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Root System

Let Φ be an irreducible essential crystallographic root system in an Euclidean Space
(V , ⟨ · | · ⟩).

Φ is a finite set of roots st:

Stable by orthogonal reflection through the
roots.

∀α ∈ Φ, Rα = {±α}.
Spanϕ = V .

{0} ⊊ U ⊊ V =⇒ (Φ ∩ U) ⊔ (Φ ∩ U⊥) ̸= Φ.

∀α, β ∈ Φ, 2⟨α |β⟩/⟨α |α⟩ ∈ Z.



Root System

Φ is a root system that is irreducible and essential and crystallographic. There are not
many such objects:

A2 B2/C2
G2



Positive and simple roots

Choose f ∈ V ∗ such that 0 /∈ f (Φ).

The positive roots Φ+ are the roots ρ ∈ Φ such that f (ρ) > 0.

The simple roots ∆ are the roots generating the extreme rays of cone(Φ+).
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Simple roots

Choose f ∈ V ∗ such that 0 /∈ f (Φ).

The positive roots Φ+ are the roots ρ ∈ Φ such that f (ρ) > 0.

The simple roots ∆ are the roots generating the extreme rays of cone(Φ+).
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Root poset

The root poset is Φ+ ordered by
α ≤ β ⇔ β − α ∈ N∆.

Under our hypotheses:

The root poset has a unique maximal
element denoted α0.
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Finite Weyl groups and Coxeter arrangement

We have the root system, and the set of
hyperplanes Hα,0 = {v ∈ V | ⟨v |α⟩ = 0}
called the Coxeter arrangement.

The Weyl group associated to Φ is the
group generated by ∀ρ ∈ Φ:

sρ = x 7→ x − 2(⟨x | ρ⟩ − 0)
ρ

⟨ρ | ρ⟩

It can be seen both as reflection through
the roots and through the hyperplanes
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We must go affine: the affine root system.
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We must go affine: the affine root system.
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The projective picture

We cut the previous picture along
the affine hyperplane spanned by

∆a = ∆ ∪ {−α0 + δ}.

We get a cut of the positive
(affine) root system

Φ+
a = (Φ+ + Nδ) ⊔ (Φ− + N∗δ).

Each positive affine root is
encoded by a ρ ∈ Φ+

(∼direction), a sign (∼side of δ)
and a integer (∼δ-height).
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We must go affine: through the hyperplanes.
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We must go affine: through the hyperplanes.
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We must go affine: through the hyperplanes.
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The affine Coxeter arrangement

Each Hρ,k = {v ∈ V | ⟨v | ρ⟩ = k}
is encoded by a ρ ∈ Φ+

(∼direction), a sign (∼side of the
0 intersection) and an integer
(∼number of translations).

The affine Weyl group associated
to Φ is the group generated by
∀ρ ∈ Φ, k ∈ Z:

skρ = x 7→ x − 2(⟨x | ρ⟩ − k)
ρ

⟨ρ | ρ⟩
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The two points of view are dual!
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Shi encoding

For ρ ∈ Φ+, k ∈ Z, denote :

H+
ρ,k = {x | ⟨x | ρ⟩ > k}, Hρ,k = {x | ⟨x | ρ⟩ = k}

The chambers are the connected components of the complement
⋃

ρHρ,0.

The alcoves are the connected components of the complement
⋃

ρ,k Hρ,k .

We can encode an alcove A by a vector in ZΦ+
:

Shi(A) = (max(k ∈ Z |A ⊂ H+
ρ,k))ρ∈Φ+



Shi relations

Shi, ’87, ’99

For all crystallographic root systems, the Shi encoding is injective. Its image is the set
integer vectors v such that:

∀α, β, γ ∈ Φ+, α+ β = γ =⇒ ∃ε ∈ {0, 1}, vα + vβ + ε = vγ



Shi encoding of type Ã2 alcoves
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The Shi arrangement

A1 =
⋃

ρ∈Φ+

Hρ,0 ⊔
⋃

ρ∈Φ+

Hρ,1

Shi ’87

Any region R of the Shi arrangement
contains a unique alcove A such that for all
ρ ∈ Φ+,A′ ⊂ R |Shi(A)ρ| ≤ |Shi(A′)ρ|

The {−, 0,+}-signs of the Shi encoding is
constant over a Shi region and no two Shi
regions have the same sign type.
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Question 1

Dyer, Hohlweg ’16

Are the vertices of the polytopes corresponding to minimal elements of the Shi regions
labeled with ±1?

s
1
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Question 2

Can we describe the Shi encoding of the minimal element of a given Shi region?

