A local characterization of quasi-crystal graphs

Inês Rodrigues

(joint work with Alan J. Cain, António Malheiro and Fátima Rodrigues)

Center for Mathematics and Applications (NOVA Math), NOVA SST
89th Séminaire Lotharingien de Combinatoire and Brenti Fest Bertinoro, March 27, 2023

Motivation

Plactic monoid

[Lascoux, Schützenberger '81]

Motivation

Plactic monoid

[Lascoux, Schützenberger '81]

- Young tableaux, Schensted insertion

$\frac{1}{1}$1 $\frac{2}{2}$ $\frac{2}{3}$ 3
111

- Knuth relations

$$
\begin{aligned}
a c b & \equiv c a b, a \leq b<c \\
b a c & \equiv b c a, a<b \leq c
\end{aligned}
$$

- Crystals

- Schur functions s_{λ}.

Motivation

Plactic monoid
[Lascoux, Schützenberger '81]

Hypoplactic monoid
[Krob, Thibon '97], [Novelli '00]

- Young tableaux, Schensted insertion

- Knuth relations

$$
\begin{aligned}
a c b & \equiv c a b, a \leq b<c \\
b a c & \equiv b c a, a<b \leq c
\end{aligned}
$$

- Crystals

- Schur functions s_{λ}.

Motivation

Plactic monoid

[Lascoux, Schützenberger '81]

- Young tableaux, Schensted insertion

- Knuth relations

$$
\begin{aligned}
& a c b \equiv c a b, a \leq b<c \\
& b a c \equiv b c a, a<b \leq c
\end{aligned}
$$

- Crystals

- Schur functions s_{λ}.

Hypoplactic monoid
[Krob, Thibon '97], [Novelli '00]

- Quasi-ribbon tableaux, Krob-Thibon insertion

\[

\]

- Knuth + quartic relations

$$
\begin{aligned}
& c a d b \equiv a c b d, a \leq b<c \leq d \\
& b d a c \equiv d b c a, a<b \leq c<d
\end{aligned}
$$

- Quasi-crystals

- Fundamental quasisymmetric functions F_{α}.

Crystals

Definition

A crystal of type A_{n-1} is a non-empty set \mathcal{C} together with maps

$$
\begin{aligned}
& \tilde{e}_{i}, \tilde{f}_{i}: \mathcal{C} \longrightarrow \mathcal{C} \sqcup\{\perp\} \\
& \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}: \mathcal{C} \longrightarrow \mathbb{Z} \sqcup\{-\infty\} \\
& \quad w t: \mathcal{C} \longrightarrow \mathbb{Z}^{n}
\end{aligned}
$$

(Kashiwara operators)
(length functions)
(weight function)
for $i \in I:=\{1, \ldots, n-1\}$, satisfying the following:
C1. For any $x, y \in \mathcal{C}, \tilde{e}_{i}(x)=y$ iff $x=\tilde{f}_{i}(y)$, and in that case

$$
w t(y)=w t(x)+\alpha_{i}, \quad \tilde{\varepsilon}_{i}(y)=\tilde{\varepsilon}_{i}(x)+1, \quad \tilde{\varphi}_{i}(y)=\tilde{\varphi}_{i}(x)-1
$$

C2. $\tilde{\varphi}_{i}(x)=\tilde{\varepsilon}_{i}(x)+\left\langle w t(x), \alpha_{i}\right\rangle$
where $\alpha_{i}=(0, \ldots, 0,1,-1,0, \ldots, 0)$.
(This definition is generalized for other Cartan types)

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

1-inversion

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

2-inversion

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

12311324

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

$$
1231132
$$

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

$$
\begin{array}{lllll}
1 & 2 & 1 & 1 & 2 \\
) & (&) &) & (
\end{array}
$$

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

$$
\begin{array}{lllll}
12 & 2 & 1 & 1 & 2 \\
) & (&) &) & (
\end{array}
$$

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

$$
\begin{array}{lllll}
12 & 1 & 1 & 2 \\
) & & & & (
\end{array}
$$

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

$$
\begin{array}{lllllll}
1 & 2 & 1 & 1 & 2 & \tilde{e}_{1}(12311324)
\end{array}=
$$

