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Motivation

Plactic monoid
[Lascoux, Schützenberger ’81]

▶ Young tableaux, Schensted
insertion

1 1 1 1
2 2
3
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bac ≡ bca, a < b ≤ c
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▶ Schur functions sλ.

Hypoplactic monoid
[Krob, Thibon ’97], [Novelli ’00]

▶ Quasi-ribbon tableaux,
Krob–Thibon insertion
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▶ Knuth + quartic relations

cadb ≡ acbd , a ≤ b < c ≤ d

bdac ≡ dbca, a < b ≤ c < d
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▶ Fundamental quasisymmetric
functions Fα.
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Crystals

Definition

A crystal of type An−1 is a non-empty set C together with maps

ẽi , f̃i : C −→ C ⊔ {⊥} (Kashiwara operators)

ε̃i , φ̃i : C −→ Z ⊔ {−∞} (length functions)

wt : C −→ Zn
(weight function)

for i ∈ I := {1, . . . , n − 1}, satisfying the following:

C1. For any x , y ∈ C, ẽi (x) = y iff x = f̃i (y), and in that case

wt(y) = wt(x) + αi , ε̃i (y) = ε̃i (x) + 1, φ̃i (y) = φ̃i (x)− 1

C2. φ̃i (x) = ε̃i (x) + ⟨wt(x), αi ⟩
where αi = (0, . . . , 0, 1,−1, 0, . . . , 0).

(This definition is generalized for other Cartan types)
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Crystals
Kashiwara operators

▶ An = {1 < · · · < n}.
▶ A word w = w1 · · ·wk ∈ A∗

n has an i-inversion, if (i + 1)i occurs as
a subword of w .

1 2 3 1 1 3 2 4

▶ To compute f̃i (w) and ẽi (w) on a word w ∈ A∗
n:

▶ consider the subword with only symbols i and i + 1, replace each i
with ) and each i + 1 with (.

▶ cancel all pairs ( ), until there are no pairs left.
▶ ẽi changes the leftmost ( to ), if possible; if not, it is ⊥.
▶ f̃i changes the rightmost ) to (, if possible; if not, it is ⊥.
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ẽ1(12311324) = 12311314

f̃1(12311324) =



4/19

Crystals
Kashiwara operators

▶ An = {1 < · · · < n}.
▶ A word w = w1 · · ·wk ∈ A∗

n has an i-inversion, if (i + 1)i occurs as
a subword of w .

1 2 3 1 1 3 2 4

▶ To compute f̃i (w) and ẽi (w) on a word w ∈ A∗
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Crystals

▶ A crystal is seminormal if, for all i ∈ I and x ∈ C,

ε̃i (x) = max{k : ẽi (x)
k ̸= ⊥}, φ̃i (x) = max{k : f̃i (x)

k ̸= ⊥}

▶ The crystal graph associated to a crystal C is the directed weighted

graph where x
i−→ y iff f̃i (x) = y .
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Stembridge crystals

▶ A Stembridge crystal is a seminormal crystal of simply-laced type
that satisfies some local axioms [Stembridge ’03].

▶ These are the crystal graphs that correspond to representations of
Lie algebras.

▶ Nice properties on the connected components:
▶ Uniqueness of highest weight element (source vertex).
▶ All vertices can be reached from the highest weight element.
▶ In type A, the highest weight is dominant and, if it is a partition, the

character of the component is a Schur function sλ.
▶ All components whose highest weight elements have the same weight

are isomorphic.
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Stembridge crystals
Local axioms

S1. If ẽi (x) = y , then ε̃j(y) is equal
to ε̃j(x) or ε̃j(x) + 1 (the second

case is possible only if |i − j | = 1).

S2. If ẽi (x) = y and ẽj(x) = z , and
ε̃i (z) = ε̃i (x) then

ẽi ẽj(x) = ẽj ẽi (x) ̸= ⊥.

• •

•
0

(and dual axioms for f̃i , f̃j)

S3. If ẽi (x) = y and ẽj(x) = z , and
ε̃i (z) = ε̃i (x) + 1 and
ε̃j(y) = ε̃j(x) + 1 then

ẽi ẽj
2ẽi (x) = ẽj ẽi

2ẽj(x) ̸= ⊥.

• •

•
1 1
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Quasi-crystals

▶ Quasi-crystals were first introduced by Cain and Malheiro (2017), to
provide another characterization of the hypoplactic monoid of type
A, where u ≡hypo v iff u and v are in the same position of
isomorphic quasi-crystal components.

