Minimal elements of Shi regions in affine Weyl groups. SLC 89, Bertiniro, Italy

Balthazar Charles, LISN, Université Paris-Saclay

March 26, 2023

Root System

Let Φ be an irreducible essential crystallographic root system in an Euclidean Space $(V, \langle \cdot | \cdot \rangle)$.

 Φ is a finite set of *roots* st:

- Stable by orthogonal reflection through the roots.
- $\forall \alpha \in \Phi, \mathbb{R}\alpha = \{\pm \alpha\}.$
- Span $\phi = V$.
- $\{0\} \subsetneq U \subsetneq V \implies (\Phi \cap U) \sqcup (\Phi \cap U^{\perp}) \neq \Phi.$

 $\forall \alpha, \beta \in \Phi, 2\langle \alpha \, | \, \beta \rangle / \langle \alpha \, | \, \alpha \rangle \in \mathbb{Z}.$

 Φ is a root system that is irreducible and essential and crystallographic. There are not many such objects:

Choose $f \in V^*$ such that $0 \notin f(\Phi)$.

- The *positive roots* Φ^+ are the roots $\rho \in \Phi$ such that $f(\rho) > 0$.
- The simple roots Δ are the roots generating the extreme rays of cone(Φ^+).

Simple roots

Choose $f \in V^*$ such that $0 \notin f(\Phi)$.

- The positive roots Φ^+ are the roots $\rho \in \Phi$ such that $f(\rho) > 0$.
- The simple roots Δ are the roots generating the extreme rays of cone(Φ^+).

Root poset

The *root poset* is Φ^+ ordered by $\alpha \leq \beta \Leftrightarrow \beta - \alpha \in \mathbb{N}\Delta$.

Under our hypotheses:

The root poset has a unique maximal element denoted α_0 .

Finite Weyl groups and Coxeter arrangement

We have the root system, and the set of hyperplanes $H_{\alpha,0} = \{ v \in V \mid \langle v \mid \alpha \rangle = 0 \}$ called the Coxeter arrangement.

The *Weyl group* associated to Φ is the group generated by $\forall \rho \in \Phi$:

$$s_{
ho} = x \mapsto x - 2(\langle x \, | \,
ho
angle - 0) rac{
ho}{\langle
ho \, | \,
ho
angle}$$

It can be seen both as reflection through the roots and through the hyperplanes

We must go affine: the affine root system.

We must go affine: the affine root system.

We must go affine: the affine root system.

We cut the previous picture along the affine hyperplane spanned by

$$\Delta_{a} = \Delta \cup \{-\alpha_{0} + \delta\}.$$

We get a cut of the positive (affine) root system

$$\Phi_a^+ = (\Phi^+ + \mathbb{N}\delta) \sqcup (\Phi^- + \mathbb{N}^*\delta).$$

Each positive affine root is encoded by a $\rho \in \Phi^+$ (~direction), a sign (~side of δ) and a integer (~ δ -height).

We must go affine: through the hyperplanes.

We must go affine: through the hyperplanes.

We must go affine: through the hyperplanes.

We must go affine: through the hyperplanes.

We must go affine: through the hyperplanes.

The affine Coxeter arrangement

Each $H_{\rho,k} = \{v \in V \mid \langle v \mid \rho \rangle = k\}$ is encoded by a $\rho \in \Phi^+$ (~direction), a sign (~side of the 0 intersection) and an integer (~number of translations).

The affine Weyl group associated to Φ is the group generated by $\forall \rho \in \Phi, k \in \mathbb{Z}$:

$$s_{
ho}^{k} = x \mapsto x - 2(\langle x \, | \,
ho
angle - k) rac{
ho}{\langle
ho \, | \,
ho
angle}$$

The two points of view are dual!

For $ho \in \Phi^+, k \in \mathbb{Z}$, denote :

$$H^+_{
ho,k} = \{x \mid \langle x \mid
ho
angle > k\}, \qquad H_{
ho,k} = \{x \mid \langle x \mid
ho
angle = k\}$$

• The *chambers* are the connected components of the complement $\bigcup_{\rho} H_{\rho,0}$.

• The *alcoves* are the connected components of the complement $\bigcup_{\rho,k} H_{\rho,k}$.

