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I. Fredholm operators and their index

I.1. Functional analytic preliminaries. In this section we recall some
basic functional analytic results, which will be used below. We will consider
Banach and Hilbert spaces over a field K which is either K = R or K = C. For
introductions to functional analysis we refer to [21], [36] or [43].

Recall that a map between topological spaces is called open if it maps open
subsets to open subsets.

I.1.1. Theorem (Open mapping theorem). Every surjective bounded linear
operator between Banach spaces is open.

As an immediate consequence we obtain:

I.1.2. Corollary (Bounded inverse). If A : E → F is a bijective bounded
linear operator between Banach spaces, then the inverse operator, A−1 : F → E,
is bounded too.

I.1.3. Corollary. Suppose A : E → F is a bounded linear operator between
Banach spaces with finite dimensional cokernel. Then img(A) is closed in F .

Proof. W.l.o.g. A may be assumed to be injective. Indeed, ker(A) is a
closed subspace of E, hence E/ ker(A) is a Banach space and A induces an
injective continuous operator E/ ker(A) → F with the same image as A. Since
the cokernel of A is finite dimensional, there exists a finite dimensional subspace
F0 in F which is complementary to img(A). Then E ⊕F0 is a Banach space and

Â : E ⊕ F0 → F, Â(x, y) := A(x) + y,

is a bijective continuous operator. According to the open mapping theorem, Â is
a homeomorphism. Since E is closed in E⊕F0, we conclude that img(A) = Â(E)
is closed in F . �

I.1.4. Theorem (Hahn–Banach). Let E0 be a linear subspace in a normed
vector space E, and suppose A0 : E0 → K is continuous. Then there exists a
bounded linear extension, A : E → K, A|E0 = A0, with the same norm as A0.

Recall that the dual space of a Banach space E is the Banach space of bounded
linear functionals, E∗, equipped with the operator norm topology. For a bounded
linear operator A : E → F , we let At : F ∗ → E∗, At(α) := α ◦A, denote the dual
(transposed) operator. In view of ‖α ◦ A‖ ≤ ‖α‖‖A‖, the transposed operator is
well defined and bounded.

I.1.5. Corollary. Let E and F be two Banach spaces, and suppose A : E →
F is a bounded linear operator with closed image. Then img(At) is closed in E∗,
and there are natural isomorphisms of Banach spaces,

ker(At) = coker(A)∗ and coker(At) = ker(A)∗.
3
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Proof. Consider the following exact sequence of bounded linear operators
between Banach spaces:

0→ ker(A)→ E
A−→ F → coker(A)→ 0.

Using the Hahn–Banach theorem, and the open mapping theorem, we conclude
that the dual sequence,

0← ker(A)∗ ← E∗
At←− F ∗ ← coker(A)∗ ← 0,

is exact too, see Exercise I.1.9. Consequently, img(At) is closed in E∗, and we
obtain bijective bounded linear operators,

ker(A)∗
∼=←− coker(At) and ker(At)

∼=←− coker(A)∗.

By the open mapping theorem these are isomorphisms of Banach spaces. �

Recall that a linear map P : E → E is called projector or idempotent iff
P 2 = P . In this case 1 − P is a projector too, (1 − P )2 = 1 − 2P + P 2 =
1− P , which will be refered to as the complementary projector to P . Note that
ker(P ) = img(1− P ) and img(P ) = ker(1− P ). Moreover, we have a direct sum
decomposition E = img(P )⊕ker(P ). If E is a Banach space and P is a bounded
linear projector, then img(P ) = ker(1−P ) and ker(P ) are closed subspaces, and
we obtain a direct sum decomposition of Banach spaces, E = img(P ) ⊕ ker(P ).
Conversely, suppose E0 and E1 are complementary closed subspaces of E. Then
the open mapping theorem shows that E = E0 ⊕ E1 is a direct sum of Banach
spaces, and the projection onto the first factor provides a bounded linear projector
with img(P ) = E0 and ker(P ) = E1.

Note, however, that a Banach space may have closed subspaces which do not
admit a complementary subspace. In a Hilbert space, the orthogonal complement
provides a complement to every closed subspace. In this case the associated
orthogonal projectors are even selfadjoint, P ∗ = P = P 2.

I.1.6. Corollary. Let E0 be a subspace of a normed vector space E so that

(a) E0 is finite dimensional, or
(b) E0 is closed and has finite codimension.

Then there exists a bounded projector, P : E → E, with img(P ) = E0. In par-
ticular, E0 and ker(P ) are complementary closed subspaces, and we have a direct
sum decomposition, E = E0 ⊕ ker(P ).

Proof. Suppose first that E0 is finite dimensional. Choose a basis e1, . . . , en
of E0 and let ε1, . . . , εn denote the dual base. According to the Hahn–Banach
theorem, the (bounded) functionals εi : E0 → K can be extended to bounded
linear functionals ε̃i : E → K. Then

P : E → E, P (x) := ε̃1(x)e1 + · · ·+ ε̃n(x)en,

is a bounded linear operator with img(P ) = E0 and P |E0 = idE0 , whence P is
the desired projector.
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Let us now turn to the case where E0 is assumed to be a closed subspace with
finite codimension.1 Then, E/E0 is a finite dimensional normed vector space and
the associated canonical projection, π : E → E/E0, is bounded and onto. Let
σ : E/E0 → E be any linear right inverse, πσ = idE/E0 . Note that σ is bounded,
as is any linear map from a finite dimensional space into a normed space. Thus,
Q : E → E, Q := σπ, is a bounded linear projector, Q2 = σπσπ = σπ = Q,
and ker(Q) = ker(π) = E0. The complementary projector, P := 1 − Q, has the
desired property, img(P ) = E0. �

If E and F are Banach spaces, we will write B(E,F ) for the Banach space of
bounded linear operators from E to F , equipped with the operator norm topology,
and we will use the notation B(E) := B(E,E) for the bounded operators on E.
Moreover, we let G(E,F ) denote the set of invertible bounded operators, and
write G(E) := G(E,E) for the group of invertible bounded operators on E.

I.1.7. Theorem. If E and F are two Banach spaces, then G(E,F ) is an
open subset of B(E,F ) and the inversion G(E,F ) → G(F,E), A 7→ A−1, is
continuous with respect to the operator norm topology. Particularly, G(E) is a
topological group and an open subset of B(E).

Proof. Choose a norm generating the Banach space topology on E. Recall
that the associated operator norm on B(E) satisfies ‖AB‖ ≤ ‖A‖‖B‖, A,B ∈
B(E). Hence, the Neumann series

∑∞
k=0 A

k converges absolutely in the operator
norm topology, for all A ∈ B(E) with ‖A‖ < 1. For such A, we clearly have

(idE −A)
∑∞

k=0 A
k = idE =

(∑∞
k=0A

k
)
(idE −A),

whence idE −A is invertible. This shows that U := {A ∈ B(E) : ‖ idE −A‖ < 1}
is an open neighborhood of the identity in B(E), consisting of invertible operators.
Since the convergence is uniform on {A ∈ B(E) : ‖ idE −A‖ ≤ ρ}, for every ρ < 1,
the inverse, A−1 =

∑∞
k=0(idE −A)k, depends continuously on A ∈ U .

For the general case let B : E → F be an invertible bounded linear operator.
Then ψ : B(E)→ B(E,F ), ψ(A) := BA, is a homeomorphism, and A is invertible
iff ψ(A) is. We conclude that ψ(U) is an open neighborhood of B consisting of
invertible operators. In view of the relation ψ(A)−1 = A−1B−1, the inverse is
continuous on ψ(U). �

Recall that a bounded linear operator between Banach spaces, K : E → F , is
called compact if it satisfies the following equivalent2 conditions:

(a) K maps bounded subsets of E to precompact subsets in F .
(b) K maps the unit ball to a precompact subset in F .
(c) Every bounded sequence xn ∈ E admits a subsequence, xni , for which Kxni

is convergent in F .

1This part of the proof is entirely elementary and does not use the Hahn–Banach theorem.
2The equivalence of these statements follows at once from the fact that a subset in a metric

space is compact iff it is sequentially compact.
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We let K(E,F ) denote the set of compact operators from E to F and write
K(E) := K(E,E) for the set of compact operators on E.

I.1.8. Theorem. If E, E ′, F , F ′ are Banach spaces, then:

(a) K(E,F ) is a closed linear subspace of B(E,F ).
(b) If A ∈ B(E,F ) and K ∈ K(F, F ′), then KA ∈ K(E,F ′).
(c) If A ∈ B(E,F ) and K ∈ K(E ′, E), then AK ∈ K(E ′, F ).
(d) If K ∈ K(E,F ), then Kt ∈ K(F ∗, E∗).
(e) If E and F are Hilbert spaces and K ∈ K(E,F ), then K∗ ∈ K(F,E).
(f) The identical map, id : E → E, is compact iff E is finite dimensional.
(g) A bounded projector is compact iff it has finite rank.
(h) If A ∈ B(E,F ) has finite rank, then A is compact.
(i) If E and F are Hilbert spaces, then K(E,F ) is the norm closure of the oper-

ators with finite rank.

In particular, K(E) is a closed two sided ideal in B(E). If E is a Hilbert space,
then this ideal is invariant under ∗.

I.1.9. Exercise. Suppose

0→ E1
A1−→ E2

A2−→ · · · → Ek−1
Ak−1−−−→ Ek → 0

is an exact sequence of bounded linear operators between Banach spaces. Show
that the dual sequence

0← E∗1
At1←− E∗2

At2←− · · · ← E∗k−1

Atk−1←−−− E∗k ← 0

is exact too.

I.2. Fredholm operators. If A : E → F is a linear map we let ker(A) :=
A−1(0) = {x ∈ E : Ax = 0} denote its kernel, img(A) := A(E) = {Ax : x ∈ E}
its image or range, and coker(A) := F/ img(A) its cokernel.

I.2.1. Definition (Fredholm operator). A continuous linear operator be-
tween Banach spaces, A : E → F , is called Fredholm operator iff ker(A) and
coker(A) are both finite dimensional. In this case

ind(A) := dim(ker(A))− dim(coker(A))

is called the Fredholm index of A. The set of all Fredholm operators from E to
F will be denoted by F(E,F ). We also introduce the notation F(E) := F(E,E)
for the Fredholm operators on a Banach space E.

From Corollary I.1.3 we immediately obtain:

I.2.2. Proposition. If A : E → F is a Fredholm operator between Banach
spaces, then img(A) is a closed subspace of F .
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I.2.3. Example. If A : E → F is a linear map between finite dimensional
vector spaces, then the dimension formulas dim(ker(A))+dim(img(A)) = dim(E)
and dim(coker(A)) = dim(F )− dim(img(A)) imply

ind(A) = dim(E)− dim(F ).

Note that this depends on the dimensions of the spaces involved, but not on A.

I.2.4. Example. Every invertible bounded linear operator between Banach
spaces, A : E → F , is Fredholm with ind(A) = 0.

I.2.5. Example. For every n ∈ Z, the shift operator,

Sn : L2(N)→ L2(N), (Snx)k :=

{
xk+n if k + n ∈ N, and

0 otherwise,

is Fredholm with ind(Sn) = n.

I.2.6. Example. If T : E → E is a bounded linear operator with finite rank
on a Banach space E, then id−T is Fredholm. Indeed, this follows from the
obvious inclusions ker(id−T ) ⊆ img(T ) and img(id−T ) ⊇ ker(T ). Note here
that ker(T ) has finite codimension in view of E/ ker(T ) ∼= img(T ). It is possible
to show ind(id−T ) = 0 by elementary means, we will give a more elegant proof
below, see also Exercise I.2.16.

I.2.7. Proposition. Let A : E1 → E2 and B : E2 → E3 be bounded linear
operators between Banach spaces and consider their composition, BA : E1 → E3.
If two of the three operators A, B, BA are Fredholm, then so is the third, and

ind(BA) = ind(A) + ind(B).

Proof. We proceed as in [19, Proposition 2.1.5]. One readily verifies that
the following is an exact sequence of vector spaces,3

0→ ker(A)→ ker(BA)
A−→ ker(B)→ coker(A)

B−→ coker(BA)→ coker(B)→ 0,

3A sequence of linear maps between vector spaces, U
ϕ−→ V

ψ−→W , is said to be exact at V
iff img(ϕ) = ker(ψ). A sequence of linear maps between vector spaces,

V0 → V1 → V2 → V3 → · · · → Vk → Vk+1,

is called exact, if it is exact at each of the spaces V1, . . . , Vk, i.e. at every space involving an
outgoing and an incoming map. In particular, the composition of any two consecutive arrows
vanishes. For instance, the sequence

0→ U
ϕ−→ V

ψ−→W → 0

is exact if and only if ϕ is injective, img(ϕ) = ker(ψ), and ψ is onto. A sequence of this type is
called a short exact sequence. In this case U can be regarded as a subspace of V via ϕ, and ψ

induces an isomorphism V/ img(ϕ) ∼= W . A sequence of the form 0→ V
ψ−→W → 0 is exact if

and only if ψ is an isomorphism.
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where all unlabeled arrows are induced by identical maps.4 This implies that
if two of the three operators A, B, BA are Fredholm, then so is the third, cf.
Exercise I.2.14. Moreover, as the alternating sum of the dimensions of the spaces
occurring in the exact sequence has to vanish, cf. Exercise I.2.15, we obtain the
desired formula relating the indexes. �

I.2.8. Proposition. Suppose A : E → F is a Fredholm operator between
Banach spaces. Then the transposed, At : F ∗ → E∗, is Fredholm with index

ind(At) = − ind(A).

If, moreover, E and F are Hilbert spaces, then the adjoint, A∗ : F → E, is
Fredholm too, and

ind(A∗) = − ind(A).

Proof. The first assertion follows immediately from Corollary I.1.5. For the
second statement, suppose E and F are Hilbert spaces and let [ : F → F ∗ and
] : E∗ → E denote the antilinear isomorphisms provided by the inner product.
Recall that the adjoint is related to the transposed via A∗ = ] ◦ At ◦ [. Hence [
induces an antilinear isomorphism ker(A∗) ∼= ker(At), and ] induces an antilinear
isomorphism coker(A∗) ∼= coker(At). Thus, ind(A∗) = ind(At), and the second
statement follows from the first.5 �

I.2.9. Proposition. If A : E → F is a Fredholm operator, then there exist
bounded (finite rank) projectors P : E → E and Q : F → F such that img(P ) =
ker(A) and ker(Q) = img(A).6 If P and Q are as above, then A has the form

E = img(P )⊕ ker(P )
A=
(

0 0
0 A0

)
−−−−−−→ img(Q)⊕ ker(Q) = F,

where A0 = A|ker(P ) : ker(P ) → ker(Q) is invertible. Moreover, there exists a
Fredholm operator B : F → E such that

BA = id−P and AB = id−Q.
In particular, A is invertible up to bounded operators of finite rank.

4This is the long exact sequence associated with the following commutative diagram with
exact rows (short exact sequence of complexes):

0 // E1

(
id
A

)
//

A

��

E1 ⊕ E2

(A,− id) //
(
BA 0
0 id

)
��

E2
//

B

��

0

0 // E2

(
B
id

)
// E3 ⊕ E2

(id,−B) // E3
// 0

This, and much more homological algebra, can be found in [20] and many textbooks on algebraic
topology, see for instance [14], [17], [28], or [39].

5Alternatively, one can derive the second assertion from ker(A∗) = img(A)⊥ ∼= coker(A)
and coker(A∗) = E/ img(A∗) = E/ ker(A)⊥ ∼= ker(A).

6If E and F are Hilbert spaces we may take P and Q to be the orthogonal projections onto
ker(A) and img(A)⊥, respectively.
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Proof. The first assertion follows from Corollary I.1.6 and Proposition I.2.2.
By construction, A0 = A|ker(P ) : ker(P ) → ker(Q) is a bijective bounded linear
operator between Banach spaces. According to the open mapping theorem, see
Corollary I.1.2, its inverse, B0 := A−1

0 : ker(Q)→ ker(P ), is bounded too. Hence,

F = img(Q)⊕ ker(Q)
B:=

(
0 0
0 B0

)
−−−−−−−→ img(P )⊕ ker(P ) = E,

defines a bounded operator, B : F → E. By construction, BA = id−P and
AB = id−Q, see Exercise I.2.17. �

I.2.10. Proposition. If E and F are two Banach spaces, then F(E,F ) is
an open subset of B(E,F ). Moreover, the Fredholm index, ind: F(E,F )→ Z, is
locally constant, whence continuous.

Proof. We proceed as in [19, Proposition 2.1.6]. Let J : E0 → E and
Q : F → F0 be two Fredholm operators, and consider the continuous map

ψ : B(E,F )→ B(E0, F0), ψ(A) := QAJ.

From Proposition I.2.7 we know that A is Fredholm iff ψ(A) is Fredholm, whence

F(E,F ) = ψ−1
(
F(E0, F0)

)
.

Moreover, for all A ∈ F(E,F ), we have

ind(A) = ind(ψ(A))−
(
ind(J) + ind(Q)

)
.

Recall that the set of invertible operators, G(E0, F0), is open in B(E0, F0), see
Theorem I.1.7. Moreover, G(E0, F0) ⊆ F(E0, F0), and every element of G(E0, F0)
has index zero, see Example I.2.4. We conclude that ψ−1(G(E0, F0)) is an open
subset of B(E,F ) consisting of Fredholm operators which all have the same index,
namely −(ind(J) + ind(Q)).