▶ Each connected component has a unique highest weight element,
and is isomorphic to a quasi-crystal of quasi-ribbon tableaux, which
are indexed by compositions.

▶ The characters are fundamental quasisymmetric functions Fα.

▶ Noting the decomposition of Schur functions into fundamental
quasi-symmetric functions, Maas-Gariépy (2023) independently
introduced quasi-crystals, as subgraphs of a connected component of
a crystal graph.

▶ Cain, Guilherme and Malheiro (2023) recently provided a definition
of abstract quasi-crystals for other Cartan types.
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Quasi-crystals

Definition (Cain, Guilherme, Malheiro ’23)

A quasi-crystal of type An−1 is a non-empty set Q together with maps

ëi , f̈i : Q −→ Q⊔ {⊥} (quasi-Kashiwara operators)

ε̈i , φ̈i : Q −→ Z ⊔ {−∞,+∞}
wt : Q −→ Zn

for i ∈ {1, . . . , n − 1}, satisfying the following:

QC1. For any x , y ∈ C, ëi (x) = y iff x = f̈i (y), and in that case

wt(y) = wt(x) + αi , ε̈i (y) = ε̈i (x) + 1, φ̈i (y) = φ̈i (x)− 1

QC2. φ̈i (x) = ε̈i (x) + ⟨wt(x), αi ⟩
QC3. If ε̈i (x) = +∞, then ëi (x) = f̈i (x) = ⊥.
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Quasi-crystals

▶ A crystal is a quasi-crystal Q where ε̈i (x) ̸= +∞ and φ̈i (x) ̸= +∞,
for all i ∈ I , x ∈ Q.

▶ A quasi-crystal is seminormal if, for all i ∈ I and x ∈ Q,

ε̃i (x) = max{k : ẽi (x)
k ̸= ⊥}

φ̃i (x) = max{k : f̃i (x)
k ̸= ⊥}

whenever ε̈i (x) ̸= +∞.

▶ A crystal is seminormal (as a crystal) iff it is seminormal as a
quasi-crystal.

▶ For the quasi-crystal of words:
▶ ε̈i (w) = +∞ iff w has an i-inversion.
▶ ëi (w) coincides with ẽi (w) if w has no i-inversions, otherwise

ëi (w) = ⊥.
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Quasi-crystals

The quasi-crystal graph associated to a quasi-crystal Q is the directed
weighted graph where:

▶ x
i−→ y iff f̈i (x) = y .

▶ x has an i-labelled loop if ε̈i (x) = +∞
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Quasi-tensor product

Cain, Guilherme, and Malheiro (2023) introduced a notion of
quasi-tensor product of seminormal quasi-crystals, denoted Q⊗̈Q′,
which has Q×Q′ as underlying set and maps:

▶ wt(x ⊗̈ x ′) = wt(x) + wt(x ′).

▶ If φ̈i (x) > 0 and ε̈i (x
′) > 0, ëi (x ⊗̈ x ′) = f̈i (x ⊗̈ x ′) = ⊥ and

ε̈i (x ⊗̈ x ′) = φ̈i (x ⊗̈ x ′) = +∞, otherwise,

ëi (x ⊗̈ x ′) =

{
ëi (x) ⊗̈ x ′ if φ̈i (x) ≥ ε̈i (x

′)

x ⊗̈ ëi (x
′) if φ̈i (x) < ε̈i (x

′)

f̈i (x ⊗̈ x ′) =

{
f̈i (x) ⊗̈ x ′ if φ̈i (x) > ε̈i (x

′)

x ⊗̈ f̈i (x
′) if φ̈i (x) ≤ ε̈i (x

′)

ε̈i (x) = max{ε̈i (x), ε̈i (x ′)− ⟨wt(x), αi ⟩}
φ̈i (x) = max{φ̈i (x) + ⟨wt(x ′), αi ⟩, φ̈i (x

′)}

(With this convention x ⊗̈ y is identified with the word yx .)
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Quasi-tensor product

▶ Bn is the standard crystal of type An−1:

1 2 3 · · · n
1 2 3 n − 1

▶ Similarly to the case of the plactic monoid, each component of the
hypoplactic monoid is isomorphic to some B ⊗̈ k

n .