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

$$
\begin{array}{lllll}
1 & 2 & 1 & 1 & 1
\end{array} \quad \quad \tilde{e}_{1}(12311324)=12311314
$$

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

$$
\begin{array}{lllll}
123 & 1 & 1 & 2 & \tilde{e}_{1}(12311324)=12311314 \\
) & &) & (& \tilde{f}_{1}(12311324)=
\end{array}
$$

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

$$
\begin{array}{lllll}
123 & 1 & 1 & 2 & \tilde{e}_{1}(12311324)=12311314 \\
) & &) & (& \tilde{f}_{1}(12311324)=
\end{array}
$$

Crystals

Kashiwara operators

- $\mathcal{A}_{n}=\{1<\cdots<n\}$.
- A word $w=w_{1} \cdots w_{k} \in \mathcal{A}_{n}^{*}$ has an i-inversion, if $(i+1) i$ occurs as a subword of w.

$$
12311324
$$

- To compute $\tilde{f}_{i}(w)$ and $\tilde{e}_{i}(w)$ on a word $w \in \mathcal{A}_{n}^{*}$:
- consider the subword with only symbols i and $i+1$, replace each i with) and each $i+1$ with (.
- cancel all pairs (), until there are no pairs left.
- \tilde{e}_{i} changes the leftmost (to), if possible; if not, it is \perp.
- \tilde{f}_{i} changes the rightmost) to (, if possible; if not, it is \perp.

$$
\begin{array}{llll}
123 & 1 & 23 & 2 \\
) & & \left(\begin{array}{l}
\tilde{r}_{1}(12311324)
\end{array}\right)=12311314 \\
& & & \tilde{f}_{1}(12311324)=12312324
\end{array}
$$

Crystals

- A crystal is seminormal if, for all $i \in I$ and $x \in \mathcal{C}$,

$$
\tilde{\varepsilon}_{i}(x)=\max \left\{k: \tilde{e}_{i}(x)^{k} \neq \perp\right\}, \quad \tilde{\varphi}_{i}(x)=\max \left\{k: \tilde{f}_{i}(x)^{k} \neq \perp\right\}
$$

- The crystal graph associated to a crystal \mathcal{C} is the directed weighted graph where $x \xrightarrow{i} y$ iff $\tilde{f}_{i}(x)=y$.

Crystals

- A crystal is seminormal if, for all $i \in I$ and $x \in \mathcal{C}$,

$$
\tilde{\varepsilon}_{i}(x)=\max \left\{k: \tilde{e}_{i}(x)^{k} \neq \perp\right\}, \quad \tilde{\varphi}_{i}(x)=\max \left\{k: \tilde{f}_{i}(x)^{k} \neq \perp\right\}
$$

- The crystal graph associated to a crystal \mathcal{C} is the directed weighted graph where $x \xrightarrow{i} y$ iff $\tilde{f}_{i}(x)=y$.

Stembridge crystals

- A Stembridge crystal is a seminormal crystal of simply-laced type that satisfies some local axioms [Stembridge '03].
- These are the crystal graphs that correspond to representations of Lie algebras.
- Nice properties on the connected components:
- Uniqueness of highest weight element (source vertex).
- All vertices can be reached from the highest weight element.
- In type A, the highest weight is dominant and, if it is a partition, the character of the component is a Schur function s_{λ}.
- All components whose highest weight elements have the same weight are isomorphic.

Stembridge crystals

S1. If $\tilde{e}_{i}(x)=y$, then $\tilde{\varepsilon}_{j}(y)$ is equal to $\tilde{\varepsilon}_{j}(x)$ or $\tilde{\varepsilon}_{j}(x)+1$ (the second case is possible only if $|i-j|=1$).
S2. If $\tilde{e}_{i}(x)=y$ and $\tilde{e}_{j}(x)=z$, and $\tilde{\varepsilon}_{i}(z)=\tilde{\varepsilon}_{i}(x)$ then

$$
\tilde{e}_{i} \tilde{e}_{j}(x)=\tilde{e}_{j} \tilde{e}_{i}(x) \neq \perp .
$$

S3. If $\tilde{e}_{i}(x)=y$ and $\tilde{e}_{j}(x)=z$, and $\tilde{\varepsilon}_{i}(z)=\tilde{\varepsilon}_{i}(x)+1$ and $\tilde{\varepsilon}_{j}(y)=\tilde{\varepsilon}_{j}(x)+1$ then

$$
\tilde{e}_{i} \tilde{e}_{j}^{2} \tilde{e}_{j}(x)=\tilde{e}_{j} \tilde{e}_{i}^{2} \tilde{e}_{j}(x) \neq \perp .
$$

