anrm On linear intervals in the alt ν-Tamari lattices

In a poset, when two elements P and Q are comparable, the interval $[P, Q]$ is the subset of elements R that satisfy $P \leqslant R \leqslant Q$. The simplest intervals are those which are totally ordered. They are called linear intervals. Intervals of the form $[P, P]$ are called trivial and are always linear. Given a lattice path ν, the ν-Tamari lattice and the ν-Dyck lattice are two natural examples of partial order structures on the set of lattice paths that lie weakly above ν. In this work, we introduce a more general family of lattices, called alt ν-Tamari lattices, which contains these two examples as particular cases. Unexpectedly, we show that all these lattices have the same number of linear intervals

The ν-Dyck lattices

A lattice path ν consisting of a finite number of north and east unit steps can be encoded by the sequence of its consecutive east steps
A ν-path μ is a lattice path using north and east steps, with the same endpoints as ν, that is weakly above ν.
The ν-Dyck lattice Dyck ${ }_{\nu}$ of size n is the poset on ν-paths where $P \leqslant Q$ if Q is weakly above P.

Example
The brown path $\mu=$ NNEENENEE $=(0,0,2,1,2)$ is weakly above the blue path $\nu=$ ENEENNEEN $=(1,2,0,2,0)$.

An interval $[P, Q]$ in Dyck $_{\nu}$ is a left interval if Q is obtained from P by transforming a subpath $E^{\ell} N$ into $N E^{\ell}$ for some $\ell \geqslant 1$.
It is a right interval if Q is obtained from P by transforming a subpath $E N^{\ell}$ into $N^{\ell} E$ for some $\ell \geqslant 1$.

Proposition

Left and right intervals are exactly all non trivial linear intervals in the ν-Dyck lattices.

Example
A left interval of length 2 in Dyck $_{\nu}$ for $\nu=$ ENEENNEEN.

Example

The ν-Dyck lattices for $\nu_{1}=E N E E N$ (left) and $\nu_{2}=E N E E N N$ (right). We omit the commas and parentheses in the labels of the paths. Dyck ${ }_{\nu_{1}}$ has $7,8,4$, and 1 linear intervals of length $0,1,2$, and 3 , respectively. Dyck ν_{2} has $16,24,16$, and 3 linear intervals of length $0,1,2$, and 3 , respectively.

The ν-Tamari lattices

The ν-altitude alt ${ }_{\nu}(p)$ of a lattice point p of a ν-path μ is the maximum number of horizontal steps that can be added to the right of p without crossing ν. A ν-rotation $\mu \lessdot_{\nu} \mu^{\prime}$ consists of switching the east step of a valley of a ν-path μ with the ν-excursion following it.
The ν-Tamari lattice Tam_{ν} is the reflexive transitive closure of ν rotations.

Example
The rotation operation of a ν-path for the path $\nu=$ ENEENNEEN. Each point is labelled with its ν-altitude.

The Tamari lattice can also be described as the reflexive transitive closure of ν-rotations on ν-trees.
Two lattice points are ν-incompatible if one is strictly northeast of the other and the rectangle they define does not cross ν
A ν-tree is a maximal collection of ν-compatible points above ν in the smallest rectangle containing ν. We can define ν-rotations of a ν-path as below:

Example
The rotation operation of a ν-tree for the path $\nu=$ ENEENNEEN.

Example

The ν-Tamari lattices for $\nu_{1}=\operatorname{ENEEN}$ (left) and $\nu_{2}=\operatorname{ENEENN}$ (right). $\operatorname{Tam}_{\nu_{1}}$ has $7,8,4$, and 1 linear intervals of length $0,1,2$, and 3 , respectively. Tam ν_{2} has $16,24,16$, and 3 linear intervals of length $0,1,2$, and 3 , respectively.

The alt ν-Tamari lattices

For a path $\nu=\left(\nu_{0}, \ldots, \nu_{k}\right)$, an increment vector with respect to ν is $\delta=\left(\delta_{1}, \ldots, \delta_{k}\right)$ with $0 \leqslant \delta_{i} \leqslant \nu_{i}, \forall i$. We set $\delta(E)=-1$ for an east step and $\delta\left(N_{i}\right)=\delta_{i}$ for the i-th north step in order to define δ-excursions and δ-rotations.
The alt ν-Tamari lattice $\operatorname{Tam}_{\nu}(\delta)$ is the reflexive transitive closure of δ-rotations.