01,2 +2,3 −3,4 −4,5 +5,6

+1,3 +2,4 −3,5 04,6

+1,4 02,5 −3,6

+1,5 +2,6

+1,6



Type A: the Athanasiadis-Linusson bijection

5 4 0 1 1

0 + - - +

+ + - 0

+ 0 -

+ +

+

1 2 5 4 6 3

Athanasiadis, Linusson ’99

This defines a bijection between type A Shi regions and pairs (π,P) with π a
permutation and P a non-nesting partition with sorted blocks.



Example: type A2

x1 − x2 = 0

x1 − x2 = 1

x2 − x3 = 0

x2 − x3 = 1

x1 − x3 = 1

x1 − x3 = 0

1, 2, 3

1, 2, 3
1, 2, 3

1, 2, 3 1, 2, 3

1, 3, 2
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1, 3, 2

2, 1, 3

2, 1, 3 2, 1, 32, 3, 1
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3, 1, 2

3, 1, 2

3, 2, 1



Minimal element in type A

C. 22

Let R be a Shi region labeled by (π,P). Define η as ∀ 1 ≤ i < j ≤ n + 1:

ηi ,j = max number of non-crossing arcs between values i and j

Define v as ∀ 1 ≤ i < j ≤ n + 1:

vi ,j =

{
ηi ,j if i , j appear in order

−(ηi ,j + 1) otherwise

Then v is the minimal element of R.



Why does it work ?
An obvious lemma.

Recall the Shi relations:

α+ β = γ =⇒ vγ = vα + vβ + ε, ε ∈ {0, 1}.

Fix a non-nesting partition. Let ηa,b be the maximal number of non-crossing arcs that
can be chosen between a and b. Then for every a < b < c , ηa,c = ηa,b + ηb,c + ε,
ε ∈ {0, 1}.

ηa,c

ηa,b ηb,c

a b c a b c

ηa,c

ηa,b ηb,c



Type B

e1 − e2 e2 − e3 e3 − e4 e4

e1 − e3 e2 − e4 e3

e1 − e4 e2 e3 + e4

e1 e2 + e4

e1 + e4 e2 + e3

e1 + e3

e1 + e2

1 2 3 4 0 4 3 2 1

η defined as before.

Same result.



Type C

e1 − e2 e2 − e3 e3 − e4 2e4

e1 − e3 e2 − e4

2e3e1 − e4

2e2

e3 + e4

2e1

e2 + e4

e1 + e4 e2 + e3

e1 + e3

e1 + e2

1 2 3 4 0 4 3 2 1

η defined as before.

Same result.



Type D

e1 − e2 e2 − e3 e3 − e4

e1 − e3 e2 − e4

e1 − e4

e3 + e4

e2 + e4

e1 + e4 e2 + e3

e1 + e3

e1 + e2

1 2 3

4

4

3 2 1

η+ defined as before for the top
path.
η− defined as before for the
bottom path.
η = max(η+, η−)

Same result.



A type free approach



Objective

In type An a region was encoded by:

A permutation giving the position with respect to linear hyperplanes.

A ”sorted” non-nesting partition giving the missing information on height 1
hyperplanes.

In other types we would want:

An element of the associated Weyl group (reasonable)

A non-nesting partition of this type that is ”sorted” (less clear)



Non-nesting partition

A non-nesting partition of type T associated to a root system Φ is an antichain of Φ+.