It remains to observe, that given any A ∈ F(E,F ), we can find J and Q as
above, such that ψ(A) is invertible. In fact we may choose J : E0 → E to be
the inclusion of a closed subspace complementary to ker(A), and let Q : F →
F/F1 =: F0 denote the canonical projection where F1 is a (closed) subspace
complementary to img(A), see Proposition I.2.9. �

I.2.11. Example. Using the continuity of the index, it is now easy to show
ind(id−T ) = 0, for the operator considered in Example I.2.6. Indeed, t 7→ id−tT ,
t ∈ [0, 1], is a continuous path of Fredholm operators, connecting the identity with
id−T . Since the index is locally constant, see Proposition I.2.10, we conclude
ind(id−T ) = ind(id) = 0.

For every Banach spaces E, we let π0

(
F(E)

)
denote the set of (path)connected

components of F(E). Since the composition of Fredholm operators is continuous,
it induces a map π0

(
F(E)

)
×π0

(
F(E)

)
→ π0

(
F(E)

)
. Clearly, this multiplication

turns π0

(
F(E)

)
into an associative semigroup with unit. Actually, π0

(
F(E)

)
is

group. Indeed, if A ∈ F(E), then there exists B ∈ F(E) such that id−BA and
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id−AB both have finite rank, see Proposition I.2.9. Hence, t 7→ id−t(id−BA),
t ∈ [0, 1], is a continuous path in F(E), connecting BA with the identity, see
Example I.2.6. Analogously, t 7→ id−t(id−AB), t ∈ [0, 1], is a continuous path
in F(E), connecting AB with the identity. Hence, A represents an invertible
element in π0

(
F(E)

)
with inverse represented by B. This shows that π0

(
F(E)

)
is a group. By Proposition I.2.10 the Fredholm index is constant on the connected
components of F(E). Consequently, it induces a map

ind: π0

(
F(E)

)
→ Z, (I.1)

which is a homomorphism of groups, in view of Proposition I.2.7.
Note that the inclusion, G(E)→ F(E), induces a homomorphism of groups,

π0

(
G(E)

)
→ π0

(
F(E)

)
whose image is contained in the kernel of (I.1). We claim

that these two spaces coincide. To this end, suppose A ∈ F(E) represents an
element in the kernel of (I.1), i.e. ind(A) = 0. By Proposition I.2.9 there exist
complementary closed subspaces such that A has the form

E = E1 ⊕ E0

A=
(

0 0
0 A0

)
−−−−−−→ E ′1 ⊕ E ′0 = E,

with A0 : E0 → E ′0 invertible. Moreover, dim(E1)−dim(E ′1) = ind(A) = 0, hence

there exists an isomorphism, A1 : E1

∼=−→ E ′1. Then, t 7→
(
tA1 0
0 A0

)
, t ∈ [0, 1], is

a continuous path in F(E), connecting A with the invertible operator
(
A1 0
0 A0

)
.

Thus, we have shown:

I.2.12. Proposition. For every Banach space E, there is an exact sequence
of groups,

π0

(
G(E)

)
→ π0

(
F(E)

) ind−→ Z.

I.2.13. Theorem. Let H be an infinite dimensional separable Hilbert space.
Then the Fredholm index induces an isomorphism of groups,

ind: π0

(
F(H)

) ∼=−→ Z. (I.2)

Proof. Recall that an infinite dimensional separable Hilbert space admits
a countable orthonormal basis, hence is isometric to L2(N). Consequently, the
shift operators in Example I.2.5 show that the homomorphism in (I.2) is onto.
In view of Proposition I.2.12, it thus suffices to show that G(H) is connected.
We will give an elementary proof of this fact in Section I.4 below. At least for
complex Hilbert spaces, this can also be derived using the spectral theorem for
normal bounded operators. Indeed, every invertible operator, A ∈ G(H) admits

a polar decomposition, A = eiSR, where R∗ = R =
√
A∗A > 0 is an invertible

positive operator, and S = S∗ is selfadjoint. Then

t 7→ eitS
(
(1− t) id +tR

)
, t ∈ [0, 1],

is a continuous path in G(H), connecting A with the identity. �
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I.2.14. Exercise. Let V → E → W be an exact sequence of vector spaces
and suppose V and W are finite dimensional. Show that E has finite dimension.

I.2.15. Exercise. Suppose 0 → V1 → V2 → · · · → Vn → 0 is an exact
sequence of finite dimensional vector spaces. Show that

∑
i(−1)i dim(Vi) = 0.

I.2.16. Exercise. In the situation of Example I.2.6 show that ind(id−T ) = 0
without using the fact that the index depends continuously on T .

I.2.17. Exercise. Let E = E0 ⊕ E1 and F = F0 ⊕ F1 be direct sum decom-
positions of Banach spaces. Construct a natural isomorphism of Banach space,

B(E,F ) ∼=
{(

A B
C D

) ∣∣∣∣ A ∈ B(E0, F0), B ∈ B(E1, F0)
C ∈ B(E0, F1), D ∈ B(E1, F1)

}
such that composition, B(F,G) × B(E,F ) → B(E,G), corresponds to matrix
multiplication, where G = G0 ⊕G1 is another decomposed Banach space.

I.3. Atkinson’s theorem. This result provides a criterion for Fredholm-
ness. We will use it later to recognize elliptic operators on closed manifolds as
Fredholm operators.

I.3.1. Theorem (Atkinson, [9]). A bounded linear operator between Banach
spaces, A : E → F , is Fredholm if and only if there exist (bounded) linear opera-
tors B1, B2 : F → E such that B1A− id and AB2 − id are both compact.

Proof. One implication follows from Proposition I.2.9. For the other one,
suppose B1, B2 : F → E are linear operators such that B1A − id ∈ K(E) and
AB2 − id ∈ K(F ). Then, according to Lemma I.3.2 below, B1A ∈ F(E) and
AB2 ∈ F(F ). Clearly, ker(A) ⊆ ker(B1A), whence ker(A) is finite dimensional.
Similarly, img(A) ⊇ img(AB2), whence img(A) has finite codimension in F . This
shows that A is Fredholm. �

To complete the proof of Atkinson’s theorem it remains to show:

I.3.2. Lemma (Riesz). If K : E → E is a compact operator on a Banach
space, then id−K is Fredholm.

Proof. We follow the presentation in [21, Satz 24.6]. Put A := id−K.
Clearly, id |ker(A) = K|ker(A), hence id |ker(A) is compact. Using Theorem I.1.8(f),
we conclude that ker(A) is finite dimensional.

Below we will show that A has closed image. Then

coker(A)∗ = ker(At) = ker(id−Kt),

by Corollary I.1.5. Note thatKt is compact by Theorem I.1.8(e), hence, according
to the first part of this proof, ker(id−Kt) is finite dimensional. We conclude that
coker(A) is finite dimensional, whence A is Fredholm.
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It remains to verify that img(A) is a closed subspace of E. Since ker(A) is
finite dimensional, there exists a closed subspace E0 of E which is complementary
to ker(A), see Corollary I.1.6. By construction,

A|E0 : E0 → img(A), (I.3)

is a bijective bounded linear operator. We claim that there exists ε > 0 such that

‖Ax‖ ≥ ε‖x‖, for all x ∈ E0. (I.4)

If this was not the case, then there exists a sequence xn ∈ E0 such that ‖xn‖ = 1
and limn→∞Axn = 0. Since K is compact we may, moreover, assume that Kxn
converges, and put x := limn→∞Kxn. Consequently, limn→∞ xn = x. As E0 is
closed, we conclude x ∈ E0. Moreover, by continuity, ‖x‖ = 1 and Ax = 0. This
contradicts E0 ∩ ker(A) = 0, whence there has to exist ε > 0 as in (I.4). This
shows that the bounded linear bijection (I.3) is open, hence a homeomorphism.
Thus img(A) is complete and therefore closed in E. �

I.3.3. Corollary. Let E and F be two Banach spaces. If A ∈ F(E,F ) and
K ∈ K(E,F ), then A+K ∈ F(E,F ) and

ind(A+K) = ind(A).

Proof. According to Proposition I.2.9, there exists B ∈ B(F,E) such that
BA − id and AB − id are both compact. We conclude that B(A + K) − id =
BA − id +BK and (A + K)B − id = AB − id +KB are both compact too, see
Theorem I.1.8. Hence A is Fredholm, according to Theorem I.3.1. In particular,
t 7→ A+ tK, t ∈ [0, 1], is a continuous path of Fredholm operators, connecting A
with A+K. Since the Fredholm index is locally constant, see Proposition I.2.10,
we obtain ind(A) = ind(A+K). �

Recall from Theorem I.1.8 that K(E) is a closed two sided ideal in B(E).
Hence there exists a unique K-algebra structure on the Banach space Q(E) :=
B(E)/K(E) such that the canonical projection B(E) → Q(E) is an algebra ho-
momorphism. If E is infinite dimensional, Q(E) is a unital Banach algebra known
as Calkin algebra, see [13]. From Theorem I.3.1 we immediately obtain

I.3.4. Corollary. A continuous linear operator on a Banach space is Fred-
holm if and only if its image in the Calkin algebra is invertible.

I.3.5. Exercise. Let E be an Banach space, and let ‖ − ‖ be a norm on E
generating the topology. Equip B(E) with the corresponding operator norm, and
put the usual quotient norm on the Calkin algebra Q(E) = B(E)/K(E), that is

‖a‖ = inf
A∈π−1(a)

‖A‖, a ∈ Q(E),

where π : B(E) → Q(E) denotes the canonical projection. Moreover, let 1 :=
π(id) denote the unit in Q(E). Verify:

(a) ‖ab‖ ≤ ‖a‖‖b‖, for all a, b ∈ Q(E), and
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(b) ‖1‖ = 1, provided E is infinite dimensional.

Conclude that Q(E) is a unital Banach algebra, provided E is infinite dimen-
sional. Show that this is a C∗-algebra if E = H is a Hilbert space. More
precisely, show that A 7→ A∗ induces an antilinear involution on Q(H) such that

(c) (ab)∗ = b∗a∗, for all a, b ∈ Q(H), and
(d) ‖a∗a‖ = ‖a‖2, for all a ∈ Q(H).

Details can be found in [13] or [19].

I.4. Kuiper’s theorem. While the classical groups GLn(R) and GLn(C)
are rather complicated topological spaces, the group of invertible operators on
an infinite dimensional Hilbert spaces, G(H), is contractible. In this section we
will give a proof of this result due to Nicolaas Kuiper, see Theorem I.4.1 and
Corollary I.4.7 below.

Recall that two continuous maps, f, g : X → Y , are called homotopic if there
exists a continuous map h : [0, 1]×X → Y such that h(0, x) = f(x) and h(1, x) =
g(x), for all x ∈ X. This is readily seen to be an equivalence relation on the set
of continuous maps from X to Y , its equivalence classes are called homotopy
classes. The set of all homotopy classes will be denoted by [X, Y ]. A continuous
map h as above is called a homotopy from f to g.

If f, g : X → Y are two homotopic maps, and f ′, g′ : Y → Z are two homotopic
maps, then f ′ ◦ f : X → Z and g′ ◦ g : X → Z are homotopic. Consequently, the
composition of continuous maps induces an associative multiplication,

[Y, Z]× [X, Y ]→ [X,Z].

Some basic concepts related to homotopy are discussed in the exercises at the
end of this section.

I.4.1. Theorem (Kuiper, [26]). Let H be an infinite dimensional separable
real or complex Hilbert space, and suppose X is a compact Hausdorff space. Then,

[X,G(H)] = 0,

i.e. every continuous map X → G(H) is homotopic to the constant map, idH .

For the one pointed space, X = {∗}, Kuiper’s theorem asserts that G(H) is
(path wise) connected, cf. the proof of Theorem I.2.13 above. Using X = S1, we
see that G(H) is simply connected.7 Applying Kuiper’s theorem with X = Sn, we
conclude that all homotopy groups of G(H) vanish. In fact, G(H) is contractible,
see Corollary I.4.7 below.

In the remaining part of this section we will reproduce Kuiper’s original proof
[26], see also [11]. Throughout this section H will denote an infinite dimensional
separable real or complex Hilbert space.

7Recall that for every path connected space Y , the set [S1, Y ] coincides with the conjugacy
classes of the fundamental group of Y with respect to any base point. Whence, [S1, Y ] = 0 if
and only if Y is simply connected. However, since G(H) is a group, its fundamental group is
abelian anyway, whence [S1,G(H)] = π1(G(H)).



14 I. FREDHOLM OPERATORS AND THEIR INDEX

I.4.2. Lemma. Let X be a compact Hausdorff space. Then every continuous
map, X → G(H), is homotopic to a map, X → G(H), whose image is contained
in a finite dimensional subspace of B(H).

Proof. By compactness of X, the image of a continuous map X → G(H) is
contained in a set of the form

U =
n⋃
i=1

Bri(Ai),

where Ai ∈ G(H) and ri > 0 such that B2ri(Ai) ⊆ G(H), see also Theorem I.1.7.
Here Br(A) = {X ∈ B(H) : ‖X − A‖ < r} denotes the open ball of radius r > 0
and center A. Consequently, it suffices to show that the inclusion,

U → G(H),

is homotopic to a map, U → G(H), whose image is contained in a finite dimen-
sional subspace of B(H).

Let λi : U → [0, 1] be a partition of unity, i = 1, . . . , n, such that
∑n

i=1 λi ≡ 1
and supp(λi) ⊆ Bri(Ai).

8 We claim that

ht(A) = (1− t)A+ t
n∑
i=1

λi(A)Ai

defines a homotopy h : [0, 1] × U → G(H), connecting the inclusion, h0, with a
map, h1, whose image is contained in the finite dimensional subspace of B(H)
spanned by A1, . . . , An. The only non-trivial assertion here is the fact that h
takes values in G(H). To see this, fix A ∈ U . Put I :=

{
i : A ∈ Bri(Ai)

}
, and

note that ht(A) is a convex combination of A and Ai, i ∈ I. Indeed, if j /∈ I,
then λj(A) = 0 in view of supp(λj) ⊆ Brj(Aj). Let m ∈ I such that ri ≤ rm,
for all i ∈ I. Using the triangle inequality, we conclude Ai ∈ B2rm(Am), for all
i ∈ I. Thus, any convex combination of A and Ai, i ∈ I, will also be contained
in B2rm(Am). We conclude ht(A) ∈ B2rm(Am) ⊆ G(H), for all t ∈ [0, 1]. �

I.4.3. Lemma. Let W be an (n+ 2)-dimensional Hilbert space, b ∈ W a unit
vector, ‖b‖ = 1, and suppose V ⊆ W is a subspace such that dim(V ) ≤ n. Then
there exists a homotopy, h : [0, 1]× (V \ 0)→ G(W ), such that

h0(v) = idW and h1(v)b = v,

8For instance, we may consider, µi : U → [0,∞),

µi(A) := max
{

0, ri − ‖A−Ai‖
}
.

Then the continuous functions, λi : U → [0, 1],

λi :=
µi∑n
i=1 µi

,

have the desired properties.



I.4. KUIPER’S THEOREM 15

for all v ∈ V \ 0. Moreover, this homotopy can be chosen such that

‖ht(v)‖ ≤ max
{
‖v‖, ‖v‖−1

}
and ∥∥ht(v)− hs(v)

∥∥ ≤ π|t− s|max
{
‖v‖, ‖v‖−1

}
for all s, t ∈ [0, 1] and v ∈ V \ 0.

Proof. By assumption there exists a unit vector b′ ∈ W such that b′ ⊥ V
and b′ ⊥ b. Consider the path h′ : [0, 1]→ G(W ),

h′t :=


id on {b, b′}⊥, and(

cos(πt
2

) − sin(πt
2

)

sin(πt
2

) cos(πt
2

)

)
w.r.t. the ONB b, b′ of span(b, b′).

Clearly, h′0 = idW and h′1b = b′. The homotopy, h′′ : [0, 1]× (V \ 0)→ G(W ),

h′′t (v) :=


id on {b′, v}⊥, and(

cos(πt
2

) − sin(πt
2

)

sin(πt
2

) cos(πt
2

)

)
w.r.t. the basis b′, v of span(b′, v),

satisfies h′′0(v) = idW and h′′1(v)b′ = v, for all v ∈ V \ 0. The homotopy,

h : [0, 1]× (V \ 0)→ G(W ), ht(v) := h′′t (v)h′t,

has the desired property, h0(v) = idW and h1(v)b = v, for all v ∈ V \0. Moreover,

‖h′t‖ = 1 and ‖h′′t (v)‖ ≤ max
{
‖v‖, ‖v‖−1

}
,

whence ‖ht(v)‖ ≤ max
{
‖v‖, ‖v‖−1

}
. Similarly,∥∥ ∂

∂t
h′t
∥∥ = π

2
and

∥∥ ∂
∂t
h′′t (v)

∥∥ ≤ π
2

max
{
‖v‖, ‖v‖−1

}
,

and therefore∥∥ ∂
∂t
ht(v)

∥∥ ≤ ∥∥ ∂
∂t
h′′t (v)

∥∥‖h′t‖+ ‖h′′t (v)‖
∥∥ ∂
∂t
h′t(v)

∥∥ ≤ πmax
{
‖v‖, ‖v‖−1

}
.