(and dual axioms for $\tilde{f}_{i}, \tilde{f}_{j}$)

Stembridge crystals

S1. If $\tilde{e}_{i}(x)=y$, then $\tilde{\varepsilon}_{j}(y)$ is equal to $\tilde{\varepsilon}_{j}(x)$ or $\tilde{\varepsilon}_{j}(x)+1$ (the second case is possible only if $|i-j|=1$).
S2. If $\tilde{e}_{i}(x)=y$ and $\tilde{e}_{j}(x)=z$, and $\tilde{\varepsilon}_{i}(z)=\tilde{\varepsilon}_{i}(x)$ then

$$
\tilde{e}_{i} \tilde{e}_{j}(x)=\tilde{e}_{j} \tilde{e}_{i}(x) \neq \perp .
$$

(and dual axioms for $\tilde{f}_{i}, \tilde{f}_{j}$)

S3. If $\tilde{e}_{i}(x)=y$ and $\tilde{e}_{j}(x)=z$, and $\tilde{\varepsilon}_{i}(z)=\tilde{\varepsilon}_{i}(x)+1$ and $\tilde{\varepsilon}_{j}(y)=\tilde{\varepsilon}_{j}(x)+1$ then

$$
\tilde{e}_{i} \tilde{e}_{j}^{2} \tilde{e}_{j}(x)=\tilde{e}_{j} \tilde{e}_{i}^{2} \tilde{e}_{j}(x) \neq \perp .
$$

Stembridge crystals

S1. If $\tilde{e}_{i}(x)=y$, then $\tilde{\varepsilon}_{j}(y)$ is equal to $\tilde{\varepsilon}_{j}(x)$ or $\tilde{\varepsilon}_{j}(x)+1$ (the second case is possible only if $|i-j|=1$).
S2. If $\tilde{e}_{i}(x)=y$ and $\tilde{e}_{j}(x)=z$, and $\tilde{\varepsilon}_{i}(z)=\tilde{\varepsilon}_{i}(x)$ then

$$
\tilde{e}_{i} \tilde{e}_{j}(x)=\tilde{e}_{j} \tilde{e}_{i}(x) \neq \perp .
$$

(and dual axioms for $\tilde{f}_{i}, \tilde{f}_{j}$)

S3. If $\tilde{e}_{i}(x)=y$ and $\tilde{e}_{j}(x)=z$, and $\tilde{\varepsilon}_{i}(z)=\tilde{\varepsilon}_{i}(x)+1$ and $\tilde{\varepsilon}_{j}(y)=\tilde{\varepsilon}_{j}(x)+1$ then

$$
\tilde{e}_{i} \tilde{e}_{j}^{2} \tilde{e}_{j}(x)=\tilde{e}_{j} \tilde{e}_{i}^{2} \tilde{e}_{j}(x) \neq \perp .
$$

Quasi-crystals

- Quasi-crystals were first introduced by Cain and Malheiro (2017), to provide another characterization of the hypoplactic monoid of type A, where $u \equiv_{\text {hypo }} v$ iff u and v are in the same position of isomorphic quasi-crystal components.
- Each connected component has a unique highest weight element, and is isomorphic to a quasi-crystal of quasi-ribbon tableaux, which are indexed by compositions.
- The characters are fundamental quasisymmetric functions F_{α}.
- Noting the decomposition of Schur functions into fundamental quasi-symmetric functions, Maas-Gariépy (2023) independently introduced quasi-crystals, as subgraphs of a connected component of a crystal graph.
- Cain, Guilherme and Malheiro (2023) recently provided a definition of abstract quasi-crystals for other Cartan types.

