Negative Moments of Orthogonal Polynomials

Jihyeug Jang ${ }^{*}$, Donghyun Kim, Jang Soo Kim, Minho Song, and U-Keun Song
Sungkyunkwan University, South Korea

Combinatorial Reciprocity Thm

For a sequence $\left(f_{n}\right)_{n \in \mathbb{Z}}$, if both $\left|f_{n}\right|$ and $\left|f_{-n}\right|$ count some combinatorial objects of size $n \geq 1$, such a result is called a combinatorial reciprocity theorem [Sta74].
Three notable examples are when f_{n} is

- the binomial coefficient $\binom{n}{k}$,
- the chromatic polynomial $\chi_{G}(n)$,
- the Ehrhart polynomial $\operatorname{Ehr}_{P}(n)$.

Theorem 1. [ECI, Theorem 4.1.1 and Proposition 4.2.3] A sequence $\left(f_{n}\right)_{n \geq 0}$ satisfies a homogeneous linear recurrence relation if and only if

$$
\sum_{n \geq 0} f_{n} x^{n}=\frac{P(x)}{Q(x)},
$$

for some polynomials $P(x)$ and $Q(x)$ with $\operatorname{deg} P(x)<\operatorname{deg} Q(x)$ and $Q(0) \neq 0$. Moreover, in this case, we have

$$
\sum_{n \geq 1} f_{-n} x^{n}=-\frac{P(1 / x)}{Q(1 / x)}
$$

as rational functions.
Recently, Cigler and Krattenthaler [CK20] showed that, the negative counterpart of the number of Dyck paths of length $2 n$ with bounded height $2 k-1$ is the number of alternating sequences $a_{1} \leq a_{2} \geq$ $a_{3} \leq \cdots \geq a_{2 n-1}$ with $1 \leq a_{i} \leq k$. They also showed many other interesting results including a reciprocity between determinants of these numbers and their connection with orthogonal polynomials.

Orthogonal Polynomials

Polynomials $P_{n}(x)$ are called orthogonal polynomials with respect to a linear functional \mathcal{L} if $\operatorname{deg} P_{n}(x)=n$ and
$\mathcal{L}\left(P_{m}(x) P_{n}(x)\right)=\delta_{m, n} c_{n}, \quad c_{n} \neq 0$.
It is well known [Chi78, Theorem 4.1] that monic orthogonal polynomials $P_{n}(x)$ satisfy a three-term recurrence relation:

$$
P_{n+1}(x)=\left(x-b_{n}\right) P_{n}(x)-\lambda_{n} P_{n-1}(x) \quad \text { for } n \geq 0, \quad P_{-1}(x)=0, \quad P_{0}(x)=1
$$

for some sequences $\boldsymbol{b}=\left(b_{n}\right)_{n \geq 0}$ and $\boldsymbol{\lambda}=\left(\lambda_{n}\right)_{n \geq 1}$. The moment $\mu_{n}(\boldsymbol{b}, \boldsymbol{\lambda})$ of $P_{n}(x)$ is defined by $\mu_{n}(\boldsymbol{b}, \boldsymbol{\lambda})=\mathcal{L}\left(x^{n}\right)$.
A Motzkin path is a lattice path weakly above the x-axis in which every step is an up step $(1,1)$, a horizontal step $(1,0)$, or a down step $(1,-1)$. We denote by $\operatorname{Mot}_{n, r, s}$ the set of Motzkin paths from $(0, r)$ to (n, s), and $\operatorname{Mot}_{n, r, s}^{\leq k}$ the set of Motzkin paths in $\operatorname{Mot}_{n, r, s}$ that lie weakly below the line $y=k$. We also define $\operatorname{Mot}_{n}=\operatorname{Mot}_{n, 0,0}$ and $\operatorname{Mot}_{n}^{\leq k}=\operatorname{Mot}_{n, 0,0}^{\leq k}$. The weight wt $(\pi ; \boldsymbol{b}, \boldsymbol{\lambda})$ of a Motzkin path π is defined to be the product of b_{i} for each horizontal step starting at a point with y-coordinate i and λ_{i} for each down step starting at a point with y-coordinate i.
Viennot [Vie83] found the following combinatorial interpretation for the moment: $\mathcal{L}\left(x^{n}\right)=\mu_{n}(\boldsymbol{b}, \boldsymbol{\lambda})=\sum_{\pi \in \operatorname{Mot}_{n}} \mathrm{wt}(\pi ; \boldsymbol{b}, \boldsymbol{\lambda})$. The generalized bounded moment is defined by

$$
\mu_{n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})=\sum_{\pi \in \mathrm{Mot}^{\leq k}} \mathrm{wt}(\pi ; \boldsymbol{b}, \boldsymbol{\lambda}) .
$$

Let $P_{n}^{*}(x)=x^{n} P_{n}(1 / x)$ and δP moves b_{i} to b_{i+1} and λ_{i} to λ_{i+1} in P.
Theorem 2. [Vie83] Let r, s, k be integers with $0 \leq r, s \leq k$.