1

2

3

B3

1 ⊗̈ 1

2 ⊗̈ 1

2 ⊗̈ 2 3 ⊗̈ 1

3 ⊗̈ 2

3 ⊗̈ 3

B3 ⊗̈ B3

1 ⊗̈ 2

1 ⊗̈ 3

2 ⊗̈ 3
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▶ Bn is the standard crystal of type An−1:

1 2 3 · · · n
1 2 3 n − 1

▶ Similarly to the case of the plactic monoid, each component of the
hypoplactic monoid is isomorphic to some B ⊗̈ k

n .

1

2

3

B3

1 ⊗̈ 1

2 ⊗̈ 1

2 ⊗̈ 2 3 ⊗̈ 1

3 ⊗̈ 2

3 ⊗̈ 3

B3 ⊗̈ B3

1 ⊗̈ 2

1 ⊗̈ 3

2 ⊗̈ 3
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Local characterization of quasi-crystals
Local quasi-crystal axioms

LQC1. ε̈i (x) = 0 iff φ̈i+1(x) = 0, for i ∈ {1, . . . , n − 2}.
LQC2. If ëi (x) = y , then:

▶ For |i − j | > 1, ε̈j(x) = ε̈j(y).
▶ For j = i + 1,

ε̈i+1(x) ̸= ε̈i+1(y) ⇔
(
ε̈i+1(x) = +∞∧ ε̈i (y) = 0

)
⇒ ε̈i+1(y) > 0.

▶ For j = i − 1,

φ̈i−1(x) ̸= φ̈i−1(y) ⇔
(
φ̈i−1(y) = +∞∧ φ̈i (x) = 0

)
⇒ φ̈i−1(x) > 0.

LQC3. If both ëi (x) and ëj(x) are defined, for i ̸= j , then
ëi ëj(x) = ëj ëi (x) ̸= ⊥ (and dual axiom for f̈i , f̈j .)

• •

•
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Local characterization of quasi-crystals

Theorem (Cain, Malheiro, Rodrigues, R. ’23)

If Q is a quasi-crystal of type A (not necessarily seminormal) satisfying
the local axioms, and such that ε̈i (x) ̸= +∞ and φ̈i (x) ̸= +∞, for all
i ∈ I , x ∈ Q, then Q is a weak Stembridge crystal (i.e. not necessarily
seminormal).

Theorem (Cain, Malheiro, Rodrigues, R. ’23)

Let Q be a connected component of a seminormal quasi-crystal graph of
type A, weighted in Zn

≥0, satisfying the local axioms. Then, Q has a
unique highest weight element, whose weight is a composition.

Theorem (Cain, Malheiro, Rodrigues, R. ’23)

Let Q and Q′ be connected components of seminormal quasi-crystal
graphs of type A satisfying the local axioms, with highest weight
elements u and v . If wt(u) = wt(v), then there exists a
weight-preserving isomorphism between Q and Q′.
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Local characterization of quasi-crystals

Theorem (Cain, Malheiro, Rodrigues, R. ’23)

Let Q and Q′ be seminormal quasi-crystal graphs satisfying the local
axioms. Then, Q⊗̈Q′ is a seminormal quasi-crystal that satisfies the
same axioms.

▶ The standard crystal Bn satisfies the local axioms.

▶ In particular, the quasi-crystal of words satisfies the local axioms.

▶ As a consequence, every connected component of a seminormal
quasi-crystal satisfying the local axioms is isomorphic a quasi-crystal
of quasi-ribbon tableaux.
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From crystals to quasi-crystals

Let (C, f̃i , ẽi , ε̃i , φ̃i ) be a connected component of a Stembridge crystal,
weighted in Zn

≥0, and define (Q, f̈i , ëi , ε̈i , φ̈i ) to have the same underlying
set as C and define:

ε̈i (x) :=

{
ε̃i (x) if ε̃i (x) = wti+1(x)

+∞ otherwise

and φ̈i (x) := ε̈i (x) + ⟨wt(x), αi ⟩.

ëi (x) :=

{
ẽi (x) if ε̈i (x) ̸= +∞
⊥ otherwise

and f̈i (y) := x iff ëi (x) = y .

Theorem (Cain, Malheiro, Rodrigues, R. ’23)

Q is a seminormal quasi-crystal that satisfies the local axioms.
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From crystals to quasi-crystals
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This also illustrates s2,1 = F2,1 + F1,2.
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