Quasi-crystals

Definition (Cain, Guilherme, Malheiro '23)

A quasi-crystal of type A_{n-1} is a non-empty set \mathcal{Q} together with maps

$$
\begin{aligned}
\ddot{\ddot{e}}_{i}, \ddot{f}_{i} & : \mathcal{Q} \longrightarrow \mathcal{Q} \sqcup\{\perp\} \\
\ddot{\varepsilon}_{i}, \ddot{\varphi}_{i} & : \mathcal{Q} \longrightarrow \mathbb{Z} \sqcup\{-\infty,+\infty\} \\
w t & : \mathcal{Q} \longrightarrow \mathbb{Z}^{n}
\end{aligned}
$$

for $i \in\{1, \ldots, n-1\}$, satisfying the following:
QC1. For any $x, y \in \mathcal{C}, \ddot{e}_{i}(x)=y$ iff $x=\ddot{f}_{i}(y)$, and in that case

$$
w t(y)=w t(x)+\alpha_{i}, \quad \ddot{\varepsilon}_{i}(y)=\ddot{\varepsilon}_{i}(x)+1, \quad \ddot{\varphi}_{i}(y)=\ddot{\varphi}_{i}(x)-1
$$

QC2. $\ddot{\varphi}_{i}(x)=\ddot{\varepsilon}_{i}(x)+\left\langle w t(x), \alpha_{i}\right\rangle$
QC3. If $\ddot{\varepsilon}_{i}(x)=+\infty$, then $\ddot{e}_{i}(x)=\ddot{f}_{i}(x)=\perp$.

Quasi-crystals

- A crystal is a quasi-crystal \mathcal{Q} where $\ddot{\varepsilon}_{i}(x) \neq+\infty$ and $\ddot{\varphi}_{i}(x) \neq+\infty$, for all $i \in I, x \in \mathcal{Q}$.
- A quasi-crystal is seminormal if, for all $i \in I$ and $x \in \mathcal{Q}$,

$$
\begin{aligned}
\tilde{\varepsilon}_{i}(x) & =\max \left\{k: \tilde{e}_{i}(x)^{k} \neq \perp\right\} \\
\tilde{\varphi}_{i}(x) & =\max \left\{k: \tilde{f}_{i}(x)^{k} \neq \perp\right\}
\end{aligned}
$$

whenever $\ddot{\varepsilon}_{i}(x) \neq+\infty$.

- A crystal is seminormal (as a crystal) iff it is seminormal as a quasi-crystal.
- For the quasi-crystal of words:
- $\ddot{\varepsilon}_{i}(w)=+\infty$ iff w has an i-inversion.
- $\ddot{e}_{i}(w)$ coincides with $\tilde{e}_{i}(w)$ if w has no i-inversions, otherwise $\ddot{e}_{i}(w)=\perp$.

Quasi-crystals

The quasi-crystal graph associated to a quasi-crystal \mathcal{Q} is the directed weighted graph where:

- $x \xrightarrow{i} y$ iff $\ddot{f}_{i}(x)=y$.
- x has an i-labelled loop if $\ddot{\varepsilon}_{i}(x)=+\infty$

Quasi-crystals

The quasi-crystal graph associated to a quasi-crystal \mathcal{Q} is the directed weighted graph where:

- $x \xrightarrow{i} y$ iff $\ddot{f}_{i}(x)=y$.
- x has an i-labelled loop if $\ddot{\varepsilon}_{i}(x)=+\infty$

Quasi-tensor product

Cain, Guilherme, and Malheiro (2023) introduced a notion of quasi-tensor product of seminormal quasi-crystals, denoted $\mathcal{Q} \ddot{\otimes} \mathcal{Q}^{\prime}$, which has $\mathcal{Q} \times \mathcal{Q}^{\prime}$ as underlying set and maps:

- $w t\left(x \ddot{\otimes} x^{\prime}\right)=w t(x)+w t\left(x^{\prime}\right)$.
- If $\ddot{\varphi}_{i}(x)>0$ and $\ddot{\varepsilon}_{i}\left(x^{\prime}\right)>0, \ddot{e}_{i}\left(x \ddot{\otimes} x^{\prime}\right)=\ddot{f}_{i}\left(x \ddot{\otimes} x^{\prime}\right)=\perp$ and $\ddot{\varepsilon}_{i}\left(x \ddot{\otimes} x^{\prime}\right)=\ddot{\varphi}_{i}\left(x \ddot{\otimes} x^{\prime}\right)=+\infty$, otherwise,