For 0 ≤ s ≤ t ≤ 1 this yields∥∥ht(v)− hs(v)
∥∥ ≤ ∫ t

s

∥∥ ∂
∂τ
hτ (v)

∥∥dτ ≤ π(t− s) max
{
‖v‖, ‖v‖−1

}
,

whence the lemma. �

I.4.4. Lemma. Let V be a finite dimensional subspace of B(H). Then there
exists an infinite dimensional closed subspace H0 of H such that the canonical
inclusion, V ∩ G(H)→ G(H), is homotopic to a map, V ∩ G(H)→ G(H), which
takes values in G(H;H0) :=

{
A ∈ G(H) : A|H0 = idH0

}
. Moreover, we may

assume that H0 has infinite codimension too.
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Proof. W.l.o.g. we may assume that V ∩ G(H) spans V . Put n := dim(V ).
Hence there exist A1, . . . , An ∈ V ∩ G(H), spanning V .

Let b1 ∈ H be a unit vector, and choose an (n + 2)-dimensional subspace
W1 of H such that b1 ∈ W1 and V b1 ⊆ W1. Recursively, we can construct unit
vectors bi ∈ H and (n+ 2)-dimensional subspaces Wi of H such that

bi ∈ Wi, V bi ⊆ Wi, and Wj ⊥ Wi, for all j ≤ i ∈ N. (I.5)

Indeed, suppose we have already constructed b1, . . . , bi and W1, . . . ,Wi as above.
Then there exists a unit vector

bi+1 ∈
(
W⊥

1 ∩ · · · ∩W⊥
i

)
∩

n⋂
j=1

A−1
j

(
W⊥

1 ∩ · · · ∩W⊥
i

)
,

since this subspace has finite codimension in H, whence is infinite dimensional.
By construction bi+1 ∈ W⊥

1 ∩ · · · ∩ W⊥
i and Ajbi+1 ∈ W⊥

1 ∩ · · · ∩ W⊥
i , for all

j = 1, . . . , n, hence V bi+1 ⊆ W⊥
1 ∩ · · · ∩W⊥

i . We conclude that there exists an
(n + 2)-dimensional subspace Wi+1 such that bi+1 ∈ Wi+1 and V bi+1 ⊆ Wi+1 ⊆
W⊥

1 ∩ · · · ∩W⊥
i . This completes the construction of bi and Wi satisfying (I.5).

By Lemma I.4.3 there exist homotopies, hi : [0, 1]×
(
V bi \ 0

)
→ G(Wi), such

that hi0(v) = idWi
and hi1(v)bi = v, for all v ∈ V bi \ 0. Moreover,∥∥hit(v)

∥∥ ≤ max
{
‖v‖, ‖v‖−1

}
(I.6)

and ∥∥hit(v)− his(v)
∥∥ ≤ π|t− s|max

{
‖v‖, ‖v‖−1

}
, (I.7)

for all s, t ∈ [0, 1] and v ∈ V bi \ 0. Hence,

ht(A) :=

{⊕
i h

i
t(Abi) on

⊕
iWi, and

id on (
⊕

iWi)
⊥,

defines a homotopy, h : [0, 1]×
(
V ∩ G(H)

)
→ G(H) such that h0(A) = idH and

h1(A)bi = Abi, for all A ∈ V ∩ G(H). Note that by (I.6) and (I.7) we have

‖ht(A)‖ ≤ max
{
‖A‖, ‖A−1‖

}
and ∥∥ht(A)− hs(A)

∥∥ ≤ π|t− s|max
{
‖A‖, ‖A−1‖

}
for all s, t ∈ [0, 1] and A ∈ V ∩G(H). Hence, ht(A) is indeed a bounded operator,
and the map h is continuous. Consequently,

g : [0, 1]×
(
V ∩ G(H)

)
→ G(H), gt(A) := ht(A)−1A,

is a homotopy from the inclusion, g0, to a map g1 : V ∩ G(H) → G(H), such
that g1(A)bi = bi, for all i ∈ N and A ∈ V ∩ G(H). Thus, the subspace H0 :=

〈b1, b2, . . . 〉 has the desired property. �
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Identifying H = H⊥0 ⊕H0, we have

G(H;H0) =
{

( A 0
B id ) : A ∈ G(H⊥0 ), B ∈ B(H⊥0 , H0)

}
.

Note that the upper left entry of the matrix, indeed, has to be invertible. Let

ι : G(H⊥0 )→ G(H;H0), ι(A) := ( A 0
0 id ) ,

denote the canonical inclusion and put:

r : G(H;H0)→ G(H⊥0 ), r ( A 0
B id ) := A.

Clearly, these maps are continuous, and we have r ◦ ι = idG(H⊥0 ). Hence, G(H⊥0 )

is a retract of G(H;H0). Moreover,

f : [0, 1]× G(H;H0)→ G(H;H0), ft ( A 0
B id ) := ( A 0

tB id ) ,

is a homotopy connecting f0 = ι ◦ r with f1 = idG(H;H0). This shows:

I.4.5. Lemma. The inclusion, ι : G(H⊥0 ) → G(H;H0), is a (strong) deforma-
tion retract. In particular, the map ι ◦ r is homotopic to idG(H;H0).

Since H0 and H⊥0 are infinite dimensional Hilbert spaces, there exist isome-
tries, ψ0 : H0

∼= H, and ψ1 : H⊥0
∼= H. From the preceding lemmata we thus

obtain the following diagram, commuting up to homotopy:

G(H;H0)

��

r

&&
G(H⊥0 )ι

oo

(
A 0
0 idH0

)

��

oo ψ1

∼=
// G(H)

(
A 0
0 idH

)

��

X

..

h1 // V ∩ G(H)

))

g1
66

G(H) G(H⊥0 ⊕H0) ooψ1⊕ψ0

∼=
// G(H ⊕H)

To complete the proof of Theorem I.4.1 it therefore suffices to show:

I.4.6. Lemma. The inclusion, G(H)→ G(H⊕H), A 7→
(
A 0
0 idH

)
, is homotopic

to the constant map,
(

idH 0
0 idH

)
= idH⊕H .

Proof. Consider the homotopy, g : [0, 1]× G(H)→ G(H ⊕H),

gt(A) :=

(
cos(πt

2
) − sin(πt

2
)

sin(πt
2

) cos(πt
2

)

)(
A−1 0

0 idH

)(
cos(πt

2
) sin(πt

2
)

− sin(πt
2

) cos(πt
2

)

)(
A 0
0 idH

)
.

Note that

g0(A) =

(
idH 0
0 idH

)
and g1(A) =

(
A 0
0 A−1

)
,
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for all A ∈ G(H). Thus the homotopy, g′ : [0, 1]× G(H)→ G
(⊕∞

i=0 H
)
,

g′t(A) =

(
gt(A)

gt(A)

...

)
,

satisfies

g′0(A) =


idH

idH
idH

idH
...

 and g′1(A) =

 A
A−1

A
A−1

...

 .

for all A ∈ G(H). Moreover, the homotopy, g′′ : [0, 1]× G(H)→ G
(⊕∞

i=0H
)
,

g′′t (A) =

 idH
gt(A)

gt(A)

...


satisfies

g′′0(A) =


idH

idH
idH

idH
...

 and g′′1(A) =

 idH
A
A−1

A
...

 .

Consequently, g′′′ : [0, 1]×G(H)→ G
(⊕∞

i=0H
)
, g′′′t (A) := g′t(A)g′′t (A), is a homo-

topy such that

g′′′0 (A) =


idH

idH
idH

idH
...

 and g′′′1 (A) =


A

idH
idH

idH
...

 ,

for all A ∈ G(H). Since H is infinite dimensional, there exists an isometry,

φ : H
∼=−→
(⊕∞

i=1 H
)
. Conjugating g′′′, we obtain a homotopy,

h : [0, 1]× G(H)→ G(H ⊕H), ht(A) :=
(

idH 0
0 φ

)−1
g′′′t (A)

(
idH 0

0 φ

)
,

such that h0(A) =
(

idH 0
0 idH

)
and h1(A) =

(
A 0
0 idH

)
, for all A ∈ G(H). �

I.4.7. Corollary (Kuiper). Let H be an infinite dimensional separable real
or complex Hilbert space. Then G(H) is contractible. More precisely, there exists
a continuous map g : [0, 1] × G(H) → G(H) such that g0(A) = A, g1(A) = idH ,
for all A ∈ G(H), and gt(idH) = idH for all t ∈ [0, 1].

Proof. Choose Ai ∈ G(H) and ri > 0 such that
⋃∞
i=1 Bri(Ai) = G(H) and

B2ri(Ai) ⊆ G(H), for all i ∈ N. Moreover, let λi : G(H)→ [0, 1] be a subordinated
partition of unity such that

∑∞
i=1 λi ≡ 1 and supp(λi) ⊆ Bri(Ai), for all i ∈ N.

Since the supports of λi are locally finite, the map

G(H)→ R∞ := lim−→Rn, A 7→
(
λ1(A), λ2(A), λ3(A), . . .

)
,
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locally, factors through finite dimensional subspaces, whence is continuous. Note
that this map takes values in the subset N :=

⋃∞
k=0 Nk of R∞, where

Nk :=
⋃

i0, . . . , ik ∈ N
supp(λi0) ∩ · · · ∩ supp(λik) 6= ∅

〈ei0 , . . . , eik〉conv.hull,

and ei denotes the i-th unit vector. Denote the resulting continuous map by

λ : G(H)→ N, λ(A) =
(
λ1(A), λ2(A), λ3(A), . . .

)
.

The space N is a simplicial complex known as the nerve of the open covering
supp(λi) of G(H). Moreover, by the universal property of the limit, R∞ → B(H),
(s1, s2, s3, . . . ) 7→

∑∞
i=1 siAi, defines a continuous map. Using B2ri(Ai) ⊆ G(H)

and proceeding as in the proof of Lemma I.4.2, we see that this map maps N
into G(H), hence we have a continuous map:

ρ : N → G(H), ρ(s1, s2, s3, . . . ) :=
∞∑
i=1

siAi. (I.8)

Similarly, one shows that, h : [0, 1]× G(H)→ G(H),

ht(A) := (1− t)A+ t
∞∑
i=1

λi(A)Ai,

defines a homotopy from h0 = idG(H) to h1 = ρ ◦ λ. In other words, G(H) is
dominated by the CW complex N , cf. the appendix in [17] and [30].

By Theorem I.4.1 all homotopy groups of G(H) are trivial. Using elementary
results for CW complexes [17, 39, 44] this permits to conclude that the map (I.8)
is homotopic to the constant map, idH . Consequently, idG(H) : G(H)→ G(H), is
homotopic to the constant map, idH . More precisely, there exists a continuous
map, g : [0, 1] × G(H) → G(H), such that g0(A) = A and g1(A) = idH , for all
A ∈ G(H). Replacing gt(A) with gt(idH)−1gt(A), we obtain a homotopy which
fixes the identity too, i.e. gt(idH) = idH , for all t ∈ [0, 1]. �

I.4.8. Exercise. Show that homotopy does indeed define an equivalence rela-
tion on the set of continuous maps X → Y . Furthermore, verify that composition
induces a map [Y, Z]× [X, Y ]→ [X,Z].

I.4.9. Exercise (Homotopy equivalence). A continuous map, f : X → Y , is
called homotopy equivalence iff there exists a continuous map, g : Y → X, such
that g ◦ f : X → X is homotopic to idX , and f ◦ g : Y → Y is homotopic to idY .
Show that such a homotopy equivalence induces bijections

f ∗ : [Y, Z]
∼=−→ [X,Z] and f∗ : [Z,X]

∼=−→ [Z, Y ].

I.4.10. Exercise (Two of three). Let f : X → Y and g : Y → Z be two
continuous maps, and consider their composition g◦f : X → Z. Show that if two
of the three maps, f , g, g ◦ f are homotopy equivalences, then so is the third.
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I.4.11. Exercise (Contractible spaces). A topological space X is called con-
tractible if there exists a continuous map h : [0, 1]×X → X such that h0 = idX
and h1 = const. Show that this is the case if and only if X is homotopy equiva-
lent to the space with one point, {∗}. Show that every non-empty convex (star
shaped) subset in a topological vector space is contractible. Show that Rn+1 \ 0
and the sphere Sn are not contractible, n ≥ 0.

I.4.12. Exercise (Deformation retracts). Let ι : A→ X denote the inclusion
of a subspace A in a topological space X. The subspace A is called a retract of
X, if there exists a continuous map r : X → A such that r ◦ ι = idA. It is called
a deformation retract if, moreover, ι ◦ r is homotopic to idX . In this situation, ι
and r are homotopy equivalences. If the homotopy from ι◦r to idX can be chosen
such that it fixes the points in A, then A is called a strong deformation retract.
Show that Sn−1 is a strong deformation retract of Rn \ 0. Moreover, show that
Sn−1 is not a retract of Rn or the closed unit ball.

I.4.13. Exercise. Let H be a Hilbert space. Show that the unitary group,

U(H) = {A ∈ B(H) : A∗A = idH = AA∗},
is a (strong) deformation retract of G(H). More precisely, convince yourself that

h : [0, 1]× G(H)→ G(H), ht(A) = A
(
(1− t) idH +t(A∗A)−1/2

)
defines a continuous homotopy which does indeed take values in G(H) and con-
nects h0 = idG(H) with a retraction, h1 : G(H) → U(H) ⊆ G(H). Conclude that
the canonical inclusion, U(H) → G(H), is a homotopy equivalence. Use this
and Kuiper’s theorem to show that the unitary group of an infinite dimensional
separable Hilbert space is contractible. More precisely, show that there exists a
continuous map g : [0, 1]×U(H)→ U(H) such that g0(A) = A, g1(A) = idH , for
all A ∈ U(H), and gt(idH) = idH for all t ∈ [0, 1].

I.4.14. Exercise. Show that GL∞(K) := lim−→GLn(K) is not contractible,
whence not homotopy equivalent to G(H). Hint: The determinant yields a con-
tinuous map GL∞(K)→ K× which is not homotopic to a constant map. GL∞(R)
has two connected components, G(H) does not! Show that the closure of GL∞(K)
in G(H) coincides with the group

Gc(H) :=
{

idH +K ∈ G(H) : K ∈ K(H)
}
.

One can show that the inclusion GL∞(K) → Gc(H) is a homotopy equivalence,
see the references in [26].

I.4.15. Exercise. Let H be an infinite dimensional separable Hilbert space.
Show that H× := H \ {0} and the unit sphere, S(H) := {x ∈ H : ‖x‖ = 1},
are contractible. Hint: W.l.o.g. assume H = L2(N), consider the shift operator,
S ∈ B(H), S(ei) = ei+1, where ei denotes the standard basis, and note that
tx + (1 − t)Sx 6= 0, for all 0 6= x ∈ H. Use this to construct a homotopy
connecting idH× with a map H× → H× which takes values in e⊥1 .
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I.5. Vector bundles. Roughly speaking, a vector bundle is a collection of
vector spaces, Ex, parametrized by points in a topological space, x ∈ X. Many
functorial constructions from linear algebra can be applied to such a family in a
fiber wise fashion, and this leads to analogous constructions for vector bundles.
From this point of view, we are doing “linear algebra with parameters”. While
two vector spaces are isomorphic iff they have the same dimension, the situation
becomes much more intricate for vector bundles. In fact the set of isomorphism
classes of vector bundles over X depends very much on the (homotopy type) of
the space X.

In this section we will discuss a number of basic constructions with vector
bundles, including the Whitney sum, the tensor product and the pull back. At the
end of this section we will show that the Grassmannian of k-dimensional subspaces
in an infinite dimensional separable Hilbert space, Grk(H), is a classifying space
for vector bundles of rank k, see Theorem I.5.27 below. For more background on
vector bundles we refer to [22, Chapter 3], [18] or [24].

Throughout this section K denotes the field R or C. Let X be a topological
space. A vector bundle over X is a continuous map p : E → X together with the
structure of a K vector space on every fiber, Ex := p−1(x), x ∈ X, which is locally
trivial in the following sense: Every point in X admits an open neighborhood U
such that there exists a finite dimensional K vector space E0 and a homeomor-

phism ϕ : p−1(U)
∼=−→ U × E0 intertwining the restriction p|p−1(U) : p−1(U) → U

with the projection onto the first factor, p1 : U × E0 → U , that is, the following
diagram commutes

p−1(U)

p
##FFFFFFFFF

ϕ

∼=
// U × E0

p1{{wwwwwwwww

U

i.e. p|p−1(U) = p1 ◦ ϕ,

and such that the restriction to each fiber, ϕx : Ex → {x} × E0 = E0, is linear,
x ∈ U . In this situation E, p, and X are called total space, projection, and base
of the vector bundle E, respectively. Every fiber wise linear homeomorphism ϕ
as above is refered to as a vector bundle chart or local trivialization of E.

A vector bundle is called real or complex depending on whether the underlying
field is K = R or K = C. The number rkx(E) := dim(Ex) ∈ N0 is called the rank
of E at x ∈ X. Clearly, the corresponding function, rk(E) : X → N0, is locally
constant, whence constant on connected components of X. If there exists k ∈ N0

such that rkx(E) = k for all x ∈ X, then E is said to be of constant rank and we
write rk(E) = k. Vector bundles of rank 1 are called line bundles.

