

A floor of a Shi region R is a root ρ such that $R \in H_{\rho, 1}^{+}$and $H_{\rho, 1}$ is a wall of R. Denote by $f(R)$ the set of floors of R.

Armstrong, Reiner, Rhoades '12

Let R be a Shi region contained in a chamber labeled by w (in the finite Weyl group).
Let $\operatorname{park}(R)=\left(w, w^{-1}(f l(R))\right)$.
Then park defines a bijection between Shi regions and pairs (w, A) where $w \in W$ and A is a non-nesting partition such that $a \in A \Longrightarrow w(a) \in \Phi^{+}$.

A type free result

C. $22+$

Let R be a Shi region labeled by (w, A). Define η as $\forall \gamma \in \Phi^{+}$:

$$
\eta_{\gamma}=\max \left(\left\{\eta_{\alpha}+\eta_{\beta} \mid \alpha+\beta=\gamma\right\} \cup\left\{\mathbb{1}_{\gamma \in A}\right\}\right)
$$

Define v as $\forall \gamma \in \Phi^{+}$:

$$
v_{|w(\gamma)|}=\left\{\begin{array}{cc}
\eta_{\gamma} & \text { if } w(\gamma) \in \Phi^{+} \\
-\left(\eta_{\gamma}+1\right) & \text { if } w(\gamma) \notin \Phi^{+}
\end{array}\right.
$$

Then v is the minimal element of R.

Ingredient: understanding the Shi relations

Skirt of a root

The skirt of a positive root is $\operatorname{Sk}(\gamma)=\left\{\alpha \in \Phi^{+} \mid \exists \beta \in \Phi^{+}, \alpha+\beta=\gamma\right\}$
The relation " being in the skirt of" is:

Almost transitive: if $\beta \in \operatorname{Sk}(\alpha), \gamma \in \operatorname{Sk}(\beta)$ then $\gamma \in \operatorname{Sk}(\alpha)$ or $\beta-\gamma \in \operatorname{Sk}(\alpha)$.

Almost total: if $\alpha+\alpha^{\prime}=\gamma, \beta+\beta^{\prime}=\gamma$, then WLOG $\alpha \in \operatorname{Sk}(\beta)$.

\Rightarrow Looked close enough, all root systems have "local poset type A".

Another obvious lemma

Figure: The positive roots of the rank 2 crystallographic root systems. The Hasse diagram of the root poset is represented in purple.

Obvious observation

■ In all crystallographic root systems of rank 2 , if a, b are positive roots, if $a-b \notin \Phi$ then $\langle a \mid b\rangle \leq 0$.

- Moreover, if we assume that $b \geq a$, then $\langle a \mid b\rangle=0$.

Answering question 1: in the dominant region

Let's consider the case where there are no "-" in the sign type.

Let $\alpha, \beta, \gamma \in \Phi^{+}$such that $\alpha+\beta=\gamma$. If $\eta_{\alpha}+\eta_{\beta}=\eta_{\gamma}$, the relation is "flat". If $\eta_{\alpha}+\eta_{\beta}+1=\eta_{\gamma}$, it is "bent".

Answering question $1 \Leftrightarrow$ every time there is a $\eta_{\gamma}>1$ in η, find a flat relation with some α, β.
\Rightarrow the max is reached: there is always a flat relation!

But wait: there is a issue with zeroes...

Answering question $1 \Leftrightarrow$ every time there is a $\eta_{\gamma}>1$ in η, find α, β in a flat relation with $\eta_{\alpha}, \eta_{\beta}>0$.

But wait: there is a issue with zeroes...

Answering question $1 \Leftrightarrow$ every time there is a $\eta_{\gamma}>1$ in η, find α, β in a flat relation with $\eta_{\alpha}, \eta_{\beta}>0$.

But wait: there is a issue with zeroes...

Answering question $1 \Leftrightarrow$ every time there is a $\eta_{\gamma}>1$ in η, find α, β in a flat relation with $\eta_{\alpha}, \eta_{\beta}>0$.