$$
\begin{aligned}
& \ddot{e}_{i}\left(x \ddot{\otimes} x^{\prime}\right)= \begin{cases}\ddot{e}_{i}(x) \ddot{\otimes}^{\prime} & \text { if } \ddot{\varphi}_{i}(x) \geq \ddot{\varepsilon}_{i}\left(x^{\prime}\right) \\
x \ddot{\theta}_{i}\left(x^{\prime}\right) & \text { if } \ddot{\varphi}_{i}(x)<\ddot{\varepsilon}_{i}\left(x^{\prime}\right)\end{cases} \\
& \ddot{f}_{i}\left(x \ddot{\otimes} x^{\prime}\right)= \begin{cases}\ddot{F}_{i}(x) \ddot{\otimes}^{\prime} x^{\prime} & \text { if } \ddot{\varphi}_{i}(x)>\ddot{\varepsilon}_{i}\left(x^{\prime}\right) \\
x \ddot{\otimes} \ddot{\mathscr{F}}_{i}\left(x^{\prime}\right) & \text { if } \ddot{\varphi}_{i}(x) \leq \ddot{\varepsilon}_{i}\left(x^{\prime}\right)\end{cases} \\
& \ddot{\varepsilon}_{i}(x)=\max \left\{\ddot{\varepsilon}_{i}(x), \ddot{\varepsilon}_{i}\left(x^{\prime}\right)-\left\langle w t(x), \alpha_{i}\right\rangle\right\} \\
& \ddot{\varphi}_{i}(x)=\max \left\{\ddot{\varphi}_{i}(x)+\left\langle w t\left(x^{\prime}\right), \alpha_{i}\right\rangle, \ddot{\varphi}_{i}\left(x^{\prime}\right)\right\}
\end{aligned}
$$

(With this convention $x \ddot{\otimes} y$ is identified with the word $y x$. .)

Quasi-tensor product

- \mathcal{B}_{n} is the standard crystal of type A_{n-1} :

$$
1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \quad \xrightarrow{n-1} n
$$

- Similarly to the case of the plactic monoid, each component of the hypoplactic monoid is isomorphic to some $\mathcal{B}_{n}^{\otimes \otimes}$.

Quasi-tensor product

- \mathcal{B}_{n} is the standard crystal of type A_{n-1} :

$$
1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \quad \xrightarrow{n-1} n
$$

- Similarly to the case of the plactic monoid, each component of the hypoplactic monoid is isomorphic to some $\mathcal{B}_{n}^{\otimes} k$.

Local characterization of quasi-crystals

Local quasi-crystal axioms
LQC1. $\ddot{\varepsilon}_{i}(x)=0$ iff $\ddot{\varphi}_{i+1}(x)=0$, for $i \in\{1, \ldots, n-2\}$.
LQC2. If $\ddot{e}_{i}(x)=y$, then:

- For $|i-j|>1, \ddot{\varepsilon}_{j}(x)=\ddot{\varepsilon}_{j}(y)$.
- For $j=i+1$,

$$
\ddot{\varepsilon}_{i+1}(x) \neq \ddot{\varepsilon}_{i+1}(y) \Leftrightarrow\left(\ddot{\varepsilon}_{i+1}(x)=+\infty \wedge \ddot{\varepsilon}_{i}(y)=0\right) \Rightarrow \ddot{\varepsilon}_{i+1}(y)>0 .
$$

- For $j=i-1$,

$$
\ddot{\varphi}_{i-1}(x) \neq \ddot{\varphi}_{i-1}(y) \Leftrightarrow\left(\ddot{\varphi}_{i-1}(y)=+\infty \wedge \ddot{\varphi}_{i}(x)=0\right) \Rightarrow \ddot{\varphi}_{i-1}(x)>0 .
$$

LQC3. If both $\ddot{e}_{i}(x)$ and $\ddot{e}_{j}(x)$ are defined, for $i \neq j$, then $\ddot{e}_{i} \ddot{e}_{j}(x)=\ddot{e}_{j} \ddot{e}_{i}(x) \neq \perp$ (and dual axiom for $\ddot{f}_{i}, \ddot{f}_{j}$.)