Let p : E → X be a vector bundle. A continuous map, s : X → E, is called a
section of E, if p ◦ s = idX . We let

Γ(E) :=
{
s ∈ C(X,E) : p ◦ s = idX

}



22 I. FREDHOLM OPERATORS AND THEIR INDEX

denote the space of all continuous sections. Sections of E can be added and
multiplied with functions, point wise, using the linear structure of the fibers.
More precisely, if s and s′ are two sections of E, then (s+ s′)(x) := s(x) + s′(x)
defines a section of E, and so does (fs)(x) := f(x)s(x), for every function f : X →
K. With these operations, Γ(E) becomes a module over the algebra of continuous
functions, C(X) := C(X,K). Using vector bundle charts it is straight forward to
verify that the sum of two continuous sections is again continuous, and so is the
product fs, for every f ∈ C(X).

I.5.1. Example (Trivial vector bundles). If E0 is a finite dimensional vector
space, then the canonical projection, p : X × E0 → X, is a vector bundle in an
obvious way. Vector bundles of this type are called trivial vector bundles. We
will use the notation εk = X × Kk, for the trivial vector bundle of rank k over
X. Note that, Γ(εk) = C(X,Kk) = C(X) ⊕ · · · ⊕ C(X), is a free C(X)-module
of rank k.

I.5.2. Example (Restriction). If p : E → X is a vector bundle, and Y is a
subspace of X, then the restriction, p|p−1(Y ) : p−1(Y ) → Y , is a vector bundle
in an obvious way. This bundle is called the restriction of E to Y and will be
denoted by E|Y .

I.5.3. Example. The tangent bundle of a smooth manifold, TM → M , is a
(smooth) vector bundle, Γ(TM) is the space of continuous vector fields.

I.5.4. Example (Canonical line bundle over RPn). Let RPn denote the pro-
jective space of 1-dimensional subspaces in Rn+1. We equip this set with a topol-
ogy via the identification

RPn =
(
Rn+1 \ 0

)
/R× = Sn/S0.

Note that the two quotient topologies coincide, since the inclusion Sn → Rn+1 \0
and the retraction, Rn+1\0→ Sn, v 7→ v/‖v‖, induce mutually inverse continuous
maps between the two quotients. Thus, RPn is a compact Hausdorff space. Put

ξ :=
{

(L, x) : x ∈ L
}
⊆ RPn × Rn+1,

and let p : ξ → RPn denote the canonical projection onto the first factor. Note
that the fibers of p are 1-dimensional subspaces of Rn+1. One easily verifies that
p : ξ → RPn is a line bundle known as the canonical line bundle over RPn. Below,
we will provide all details in a more general situation, see Example I.5.14.

I.5.5. Example (Canonical line bundle over CPn). Analogously, we put a
topology on the complex projective space via the identification

CPn =
(
Cn+1 \ 0

)
/C× = S2n+1/S1.

Again the two quotient topologies coincide since the inclusion, S2n+1 → Cn+1 \ 0,
and the retraction, Cn+1 \ 0 → S2n+1, v 7→ v/‖v‖, induce mutually inverse



I.5. VECTOR BUNDLES 23

continuous maps. Consequently, CPn is a compact Hausdorff space. Put

ξ :=
{

(L, x) : x ∈ L
}
⊆ CPn × Cn+1,

and let p : ξ → CPn denote the canonical projection onto the first factor. One
readily checks that this is a complex line bundle called the canonical line bundle
over CPn. For more details we refer to Example I.5.15 below.

Suppose p : E → X and q : F → X are two vector bundles over X. A
continuous map, ψ : E → F , is called vector bundle homomorphism if it is fiber
wise linear, i.e. q ◦ ψ = p and ψx : Ex → Fx is linear, for all x ∈ X. Clearly,
the composition of two vector bundle homomorphisms is a again a vector bundle
homomorphism, and so is the identical map, idE : E → E. A vector bundle
homomorphism ψ : E → F is called vector bundle isomorphism if there exists a
vector bundle homomorphism φ : F → E which is inverse to ψ, i.e. ψ ◦ φ = idF
and φ◦ψ = idE. Two vector bundles over X are called isomorphic if there exists a
vector bundle isomorphism between them. A vector bundle is called trivializeable
if it is isomorphic to a trivial vector bundle.

I.5.6. Example. The tangent bundle of an even dimensional sphere, TS2n, is
not trivializeable, n ≥ 1. This follows from the hedge hog theorem which asserts
that every tangent vector field on S2n has to have a zero, see [17, Theorem 2.28].

I.5.7. Lemma. Suppose ψ : E → F is a homomorphism of vector bundles over
X such that ψx : Ex → Fx is a linear isomorphism, for each x ∈ X. Then ψ is a
vector bundle isomorphism.

Proof. It follows immediately from the assumptions, that ψ : E → F is
bijective. Moreover, the inverse mapping, ψ−1 : F → E, is fiber wise linear too. It
thus remains to show that ψ−1 is continuous. Since this is a local property, we may
assume E = X ×Kn and F = X ×Kn. Then ψ is of the form ψ(x, ξ) = (x,Axξ),
with A : X → GLn(K) continuous. Since the inversion, GLn(K) → GLn(K),
A 7→ A−1, is continuous, its inverse, ψ−1(x, ξ) = (x,A−1

x ξ), is continuous too. �

I.5.8. Example. The canonical line bundle ξ over RP1 ∼= S1 is isomorphic
to the Möbius strip and does not admit a nowhere vanishing section, see Exer-
cise I.5.34 below. Consequently, ξ is not trivializeable. For m ≤ n, the inclusion
Rm+1 → Rn+1, v 7→ (v, 0), permits to regard RPm as a subspace of RPn. The
restriction of the canonical line bundle over RPn to RPm is isomorphic to the
canonical line bundle over RPm. Indeed the inclusion Rm+1 → Rn+1 also provides
a vector bundle homomorphism ξRPm → ξRPn|RPm which is fiber wise bijective,
whence an isomorphism. This implies that the canonical line bundle over RPn is
non-trivial too.

I.5.9. Example. The canonical line bundle over CPn is non-trivial. Indeed,
for m ≤ n, the inclusion Cm+1 → Cn+1 permits to regard CPm as a subspace
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of CPn and induces an isomorphism ξCPm
∼= ξCPn|CPm . Consequently, it suf-

fices to show that the canonical line bundle over CP1 ∼= S2 is non-trivial, see
Exercise I.5.35 below.

Suppose p : E → X is a vector bundle. Replacing every fiber Ex with its dual
space E∗x, one can construct a vector bundle q : E∗ → X called the dual bundle
of E. More precisely, put E∗ :=

⊔
x∈X E

∗
x and let q : E∗ → X denote the obvious

map. If ϕ : E|U
∼=−→ U ×E0 is a vector bundle chart for E, then we obtain a fiber

wise linear bijection,

E∗|U =
⊔
x∈U

E∗x

⊔
x∈U (ϕtx)−1

−−−−−−−→∼=

⊔
x∈U

E∗0 = U × E∗0 , (I.9)

where ϕtx : E∗0 → E∗x denotes the linear map (isomorphism) dual to ϕx : Ex → E0.
One readily checks that there exists a unique topology on E∗ such that q : E∗ → X
becomes vector bundle over X and such that the maps (I.9) are vector bundle
charts of E∗, for every vector bundle chart ϕ of E. Clearly, we have a natural
isomorphism of vector bundles, E∗∗ = E.

Suppose E and F are two vector bundles over X. We will now construct a
vector bundle p : E ⊗F →M with fibers Ex⊗Fx. More precisely, put E ⊗F :=⊔
x∈X Ex⊗Fx and let p : E⊗F → X denote the obvious map. If ϕ : E|U

∼=−→ U×E0

and ψ : F |U
∼=−→ U × F0 are two vector bundle charts for E and F , respectively,

then we obtain a fiber wise linear bijection,

(E ⊗ F )|U =
⊔
x∈U

Ex ⊗ Fx
⊔
x∈U ϕx⊗ψx−−−−−−−→∼=

⊔
x∈U

E0 ⊗ F0 = U × (E0 ⊗ F0) (I.10)

where ϕx ⊗ ψx : Ex ⊗ Fx → E0 ⊗ F0 denotes the tensor product of the linear
isomorphisms ϕx : Ex → E0 and ψx : Fx → F0. It is easy to see that there exists
a unique topology on E ⊗ F such that q : E ⊗ F → X becomes a vector bundle
and such that each of the maps (I.10) is a vector bundle chart of E ⊗ F , for all
vector bundle charts ϕ and ψ as above. Clearly, there are natural isomorphisms
of vector bundles,

E ⊗ (F ⊗G) = (E ⊗ F )⊗G, E ⊗ F ∼= F ⊗ E, and E ⊗ ε1 = E,

where ε1 = X×K1 denotes the trivial line bundle over X. Moreover, (E⊗F )∗ =
E∗ ⊗ F ∗. Note that there is a canonical one-to-one correspondence between
Γ(E∗ ⊗ F ) and the space of vector bundle homomorphisms, E → F .

Similarly, the Whitney sum of two vector bundles E and F over X is defined
to be the vector bundle E ⊕ F → X with fibers (E ⊕ F )x = Ex ⊕ Fx, x ∈ X.
Then, there are natural isomorphisms of vector bundles,

E ⊕ (F ⊕G) = (E ⊕ F )⊕G, E ⊕ F ∼= F ⊕ E, and E ⊕ ε0 = E.



I.5. VECTOR BUNDLES 25

Here ε0 = X × K0 denotes the unique (trivial) vector bundle of rank zero over
X. Moreover, (E ⊕ F )∗ = E∗ ⊕ F ∗ and

(E ⊕ F )⊗G = (E ⊗G)⊕ (F ⊗G).

Moreover, Γ(E ⊕ F ) = Γ(E)⊕ Γ(F ), as C(X)-modules.
Note that we have two natural vector bundle homomorphisms, ιE : E → E⊕F

and ιF : F → E ⊕ F , with the following universal property: If φE : E → G and
φF : F → G are two vector bundle homomorphisms, then there exists a unique
vector bundle homomorphisms, φ : E ⊕ F → G, such that φ ◦ ιE = φE and
φ ◦ ιF = φF . Moreover, there are two natural vector bundle homomorphisms,
πE : E ⊕ F → E and πF : E ⊕ F → F , with the following universal property:
If ψE : G → E and ψF : G → F are two vector bundle homomorphisms, then
there exists a unique vector bundle homomorphism, ψ : G → E ⊕ F , such that
πE ◦ ψ = ψE and πF ◦ ψ = ψF .

I.5.10. Example. There exists an isomorphism of real vector bundles,

TSn ⊕ ε1 ∼= εn+1.

Indeed, the differential of the natural embedding, Sn ⊆ Rn+1, provides a fiber
wise injective vector bundle homomorphism, TSn → TRn+1|Sn . Moreover, the
unit normal to the sphere can be regarded as a vector bundle homomorphism,
ε1 = Sn × R → TRn+1|Sn , (x, t) 7→ (x, tx). Combining these two, we obtain a
vector bundle isomorphism TSn ⊕ ε1 ∼= TRn+1|Sn = εn+1. More generally, for
every smooth manifold M with boundary ∂M , we have an isomorphism

TM |∂M ∼= T (∂M)⊕ ε1.

Let p : E → X be a vector bundle. A subset F ⊆ E is called subbundle of
E if every point in X admits an open neighborhood U such that there exists
a vector bundle chart ϕ : E|U → U × E0 and a linear subspace F0 of E0 with
ϕ(F ∩ E|U) = U × F0. In this situation, F is a vector bundle over X, and the
canonical inclusion yields a fiber wise injective homomorphism of vector bundles,
F → E. Moreover, replacing each fiber Ex with the quotient space, Ex/Fx, we
obtain a vector bundle E/F over X. More precisely, put E/F :=

⊔
x∈X Ex/Fx

and let q : E/F → X denote the obvious map. If ϕ : E|U
∼=−→ U × E0 is a vector

bundle chart as above, then we obtain a fiber wise linear bijection,

(E/F )|U =
⊔
x∈U

Ex/Fx

⊔
x∈U ϕx−−−−−→∼=

⊔
x∈U

E0/F0 = U × (E0/F0). (I.11)

One readily checks that there exists a unique topology on E/F so that q : E/F →
X becomes vector bundle over X and such that the maps (I.11) are vector bundle
charts for E/F , for every vector bundle chart ϕ as above. Moreover, we have a
canonical homomorphism of vector bundles, E → E/F , which is fiber wise onto.
Thus, a subbundle gives rise to an exact sequence of vector bundles,

0→ F → E → E/F → 0,
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i.e. a sequence of vector bundle homomorphisms which is fiber wise exact.

I.5.11. Example (Normal bundle). Let M be a smooth manifold and suppose
S is a closed submanifold of M . Then TS is a subbundle of TM |S, and the vector
bundle T⊥S := TM |S/TS is called the normal bundle of S in M .

The following is a convenient tool to recognize subbundles.

I.5.12. Proposition. Let E and F be two vector bundles over X, and suppose
φ : E → F is a homomorphism of vector bundles with (locally) constant rank.
Then ker(φ) :=

⋃
x∈X ker(φx) and img(φ) :=

⋃
x∈X img(φx) are subbundles of E

and F , respectively.

Proof. Since this is a local property, we may w.l.o.g. assume E = X × Kn

and F = X × Km. Then φ : E → F is of the form φ(x, v) = (x, Ãxv), where
Ã : X → Mm×n(K) is continuous. Moreover, we may assume rank(Ãx) = k, for
all x ∈ X. Conjugating with appropriate elements in GLn(K) and GLm(K) we
may, moreover, assume that Ã is of the form

Ã =

(
A B
C D

)
,

where A : X → GLk(K), B : X → Mk×(n−k)(K), C : X → M(m−k)×k(K) and
D : X →M(m−k)×(n−k)(K) are continuous. Note that(

Ik 0
−CA−1 Im−k

)
︸ ︷︷ ︸

G

(
A B
C D

)
︸ ︷︷ ︸

Ã

(
A−1 −A−1B

0 In−k

)
︸ ︷︷ ︸

H

=

(
Ik 0
0 D − CA−1B

)
=

(
Ik 0
0 0

)

since Ãx has rank k. Note that G : X → GLm(K) and H : X → GLn(K) are
continuous. Hence they give rise to vector bundle charts:

ϕ : E = X ×Kn ∼=−→ X ×Kn, ϕ(x, v) := (x,H−1
x v),

ψ : F = X ×Km ∼=−→ X ×Km, ψ(x,w) := (x,Gxw).

By construction, ϕ(ker(φ)) = X×Kn−k ⊆ X×Kn, whence ker(φ) is a subbundle
of E. Similarly, we have ψ(img(φ)) = X × Kk ⊆ X × Km, hence img(φ) is a
subbundle of F . �

I.5.13. Example. Suppose 0 → F
ι−→ E

π−→ G → 0 is a short exact sequence
of vector bundles over X, i.e. the sequence of fibers, 0 → Fx

ιx−→ Ex
πx−→ Gx → 0

is exact, for every x ∈ X. Then img(ι) = ker(π) is a subbundle of E, according
to Proposition I.5.12. Moreover, ι provides a natural isomorphism, F ∼= img(ι),
and π induces a natural isomorphism, E/ ker(π) ∼= G.

I.5.14. Example (Canonical bundle over Grk(Rn)). Let Grk(Rn) denote the
Grassmannian of all k-dimensional subspaces in Rn. We equip this set with a
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topology, via the identification:

Grk(Rn) =
{A ∈Mn×k(R) : rk(A) = k}

GLk(R)
=
{A ∈Mn×k(R) : A∗A = Ik}

Ok

,

where A corresponds to the k-dimensional subspace img(A) of Rn. The Gram-
Schmidt orthonormalization formula induces a continuous map from the quotient
on the left hand side to quotient one on the right hand side which is inverse to
the obvious continuous map in the other direction. From the second description
we immediately see that Grk(Rn) is a compact Hausdorff space. For each k-
plane, L ∈ Grk(Rn), we let πL : Rn → Rn denote the orthogonal projection onto
L. If L = img(A), where A ∈ Mn×k(R) such that A∗A = Ik, then πL = AA∗,
whence πL depends continuously on L. Consider the resulting endomorphism of
the trivial vector bundle,

π : Grk(Rn)× Rn → Grk(Rn)× Rn, π(L, v) := (L, πLv),

a fiber wise projection of rank k. By Proposition I.5.12,

ξkR := img(π) = {(L, v) : v ∈ L} ⊆ Grk(Rn)× Rn,

is a real vector bundle of rank k over Grk(Rn), called the canonical k-plane bundle
over Grk(Rn). As will become clear below, this vector bundle is highly non-trivial.
If n ≤ m, then the inclusion Rn ⊆ Rm permits to regard Grk(Rn) as a subspace of
Grk(Rm), and induces an isomorphism between the ξkR and the restriction of the
canonical k-plane bundle over Grk(Rm). For this reason we omit the dimension
of the ambient space in the notation for the canonical bundle ξkR. Note that
Gr1(Rn+1) = RPn, and that the canonical bundle ξ1

R over Gr1(Rn+1) coincides
with the canonical bundle over RPn constructed before.

I.5.15. Example (Canonical bundle over Grk(Cn)). Analogous to the real
case, there are canonical vector bundles over the Grassmannian of all k-dimensi-
onal complex subspaces in Cn. We equip this space with the quotient topology
via the identification:

Grk(Cn) =
{A ∈Mn×k(C) : rk(A) = k}

GLk(C)
=
{A ∈Mn×k(C) : A∗A = Ik}

Uk

.

