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Introduction

In [1] Ceballos and Pons defined s-decreasing
trees where s is a composition and the s-weak
order over these objects. They conjectured that
the resulting lattice could be realized as the 1-
skeleton of a polyhedral subdivision of a poly-
tope.

In our work we respond affirmatively to their
conjecture and present several realizations us-
ing the theory of flows on graphs. This poster
presents the combinatorial aspect of our re-
sponse. The geometric aspect will be presented
by Eva Philippe on Wednesaday.

s-Weak Order

An s-decreasing tree is a rooted tree on n nodes
where each node labelled i has s; + 1 children
and all children have labels smaller than 1.

They are in bijection with s-Stirling Permutations
which are multipermutations on [n] where | ap-
pears s; times and avoid the pattern 121.
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Figure 1. An (1, 3, 3, 2, 2)-decreasing tree and
its (1, 3, 3, 2, 2)-Stirling permutation.

Given a graph G = ({vy, ..., Vas1 }, E) with edges
oriented v; — Vv; if | < j and a vector a = (&;)
such that ) : a; = 0, a flow of G with netflow a is
a vector (fe)ece € RS, such that for all j € [0, n]

Zfe+a,-=2fe.
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The flow polytope of G is
Fo(a) = {(fe)eeg flow of G with netflow a} c RE

A framing < on G (a linear order on the in-edges
and out-edges of each vertex) induces an order
on the routes of G. The maximal set of routes
that do not "cross each other" are called cliques.
These cligues encode a regular triangulation of
Fe(1,0,...,0,—1) with respect to < called the
DKK triangulation.

The simplices of this triangulation are in bi-
jection with the integer flows of F5(d) where
d; = indeg(v;) — 1 and dp.1 = — ), d;. [2]

Theorem [GMPTVY]

The s-decreasing trees are in bijection with
the simplices of the DKK triangulation of
Fe(1,0,...,0,—1).

Moreover, two simplices are adjacent if and only
If there is a cover relation in the s-weak order.
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s-graph

Given s = (s4,...,Sn), the framed multigraph (Gs, <) consists of vertices {v,..., Vv,} and
an edge (vp, v¢) and for all 7 € [1,n — 1], two edges (v, vj.1) and s,,1_; — 1 edges (v, Vi,1). The
framing < is exemplified below.

Figure 2. The Graph G(1,3,3,2,2).

Bijections

» s-decreasing trees are in bijection with integer flows of F5(d) where d; = indeg(v;) — 1 and
dn+1 - Z,’ di-
Sketch. Sums of cardinalities of inversion sets determine integer flows.

> s-Stirling permutations correspond to cliques of the integer flows in F5(1,0,...,0,—1).
Sketch. Starting with an exceptional route, the framing order and the flip of partial routes give the
corresponding s-Stirling permutation.

Realization

Figure. The (1,2, 1)-permutahedron as the dual of the DKK triangulation of ¢, ,,(1,0,0,—1).
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Enumeration "Corollary™

Using the Lidskii lattice point formulas of flow polytopes, we get that the number of elements of the
s-weak order decomposes as
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where all sums are over weak compositions | = (j1, jo, ..., Jn—1) Of n— 1 that dominate (1,1,...,1). This
formula can also be described combinatorially using purely s-decreasing trees.

Other realizations (more information on Wednesday!)

» Using the Cayley trick we get a more controlled realization using sums of hypercubes.

» Another realization with s-decreasing trees indexing vertices can be obtained using tropical
hypersurfaces.
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