Local characterization of quasi-crystals

Local quasi-crystal axioms
LQC1. $\ddot{\varepsilon}_{i}(x)=0$ iff $\ddot{\varphi}_{i+1}(x)=0$, for $i \in\{1, \ldots, n-2\}$.
LQC2. If $\ddot{e}_{i}(x)=y$, then:

- For $|i-j|>1, \ddot{\varepsilon}_{j}(x)=\ddot{\varepsilon}_{j}(y)$.
- For $j=i+1$,

$$
\ddot{\varepsilon}_{i+1}(x) \neq \ddot{\varepsilon}_{i+1}(y) \Leftrightarrow\left(\ddot{\varepsilon}_{i+1}(x)=+\infty \wedge \ddot{\varepsilon}_{i}(y)=0\right) \Rightarrow \ddot{\varepsilon}_{i+1}(y)>0 .
$$

- For $j=i-1$,

$$
\ddot{\varphi}_{i-1}(x) \neq \ddot{\varphi}_{i-1}(y) \Leftrightarrow\left(\ddot{\varphi}_{i-1}(y)=+\infty \wedge \ddot{\varphi}_{i}(x)=0\right) \Rightarrow \ddot{\varphi}_{i-1}(x)>0 .
$$

LQC3. If both $\ddot{e}_{i}(x)$ and $\ddot{e}_{j}(x)$ are defined, for $i \neq j$, then $\ddot{e}_{i} \ddot{e}_{j}(x)=\ddot{e}_{j} \ddot{e}_{i}(x) \neq \perp$ (and dual axiom for $\ddot{f}_{i}, \ddot{f}_{j}$.)

Local characterization of quasi-crystals

Theorem (Cain, Malheiro, Rodrigues, R. '23)
If \mathcal{Q} is a quasi-crystal of type A (not necessarily seminormal) satisfying the local axioms, and such that $\ddot{\varepsilon}_{i}(x) \neq+\infty$ and $\ddot{\varphi}_{i}(x) \neq+\infty$, for all $i \in I, x \in \mathcal{Q}$, then \mathcal{Q} is a weak Stembridge crystal (i.e. not necessarily seminormal).

Local characterization of quasi-crystals

Theorem (Cain, Malheiro, Rodrigues, R. '23)

If \mathcal{Q} is a quasi-crystal of type A (not necessarily seminormal) satisfying the local axioms, and such that $\ddot{\varepsilon}_{i}(x) \neq+\infty$ and $\ddot{\varphi}_{i}(x) \neq+\infty$, for all $i \in I, x \in \mathcal{Q}$, then \mathcal{Q} is a weak Stembridge crystal (i.e. not necessarily seminormal).

Theorem (Cain, Malheiro, Rodrigues, R. '23)

Let \mathcal{Q} be a connected component of a seminormal quasi-crystal graph of type A, weighted in $\mathbb{Z}_{\geq 0}^{n}$, satisfying the local axioms. Then, \mathcal{Q} has a unique highest weight element, whose weight is a composition.

Local characterization of quasi-crystals

Theorem (Cain, Malheiro, Rodrigues, R. '23)

If \mathcal{Q} is a quasi-crystal of type A (not necessarily seminormal) satisfying the local axioms, and such that $\ddot{\varepsilon}_{i}(x) \neq+\infty$ and $\ddot{\varphi}_{i}(x) \neq+\infty$, for all $i \in I, x \in \mathcal{Q}$, then \mathcal{Q} is a weak Stembridge crystal (i.e. not necessarily seminormal).

Theorem (Cain, Malheiro, Rodrigues, R. '23)

Let \mathcal{Q} be a connected component of a seminormal quasi-crystal graph of type A, weighted in $\mathbb{Z}_{\geq 0}^{n}$, satisfying the local axioms. Then, \mathcal{Q} has a unique highest weight element, whose weight is a composition.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

Let \mathcal{Q} and \mathcal{Q}^{\prime} be connected components of seminormal quasi-crystal graphs of type A satisfying the local axioms, with highest weight elements u and v. If $w t(u)=w t(v)$, then there exists a weight-preserving isomorphism between \mathcal{Q} and \mathcal{Q}^{\prime}.