Again, the two quotient topologies coincide in view of the Gram-Schmidt or-
thonormalization formula. From the second description we immediately see that
Grk(Cn) is a compact Hausdorff space. Just as in the real case, one shows that

ξkC := {(L, v) : v ∈ L} ⊆ Grk(Cn)× Cn,

is a complex vector bundle of rank k over Grk(Cn), called the canonical k-plane
bundle over Grk(Cn). If n ≤ m then the inclusion Cn ⊆ Cm permits to regard
Grk(Cn) as a subspace of Grk(Cm), and induces an isomorphism between ξkC and
the restriction of the canonical k-plane bundle over Grk(Cm). In the case k = 1
the bundle ξ1

C coincides with the canonical line bundle over CPn = Gr1(Cn+1)
constructed above.
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I.5.16. Proposition. Suppose 0 → F
ι−→ E

π−→ G → 0 is a short exact
sequence of vector bundles over a paracompact Hausdorff space X. Then there
exist vector bundle homomorphisms, σ : G → E and ρ : E → F such that πσ =
idG and ρι = idF . Moreover, there exists an isomorphism, E ∼= F ⊕G.

Proof. We first construct σ locally: Every point x in X admits an open
neighborhood U such that there exists a vector bundle homomorphism σU : G|U →
E|U with π|U ◦ σU = idG|U . Indeed, using vector bundle charts one readily
constructs a vector bundle homomorphism σ̃U : G|U → E|U such that π|U ◦
σ̃U : G|U → G|U is fiber wise bijective, whence an isomorphism. Then σU :=
σ̃U ◦ (π|U ◦ σ̃U)−1 has the desired property.

By the preceding paragraph, there exists an open covering X =
⋃
i Ui and

vector bundle homomorphisms σi : G|Ui → EUi such that π|Ui ◦ σi = idG|Ui . Since

X is paracompact, there exists a subordinated partition of unity, λi : Ui → [0, 1],∑
i λi ≡ 1 and supp(λi) ⊆ Ui. Then σ : G → E, σ :=

∑
i λiσi, is a globally

defined vector bundle homomorphism satisfying πσ = idG. The vector bundle
homomorphism, ρ̃ : E → E, ρ̃ := idE −σπ, takes values in the subbundle img(ι) =
ker(π), for we have πρ̃ = π − πσπ = π − π = 0. Moreover, ρ̃ι = ι since πι = 0.

If we let ρ : E → F denote the composition E
ρ̃−→ img(ι)

ι−1

−−→ F , then ρι = idF .
Note that ι and σ give rise to a homomorphism F ⊕ G → E which is fiber wise
bijective, whence an isomorphism. �

Two subbundles F and F ′ of a vector bundle E over X are called comple-
mentary, iff Ex = Fx ⊕ F ′x, for all x ∈ X. In this case the inclusions induce a
canonical isomorphism, F ⊕ F ′ = E.

I.5.17. Proposition. Let E be a vector bundle over paracompact Hausdorff
space X. Then every subbundle of E admits a complementary subbundle.

Proof. Let ι : F → E denote the canonical inclusion. Applying Proposi-
tion I.5.16 to the short exact sequence 0 → F

ι−→ E → E/F → 0, we obtain a
vector bundle homomorphism ρ : E → F such that ρι = idF . Then F ′ := ker(ρ)
is a subbundle of E, see Proposition I.5.12, which is complementary to F .9 �

I.5.18. Lemma. Suppose E is a vector bundle over a compact Hausdorff space
X. Then there exists N ∈ N0 and a continuous map E → KN which is fiber wise
linear and injective.

Proof. By compactness, there exist finitely many open subsets U1, . . . , Un,
such that E|Ui ∼= Ui × Kki , for each i = 1, . . . , n. Such trivializations, provide
continuous, fiber wise injective linear maps, fi : E|Ui → Kki . Let λi be a sub-
ordinated partition of unity, i.e. λ : X → [0, 1] is continuous,

∑n
i=1 λi ≡ 1, and

9An alternative proof for the existence of complementary bundles based on fiber wise Her-
mitian metrics is discussed in the Exercises I.5.37 and I.5.38 at the end of this section.
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supp(λi) ⊆ Ui, for all i = 1, . . . , n. Then, the continuous map,

f : E → KN , f(v) :=
(
λ1(p(v))f1(v), . . . , λn(p(v))fn(v)

)
,

has the desired property, N =
∑n

i=1 ki. �

I.5.19. Proposition. If E is a vector bundle over a compact Hausdorff space
X, then there exists a vector bundle F over X such that E ⊕ F is trivializeable.
In particular, Γ(E) is a finitely generated projective module over C(X).10

Proof. Let f : E → KN be a map as in Lemma I.5.18 above. Then

ι : E → X ×KN = εN , ι(v) := (v, f(v)),

is a fiber wise injective vector bundle homomorphism. According to Proposi-
tion I.5.16, the vector bundle F := εN/ img(ι) has the desired property, E⊕F ∼=
εN . For the space of sections we obtain, C(X)N = Γ(εN) = Γ(E)⊕ Γ(F ), hence
Γ(E) is a direct summand of the free C(X)-module C(X)N , whence finitely gen-
erated and projective. �

There is an important construction generalizing the restriction of a vector
bundle, E|Y , which is know as pull back of vector bundles. Suppose p : E → X
is a vector bundle and let f : Y → X be a continuous map. Then there exists
a vector bundle f ∗p : f ∗E → Y and a continuous map p∗f : f ∗E → E such that
the following diagram commutes

f ∗E

f∗p

��

p∗f // E

p

��
Y

f // X

(I.12)

and such that (p∗f)y : (f ∗E)y → Ef(y) is a linear isomorphism, for every y ∈ Y .
Moreover, if q : F → Y is another vector bundle, and ψ : F → E is continuous,
fiber wise linear map over f , i.e. p ◦ ψ = f ◦ q and ψy : Fy → Ef(y) is linear for
all y ∈ Y , then there exists a unique vector bundle homomorphism Ψ: F → f ∗E
such that ψ = (p∗f) ◦Ψ.

F

q

##

ψ

��

Ψ

!!
f ∗E

f∗p

��

p∗f // E

p

��
Y

f // X

10According to the Serre–Swan theorem, every finitely generated projective C(X)-module
is of the form Γ(E), for some vector bundle E over X, cf. [24, Theorem I.6.18].
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As is a formal consequence of this universal property, a vector bundle f ∗E to-
gether with the fiber wise linear map p∗f over f as above, is unique up to canonical
isomorphisms. Essentially, there is only one.

To construct the pull back we put

f ∗E := Y ×X E := {(y, e) ∈ Y × E : f(y) = p(e)},

and let f ∗p and p∗f denote the restrictions of the canonical projections. These are
clearly continuous and the diagram (I.12) above commutes. The fiber, (f ∗E)y =
{y}×Ef(y), becomes a vector space in an obvious way, and p∗f is obviously fiber
wise linear. In fact one easily checks that f ∗q : f ∗E → Y is a vector bundle: any

local trivialization φ : E|U
∼=−→ U×E0 provides a fiber wise linear homeomorphism,

Φ: (f ∗E)|f−1(U)

∼=−→ f−1(U)× E0, Φ(y, e) :=
(
y, p2(φ(e))

)
.

with inverse, Φ−1(y, e0) =
(
y, φ−1(f(y), e0)

)
. The verification of the universal

property is straight forward.

The pull back of vector bundles is functorial. More precisely, if Z
g−→ Y

f−→ X
are two continuous maps, and E is a vector bundle over X, then the universal
property provides canonical isomorphisms of vector bundles

g∗f ∗E = (f ◦ g)∗E and id∗X E = E.

Moreover, if ι : Y → X denotes the inclusion of a subspace, then there exists a
canonical vector bundle isomorphism ι∗E = E|Y . In this sense, the pull back
construction can be considered as a generalization of the restriction. Also note
that for every constant map, c : Y → X, c(y) = x0, we obtain a canonical
trivialization of vector bundles, c∗E = Y × Ex0 . Moreover, we have natural
isomorphisms of vector bundles,

f ∗(E ⊕ F ) = f ∗E ⊕ f ∗F and f ∗(E ⊗ F ) = f ∗E ⊗ f ∗F,

for every continuous map f : Y → X and two vector bundles E and F over X.

I.5.20. Example (Normal bundle of an immersion). If f : S → M is a
smooth immersion, then the fiber wise injective homomorphism of vector bun-
dles, Tf : TS → f ∗TM , permits to regard TS as a subbundle of f ∗TM . Thus,
f ∗TM/TS is a vector bundle over S called the normal bundle of the immersion.

I.5.21. Example. Suppose E is a vector bundle of rank k over a compact
Hausdorff space X, and let f ′ : E → KN be a fiber wise linear and injective map
as in Lemma I.5.18. One readily checks that f : X → Grk(KN), f(x) := f ′(Ex),
is continuous. Moreover, (f, f ′) : E → ξkK ⊆ Grk(KN)×KN , is a fiber wise linear
isomorphism, hence it induces an isomorphism of vector bundles,

E ∼= f ∗ξkK,

by the universal property of the pull back.
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I.5.22. Proposition (Homotopy invariance). Let X be a paracompact Haus-
dorff space and suppose f, g : X → Y are two homotopic maps. Then,

f ∗E ∼= g∗E,

for every vector bundle E over Y .

Proof. By assumption, there exists a continuous map h : [0, 1]×X → Y such
that f = h ◦ ι0 and g = h ◦ ι1, where ιt : X → [0, 1] × X denotes the inclusion,
ιt(x) := (t, x). Hence,

f ∗E = (h ◦ ι0)∗E = ι∗0h
∗E ∼= ι∗1h

∗E = (h ◦ ι1)∗E = g∗E,

where the isomorphism in the middle exists in view of Lemma I.5.23 below. �

I.5.23. Lemma. Let X be a paracompact Hausdorff space and suppose E is a
vector bundle over [0, 1]×X. Then ι∗0E

∼= ι∗1E.

Proof. We follow the presentation in [18, Proposition 1.7] see also [22, The-
orem 4.3]. We first show that each point in x0 ∈ X admits an open neighborhood
U such that E|[0,1]×U is trivializeable. Using the compactness of the interval we
find 0 = t0 < t1 < · · · < tn = 1 and open neighborhoods Ui of x0 such that
E|[ti−1,ti]×Ui is trivializeable, for each i = 1, . . . , N . Then U :=

⋂N
i=1 Ui is an open

neighborhood of x0 and there exist vector bundle charts

ϕi : E|[ti−1,ti]×U
∼=−→ [ti−1, ti]× U × E0.

Put ψ1 := ϕ1 and define ψi+1 : E|[ti,ti+1]×U
∼=−→ [ti, ti+1]× U × E0 recursively by

(ψi+1)(t,x) : E(t,x) → E0, (ψi+1)(t,x) := (ψi)(ti,x)(ϕi+1)−1
(ti,x)(ϕi+1)(t,x),

where t ∈ [ti, ti+1] and x ∈ U . Then the trivializations ψi and ψi+1 coincide over
{ti}×U and thus fit together to provide a trivialization E|[0,1]×U ∼= [0, 1]×U×E0.

By the previous paragraph, there exists an open covering X =
⋃
i Ui such

that E|[0,1]×Ui is trivializeable. Since X is paracompact, there exists a partition
of unity, λi : X → [0, 1],

∑
i λi ≡ 1 and supp(λi) ⊆ Ui. Consider the continuous

maps

ηi : X → [0, 1]×X, ηi(x) :=
(∑

j≤i λi(x), x
)
.

Note that η0 = ι0 and every point in X admits an open neighborhood V such that
ηi|V = ι1|V , for sufficiently large i. We will now define vector bundle isomorphisms

φi : η
∗
iE

∼=−→ η∗i+1E. (I.13)

Since ηi and ηi+1 coincide over X \ supp(λi), the bundles η∗iE and η∗i+1E coincide
over X \supp(λi), and we let φi|X\supp(λi) = id. Using a trivialization of E|[0,1]×Ui ,
we construct an isomorphism φ|Ui : η∗iE|Ui → η∗i+1E|Ui which is the identity on Ui\
supp(λi). Hence these two pieces match up to define a vector bundle isomorphism



32 I. FREDHOLM OPERATORS AND THEIR INDEX

as in (I.13) Since supp(λi) is locally finite, the product φ := · · ·φ3φ2φ1φ0 is locally
finite, whence defines a vector bundle isomorphisms ι∗0E

∼= ι∗1E.11 �

I.5.24. Example. Every homotopy equivalence between paracompact Haus-

dorff spaces, f : X → Y , induces a bijection f ∗ : VkK(Y )
∼=−→ VkK(X). Here VkK(X)

denotes the set of isomorphism classes of rank k vector bundles over X. Indeed,
there exists a continuous map g : Y → X such that g ◦ f is homotopic to idX
and such that f ◦ g is homotopic to idY . From Proposition I.5.22 we thus ob-
tain f ∗g∗E = (g ◦ f)∗E ∼= id∗X E = E, for every vector bundle E over X, and
g∗f ∗F = (f ◦ g)∗F ∼= id∗Y F = F , for every vector bundle F over Y . Conse-

quently, g∗ : VkK(X) → VkK(Y ) is inverse to f ∗ : VkK(Y )
∼=−→ VkK(X). In particular,

every vector bundle over a contractible paracompact Hausdorff space is trivial.

I.5.25. Example (Canonical bundle over Grk(H)). Suppose H is a real or
complex Hilbert space, and let Grk(H) denote the Grassmannian of all k-di-
mensional (closed) subspaces in H. We equip this set with a topology via the
identification,

Grk(H) =
{A ∈ B(Kk, H) : rk(A) = k}

GLk(K)
=
{A ∈ B(Kk, H) : A∗A = id}

Ok resp. Uk
.

As before, the Gram–Schmidt orthonormalization formula induces a continuous
map from the quotient on the left hand side to the quotient on the right which
is inverse to the obvious continuous map in the other direction. Consequently,
the two quotient topologies coincide. From the second description we see that
Grk(H) is Hausdorff. Put

ξkK := {(L, v) : v ∈ L} ⊆ Grk(H)×H,
and let p : ξkK → Grk(H) denote the canonical projection. Note that the fibers of
p are k-dimensional subspaces of H. In fact ξkK is a vector bundle over Grk(H).
To see this we can proceed as in the finite dimensional case, cf. Proposition I.5.12.
For each k-dimensional subspace, L ∈ Grk(H), we let PL : H → H denote the
orthogonal projection onto L. If L = img(A), where A ∈ B(Kk, H) with A∗A =
id, then PL = AA∗, whence P : Grk(H) → B(H), L 7→ PL, is continuous. Fix
a k-dimensional subspace L0 ⊆ H and write PL =

(
AL BL
CL DL

)
according to the

decomposition H = L0 ⊕ L⊥0 , that is AL ∈ B(L0, L0), BL ∈ B(L⊥0 , L0), CL ∈
B(L0, L

⊥
0 ), and DL ∈ B(L⊥0 , L

⊥
0 ). By continuity, the set U := {L ∈ Grk(H) :

AL ∈ G(L0)} is an open neighborhood of L0 in Grk(H). Moreover, the continuous

map, U → B(H), L 7→
(

id 0
−CLA−1

L id

)
, provides a fiber wise linear homeomorphism,

U×H → U×H, mapping ξkK|U onto U×L0. This shows that ξkK is a vector bundle,
actually a subbundle in the trivial bundle of infinite rank, Grk(H)×H → Grk(H).

11If E is a smooth vector bundle over [0, 1] × M , then the parallel transport along the
curves t 7→ (t, x) associated with a linear connection on E provides an isomorphism ι∗0E

∼= ι∗1E.
Hence, in the smooth case, the statement can be proved using the solution of a linear ODE.
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Note that every linear embedding, Kn ⊆ H, induces an embedding Grk(Kn) ⊆
Grk(H) and the restriction of the canonical bundle ξkK over Grk(H) to Grk(Kn)
coincides with the canonical bundle over Grk(Kn) constructed before.

I.5.26. Lemma. Let H be an infinite dimensional real or complex Hilbert space,
and suppose E is a vector bundle of rank k over a paracompact Hausdorff space
X. Then there exists a continuous map E → H which is fiber wise linear and
injective.

Proof. Using the paracompactness of X, one shows [18, Lemma 1.21] that
there exists a countable open covering, X =

⋃
i∈N Ui, and vector bundle charts,

E|Ui ∼= Ui×Kk. The second components of these charts provide continuous maps
fi : E|Ui → Kk which are fiber wise injective and linear. Let λi be a subordinated
partition of unity, λi : X → [0, 1],

∑
i∈N λi ≡ 1 and supp(λi) ⊆ Ui, for all i ∈ N.

Moreover, let p : E → X denote the vector bundle projection. Then,

f : E →
⊕
i∈N

Kk, f(v) =
(
λ1(p(v))f1(v), λ2(p(v))f2(v), . . .

)
,

is a continuous map which is fiber wise injective and linear. Composing f with
an injective continuous linear map,

⊕
i∈N Kk → H, we obtain a map E → H

which has the desired properties. �

We let VkR(X) and VkC(X) denote the set of isomorphism classes of real and
complex vector bundles over X of rank k, respectively. The following result
reduces the problem of determining VkK(X) to a homotopy theoretic problem.

