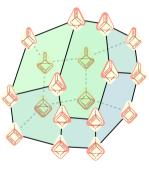
Poset associahedra as sections of graph associahedra

Chiara Mantovani, Arnau Padrol, Vincent Pilaud

March 27, 2023

Poset associahedron:

→ combines the notions of graph associahedra and order polytopes



- ► Galashin, 2021
 - description of combinatorial structure
 - realization as stellar subdivision of order polytope
- → No explicit coordinates are provided

Graph associahedron: graph tubes and tubings

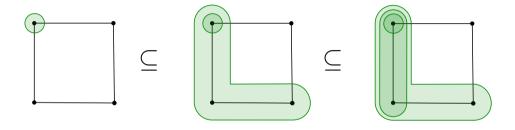
G finite connected graph

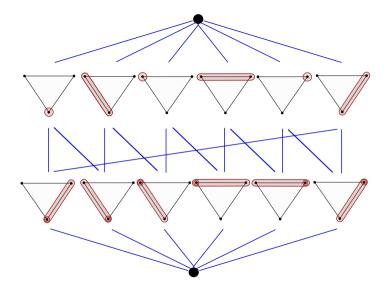
Tube: induced and connected subgraph;

Compatible: pair of tubes σ, τ

- ▶ nested $(\sigma \subseteq \tau \text{ or } \tau \subseteq \sigma)$;
- disjoint and not adjacent $(\sigma \cup \tau \text{ not connected}).$

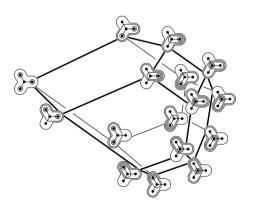
Tubing: set of pairwise compatible tubes





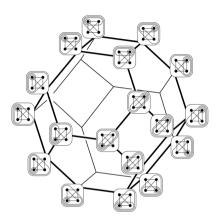
Graph associahedron: combinatorial structure

 $\mathcal{P}(G)$: polytope whose face lattice is isomorphic to the set of tubings of G, ordered by reverse inclusion

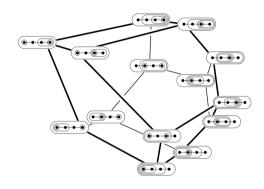


Vertices ↔ Maximal tubings

Facets ↔ Tubes



Complete graph \rightarrow permutahedron



Path \rightarrow associahedron

Graph associahedron: geometric realization

Theorem (Postnikov, 2009)

G graph with vertices $\{1, \ldots, n\}$. For every choice of positive parameters $\{\lambda_{\sigma}\}_{{\sigma}\in B_{G}}$, the polytope

$$\mathcal{P}_{\mathcal{G}}(\{\lambda_{\sigma}\}) = \sum_{\sigma \in \mathcal{B}_{\mathcal{G}}} \lambda_{\sigma} \Delta_{\sigma}$$

is a realization of the graph associahedron $\mathcal{P}(G)$ of G.

 $B_G \rightarrow \text{set of tubes of } G$

 $\Delta_{\sigma} \rightarrow \mathsf{Conv}(e_i \mid i \in \sigma)$

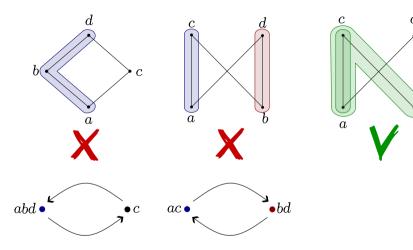
Poset associahedron: poset tubes and tubings

P finite connected poset, $|P| \ge 2$, H_P Hasse diagram

Tubing: set T of connected subgraphs of H_P :

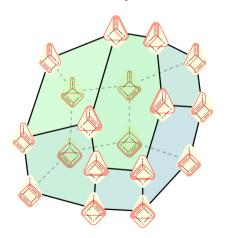
- **Pairwise nested** ($\sigma \subseteq \tau$ or $\tau \subseteq \sigma$) or disjoint
- ▶ there exist no subsets T' of T such that the graph obtained from the Hasse diagram H_P of P by contracting every $\tau_i \in T'$ to a vertex v_i has a directed cycle

Proper tubing: $2 \le |\tau| \le |P| - 1$ for all $\tau \in T$.



