Prüfung zur Vorlesung

Geometrie und Lineare Algebra für das Lehramt

Sommersemester 2018

VO 250039 (Stefan Haller)

5. Termin am 22. März 2019, 9:45 Uhr (HS 14) 2-stündig

Name:			
Matrikelnummer:			
□ 1. Antritt	□ 2. Antritt	□ 3. Antritt	\square 4. Antritt

- (a) Formuliere den Seiten-Seiten-Seiten (SSS) Kongruenzsatz. (2P)
- (b) Beweise den Seiten-Seiten-Seiten Kongruenzsatz. (8P)

- (a) Wann werden zwei Geraden parallel genannt? Gib eine präzise Definition. (2P)
- (b) Formuliere das Parallelenaxiom. (2P)
- (c) Zeige, dass die Winkelsumme in jedem Dreieck 2R (zwei Rechte, 180°) beträgt. (6P)

- (a) Formuliere (1P) und beweise (3P) die Dreiecksungleichung für Dreiecke in der Ebene.
- (b) Formuliere (1P) und beweise (3P) die Dreiecksungleichung für Vektoren in \mathbb{R}^2 .
- (c) Erkläre, wie die beiden Dreiecksungleichungen in (a) und (b) zusammenhängen. (2P)

- (a) Gib eine Definition der Winkelfunktionen Sinus und Kosinus. (2P)
- (b) Formuliere den Kosinussatz. (2P)
- (c) Beweise den Kosinussatz. (6P)

Bezeichne $\varphi\colon\mathbb{R}^2\to\mathbb{R}^2,\,\varphi(v):=Av$ die lineare Abbildung zur Matrix

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}.$$

- (a) Berechne A^2 . (2P) (b) Bestimme reelle Zahlen $a \neq 0, b \neq 0$ und $c \neq 0$, sodass

$$aI + bA + cA^2 = 0.$$

Dabei bezeichnet I die 2×2 Einheitsmatrix. (2P)

- (c) Bestimme $\varphi \begin{pmatrix} 3 \\ 4 \end{pmatrix}$. (2P) (d) Erkläre, warum φ invertierbar ist. (2P)
- (e) Bestimme $\varphi^{-1} \begin{pmatrix} 3 \\ 6 \end{pmatrix}$. (2P)

- (a) Was verstehen wir unter dem Rang einer Matrix? Gib eine präzise Definition. (2P)
- (b) Warum kann es keine 5×7 Matrix mit Rang 6 geben? (1P)
- (c) Bestimme den Rang folgender Matrix (3P)

$$A = \begin{pmatrix} 1 & 2 & 4 & 4 \\ 2 & 4 & 9 & 9 \\ 3 & 6 & 12 & 13 \end{pmatrix}.$$

- (d) Wann wird ein System von Vektoren v_1, \ldots, v_k in \mathbb{R}^n linear unabhängig genannt? Gib eine präzise Definition. (2P)
- (e) Sind die Spalten von A linear unabhängig? (1P)
- (f) Ist A invertierbar? (1P)

- (a) Was verstehen wir unter den Eigenwerten und Eigenvektoren einer linearen Abbildung $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$? Gib eine präzise Definition. (2P)
- (b) Bestimme eine Basis von \mathbb{R}^3 , die aus Eigenvektoren der Matrix

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

besteht. (6P)

(c) Gib zwei verschiedene (2×2) -Matrizen an, die beide die Eigenwerte 5 und 6 haben. (2P)

Bezeichne $L\subseteq\mathbb{R}^5$ den Lösungsraum des Gleichungssystems:

- (a) Beschreibe L durch eine Parameterdarstellung. (6P)
- (b) Gib ein minimales lineares Gleichungssystem für \hat{L} an, d.h. eines, das aus möglichst wenigen linearen Gleichungen besteht. (1P)
- (c) Gib eine Basis des Lösungsraums des assozierten homogenen Gleichungssystems an. (1P)
- (d) Gib ein System von drei linearen Gleichungen in den drei Variablen x, y, z an, dessen

Lösungsraum nur aus dem Punkt
$$\begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
 besteht. **(2P)**

Aufgabe	Punkte
1	
2	
3	
4	
5	
6	
7	
8	
gesamt	

Note: **5 4 3 2 1** Punkte: 0–39 40–49 50–59 60–69 70–80