I.5.27. Theorem. Suppose H is an infinite dimensional separable real or com-
plex Hilbert space, and let ξkK denote the canonical k-plane bundle over Grk(H).
Then, for every paracompact Hausdorff space X, the pull back induces a bijection,

[X,Grk(H)]
∼=−→ VkK(X), f 7→ f ∗ξkK. (I.14)

Thus, Grk(H) is a classifying space for vector bundles of rank k.12

Proof. We follow the presentation in [18]. Note that the assignment (I.14)
is well defined in view of Proposition I.5.22. To see that it is onto, let E be a
vector bundle of rank k over X. By Lemma I.5.26 there exists a continuous map
f ′ : E → H which is fiber wise linear and injective. One readily verifies that,
f : X → Grk(H), f(x) := f ′(Ex), is continuous. Moreover, (f, f ′) : E → ξkK ⊆
Grk(H) × H, defines a continuous map which is fiber wise linear and bijective.
By the universal property of the pull back, the latter induces an isomorphism of
vector bundles, E ∼= f ∗ξkK, whence (I.14) is onto.

To see that (I.14) is injective, suppose f, g : X → Grk(H) are two continuous

maps such that f ∗ξkK
∼= E ∼= g∗ξkK. Let f̃ : E → ξkK and g̃ : E → ξkK denote the

12The proof below works equally well with Grk(K∞) := lim−→Grk(Kn) replacing Grk(H).

Consequently, Grk(K∞) is a classifying space for rank k vector bundles too. In fact Grk(K∞)
and Grk(H) are homotopy equivalent.



34 I. FREDHOLM OPERATORS AND THEIR INDEX

corresponding fiber wise linear maps over f and g, respectively. Composing f̃
and g̃ with the projection ξkK → H, we obtain continuous maps f ′ : E → H and
g′ : E → H which are fiber wise injective and linear. It suffices to construct
a continuous map, h′ : [0, 1] × E → H, such that h′0 = f ′, h′1 = g′ and so
that h′t : E → H is fiber wise injective and linear, for each t ∈ [0, 1]. Then,
h : [0, 1] × E → Grk(H), ht(x) := h′t(Ex), is a continuous homotopy connecting
h0 = f with h1 = g. To construct such a homotopy, we fix an isometry H = L2(N)
and note that

σ : [0, 1]×H → H, σt(x1, x2, . . . ) := (1− t)(x1, x2, . . . ) + t(x1, 0, x2, 0, . . . ),

is a continuous homotopy such that each σt : H → H is injective and linear.
Hence, f ′t := σt ◦ f ′, is a continuous homotopy of fiber wise injective linear
maps connecting f ′0 = f ′ with a map, f ′1, that takes values in the subspace
L2

odd(N) = {x ∈ L2(N) : x2i = 0}. Analogously, one constructs a continuous
homotopy of fiber wise injective linear maps, g′t, connecting g′0 = g′ with a map
g′1 that takes values in L2

even(N) = {x ∈ L2(N) : x2i+1 = 0}. Finally, (1−t)f ′1+tg′1,
is a continuous homotopy of fiber wise injective linear maps connecting f ′1 with
g′1. Concatenation of these three homotopies yields the desired homotopy h′. �

For every Hilbert space, let Stk(H) :=
{
A ∈ B(Kk, H) : A∗A = id

}
denote

the Stiefel manifold of orthonormal k-frames. The projection Stk(H)→ Grk(H)
is a principal Ok resp. Uk bundle. If H is an infinite dimensional separable
Hilbert space, then Stk(H) is contractible, see Exercise I.5.39 below. A common
notation for this (universal) principal bundle is EUk → BUk in the complex case
and EOk → BOk in the real case. So let us introduce the notation EUk = Stk(H)
and BUk = Grk(H) where H is a complex infinite dimensional separable Hilbert
space. Similarly, EOk = Stk(H) and BOk := Grk(H) where H is a real infinite
dimensional separable Hilbert space. Since the homotopy groups of EUk and
EOk vanish, the long exact sequence of homotopy groups associated with these
fibrations gives rise to isomorphisms

πn(BUk) ∼= πn−1(Uk) and πn(BOk) ∼= πn−1(Ok). (I.15)

For k = 1 this implies:

πn(BU1) ∼=

{
Z if n = 2

0 otherwise
and πn(BO1) ∼=

{
Z2 if n = 1

0 otherwise

Hence BU1 is an Eilenberg–MacLane space K(Z, 2), and BO1 is a K(Z2, 1).
Consequently, there are natural bijections [X,BU1] ∼= H2(X;Z) and [X,BO1] ∼=
H1(X;Z2). Combining this with Theorem I.5.27, we obtain natural bijections:

c1 : V1
C(X)

∼=−→ H2(X;Z) and w1 : V1
R(X)

∼=−→ H1(X;Z2).

These are isomorphisms of abelian groups, where the group structure on V1
K(X)

is the tensor product, cf. Exercise I.5.31 below. The Čech cohomology class
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represented by the cocycle of transition functions associated with an atlas of
local trivializations of a line bundle provides another way of understanding these
isomorphisms.

For k > 1 it is much harder to determine VkK(X). For the spheres, (I.15) and
Theorem I.5.27 yield:13

VkC(Sn) ∼= πn−1(Uk).

More explicit, this can be understood via the clutching construction, see for
instance [17, Chapter 1.2]. The homotopy groups of Uk are quite complicated,
according to [33, page 970] we have:

n 0 1 2 3 4 5 6 7 8 9 10 11 12

πn(U1) 0 Z 0 0 0 0 0 0 0 0 0 0 0
πn(U2) 0 Z 0 Z Z2 Z2 Z12 Z2 Z2 Z3 Z15 Z2 Z2 × Z2

πn(U3) 0 Z 0 Z 0 Z Z6 0 Z12 Z3 Z30 Z4 Z60

πn(U4) 0 Z 0 Z 0 Z 0 Z Z24 Z2 Z120 × Z2 Z4 Z60

πn(U5) 0 Z 0 Z 0 Z 0 Z 0 Z Z120 0 Z360

πn(U6) 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z Z720

πn(U7) 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z 0

πn(U) 0 Z 0 Z 0 Z 0 Z 0 Z 0 Z 0

However, the inclusion Uk → Uk+1 induces an isomorphism πn(Uk) ∼= πn(Uk+1),
provided n < 2k. This follows from the long exact sequence of homotopy groups
associated with the fibration Uk+1 → S2k+1 with typical fiber Uk. Hence, πn(Uk)
becomes stable, for large k. Writing U := lim−→Uk for the infinite unitary group,
we obtain πn(U) ∼= πn(Uk), provided n < 2k. Moreover, the stable homotopy
groups are periodic, πn(U) ∼= πn+2(U). We will discuss this phenomenon, known
as Bott periodicity, more thoroughly in Section I.7 below.

I.5.28. Exercise. Let E be a vector bundle of rank k. Show that E is trivial-
izeable if and only if there exists k continuous sections, s1, . . . , sk ∈ Γ(E), which
are point wise linearly independent, i.e. s1(x), . . . , sk(x) are linearly independent
in Ex, for all x ∈ X.

I.5.29. Exercise. Let E be a vector bundle over a paracompact Hausdorff
space X. Show that there exist k point wise linearly independent continuous
sections, s1, . . . , sk ∈ Γ(E), if and only if E ∼= F ⊕ εk, for some vector bundle
F over X. Apply this to the odd dimensional spheres, X = S2n+1, to obtain
TS2n+1 ∼= F ⊕ ε1.

I.5.30. Exercise. Let π : E → E be a vector bundle homomorphism such
that π2 = π. Show that img(π) and ker(π) are complementary subbundles of E
and conclude E ∼= img(π)⊕ker(π). Hint: Show that π has locally constant rank.

13The real case is slightly more involved because Ok is not connected.
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I.5.31. Exercise. Show that V1
K(X) is an abelian group with respect to the

tensor product of vector bundles. Hint: The inverse is represented by the dual
bundle.

I.5.32. Exercise. Let M be a smooth manifold with boundary ∂M . Show
that there exists an isomorphism of real vector bundles,

TM |∂M ∼= T (∂M)⊕ ε1.

I.5.33. Exercise. Let E → X be a vector bundle. Equip the set ΛqE =⊔
x∈X ΛqEx with the structure of a vector bundle over X. Show that

π(v1 ⊗ · · · ⊗ vq) :=
1

q!

∑
σ∈Sq

sign(σ)vσ(1) ⊗ · · · ⊗ vσ(q)

defines a vector bundle endomorphism of E ⊗ · · · ⊗ E satisfying π2 = π. Show
that img(π) is a subbundle of E ⊗ · · · ⊗ E which is isomorphic to ΛqE.

I.5.34. Exercise. Let ξ → RPn = Sn/S0 denote the canonical real line
bundle. Show that there exists a natural isomorphism of C(X)-modules,

Γ(ξ) =
{
f ∈ C(Sn,R)

∣∣ ∀x ∈ Sn : f(−x) = −f(x)
}
.

Use this to show that every continuous section of ξ has to vanish somewhere, and
conclude that ξ is a non-trivial line bundle.

I.5.35. Exercise. Let p : ξ → CPn = S2n+1/S1 denote the canonical complex
line bundle. Show that there exists a natural isomorphism of C(X)-modules,

Γ(ξ) =
{
f ∈ C(S2n+1,C)

∣∣ ∀x ∈ S2n+1 ∀z ∈ S1 : f(zx) = zf(x)
}
.

Use this to show that every continuous section of ξ has to vanish somewhere, and
conclude that ξ is a non-trivial line bundle, n ≥ 1. Hint: Suppose conversely,
that there exists a continuous map f : S2n+1 → S1 such that f(zx) = zf(x), for
all x ∈ S2n+1 and z ∈ S1. Let θ ∈ Ω1(S1) denote the angular form,

∫
S1 θ = 1, and

show
∫
p−1(y)

f ∗θ = 1, for every y ∈ CPn. Derive a contradiction using f ∗θ = dh,

for some smooth function h on the simply connected sphere S2n+1.

I.5.36. Exercise. Let p : E → X be a vector bundle and suppose f : Y → X
is continuous. Show that there is a natural isomorphism of C(Y )-modules,

Γ(f ∗E) = {φ ∈ C(Y,E) : p ◦ φ = f}.
This permits to regard sections along f as sections of a vector bundle.

I.5.37. Exercise (Fiberwise Euclidean metrics). Suppose E → X be a real
vector bundle. A continuous section h ∈ Γ(E∗⊗E∗) is called a fiber wise Euclidean
metric if hx is a positive definite symmetric bilinear form on Ex, for each x ∈ X.
Show that every real vector bundle over a paracompact Hausdorff space admits
fiber wise Euclidean metrics, and use this to prove E ∼= E∗. Moreover, if F is
a subbundle of E, show that the orthogonal complement, F⊥ :=

⋃
x∈X F

⊥
x , is a
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subbundle of E which is complementary to F , i.e. E = F ⊕ F⊥. Furthermore,
show that every point in X admits a neighborhood U such that there exists a
vector bundle chart, E|U ∼= U × E0, for which the Euclidean metric becomes
constant, hx = h0, independent of x ∈ U .

I.5.38. Exercise (Fiberwise Hermitian metrics). Suppose E → X is a com-
plex vector bundle. A continuous section h ∈ Γ(Ē∗ ⊗ E∗) is called a fiber wise
Hermitian metric if hx is a positive definite symmetric sesquilinear form on Ex,
for each x ∈ X. Here Ē denotes the conjugate vector bundle, i.e. the same bundle
as E equipped with the conjugate scalar multiplication. Show that every complex
vector bundle E over a paracompact Hausdorff space X admits a fiber wise Her-
mitian metric, and use this to conclude Ē ∼= E∗. Moreover, if F is a subbundle
of E, show that the orthogonal complement, F⊥ :=

⋃
x∈X F

⊥
x , is a subbundle

of E which is complementary to F , i.e. E = F ⊕ F⊥. Furthermore, show that
every point in x admits a neighborhood U such that there exists a vector bundle
chart, E|U ∼= U ×E0, for which the Hermitian metric becomes constant, hx = h0,
independent of x ∈ U .

I.5.39. Exercise. Let H be an infinite dimensional separable real or complex
Hilbert space. Show that the Stiefel manifold of orthonormal k-frames, Stk(H) :=
{A ∈ B(Kk, H) : A∗A = id}, is contractible. HINT ...

I.6. Atiyah’s theorem. LetX be a compact Hausdorff space, and let VK(X)
denote the set of isomorphism classes of vector bundles over X where K = R or
K = C. With respect to the Whitney sum, V(X) is an abelian semigroup with
neutral element ε0 = X × K0. Moreover, the tensor product of vector bundles
turns VK(X) into a commutative semiring with unit ε1 = X×K. If f : X → Y is
a continuous map between compact Hausdorff spaces, then the pullback induces
a homomorphism of semirings, f ∗ : VK(Y )→ VK(X), such that

(g ◦ f)∗ = f ∗g∗ and id∗X = idVK(X)

for any two continuous maps between compact Hausdorff spaces, f : X → Y and
g : Y → Z. In other words, VK is contravariant functor from the category of com-
pact Hausdorff spaces to the category of commutative semirings. Furthermore,
this functor is homotopy invariant, i.e. for any two homotopic maps, f, g : X → Y ,
we have f ∗ = g∗ : VK(Y )→ VK(X).

I.6.1. Lemma (Grothendieck construction). Let S be an abelian semigroup.
Then there exists an abelian group G(S) and a homomorphism of semigroups,
ι : S → G(S), with the following universal property: For every abelian group
A and every homomorphism of semigroups, ϕ : S → A, there exists a unique
homomorphism of groups, ϕ̃ : G(S)→ A, such that ϕ̃ ◦ ι = ϕ.

If S is a commutative semiring, then G(S) admits the structure of a commuta-
tive ring such that ι is a homomorphism of semirings with the following universal
property: For every commutative ring R and every homomorphism of semiring,
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ϕ : S → R, there exists a unique homomorphism of rings, ϕ̃ : G(S) → R, such
that ϕ̃ ◦ ι = ϕ. If S is unital, then ι(1) is a unit in G(S).

Proof. Introduce an equivalence relation on S × S by

(s, t) ∼ (s′, t′) ⇔ ∃u ∈ S : s+ t′ + u = s′ + t+ u.

Put G(S) := S × S/∼ and let [(s, t)] ∈ G(S) denote the equivalence class repre-
sented by (s, t) ∈ S × S. One readily verifies that

[(s1, t1)] + [(s2, t2)] := [(s1 + s2, t1 + t2)]

turns G(S) into an abelian semigroup with neutral element 0 := [(o, o)], where
o ∈ S is arbitrary. Moreover, [(s, t)] + [(t, s)] = 0, hence every element in G(S)
admits an inverse. Consequently, G(S) is an abelian group and ι : S → G(S),
ι(s) := [(s + o, o)] is a homomorphism of semigroups. To verify the universal
property, let A be an abelian group and suppose ϕ : S → A is a homomorphism
of semigroups. Then, ϕ̃ : G(S)→ A,

ϕ̃
(
[(s, t)]

)
:= ϕ(s)− ϕ(t)

is a well defined homomorphism of groups such that ϕ̃◦ ι = ϕ. The uniqueness of
ϕ̃ follows from the fact that ι(S) generates G(S) as a group. If S is a commutative
semiring, then

[(s1, t2)] · [(s2, t2)] := [(s1s2 + t1t2, s1t2 + t1s2)]

turns G(S) into a commutative ring such that ι is a homomorphism of semirings.
Clearly, ϕ̃ will be multiplicative if ϕ was. �

Note that the abelian group G(S) and the homomorphism ι as above, are
unique up to canonical isomorphism. More precisely, if ι′ : S → G′ has the same
universal property as ι : S → G(S), then there exists a unique isomorphism of
groups, G′ ∼= G(S), which intertwines ι′ with ι. This is a formal consequence of
the universal property.

If ϕ : S1 → S2 is a homomorphism between abelian semigroups, then there
exists a unique homomorphism of groups, G(ϕ) : G(S1) → G(S2), such that the
following diagram commutes:

S1

ϕ //

ι1
��

S2

ι2
��

G(S1)
G(ϕ)

// G(S2)

Indeed, ι2 ◦ ϕ is a homomorphism of semigroups, hence the statement follows
from the universal property of ι1. Clearly,

G(ψ ◦ ϕ) = G(ψ) ◦G(ϕ) and G(idS) = idG(S),

for any other homomorphism of abelian semigroups, ψ : S2 → S3. Consequently,
the Grothendieck constructions provides a covariant functor from the category
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of abelian semigroups to the category of abelian groups. Moreover, if ϕ is a
homomorphism of commutative semirings, thenG(ϕ) is a homomorphism of rings.
Hence the Grothendieck construction also provides a covariant functor from the
category of commutative semirings to the category of commutative rings.

I.6.2. Example. Applying the Grothendieck construction to the commutative
semiring S = N, we obtain G(N) = Z and the homomorphism ι : N → Z is just
the canonical inclusion. In general ι : S → G(S) will be injective iff S has the
cancellation property, i.e. ∀s, t, o ∈ S : s+ o = t+ o⇒ s = t.