1 2 3 4 5

1, 2 2, 3 3, 4 4, 5

1, 3 2, 4 3, 5

1, 4 2, 5

1, 5



Armstrong, Reiner, Rhoades

A floor of a Shi region R is a root ρ such that R ∈ H+
ρ,1 and Hρ,1 is a wall of R.

Denote by fl(R) the set of floors of R.

Armstrong, Reiner, Rhoades ’12

Let R be a Shi region contained in a chamber labeled by w (in the finite Weyl group).
Let park(R) = (w ,w−1(fl(R))).
Then park defines a bijection between Shi regions and pairs (w ,A) where w ∈ W and
A is a non-nesting partition such that a ∈ A =⇒ w(a) ∈ Φ+.
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A type free result

C. 22+

Let R be a Shi region labeled by (w ,A). Define η as ∀γ ∈ Φ+:

ηγ = max({ηα + ηβ |α+ β = γ} ∪ {1γ∈A})

Define v as ∀γ ∈ Φ+:

v|w(γ)| =

{
ηγ if w(γ) ∈ Φ+

−(ηγ + 1) if w(γ) /∈ Φ+

Then v is the minimal element of R.



Ingredient: understanding the Shi relations

Skirt of a root

The skirt of a positive root is Sk(γ) = {α ∈ Φ+ | ∃β ∈ Φ+, α+ β = γ}

The relation ”being in the skirt of” is:

Almost transitive: if β ∈ Sk(α), γ ∈ Sk(β)
then γ ∈ Sk(α) or β − γ ∈ Sk(α).

Almost total: if α+ α′ = γ, β + β′ = γ,
then WLOG α ∈ Sk(β).

⇒ Looked close enough, all root systems have ”local poset type A”.



Another obvious lemma

A1 × A1 A2 B2/C2 G2

Figure: The positive roots of the rank 2 crystallographic root systems.
The Hasse diagram of the root poset is represented in purple.

Obvious observation

In all crystallographic root systems of rank 2, if a, b are positive roots, if
a− b /∈ Φ then ⟨a | b⟩ ≤ 0.

Moreover, if we assume that b ≥ a, then ⟨a | b⟩ = 0.



Answering question 1: in the dominant region

Let’s consider the case where there are no ”−” in the sign type.

Let α, β, γ ∈ Φ+ such that α+ β = γ.
If ηα + ηβ = ηγ , the relation is ”flat”.
If ηα + ηβ + 1 = ηγ , it is ”bent”.

Answering question 1 ⇔ every time
there is a ηγ > 1 in η, find a flat
relation with some α, β.

⇒ the max is reached: there is always
a flat relation!
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But wait: there is a issue with zeroes...

Answering question 1 ⇔ every time
there is a ηγ > 1 in η, find α, β in a
flat relation with ηα, ηβ > 0. α+ β
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Answering question 1 in other regions

[ARR] The minimal element in the region (w ,A) is the image by w of the minimal
element of the region (e,A).

✓ Flat relations are sent to flat
relations.
But a 1 = 1 + 0 could be sent to:

✓ -2 = -2 + -1 + 1

✓ -2 + 1 = -1

✗ -2 = -2 + 0 :(
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Questions to the audience 1

Does the following formula points to tropical shenanigans ?

ηγ = max({ηα + ηβ |α+ β = γ} ∪ {1γ∈A})

Where did the non crossing partitions go in the type free result? From
collaboration with P. Desphande and K. Menon (CMI, Chennai, India), all the
classical group results generalize to m-Shi arrangement.
Obtain a type free ”non-crossing formulation” and use it to prove question
1 uniformly in m-Shi.
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Questions to the audience 2

Order the triples (α, γ, β) with
α+ β = γ by ”your sum is one of my
terms”. In type A, the resulting poset
seem to be the 1-skeleton of some
polytope. Is it? In type B3 it isn’t:
maybe a subdivision?

Which sub-arrangements of the affine
Coxeter arrangement have the
property that every region has a
unique minimal element? (Interesting
examples in [Bernardi ’16])
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Thank you

(Also if you have postdoc funding I will do math for money.)


	A type free approach