Negative Moments

Let $\boldsymbol{b}^{2}=\left(b_{n-1} b_{n}\right)_{n \geq 1}=\left(b_{0} b_{1}, b_{1} b_{2}, \ldots\right)$,
Proposition 3. The sequence $\left(\mu_{-n, r, s}^{\leq k}\left(\boldsymbol{b}, \boldsymbol{b}^{2}\right)_{n \geq 1}\right.$ is well defined if and only if $k \not \equiv 1(\bmod 3)$.
By Theorems 1 and 2 , we obtain the generating function for the negative moments of orthogonal polynomials.
Theorem 4. Let r, s, k be integers with $0 \leq r, s \leq k$. Suppose that $\mu \leq n, r, s, \boldsymbol{b}, \boldsymbol{\lambda})$ is well defined for $n \geq 1$. If $r \leq s$, then

$$
\sum_{n \geq 1} \mu_{-n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}) x^{n}=-\frac{x P_{r}(x) \delta^{\delta+1} P_{k-s}(x)}{P_{k+1}(x)} .
$$

If $r>s$, then
$\sum_{n \geq 1} \mu_{-n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}) x^{n}=-\frac{x^{r-s+1} P_{s}(x) \delta^{r+1} P_{k-r}(x)}{P_{k+1}(x)} \prod_{i=s+1}^{r} \lambda_{i}$.
We now give a combinatorial interpretation for $\mu_{-n, r, s}^{\leq k}\left(\boldsymbol{b}, \boldsymbol{b}^{2}\right)$ where $k \not \equiv 1(\bmod 3)$.
Definition 5. An (ℓ, r, s)-peak-valley sequence is a sequence $\left(a_{1}, \ldots, a_{n}\right)$ of nonnegative integers such that for $i=1, \ldots, n$, \bullet if $a_{i} \equiv 0(\bmod \ell)$, then a_{i} is a valley $\left(a_{i-1}>a_{i}<a_{i+1}\right)$, - if $a_{i} \equiv-1(\bmod \ell)$, then a_{i} is a peak $\left(a_{i-1}<a_{i}>a_{i+1}\right)$, where we set $a_{0}=r$ and $a_{n+1}=s$. Denote by $\mathrm{PV}_{n, r, s, t}^{\ell, k}$ the set of (ℓ, r, s)-peak-valley sequences $\left(a_{1}, \ldots, a_{n}\right)$ with $0 \leq a_{i} \leq k$ for all $i=1, \ldots, n$ and define $\mathrm{PV}_{n}^{l, k}=\mathrm{PV}_{n, 0,0}^{l, k}$.

Method $1(r=s=0)$

By Flajolet's combinatorial theory of continued fractions [Fla80], [Vie83] showed that

Using this, we have
$\sum_{n \geq 1} \mu_{-n}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda}) x^{n}=\frac{b_{0}^{-1} x}{1-b_{0}^{-1} x-\frac{b_{0}^{-1} b_{1}^{-1} \lambda_{1}}{1-b_{1}^{-1} x-\ldots-\frac{b_{k-1}^{-1} b_{k}^{-1} \lambda_{k}}{1-b_{k}^{-1} x}}}$.
We define the weight $\mathrm{wt}(\pi)$ of a sequence $\pi=\left(a_{1}, \ldots, a_{n}\right)$ of nonnegative integers by $\operatorname{wt}(\pi)=V_{a_{1}} \cdots V_{a_{n}}$.
Theorem 6. Let $b_{i}=-V_{i}^{-1}$ for all i. Then we have

$$
\mu_{-n}^{\leq 3 k-1}\left(\boldsymbol{b}, \boldsymbol{b}^{2}\right)=V_{0} \sum_{\pi \in \mathrm{PV}_{n-1}^{3,3 k-1}} \mathrm{wt}(\pi) .
$$

We also find a combinatorial interpretation for $\mu_{-n}^{\leq 3 k}\left(\boldsymbol{b}, \boldsymbol{b}^{2}\right)$ using modified ($\mathbf{3}, \mathbf{0}, \mathbf{0}$)-peak-valley sequences.