Local characterization of quasi-crystals

Theorem (Cain, Malheiro, Rodrigues, R. '23)

Let \mathcal{Q} and \mathcal{Q}^{\prime} be seminormal quasi-crystal graphs satisfying the local axioms. Then, $\mathcal{Q} \ddot{\otimes} \mathcal{Q}^{\prime}$ is a seminormal quasi-crystal that satisfies the same axioms.

- The standard crystal \mathcal{B}_{n} satisfies the local axioms.
- In particular, the quasi-crystal of words satisfies the local axioms.
- As a consequence, every connected component of a seminormal quasi-crystal satisfying the local axioms is isomorphic a quasi-crystal of quasi-ribbon tableaux.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define ($\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}$) to have the same underlying set as \mathcal{C} and define:

$$
\ddot{\varepsilon}_{i}(x):= \begin{cases}\tilde{\varepsilon}_{i}(x) & \text { if } \tilde{\varepsilon}_{i}(x)=w t_{i+1}(x) \\ +\infty & \text { otherwise }\end{cases}
$$

and $\ddot{\varphi}_{i}(x):=\ddot{\varepsilon}_{i}(x)+\left\langle w t(x), \alpha_{i}\right\rangle$.

$$
\ddot{e}_{i}(x):= \begin{cases}\tilde{e}_{j}(x) & \text { if } \ddot{\varepsilon}_{i}(x) \neq+\infty \\ \perp & \text { otherwise }\end{cases}
$$

and $\ddot{f}_{i}(y):=x$ iff $\ddot{e}_{i}(x)=y$.

From crystals to quasi-crystals

Let $\left(\mathcal{C}, \tilde{f}_{i}, \tilde{e}_{i}, \tilde{\varepsilon}_{i}, \tilde{\varphi}_{i}\right)$ be a connected component of a Stembridge crystal, weighted in $\mathbb{Z}_{\geq 0}^{n}$, and define ($\mathcal{Q}, \ddot{f}_{i}, \ddot{e}_{i}, \ddot{\varepsilon}_{i}, \ddot{\varphi}_{i}$) to have the same underlying set as \mathcal{C} and define:

$$
\ddot{\varepsilon}_{i}(x):= \begin{cases}\tilde{\varepsilon}_{i}(x) & \text { if } \tilde{\varepsilon}_{i}(x)=w t_{i+1}(x) \\ +\infty & \text { otherwise }\end{cases}
$$

and $\ddot{\varphi}_{i}(x):=\ddot{\varepsilon}_{i}(x)+\left\langle w t(x), \alpha_{i}\right\rangle$.

$$
\ddot{e}_{i}(x):= \begin{cases}\tilde{e}_{i}(x) & \text { if } \ddot{\varepsilon}_{i}(x) \neq+\infty \\ \perp & \text { otherwise }\end{cases}
$$

and $\ddot{f}_{i}(y):=x$ iff $\ddot{e}_{i}(x)=y$.

Theorem (Cain, Malheiro, Rodrigues, R. '23)

\mathcal{Q} is a seminormal quasi-crystal that satisfies the local axioms.

From crystals to quasi-crystals

From crystals to quasi-crystals

From crystals to quasi-crystals

From crystals to quasi-crystals

From crystals to quasi-crystals

From crystals to quasi-crystals

This also illustrates $s_{2,1}=F_{2,1}+F_{1,2}$.

Some references

A．J．Cain，R．P．Guilherme，A．Malheiro＂Quasi－crystals for arbitrary root systems and associated generalizations of the hypoplactic monoid＂．arXiv：2301．00271．

国
A．J．Cain，A．Malheiro＂Crystallizing the hypoplactic monoid：from quasi－Kashiwara operators to the Robinson－Schensted－Knuth－type correspondence for quasi－ribbon tableaux＂，J．Algebr．Comb． 45 （2），475－524 （2017）．
囯
D．Krob，J．－Y．Thibon＂Noncommutative symmetric functions．IV：Quantum linear groups and Hecke Algebras at $q=0$＂，J．Algebr．Comb． 6 （4）， $339-376$ （1997）．

J．－C．Novelli＂On the hypoplactic monoid＂，Discrete Math．， 217 （1－3），315－336 （2000）．
国
J．R．Stembridge＂A local characterization of simply－laced crystals＂，Trans．Am． Math．Soc． 355 （12），4807－4823（2003）．