Example
Two δ-excursions for $\nu=(3,2,1,1,0)$ and $\delta=(2,1,0,0)$. The dotted path is $\check{\nu}=(4,2,1,0,0)$.

The alt ν-Tamari lattice $\operatorname{Tam}_{\nu}(\delta)$ can also be described with rotations on trees. Let $\check{\nu}$ be the path with the same endpoints as ν such that $\check{\nu}_{i}=\delta_{i}, \forall i$. A (δ, ν)-tree is the image of a ν-path under the right flushing with respect to $\check{\nu}$.

Example
The (δ, ν)-tree that corresponds to the path of the example on the left for $\nu=(3,2,1,1,0)$ and $\delta=(2,1,0,0)$

Example

The alt ν-Tamari lattices for $\nu_{1}=\operatorname{ENEEN}, \delta_{1}=(1,0)$ (left) and $\nu_{2}=E N E E N N, \delta_{2}=(1,0,0)$ (right).
$\operatorname{Tam}_{\nu_{1}}\left(\delta_{1}\right)$ has $7,8,4$, and 1 linear intervals of length $0,1,2$, and 3 , respectively. $\operatorname{Tam}_{\nu_{2}}\left(\delta_{2}\right)$ has $16,24,16$, and 3 linear intervals of length $0,1,2$, and 3 , respectively

Results and bijections

Theorem 1

The alt ν-Tamari lattice $\operatorname{Tam}_{\nu}(\delta)$ is indeed a lattice. It is the restriction of $\operatorname{Tam}_{\tilde{\nu}}$ to the interval of (δ, ν)-trees.
Similarly as in the ν-Dyck lattice, we can define left intervals and right intervals in the alt ν-Tamari lattices, and all linear intervals are either trivial, left or right intervals.
Moreover, we can defined-marked and T-marked (δ, ν)-trees, in bijection with left and right intervals in $\operatorname{Tam}_{\nu}(\delta)$, respectively.

Theorem 2

For a fixed path ν, all alt ν-Tamari lattices have the same number of right intervals and the same number of left intervals.
In particular, the number of linear intervals in $\operatorname{Tam}_{\nu}(\delta)$ is independant of the choice of δ.

For two different increment vectors δ and δ^{\prime}, the left flushings provide a bijection between (δ, ν)-trees and $\left(\delta^{\prime}, \nu\right)$-trees. This bijection extends naturally to - -marked trees.

Example
Bijection between left intervals for $\nu=(1,2,0,3,2,0)$, with increment vectors $\delta^{\max }=(2,0,3,2,0)$ (left) and $\delta=(1,0,1,1,0)$ (right).

A similar bijection between (δ, ν)-trees and ($\left.\delta^{\prime}, \nu\right)$-trees can be described where this time we preserve the number of nodes (not on the left border) in the columns. This bijection extends naturally to T-marked trees.

Example
Bijection between right intervals for $\nu=(1,2,0,3,2,0)$, with increment vectors $\delta^{\max }=(2,0,3,2,0)$ (left) and $\delta=(1,0,1,1,0)$ (right).
[1] C. Ceballos and C. Chenevière. In preparation. On linear intervals in the alt ν-Tamari lattices. 2023+. An extended abstract has been accepted for FPSAC 2023, Davis.
2] C. Ceballos, A Padrol, and C Sarmiento. The ν Tamari latice via ν-trees, ν-bracket vectors, and subword complexes. Electron. F. Combin., 27(1):Paper No. 1.14, 31, 2020.
[3] C. Chenevière. Linear intervals in the Tamari and the Dyck lattices and in the alt-Tamari posets. 2022
[4] L.-F. Préville-Ratelle and X. Viennot. The enumeration of generalized Tamari intervals. Trans. Amer. Math. Soc., 369(7):5219-5239, 2017.