Method 2

For integers k and i with $0 \leq i \leq k$, let ϵ_{i} be the standard basis vector in \mathbb{R}^{k+1} such that the i th entry is equal to 1 and the other entries are all 0 . We also define the tridiagonal matrix $A^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ by

$$
A^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})=\left(\begin{array}{ccccc}
b_{0} & 1 & & & \\
\lambda_{1} & b_{1} & 1 & & \\
& & \ddots & & \\
& & \lambda_{k-1} & b_{k-1} & 1 \\
& & & \lambda_{k} & b_{k}
\end{array}\right)
$$

By the definition of $\mu_{\bar{n}, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$, it is easy to see that

$$
\mu_{n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})=\epsilon_{r}^{T}\left(A^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})\right)^{n} \epsilon_{s}
$$

Proposition 7. [HZ23, Lemma 2.7] For nonnegative integers r, s, k, n with $r, s \leq k$ and $n \geq 1$, if $A^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})$ is invertible, then

$$
\mu_{-n, r, s}^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})=\epsilon_{r}^{T}\left(A^{\leq k}(\boldsymbol{b}, \boldsymbol{\lambda})\right)^{-n} \epsilon_{s}
$$

Theorem 8. Let $b_{i}=-V_{i}^{-1}$ for all i. Then we have

$$
\mu_{-n, r, s}^{\leq 3 k-1}\left(\boldsymbol{b}, \boldsymbol{b}^{2}\right)=(-1)^{\lfloor r / 3\rfloor+\lfloor s / 3\rfloor} \frac{V_{0} \cdots V_{s}}{V_{0} \cdots V_{r-1}} \sum_{\pi \in \mathrm{PV}_{n-1, r, s}^{3,3 k-1}} \mathrm{wt}(\pi)
$$

Here, we set $V_{0} \cdots V_{r-1}=1$ if $r=0$.
We also find a combinatorial interpretation for $\mu_{-n, r, s}^{\leq 3 k}\left(\boldsymbol{b}, \boldsymbol{b}^{2}\right)$ using modified ($3, \mathrm{r}, \mathrm{s}$)-peak-valley sequences.

General Reciprociry Theorem Related to Determinants

Let $R^{(n)}$ be the operator defined on polynomials in b_{i} 's and λ_{i} 's that replaces each b_{i} by b_{n-i} and each λ_{i} by λ_{n+1-i}. We have the general reciprocity theorem as follows.

Theorem 9. For positive integers k and m, we have
$\operatorname{det}\left(\mu_{n+i+j+2 m-2}^{\leq k+m-1}(\boldsymbol{b}, \boldsymbol{\lambda})\right)_{i, j=0}^{k-1}$

$$
=C \cdot R^{(k+m-1)}\left(\operatorname{det}\left(\mu_{-n-i-j}^{\leq k+m-1}(\boldsymbol{b}, \boldsymbol{\lambda})\right)_{i, j=0}^{m-1}\right),
$$

where $C=\left(\Pi_{i=1}^{k+m-1} \lambda_{i}^{k-i}\right) \operatorname{det}\left(A^{s k+m-1}(b, \lambda)\right)^{n+2 m-2}$.
This implies the result of Cigler and Krattenthaler [CK20, Theorem 34], which is the general reciprocity theorem for Dyck paths version (that is, for $\boldsymbol{b}=0$).
Let Alt ${ }_{n}^{\leq k}$ be the set of alternating sequences $\left(a_{1}, \ldots, a_{n}\right)$ of
integers such that $a_{1} \leq a_{2} \geq a_{3} \leq \cdots$ and $1 \leq a_{i} \leq k$ for integers such that $a_{1} \leq a_{2} \geq a_{3} \leq \cdots$ and $1 \leq a_{i} \leq k$ for all i.

We prove the following two conjectures proposed in [CK20] using Theorem 9 .
Theorem 10. [CK20, Conjecture 50] For all nonnegative integers n, k, m, we have

Theorem 11. [CK20, Conjecture 53] For all positive integers n, k, m with $k+m \not \equiv 2(\bmod 3)$, we have
$\operatorname{det}\left(\mu_{n=+i+j+j+2 m-2}^{s k+1,1}\right)_{i, j=0}^{k-1}$

(Selected) References

[Chi78] T. S. Chihara. An introduction to orthogonal polynomials. Gordon and Breach Science Publishers, New York, 1978. Mathematics and its Applications, Vol. 13.
[CK20] J. Cigler and C. Krattenthaler. Bounded Dyck paths, bounded alternating sequences, orthogonal polynomials, and reciprocity. Preprint.
[Fla80] P. Flajolet. Combinatorial aspects of continued fractions. Discrete Math., 32(2):125-161, 1980.
[HZ23] S. Hopkins and G. Zaimi. Combinatorial reciprocity for nonintersecting paths. Preprint.
[Sta74] R. P. Stanley. Combinatorial reciprocity theorems. Advances in Math., 14:194-253, 1974.
[EC1] R. P. Stanley. Enumerative Combinatorics. Vol. 1, second ed. Cambridge University Press, New York/Cambridge, 2011.
[Vie83] G. Viennot. Une théorie combinatoire des polynômes orthogonaux généraux. Lecture Notes, UQAM, 1983.