We can encode an alcove A by a vector in \mathbb{Z}^{Φ^+} :

$$\mathit{Shi}(A) = (\max(k \in \mathbb{Z} \, | \, A \subset H^+_{
ho,k}))_{
ho \in \Phi^+}$$

Shi relations

Shi, '87, '99

For all crystallographic root systems, the Shi encoding is injective. Its image is the set integer vectors v such that:

$$\forall \alpha, \beta, \gamma \in \Phi^+, \alpha + \beta = \gamma \implies \exists \varepsilon \in \{0, 1\}, \mathsf{v}_\alpha + \mathsf{v}_\beta + \varepsilon = \mathsf{v}_\gamma$$

Shi encoding of type \tilde{A}_2 alcoves

The Shi arrangement

$$\mathcal{A}_1 = igcup_{
ho \in \Phi^+} H_{
ho,0} \sqcup igcup_{
ho \in \Phi^+} H_{
ho,1}$$

Shi '87

Any region *R* of the Shi arrangement contains a unique alcove *A* such that for all $\rho \in \Phi^+, A' \subset R |Shi(A)_{\rho}| \leq |Shi(A')_{\rho}|$

The $\{-, 0, +\}$ -signs of the Shi encoding is constant over a Shi region and no two Shi regions have the same sign type.

Question 1

Dyer, Hohlweg '16

Are the vertices of the polytopes corresponding to minimal elements of the Shi regions labeled with $\pm 1?$

Can we describe the Shi encoding of the minimal element of a given Shi region?

Type A: the Athanasiadis-Linusson bijection

Athanasiadis, Linusson '99

This defines a bijection between type A Shi regions and pairs (π, P) with π a permutation and P a non-nesting partition with sorted blocks.

Example: type A_2

Minimal element in type A

C. 22

Let *R* be a Shi region labeled by (π, P) . Define η as $\forall 1 \le i < j \le n+1$:

 $\eta_{i,j} = \max$ number of non-crossing arcs between values *i* and *j*

Define v as $\forall \ 1 \leq i < j \leq n+1$:

$$v_{i,j} = egin{cases} \eta_{i,j} & ext{if } i,j ext{ appear in order} \ -(\eta_{i,j}+1) & ext{otherwise} \end{cases}$$

Then v is the minimal element of R.

Why does it work ? An obvious lemma.

Recall the Shi relations:

$$\alpha + \beta = \gamma \implies \mathbf{v}_{\gamma} = \mathbf{v}_{\alpha} + \mathbf{v}_{\beta} + \varepsilon, \varepsilon \in \{0, 1\}.$$

Fix a non-nesting partition. Let $\eta_{a,b}$ be the maximal number of non-crossing arcs that can be chosen between *a* and *b*. Then for every a < b < c, $\eta_{a,c} = \eta_{a,b} + \eta_{b,c} + \varepsilon$, $\varepsilon \in \{0,1\}$.

Type B

 η defined as before.

Same result.

Type C

 η defined as before.

Same result.

Type D

 η^+ defined as before for the top path.

 η^- defined as before for the bottom path.

$$\eta = \max(\eta^+, \eta^-)$$

Same result.

A type free approach

In type A_n a region was encoded by:

- A permutation giving the position with respect to linear hyperplanes.
- A "sorted" non-nesting partition giving the missing information on height 1 hyperplanes.

In other types we would want:

- An element of the associated Weyl group (reasonable)
- A non-nesting partition of this type that is "sorted" (less clear)

Non-nesting partition

A non-nesting partition of type T associated to a root system Φ is an antichain of Φ^+ .

Armstrong, Reiner, Rhoades

A floor of a Shi region R is a root ρ such that $R \in H^+_{\rho,1}$ and $H_{\rho,1}$ is a wall of R. Denote by fl(R) the set of floors of R.

Armstrong, Reiner, Rhoades '12

Let *R* be a Shi region contained in a chamber labeled by *w* (in the finite Weyl group). Let $park(R) = (w, w^{-1}(fl(R)))$. Then *park* defines a bijection between Shi regions and pairs (w, A) where $w \in W$ and *A* is a non-nesting partition such that $a \in A \implies w(a) \in \Phi^+$.

A type free result

C. 22+

Let *R* be a Shi region labeled by (w, A). Define η as $\forall \gamma \in \Phi^+$:

$$\eta_{\gamma} = \max(\{\eta_{\alpha} + \eta_{\beta} \, | \, \alpha + \beta = \gamma\} \cup \{\mathbb{1}_{\gamma \in \mathcal{A}}\})$$

Define v as $\forall \gamma \in \Phi^+$:

$$|v_{|w(\gamma)|} = egin{cases} \eta_\gamma & ext{if } w(\gamma) \in \Phi^+ \ -(\eta_\gamma+1) & ext{if } w(\gamma)
otin \Phi^+ \end{cases}$$

Then v is the minimal element of R.

Ingredient: understanding the Shi relations

Skirt of a root

The *skirt* of a positive root is
$$Sk(\gamma) = \{ \alpha \in \Phi^+ \mid \exists \beta \in \Phi^+, \alpha + \beta = \gamma \}$$

The relation "being in the skirt of" is:

Almost transitive: if $\beta \in Sk(\alpha), \gamma \in Sk(\beta)$ then $\gamma \in Sk(\alpha)$ or $\beta - \gamma \in Sk(\alpha)$.