Complex and real K-theory of a compact Hausdorff space X is defined by

K(X) := G(VC(X)) and KO(X) := G(VR(X)),

respectively. By the preceding remarks, these are commutative unital rings.
Moreover, every continuous map between compact Hausdorff spaces, f : X → Y ,
induces homomorphisms of rings, f ∗ : K(Y )→ K(X) and f ∗ : KO(Y )→ KO(X)
such that

(g ◦ f)∗ = f ∗g∗ and id∗X = id,

for any other continuous map of compact Hausdorff spaces, g : Y → Z. Moreover,
f ∗ = g∗ whenever f, g : X → Y are homotopic. We summarize these observations
in the following proposition:

I.6.3. Proposition. Real and complex K-theory are homotopy invariant con-
travariant functors from the category of compact Hausdorff spaces to the category
of commutative unital rings.

I.6.4. Example. For every contractible space X, the rank of vector bundles
induces isomorphisms: K(X) ∼= Z ∼= KO(X).

Every element in K(X) can be written as a formal difference of two vector
bundles E and F over X,

E − F := ι(E)− ι(F ) = [(E,F )] ∈ K(X).

Moreover, E−F = E ′−F ′ ∈ K(X) iff there exists a vector bundle G over X such
that E ⊕ F ′ ⊕ G ∼= E ′ ⊕ F ⊕ G. This follows immediately from our definitions.
Using Proposition I.5.19 we obtain:

I.6.5. Proposition. Every element in K(X) can be represented in the form
E − εk, for some vector bundle E over X and k ∈ N0. Moreover, E − εk =
E ′ − εk

′ ∈ K(X) iff there exists l ∈ N0 such that E ⊕ εk
′+l ∼= E ′ ⊕ εk+l. An

analogous statement holds for KO(X).

Proof. Indeed, if F ⊕F ′ ∼= εk, then E−F = E⊕F ′−F ⊕F ′ = E⊕F ′−εk.
Moreover, if E − εk = E ′ − εk

′
then there exists a vector bundle G such that

E⊕εk′⊕G ∼= E ′⊕εk⊕G, hence E⊕εk′+l ∼= E⊕εk′⊕G⊕G′ ∼= E ′⊕εk⊕G⊕G′ ∼=
E ′ ⊕ εk+l if G⊕G′ ∼= εl. �
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If ∗ ∈ X is a base point, then the inclusion {∗} → X induces a homomorphism
of semirings K(X)→ K({∗}) = Z, E − F 7→ rk∗(E)− rk∗(F ). Its kernel,

K̃(X) := ker
(
K(X)→ Z

)
,

is called the reduced K-theory. The homomorphism N→ K(X), k 7→ εk, induces
a natural splitting,

K(X) = K̃(X)⊕ Z.

I.6.6. Example. One can show:

n 1 2 3 4 5 6 7 8

K̃(Sn) ∼= πn−1(U) 0 Z 0 Z 0 Z 0 Z

K̃O(Sn) ∼= πn−1(O) Z2 Z2 0 Z 0 0 0 Z

Moreover, these groups are periodic,

K̃(Sn+2) ∼= K̃(Sn) and K̃O(Sn+8) ∼= K̃O(Sn)

This phenomenon is known as Bott periodicity. We will discuss the the complex
version below.

Let E be a real or complex Banach space. For every compact Hausdorff space
X, we will now define a natural map

ind: [X,F(E)]→ K(X)

which specializes to the index map ind: π0(F(E)) → Z in (I.1), if X = {∗}.
Note here that [{∗},F(E)] = π0(F(E)) and K({∗}) = Z. To a continuous map
A : X → F(E) we would like to assign the formal difference

ind(A) =
⊔
x∈X

ker(Ax)−
⊔
x∈X

coker(Ax)

in K(X). In general, these two expressions will not define vector bundles over X.
If each Ax ∈ F(E) is onto, however, then it is reasonable to expect

⊔
x∈X ker(Ax)

to be a vector bundle over X. Indeed we have:

I.6.7. Lemma. Let E and F be two Banach spaces. Then

F+(E,F ) :=
{
A ∈ F(E,F )

∣∣ A is onto
}

is an open subset of F(E,F ), and

ξ+(E,F ) :=
⊔

A∈F+(E,F )

ker(A) ⊆ F+(E,F )× E

is a vector bundle over F+(E,F ). Moreover, there exists a continuous fiber wise
linear map ρ : F+(E,F )× E → ξ+(E,F ) such that ρ|ξ+(E,F ) = idξ+(E,F ).
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Proof. Consider a decomposition E = E1 ⊕E0, where E1 is a finite dimen-
sional subspace. Then

U : =
{
A ∈ B(E,F ) : A|E0 : E0

∼=−→ F is invertible
}

=
{

(A1, A0) : A1 ∈ B(E1, F ), A0 ∈ G(E0, F )
}

is an open subset of B(E,F ) which is contained F+(E,F ). Note that every
element in F+(E,F ) is contained in a set U of this form, see Proposition I.2.9.
Moreover, the fiber wise linear homeomorphism

U × E = U × (E1 ⊕ E0)

(
idE1

0

A−1
0 A1 idE0

)
−−−−−−−−−→ U × (E1 ⊕ E0) = U × E (I.16)

maps ξ+(E,F )|U ⊆ U×E onto the trivial subbundle U×E1 of U×E. This shows
that ξ+(E,F ) is indeed a vector bundle over F+(E,F ). Furthermore, conjugating
the canonical projection U×E → U×E1 with (I.16), we obtain a continuous fiber
wise linear map ρU : U×E → ξ+(E,F )|U such that ρU |ξ+(E,F ) = id. As F+(E,F )
is paracompact, we may use a partition of unity to glue these locally defined
maps to a continuous and fiber wise linear map ρ : F+(E,F ) × E → ξ+(E,F )
such that ρ|ξ+(E,F ) = id. �

Fix a Banach space E and suppose X is a compact Hausdorff space. If
A : X → F(E) is continuous, then there exists a finite dimensional subspace V
of E such that img(Ax) + V = E, for all x ∈ X. In other words, the map
A : X → F(E) → F(E,E/V ) takes values in F+(E,E/V ). Denoting this map
by Ā : X → F+(E,E/V ), the formal difference

ind(A) := Ā∗
(
ξ+(E,E/V )

)
−X × V =

⊔
x∈X

A−1
x (V )− εdim(V )

represents an element in K(X).

I.6.8. Lemma. The element ind(A) ∈ K(X) defined above does not depend
on the choice of the subspace V . Moreover, for every continuous map between
compact Hausdorff spaces, f : Y → X, we have ind(A ◦ f) = f ∗ ind(A).

Proof. If V ′ is another subspace such img(Ax) +V ′ = E, then W := V +V ′

has the same property. Consequently, it suffices to show that V and W lead to
the same element in K(X). Note that

0→
⊔
x∈X

A−1
x (V )→

⊔
x∈X

A−1
x (W )

⊔
x∈X Ax−−−−−→ X × (W/V )→ 0

is a short exact sequence of vector bundles over X. Since short exact sequences of
vector bundles over (para)compact bases split, see Proposition I.5.16, we obtain
an isomorphism of vector bundles:⊔

x∈X

A−1
x (W ) ∼=

⊔
x∈X

A−1
x (V )⊕ εdim(W )−dim(V ).
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By Proposition I.6.5 this implies⊔
x∈X

A−1
x (W )− εdim(W ) =

⊔
x∈X

A−1
x (V )− εdim(V )

in K(X), whence the first assertion of the lemma. If f : Y → X is a continuous
map between compact Hausdorff spaces, then

ind(A ◦ f) = (A ◦ f)∗
(
ξ+(E,E/V )

)
− Y × V

= f ∗
(
A∗
(
ξ+(E,E/V )

)
−X × V

)
= f ∗ ind(A).

Note that img
(
(A◦ f)(y)

)
+V = E, for all y ∈ Y , hence the subspace V can also

be used to compute ind(A ◦ f). �

The following result generalizes Proposition I.2.12.

I.6.9. Proposition. Let X be a compact Hausdorff space.
a) If E is a complex Banach space, then the following is a natural exact

sequence of groups:14

[X,G(E)]→ [X,F(E)]
ind−→ K(X). (I.17)

b) If E is a real Banach space, then the following is a natural exact sequence
of groups:

[X,G(E)]→ [X,F(E)]
ind−→ KO(X).

Proof. We follow the presentation in [1, Appendix], see also [27, Chap-
ter III §8]. We focus on the complex case, the proof of the real version is entirely
analogous.

Suppose A0, A1 : X → F(E) are two homotopic maps. Then there exists a
continuous map A : [0, 1]×X → F(E) such that A0 = A◦ι0 and A1 = A◦ι1 where
ιt : X → [0, 1]×X, ιt(x) := (t, x). Since ι0 and ι1 are homotopic, they induce the
same map in K-theory, ι∗0 = ι∗1 : K([0, 1] × X) → K(X), see Proposition I.6.3.
We conclude

ind(A0) = ind(A ◦ ι0) = ι∗0 ind(A) = ι∗1 ind(A) = ind(A ◦ ι1) = ind(A1).

This shows that ind(A) only depends on the homotopy class of the map A : X →
F(E), hence the index induces a map ind: [X,F(E)] → K(X). The naturality
of the sequence (I.17) follows from the naturality statement in Lemma I.6.8.

14The naturality assertion means that the diagram

[X,G(E)] //

f∗

��

[X,F(E)]
ind //

f∗

��

K(X)

f∗

��
[Y,G(E)] // [Y,F(E)]

ind // K(Y )

commutes, for every continuous map between compact Hausdorff spaces, f : Y → X.
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Clearly, the composition of Fredholm operators turns [X,F(E)] into an asso-
ciative semigroup with unit. We will now show that [X,F(E)] is actually a group.
Suppose A : X → F(E) is continuous and choose a finite dimensional subspace
V such that img(Ax) + V = E, for all x ∈ X, and let V ′ be a complementary
subspace, E = V ⊕ V ′. Furthermore, let W ′ be a closed subspace of finite codi-
mension in E such that ker

(
A−1
x (V ′)

)
∩W ′ = 0, for all x ∈ X. Decomposing A

accordingly, we obtain A = ( R S
T G ), where G : X → G(W ′, V ′), R : X → B(W,V ),

S : X → B(W ′, V ), and T : X → B(W,V ′). TO BE COMPLETED
Let us next show that the index map in (I.17) is a homomorphism, i.e.

ind(AB) = ind(A) + ind(B), for any two continuous maps A,B : X → F(E).
Choose a finite dimensional subspace W of E such that img(Bx) + W = E,
for all x ∈ X. Using a complementary subspace, W ⊕ W ′ = E, we may
write A = (A′′, A′) where A′′ : X → B(W,E) and A′ : X → F(W ′, E). Then
At : X → F(E), At := (tA′′, A′), is a homotopy connecting A with a map
Ã : X → F(E) such that Ãx(W ) = 0. Note that each At(x) is Fredholm since
A′′(x) has finite rank. In view of the homotopy invariance of the index, we may
thus, w.l.o.g. assume Ax(W ) = 0, for all x ∈ X. Let V be a finite dimensional
subspace of E such that img(AxBx) + V = E, for all x ∈ X. Our assumptions
also give img(Ax) + V = E and Ax(W ) ⊆ V , for all x ∈ X. Thus

0→
⊔
x∈X

B−1
x (W )→

⊔
x∈X

(AB)−1
x (V )

⊔
x∈X Bx−−−−−→

⊔
x∈X

A−1
x (V )/W → 0

is a short exact sequence of vector bundles over X, and so is:

0→ X ×W →
⊔
x∈X

A−1
x (V )→

⊔
x∈X

A−1
x (V )/W → 0.

As short exact sequences of vector bundles split, we obtain an isomorphism:⊔
x∈X

(AB)−1
x (V )⊕ εdim(W ) ∼=

⊔
x∈X

A−1
x (V )⊕

⊔
x∈X

B−1
x (W ).

Hence, by Proposition I.6.5, we have⊔
x∈X

(AB)−1
x (V )− εdim(V ) =

⊔
x∈X

A−1
x (V )− εdim(V ) +

⊔
x∈X

B−1
x (W )− εdim(W )

in K(X), i.e. ind(AB) = ind(A) + ind(B).
Let us now turn to the exactness of the sequence (I.17). Suppose A : X →

F(E) is continuous and ind(A) = 0. Thus, for some finite dimensional subspace
V of E as above, we have

⊔
x∈X A

−1
x (V ) = εdim(V ) ∈ K(X). By Proposition I.6.5

there exists k ∈ N0 and an isomorphism of vector bundles:⊔
x∈X

A−1
x (V )⊕ εk ∼= εdim(V )+k.
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Choose a subspace W such that V ⊆ W ⊆ E and dim(W/V ) = k. As in the
proof of Lemma I.6.8 we obtain:⊔

x∈X

A−1
x (W ) ∼= εdim(V )+k ∼= X ×W.

Combing such an isomorphism with ρ from Lemma I.6.7 we obtain a continuous
map T : X → B(E,W ) which restricts to an isomorphism

Tx|A−1
x (W ) : A−1

x (W )
∼=−→ W,

for every x ∈ X. Using a complementary subspace, W ⊕ W ′ = E, we may
write A =

(
A′′

A′

)
, where A′′ : X → B(E,W ) and A′ : X → F(E,W ′). Then

[0, 1] × X → F(E), At :=
(

(1−t)A′′+tT
A′

)
, is a homotopy connecting A0 = A with

a map A1 = ( T
A′ ) that takes values in G(E). Indeed, ker(A1(x)) = ker(A′x) ∩

ker(Tx) = A−1
x (W ) ∩ ker(Tx) = 0 and img(A1(x)) ⊇ img(A′x) + Tx(ker(A′x)) =

img(A′x) + Tx(A
−1
x (W )) = W ′ + W = E. This shows that the kernel of the map

ind: [X,F(E)]→ K(X) is contained in the image of [X,G(E)]→ [X,F(E)]. As
the converse inclusion is obvious, the sequence (I.17) is exact, and the proof is
complete. �

I.6.10. Theorem (Atiyah). Let X be a compact Hausdorff space.
a) If H is a complex infinite dimensional separable Hilbert space, then the

Fredholm index induces a natural isomorphism of groups:

ind: [X,F(H)]
∼=−→ K(X). (I.18)

Consequently, F(H) is a classifying space for K-theory.
b) If H is a real infinite dimensional separable Hilbert space, then the Fredholm

index induces a natural isomorphism of groups:

ind: [X,F(H)]
∼=−→ KO(X).

Consequently, F(H) is a classifying space for KO-theory.

Proof. According to Kuiper’s theorem, [X,G(H)] = 0, see Theorem I.4.1.
Hence, by Proposition I.6.9, the homomorphism (I.18) is injective. It remains
to show that it is surjective too. Recall that every element in K(X) can be
represented in the form E − εk, where E is a vector bundle over X and k ≥ 0.
W.l.o.g. we may assume H = L2(N). For n ∈ Z let Sn ∈ F(H) denote the shift
operator with index n from Example I.2.5. Putting V := 〈e1, . . . , ek〉, we obtain
img(S−k) + V = H and (S−k)

−1(V ) = 0. Hence, the index of the constant map,
S−k : X → F(H), is

ind(S−k) =
⊔
x∈X

(S−k)
−1(V )−X × V = −X × V = −εk ∈ K(X),

whence −εk is in the image of the homomorphism (I.18). It remains to show that
E is in the image too. To this end choose a continuous map f ′ : E → CN which is



I.7. BOTT PERIODICITY 45

fiber wise linear and injective. Moreover, let Px : CN → CN denote the orthogonal
projection onto f ′(Ex), put Qx := idCN −Px, and consider the continuous map:

A : X → F
(
CN ⊗H

)
, Ax := Px ⊗ S1 +Qx ⊗ idH .

By construction, each Ax is onto with kernel ker(Ax) = Ex ⊗ 〈e1〉, whence

ind(A) =
⊔
x∈X

ker(Ax) ∼= E ⊗ ε1 ∼= E.

Using an isomorphism CN ⊗ H ∼= H, we see that E is in the image of the
homomorphism (I.18) too. This completes the proof of the first part. The second
part can be shown analogously. �

I.6.11. Corollary.
a) If H is a complex infinite dimensional separable Hilbert space, then:

πn(F(H)) ∼= K̃(Sn).

b) If H is a real infinite dimensional separable Hilbert space, then:

πn(F(H)) ∼= K̃O(Sn).

I.7. Bott periodicity. We will discuss Atiyah’s proof of the complex version
of Bott periodicity, see [2].

We start this section with a first index computation. Consider the complex
Hilbert space L2(S1). Recall that every g ∈ C(S1) gives rise to a multiplication
operator, Mg ∈ B(L2(S1)), Mg(f) := gf , see Exercise I.7.8. Let H ⊆ L2(S1)
denote the Hardy space, i.e. the closed subspace spanned by the functions zn,
n = 0, 1, . . . , and let P : L2(S1)→ H, denote the orthogonal projection onto H.
For g ∈ C(S1) we define the Töplitz operator, Tg ∈ B(H), as Tg := PMg.

I.7.1. Lemma. For g ∈ C(S1), we have PMg −MgP ∈ K(L2(S1)).

Proof. Let us consider

J :=
{
g ∈ C(S1) : PMg −MgP ∈ K(L2(S1))

}
.