Poset associahedron: combinatorial structure

 $\mathcal{A}(P)$: polytope whose face lattice is isomorphic to the set of proper tubings of P, ordered by reverse inclusion



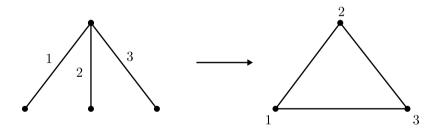
Vertices ↔ Maximal tubings

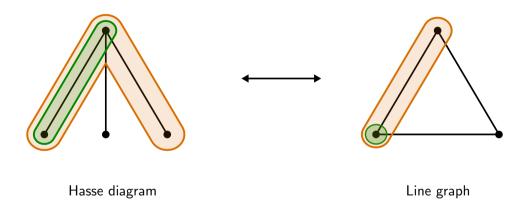
 $\mathsf{Facets} \leftrightarrow \mathsf{Tubes}$

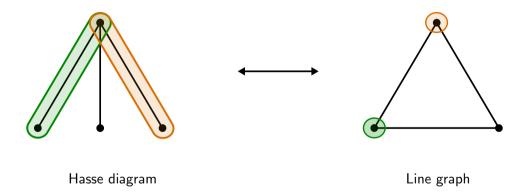
Poset associahedron: our realization

Line graph: graph L(G) with:

- a vertex for every edge of G
- an edge for every incidence in G







 \rightarrow bijection between proper poset tubings of P and graph tubings of the line graph.

Theorem

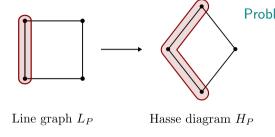
Let P be a finite poset such that its Hasse diagram H_P has no cycles. Let L_P be the line graph of H_P . Then the graph associahedron $\mathcal{P}(L_P)$ is combinatorially equivalent to the poset associahedron $\mathcal{A}(P)$ of P.

 \rightarrow bijection between proper poset tubings of P and graph tubings of the line graph.

Theorem

Let P be a finite poset such that its Hasse diagram H_P has no cycles. Let L_P be the line graph of H_P . Then the graph associahedron $\mathcal{P}(L_P)$ is combinatorially equivalent to the poset associahedron $\mathcal{A}(P)$ of P.

General case: Hasse diagram with cycles

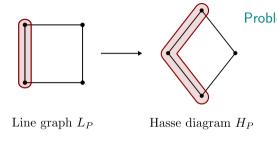


Problem: there are tubings of L_P that do not correspond to tubings of P

- doesn't correspond to a tubing of *P* that
- Allowed tubing: tubing of L_P that corresponds to a tubing of P

Idea: section of the graph associahedron of L_P with a subspace that intersects all and only the faces corresponding to allowed tubings

General case: Hasse diagram with cycles

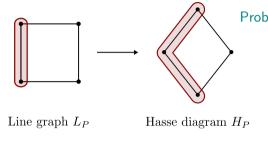


Problem: there are tubings of L_P that do not correspond to tubings of P

- Forbidden tubing: tubing of L_P that doesn't correspond to a tubing of P
- Allowed tubing: tubing of L_P that corresponds to a tubing of P

Idea: section of the graph associahedron of L_P with a subspace that intersects all and only the faces corresponding to allowed tubings

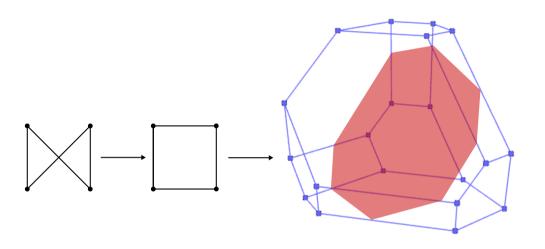
General case: Hasse diagram with cycles



Problem: there are tubings of L_P that do not correspond to tubings of P

- Forbidden tubing: tubing of L_P that doesn't correspond to a tubing of P
- Allowed tubing: tubing of L_P that corresponds to a tubing of P

Idea: section of the graph associahedron of L_P with a subspace that intersects all and only the faces corresponding to allowed tubings



Hasse diagram H_P

Line graph L_P

Section of the graph associahedron of L_P

c cycle in H_P .