Almost total: if $\alpha + \alpha' = \gamma, \beta + \beta' = \gamma$, then WLOG $\alpha \in Sk(\beta)$.

 \Rightarrow Looked close enough, all root systems have "local poset type A".

Another obvious lemma

Figure: The positive roots of the rank 2 crystallographic root systems. The Hasse diagram of the root poset is represented in purple.

Obvious observation

- In all crystallographic root systems of rank 2, if a, b are positive roots, if a − b ∉ Φ then ⟨a | b⟩ ≤ 0.
- Moreover, if we assume that $b \ge a$, then $\langle a \mid b \rangle = 0$.

Answering question 1: in the dominant region

Let's consider the case where there are no "-" in the sign type.

Let $\alpha, \beta, \gamma \in \Phi^+$ such that $\alpha + \beta = \gamma$. If $\eta_{\alpha} + \eta_{\beta} = \eta_{\gamma}$, the relation is "flat". If $\eta_{\alpha} + \eta_{\beta} + 1 = \eta_{\gamma}$, it is "bent".

Answering question 1 \Leftrightarrow every time there is a $\eta_{\gamma} > 1$ in η , find a flat relation with some α, β .

 \Rightarrow the max is reached: there is always a flat relation!

But wait: there is a issue with zeroes...

Answering question 1 \Leftrightarrow every time there is a $\eta_{\gamma} > 1$ in η , find α, β in a flat relation with $\eta_{\alpha}, \eta_{\beta} > 0$.

But wait: there is a issue with zeroes...

Answering question 1 \Leftrightarrow every time there is a $\eta_{\gamma} > 1$ in η , find α, β in a flat relation with $\eta_{\alpha}, \eta_{\beta} > 0$.

But wait: there is a issue with zeroes...

Answering question 1 \Leftrightarrow every time there is a $\eta_{\gamma} > 1$ in η , find α, β in a flat relation with $\eta_{\alpha}, \eta_{\beta} > 0$.

- \checkmark Flat relations are sent to flat relations.
- But a 1 = 1 + 0 could be sent to:
- ✓ -2 = -2 + -1 + 1✓ -2 + 1 = -1× -2 = -2 + 0:(

- \checkmark Flat relations are sent to flat relations.
- But a 1 = 1 + 0 could be sent to:
- ✓ -2 = -2 + -1 + 1✓ -2 + 1 = -1× -2 = -2 + 0:(

- \checkmark Flat relations are sent to flat relations.
- But a 1 = 1 + 0 could be sent to:
- ✓ -2 = -2 + -1 + 1✓ -2 + 1 = -1
- **×** -2 = -2 + 0:(

- \checkmark Flat relations are sent to flat relations.
- But a 1 = 1 + 0 could be sent to:
- ✓ -2 = -2 + -1 + 1✓ -2 + 1 = -1× -2 = -2 + 0:(

- \checkmark Flat relations are sent to flat relations.
- But a 1 = 1 + 0 could be sent to:
- ✓ -2 = -2 + -1 + 1✓ -2 + 1 = -1
- **×** -2 = -2 + 0:(

- \checkmark Flat relations are sent to flat relations.
- But a 1 = 1 + 0 could be sent to:
- ✓ -2 = -2 + -1 + 1✓ -2 + 1 = -1× -2 = -2 + 0:(

Questions to the audience 1

Does the following formula points to tropical shenanigans ?

$$\eta_{\gamma} = \max(\{\eta_{\alpha} + \eta_{\beta} \, | \, \alpha + \beta = \gamma\} \cup \{\mathbb{1}_{\gamma \in \mathcal{A}}\})$$
Does the following formula points to tropical shenanigans ?

$$\eta_{\gamma} = \max(\{\eta_{\alpha} + \eta_{\beta} \, | \, \alpha + \beta = \gamma\} \cup \{\mathbb{1}_{\gamma \in \mathcal{A}}\})$$

Where did the non crossing partitions go in the type free result? From collaboration with P. Desphande and K. Menon (CMI, Chennai, India), all the classical group results generalize to *m*-Shi arrangement.
Obtain a type free "non-crossing formulation" and use it to prove question 1 uniformly in *m*-Shi.

Questions to the audience 2

 Order the triples (α, γ, β) with α + β = γ by "your sum is one of my terms". In type A, the resulting poset seem to be the 1-skeleton of some polytope. Is it? In type B₃ it isn't: maybe a subdivision?

Questions to the audience 2

- Order the triples (α, γ, β) with α + β = γ by "your sum is one of my terms". In type A, the resulting poset seem to be the 1-skeleton of some polytope. Is it? In type B₃ it isn't: maybe a subdivision?
- Which sub-arrangements of the affine Coxeter arrangement have the property that every region has a unique minimal element? (Interesting examples in [Bernardi '16])

Thank you

(Also if you have postdoc funding I will do math for money.)