FROM TAMARI INTERVALS TO SIMPLE TRIANGULATIONS

Corentin Henriet
Università degli Studi di Firenze/Université Paris-Diderot

TAMARI INTERVALS

Descent vector
 $\mathbf{D}(P)=(2,3,0,1,0,0,2,1,0,0)$
 Contact yector: $\mathrm{C}(P)=(2,2,0,0,2,2,0,1,0,0)$

A Dyck path of size n is a finite walk from $(0,0)$ to $(2 n, 0)$ staying weakly above the x-axis, with n up steps $u=(1,1)$ and n down steps $d=(1,-1)$. The conjugate of a Dyck path is defined inductively: $\left\{\begin{array}{l}\bar{\bullet}=\bullet \\ \overline{P_{1} u P_{2} d}=\overline{P_{2}} u \overline{P_{1}} d\end{array}\right.$ The Tamari lattice of order n is the poset of Dyck paths of size n endowed with the partial order \preceq given by the reflexive and transitive closure of the right rotation:

A Tamari interval of size n is a pair $[P, Q]$ of Dyck paths of size n with $P \preceq Q$. The height of a Tamari interval $I=[P, Q]$ is the length of the longest strictly increasing chain from P to Q minus 1 .
The conjugate of a Tamari interval $I=[P, Q]$ is $\bar{I}=[\bar{Q}, \bar{P}]$.

TANDEM WALKS

A tandem walk is a walk from $(0,0)$ to $(0,0)$ confined to the quadrant $\{(x, y \mid x, y \geq 0)\}$ with steps $E=(1,0), S=(0,-1)$ and $V=(-1,1)$. If a tandem walk has $3 n+3$ steps, we will say that it has size n. The area of a tandem walk of size n is the (algebraic) area enclosed by the walk minus $(3 n+1) / 2$.
The conjugate of a tandem walk w is obtained by reversing w and replacing letters E by S and letters S by E.

A tandem walk w is simple if it cannot be written as $w=w^{(1)} w^{(2)} w^{(3)}$ with $w^{(2)}$ and $w^{(1)} w^{(3)}$ being non-empty tandem walks.
A tandem walk w is minimal if it contains no consecutive subword of the type $E w^{(1)} S$, with $w^{(1)}$ being a (possibly empty) tandem walk.

FROM TAMARI INTERVALS TO TANDEM WALKS

Let $I=[P, Q]$ be a Tamari interval of size n. For $0 \leq i \leq n$, we set: $w_{i}=$ $E^{\mathrm{c}_{i}(P)} V S^{\mathrm{d}_{n-i}(Q)}$ We define then the tandem walk $\Psi(I)=E w_{0} w_{1} \ldots w_{n} S$.

THEOREM (DH '22 [1], $\mathrm{H}^{\prime} 23+$) : Ψ is a bijection from Tamari intervals of size n to the set Δ_{n} of simple minimal tandem walks of size n. Ψ maps height to area, and conjugate to conjugate.
Also, $\Delta=\bigcup_{n \geq 0} \Delta_{n}$ is the set of words on $\{E, V, S\}^{*}$ that can be obtained from the word $E V S$ using a finite sequence of the operations $\lambda_{k}: V^{k} \rightarrow$ $E V^{k+1} S$ (replace a V^{k} consecutive subword by $E V^{k+1} S$), $k \geq 1$.

SOME REFERENCES :

[1] A bijection between Tamari intervals and extended fighting fish, Duchi, Henriet (2022).
[2] Bipolar orientations on planar maps and SLE_{12}, Kenyon, Miller, Sheffield, Wilson (2015).
[3] Planar triangulations, bridgeless planar maps and Tamari intervals, Fang (2016).
[4] Intervals in Catalan lattices and realizers of triangulations, Bernardi, Bonichon (2009)

TRIANGULATIONS

A rooted planar map is a proper embedding of a multigraph on the plane (up to continuous deformations) where an edge incident to the outer face is oriented such that the outer face is on its right. A (planar) triangulation is a rooted planar map having all its faces of degree 3. Its size is its number of internal (not incident to the outer face) vertices. A triangulation is simple if it has no loop nor multiple edges.

A bipolar-oriented triangulation (BOT) is a triangulation endowed with an acyclic orientation of its edges, with one unique source S and one unique $\operatorname{sink} N$ such that the root-edge is from S to N. The conjugate of a BOT is obtained by exchanging N and S, reversing the orientation and changing the outer face accordingly. Every triangulation admits a unique minimal bipolar orientation: with no right-oriented piece (ROP).

KMSW BIJECTION

THEOREM (KMSW '19 [2]): There is a bijection Φ from tandem walks of size n to bipolar-oriented triangulations of size n, that maps conjugate to conjugate.
Note: The KMSW bijection is much more general: it gives a correspondence between quadrant excursions with steps $(i,-j)(i, j \geq 0)$ and $(-1,1)$ and plane bipolar orientations.

THEOREM (H'23+): Φ sends:

- simple tandem walks to simple BOTs,
- minimal tandem walks to minimal BOTs

Hence $\Phi \circ \Psi$ is a bijection between Tamari intervals and simple triangulations, preserving conjugation.

EnUMERATION: The number of Tamari intervals of size n is:

$$
\frac{1}{(n+1)(2 n+1)}\binom{4 n+2}{n}
$$

The sequence begins: $1,1,3,13,68,399,2530, \ldots$ ($A 000260$ in the OEIS).

Perspectives

- $\Phi \circ \Psi$ is the same bijection (up to symmetry) as in [3] (Fang '18), but simpler. A first bijection is due to Bernardi, Bonichon [4] and uses simple triangulations decorated with Schnyder woods: explore relations between the bijections.
- What is the height/area on triangulations ?
- Generalize to m-Tamari lattices:

Conjecture: Set $E_{m}=(m, 0)$ and $S_{m}=(0,-m)$. Let $\Delta^{(m)}$ be the set of words on $\left\{E, E_{m}, V, S, S_{m}\right\}^{*}$ that can be obtained from $E V S$ using a finite sequence of the operations $\lambda_{k}^{(m)}: V^{k} \rightarrow E_{m} V^{k+m} S_{m}$, $k \geq 1$. Then there is a bijection between m-Tamari intervals and $\Delta^{(m)}$ sending size to size and height to area.