Orientation: one of the two ways of turning the edges of c into arcs to get a directed cycle \vec{c}

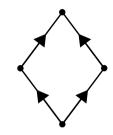
Oriented cycle: cycle with an orientation

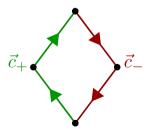
Positive part: $\vec{c}_+ := A(\vec{c}) \cap A(H_P)$

 \rightarrow arcs that have the same direction in H_P and in \vec{c}

Negative part: $\vec{c}_- := A(\vec{c}) \setminus A(H_P)$

 \rightarrow arcs that have opposite directions in H_P and in \vec{c}





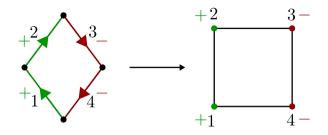
Definition

Let \vec{c} be an oriented cycle in H_P . We define the hyperplane

$$h_{\vec{c}} := \left\{ x \in \mathbb{R}^n \mid \sum_{i \in \vec{c}_+} x_i - \sum_{j \in \vec{c}_-} x_j = 0 \right\}$$

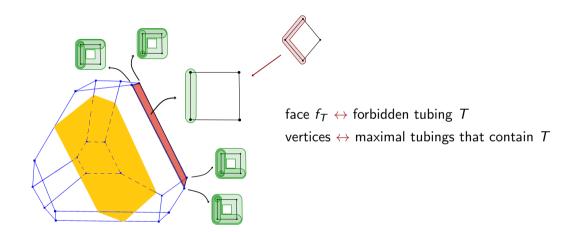
Let $\mathcal{C}_{\mathcal{P}}$ be a basis of the cycle space of $H_{\mathcal{P}}$. Chosen an orientation \vec{c} for every element c of $\mathcal{C}_{\mathcal{P}}$, we define:

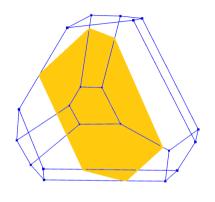
$$\mathcal{S} := igcap_{ec{c} \in \mathcal{C}_{\mathcal{P}}} h_{ec{c}}$$



$$S = h_{\vec{c}} = \{ x \in \mathbb{R}^4 \mid x_1 + x_2 - x_3 - x_4 = 0 \}$$

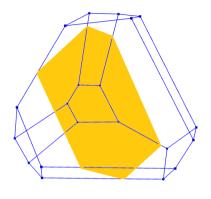
Idea of the proof





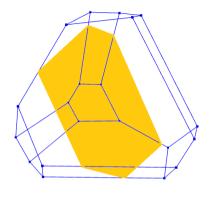
- ightarrow forbidden faces are not intersected by ${\cal S}$
- ightarrow allowed faces are all intersected by ${\cal S}$ (topological argument)

 \rightarrow Face lattice of $\mathcal{P}_{L_P}(\lambda_\sigma) \cap \mathcal{S}$ isomorphic to the lattice of proper tubings of P



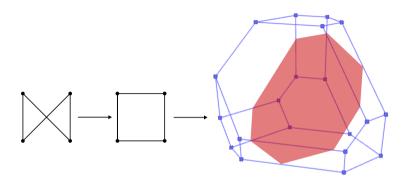
- ightarrow forbidden faces are not intersected by ${\cal S}$
- ightarrow allowed faces are all intersected by ${\cal S}$ (topological argument)

 \rightarrow Face lattice of $\mathcal{P}_{L_P}(\lambda_\sigma) \cap \mathcal{S}$ isomorphic to the lattice of proper tubings of P



- ightarrow forbidden faces are not intersected by ${\cal S}$
- ightarrow allowed faces are all intersected by ${\cal S}$ (topological argument)

 \rightarrow Face lattice of $\mathcal{P}_{L_P}(\lambda_\sigma) \cap \mathcal{S}$ isomorphic to the lattice of proper tubings of P



Thanks for your attention!