Answering question 1 in other regions

[ARR] The minimal element in the region (w, A) is the image by w of the minimal element of the region (e, A).
\checkmark Flat relations are sent to flat relations.
But a $1=1+0$ could be sent to:

$$
\begin{array}{ll}
\checkmark & -2=-2+-1+1 \\
\checkmark & -2+1=-1 \\
\boldsymbol{x} & -2=-2+0:(
\end{array}
$$

Answering question 1 in other regions

[ARR] The minimal element in the region (w, A) is the image by w of the minimal element of the region (e, A).
\checkmark Flat relations are sent to flat relations.
But a $1=1+0$ could be sent to:

$$
\begin{array}{ll}
\checkmark & -2=-2+-1+1 \\
\checkmark & -2+1=-1 \\
\boldsymbol{x} & -2=-2+0:(
\end{array}
$$

Answering question 1 in other regions

[ARR] The minimal element in the region (w, A) is the image by w of the minimal element of the region (e, A).
\checkmark Flat relations are sent to flat relations.
But a $1=1+0$ could be sent to:

$$
\begin{array}{ll}
\checkmark & -2=-2+-1+1 \\
\boldsymbol{J} & -2+1=-1 \\
\boldsymbol{x} & -2=-2+0:(
\end{array}
$$

Answering question 1 in other regions

[ARR] The minimal element in the region (w, A) is the image by w of the minimal element of the region (e, A).
\checkmark Flat relations are sent to flat relations.
But a $1=1+0$ could be sent to:

$$
\begin{array}{ll}
\checkmark & -2=-2+-1+1 \\
\boldsymbol{J} & -2+1=-1 \\
\boldsymbol{x} & -2=-2+0:(
\end{array}
$$

Answering question 1 in other regions

[ARR] The minimal element in the region (w, A) is the image by w of the minimal element of the region (e, A).
\checkmark Flat relations are sent to flat relations.
But a $1=1+0$ could be sent to:

$$
\begin{array}{ll}
\checkmark & -2=-2+-1+1 \\
\checkmark & -2+1=-1 \\
\boldsymbol{x} & -2=-2+0:(
\end{array}
$$

Answering question 1 in other regions

[ARR] The minimal element in the region (w, A) is the image by w of the minimal element of the region (e, A).
\checkmark Flat relations are sent to flat relations.
But a $1=1+0$ could be sent to:

$$
\begin{array}{ll}
\checkmark & -2=-2+-1+1 \\
\boldsymbol{J} & -2+1=-1 \\
\boldsymbol{x} & -2=-2+0:(
\end{array}
$$

Questions to the audience 1

■ Does the following formula points to tropical shenanigans ?

$$
\eta_{\gamma}=\max \left(\left\{\eta_{\alpha}+\eta_{\beta} \mid \alpha+\beta=\gamma\right\} \cup\left\{\mathbb{1}_{\gamma \in A}\right\}\right)
$$

Questions to the audience 1

- Does the following formula points to tropical shenanigans ?

$$
\eta_{\gamma}=\max \left(\left\{\eta_{\alpha}+\eta_{\beta} \mid \alpha+\beta=\gamma\right\} \cup\left\{\mathbb{1}_{\gamma \in A}\right\}\right)
$$

- Where did the non crossing partitions go in the type free result? From collaboration with P. Desphande and K. Menon (CMI, Chennai, India), all the classical group results generalize to m-Shi arrangement. Obtain a type free "non-crossing formulation" and use it to prove question 1 uniformly in m-Shi.

Questions to the audience 2

- Order the triples (α, γ, β) with $\alpha+\beta=\gamma$ by "your sum is one of my terms". In type A, the resulting poset seem to be the 1 -skeleton of some polytope. Is it? In type B_{3} it inn't: maybe a subdivision?

Questions to the audience 2

■ Order the triples (α, γ, β) with $\alpha+\beta=\gamma$ by "your sum is one of my terms". In type A, the resulting poset seem to be the 1 -skeleton of some polytope. Is it? In type B_{3} it isn't: maybe a subdivision?

- Which sub-arrangements of the affine Coxeter arrangement have the property that every region has a unique minimal element? (Interesting examples in [Bernardi '16])

Thank you
(Also if you have postdoc funding I will do math for money.)