As PMg−MgP depends linearly and continuously on g, this is a closed subspace
of C(S1). Furthermore, using Mgh = MgMh we get the relation

PMgh −MghP = (PMg −MgP )Mh +Mg(PMh −MhP ),

from which we conclude that J is a subalgebra of C(S1). Moreover, using P ∗ = P
and M∗

g = Mḡ, we get PMḡ−MḡP = (PMg−MgP )∗, hence J is invariant under

conjugation. Finally, observe that the function z : S1 → C is in J , since the
operator PMz −MzP has rank one. Indeed, for all m ∈ Z, we have

(PMz −MzP )(zm) =

{
z0 if m = −1

0 if m 6= −1.

Using the Stone–Weierstraß theorem, see [36, Chapter 5.7] or [43, Theorem 6.15],
we conclude J = C(S1). Thus, PMg−MgP is compact, for every g ∈ C(S1). �



46 I. FREDHOLM OPERATORS AND THEIR INDEX

I.7.2. Theorem (Töplitz index theorem). Suppose g ∈ C(S1,C×). Then the
Töplitz operator Tg ∈ B(H) is Fredholm, and

ind(Tg) = −winding number of g : S1 → C×.

Proof. We proceed as in [19, Theorem 2.3.2]. If g1, g2 ∈ C(S1) then

Tg1Tg2 = PMg1PMg2

= PMg1Mg2 + P (Mg1P − PMg1)Mg2

= PMg1g2 + compact operator

= Tg1g2 + compact operator,

see Lemma I.7.1 and Theorem I.1.8. This shows that the operators idH −TgTg−1

and idH −Tg−1Tg are compact, for all g ∈ C(S1,C×). Hence, Tg is Fredholm in
view of Atkinson’s theorem, see Theorem I.3.1. Moreover, for all g, h ∈ C(S1,C×)
we have

ind(Tgh) = ind(TgTh) = ind(Tg) + ind(Th). (I.19)

Let n ∈ Z denote the winding number of g. Then there exists a continuous
path in C(S1,C×) connecting g with zn. This provides a continuous path in
F(H) connecting Tg with Tzn . Because the Fredholm index is locally constant, see
Proposition I.2.10, it thus suffices to show ind(Tzn) = −n. Actually, it is sufficient
to show ind(Tz) = −1, as both sides define homomorphisms Z → Z, see (I.19).
Recall that the functions zm, m = 0, 1, 2, . . . , constitute a Hilbert basis of H.
Clearly, Tz(z

m) = zm+1, for all m ≥ 0. Hence Tz is injective with 1-dimensional
cokernel. We obtain ind(Tz) = dim(ker(Tz)) − dim(coker(Tz)) = 0 − 1 = −1,
whence the theorem. �

Let E be a complex vector bundle over a compact space X and consider the
vector bundle p∗E = S1×E over S1×X where p : S1×X → X denotes the canon-
ical projection. Moreover suppose φ : p∗E → p∗E is a vector bundle automor-
phism. Hence, for each x ∈ X we have a continuous map, φx ∈ C(S1,GL(Ex)).
Let Hx denote the closed subspace of L2(S1, Ex) spanned by the maps znv,
n ∈ N0, v ∈ Ex, and let Px ∈ B(L2(S1, Ex)) denote the orthogonal projection onto
Hx. Let Mx ∈ B(L2(S1, Ex)) denote the multiplication operator, Mxv := φxv,
v ∈ L2(S1, Ex), and consider the vector valued Töplitz operator Tx : Hx → Hx,
Tx := PxMx. Proceeding as above, one readily shows that Tx is Fredholm, for
each x ∈ X, see Exercise I.7.9. Hence we have a family of Fredholm operators,
Tx ∈ F(Hx), parametrized by x ∈ X. Although the Hilbert space depends on
the base point x ∈ X we can still put ourselves in the situation considered in
the preceding section. Note first that a local trivialization, E|U ∼= U × Ex0 , in-
duces a local trivialization

⊔
x∈U Hx

∼= U × Hx0 . Using these we turn
⊔
x∈X Hx

into a vector bundle of Hilbert spaces over X. It follows from Kuiper’s theorem
that this is a trivial bundle, i.e. there exists a fiber wise linear homeomorphism,⊔
x∈X Hx

∼= X ×H, where H ∼= Hx0 , see Exercise I.7.10 below. This permits to
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regard the family constructed above as a continuous map, Tφ : X → F(H). Such
a family has an index,

ind(Tφ) ∈ K(X),

see Section I.6. This index has a number of nice properties we will now discuss.
We start by observing that it does not depend on the trivialization

⊔
x∈X Hx

∼=
X × H. Indeed, another trivialization leads to a family of the form T̃φ = GTφ,

where G : X → G(H), whence ind(T̃φ) = ind(GTφ) = ind(G)+ind(Tφ) = ind(Tφ),

according to Proposition I.6.9. Moreover, homotopic automorphisms, φ and φ̃,
give rise to the same homotopy class, Tφ = Tφ̃ ∈ [X,F(H)], hence

ind(Tφ) = ind(Tφ̃), (I.20)

whenever φ and φ̃ are homotopic, see Proposition I.6.9. If E1 and E2 are two

complex vector bundles over X and φi : S
1×Ei

∼=−→ S1×Ei are two automorphisms,
then

ind(Tφ1⊕φ2) = ind(Tφ1) + ind(Tφ2)), (I.21)

where φ1 ⊕ φ2 : S1 × (E1 ⊕ E2)
∼=−→ S1 × (E1 ⊕ E2). Indeed, we have Tφ1⊕φ2 =

Tφ1 ⊕ Tφ2 : X → F(H)⊕ F(H) ⊆ F(H ⊕H). Moreover, the index is natural in
X. More precisely, if f : Y → X is a continuous map between compact Hausdorff
spaces, then

ind(Tf∗φ) = f ∗ ind(Tφ) ∈ K(Y ), (I.22)

where f ∗φ : S1 × f ∗E
∼=−→ S1 × f ∗E. Indeed, Tf∗φ = Tφ ◦ f : Y → F(H), hence

the statement follows from Proposition I.6.9.
We will now show that the index of a family of Töplitz operators gives rise to

homomorphism in compactly supported K-theory,

Kc(C×X)→ Kc(X),

for every locally compact Hausdorff space X.
We start by introducing compactly supported K-theory. If X is a locally

compact Hausdorff spaces, we let X+ := X t {∞} denote the one point com-
pactification of X. The topology on X+ is generated by the open subsets of X
together with the subsets of the form X+ \K, where K is compact in X. Evi-
dently, X+ is a compact Hausdorff space, equipped with a basepoint ∞. Every
proper15 map between locally compact Hausdorff spaces, f : Y → X, induces a
continuous basepoint preserving map, f+ : Y + → X+, such that f+|Y = f and
f+(∞) = ∞. Whence the one point compactification can be considered as a
functor from the category of locally compact Hausdorff spaces and proper maps
to the category of pointed compact Hausdorff spaces and base point preserving
continuous maps. If X is compact then, X+ = Xt{∞}, where the base point∞

15Recall that a continuous map is called proper, if preimages of compact sets are compact.
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is isolated. The compactly supported K-theory of a locally compact Hausdorff
space X is defined by

Kc(X) := K̃(X+) = ker
(
K(X+)→ K(∞)

)
.

Hence, Kc(X) is a commutative ring which, in general, does not have a unit. If
f : Y → X is a proper map, then the continuous map f+ : Y + → X+ induces a
homomorphism, (f+)∗ : K(X+) → K(Y +) which restricts to a homomorphism,
f ∗ : Kc(X) → Kc(Y ). Clearly, (f ◦ g)∗ = g∗ ◦ f ∗ and id∗X = idKc(X) for every
proper map g : Z → Y . Note that Kc(X) = K(X) if X was compact. Two
proper maps f, g : Y → X are called properly homotopic if there exists a proper
homotopy, h : [0, 1]×Y → X such that h0 = f and h1 = g. In this case h extends
to a continuous basepoint preserving homotopy h+ : [0, 1] × Y → X from f+ to
g+, whence f ∗ = g∗ : Kc(X) → Kc(Y ) according to Proposition I.6.3. Similarly,
one defines compactly supported real K-theory, KOc(X). We summarize these
observations in the following proposition:

I.7.3. Proposition. Compactly supported, real or complex, K-theory provides
a contravariant functor from the category of locally compact Hausdorff spaces
and proper maps to the category of commutative rings. Properly homotopic maps
induce the same map in compactly supported K-theory.

Suppose X and Y are two compact Hausdorff spaces. If a ∈ K(X) and
b ∈ K(Y ), then ab := p∗1a ⊗ p∗2b ∈ K(X × Y ), where p1 : X × Y → X and
p2 : X × Y → Y denote the two canonical projections. Clearly, (a1 + a2)b =
a1b+ a2b and a(b1 + b2) = ab1 + ab2 for all a, a1, a2 ∈ K(X) and b, b1, b2 ∈ K(Y ).
Hence, we obtain a homomorphism of groups,

K(X)⊗K(Y )→ K(X × Y ), ab := p∗1a⊗ p∗2b,
which is called the external product in K-theory. There is an analogous external
product in compactly supported K-theory,

Kc(X)⊗Kc(Y )→ Kc(X × Y ). (I.23)

MORE DETAILS!
There is a slightly different description of Kc(X) which will be more conve-

nient for us. For every locally compact Hausdorff space X we let Sc(X) denote
the set of isomorphism classes of triples (E,F, ϕ), where E and F are two vec-

tor bundles over X and ϕ : E|X\K
∼=−→ F |X\K is a vector bundle automorphism

over the complement of some compact set K in X. Two such triples, (E,F, ϕ)
and (Ẽ, F̃ , ϕ̃), are called equivalent iff there exist vector bundle isomorphisms,
E ∼= Ẽ and F ∼= F̃ intertwining the automorphism ϕ and ϕ̃ over the complement
of some compact subset. This set Sc(X) becomes an abelian semi group with
respect to (E1, F1, ϕ1) + (E2, F2, ϕ2) := (E1 ⊕ E2, F1 ⊕ F2, ϕ1 ⊕ ϕ2). Moreover,
every proper map, f : Y → X, induces a homomorphism, f ∗ : Sc(Y ) → Sc(X),
(E,F, ϕ) 7→ (f ∗E, f ∗F, f ∗ϕ). Applying the Grothendieck construction we obtain
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a commutative ring, Lc(X) := G(Sc(X)), see Lemma I.6.1. If (E0, E1, ϕ) ∈ Sc(X)
and (F0, F1, ψ) ∈ Sc(Y ) we define their product in Sc(X × Y ) by(

E0 ⊗ F0 ⊕ E1 ⊗ F1, E0 ⊗ F1 ⊕ E1 ⊗ F0, ρ
)
,

where

ρ :=

(
idE0 ⊗ψ −ϕ∗ ⊗ idF1

ϕ⊗ idF0 idE1 ⊗ψ∗
)

which is an isomorphism on the complement of some compact subset of X × Y .
This induces an external product

Lc(X)⊗ Lc(Y )→ Lc(X × Y ). (I.24)

In particular Lc(X) is a commutative ring.

I.7.4. Proposition. There exists a natural isomorphism,

χ : Lc(X)
∼=−→ Kc(X),

i.e. for every proper map between locally compact Hausdorff spaces, f : Y → X,
we have χ ◦ f ∗ = f ∗ ◦χ. Moreover, the external product (I.23) corresponds to the
product (I.24) via the isomorphism χ.

Proof. TODO �

Let b ∈ Kc(C) denote the element represented by (ε1, ε1, z−1) ∈ Sc(C). Via
the identification Kc(C) = K̃(S2), this corresponds to b := ξ−ε1 where ξ denotes
the canonical line bundle over CP1 ∼= S2.This element b ∈ Kc(C) is called the
Bott element, it is a generator of Kc(C).

I.7.5. Proposition. For every locally compact Hausdorff space X the index
of a family of Töplitz operators induces a homomorphism of groups,

αX : Kc(C×X)→ Kc(X),

with the following properties:

(a) The diagram

Kc(C×X)
(idC×f)∗

//

αX
��

Kc(C× Y )

αY
��

Kc(X)
f∗ // Kc(Y )

commutes for every proper map f : Y → X. (Naturality)
(b) For X = {∗} and b ∈ Kc(C) the Bott element, α∗(b) = 1 ∈ K(∗) = Z.
(c) The diagram

Kc(C×X)⊗Kc(Y ) //

αX⊗idKc(Y )

��

Kc(C×X × Y )

αX×Y
��

Kc(X)⊗Kc(Y ) // Kc(X × Y )
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commutes for any two locally compact Hausdorff spaces X and Y .

Proof. Suppose X is compact. Since the canonical projection p : C×X → X
is a homotopy equivalence, every vector bundle over C×X is isomorphic to p∗E
where E is a vector bundle over X. Moreover, if p∗E and p∗F are isomorphic
on the complement of some compact subset in C × X, then E and F have to
be isomorphic. Whence, every element in Sc(C×X) is of the form (p∗E, p∗E, φ)

where φ : p∗E|(C\0)×X
∼=−→ p∗E|(C\0)×X . It follows from (I.20) that

Sc(C×X)→ K(X), (p∗E, p∗E, φ) 7→ ind(Tφ),

is well defined. Moreover, in view of (I.21) and the universal property of the
Grothendieck construction, it induces a homomorphism of groups,

αX : Kc(C×X)→ K(X), αX
(
[(p∗E, p∗E, φ)]

)
= ind(Tφ).

The Töplitz index Theorem I.7.2 immediately implies (b). Naturality (a) for
maps between compact spaces follows from (I.22). SHOW (c) for compact X and
Y . Now X locally compact Hausdorff.

K̃
(

C+×X+

C+∨X+

)
// K̃
(

C+×X+

{∞}×X+

)
// K̃
(
C+ × {∞}

)

Kc(C×X) //___

αX

���
�
�

Kc(C×X+)

αX+

��

// Kc

(
C× {∞}

)
α∞

��
Kc(X) // K(X+) // K(∞)

EXTENDS THE definition for compact X. Naturality (a) follows from the cor-
responding statement for compact X. �

I.7.6. Theorem (Bott periodicity). For every locally compact Hausdorff space
X, the maps β : Kc(X)→ Kc(R2×X), β(x) := bx, and α : Kc(R2×X)→ Kc(X)
are mutually inverse isomorphisms of groups. In particular,

Kc(R2 ×X) ∼= Kc(X).

Proof. For every x ∈ Kc(X) we have

(α ◦ β)(x) = αX(bx) = α∗(b)x = 1x = x,

where we used Proposition I.7.5(c)&(b) for the second and third equalities. Hence
α ◦ β = idKc(X).

Let σ : R2 × X → X × R2 and τ : R2 × R2 → R2 × R2 denote the homeo-
morphisms which interchange the factors as indicated. Since SO4 is connected,
τ is properly homotopic to the identity on R2 × R2. This implies that the map
τ × idX : R2 × R2 ×X → R2 × R2 ×X is properly homotopic to the identity on
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R2×R2×X. Consequently τ × idX induces the identity in compactly supported
K-theory. For every u ∈ Kc(R2 ×X) we obtain:

(β ◦ α)(u) = bαX(u)

= σ∗
(
αX(u)b

)
by Proposition I.7.5(c)

= αR2×X
(
(idR2 ×σ)∗(ub)

)
by Proposition I.7.5(a)

= αR2×X
(
(τ × idX)∗(bu)

)
= αR2×X(bu) as τ × idX ' idR2×R2×X

= α∗(b)u by Proposition I.7.5(c)

= 1u = u by Proposition I.7.5(b)

Thus β ◦ α = idKc(R2×X), and the proof is complete. �

I.7.7. Corollary.

K̃(Sn) ∼= Kc(Rn) ∼=

{
Z if n is even

0 if n is odd
K(Sn) ∼=

{
Z2 if n is even

Z if n is odd

Proof. Recall that K(X) = K̃(X)⊕Z, hence it suffices to consider K̃(Sn).
In view of Theorem I.7.6 we only have to check the cases n = 0 and n = 1. The
first case, n = 0, is trivial. The other one, n = 1, follows from the fact that every
complex vector bundle over S1 is trivial. �

For the stable homotopy groups of the unitary group this implies

πn(Uk) ∼= πn(U) ∼=

{
Z if n is even

0 if n is odd

where 2k + 1 > n. Actually Ω2BU ' BU or Ω2F(H) ∼= F(H).
Atiyah’s proof presented above generalizes to the K-theory of C∗-algebras.

More elementary proofs of Bott periodicity can be found in [18] or [24], see also
[25]. A different proof based on a CW decomposition of the unitary group U
can be found in Milnor’s book on Morse theory, see [31, §23]. The Atiyah–Bott–
Shapiro [3] construction explains the relation between Bott periodicity and a
similar periodicity phenomenon for Clifford modules, see also [27, Chapter I §9].

I.7.8. Exercise. Show that for all f, g ∈ C(S1) = C(S1,C) we have

‖gf‖L2(S1) ≤ ‖g‖C(S1)‖f‖L2(S1),

where ‖g‖C(S1) = supz∈S1 |g(z)| and ‖f‖2
L2(S1) =

∫ 1

0
|f(e2πit)|2dt. Conclude, that

f 7→ gf extends to a bounded linear operator Mg ∈ B(L2(S1)), and that

C(S1)→ B(L2(S1)), g 7→Mg,

is a bounded linear operator satisfying Mgh = MgMh and M∗
g = Mḡ, for all

g, h ∈ C(S1).
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I.7.9. Exercise. Let V be a finite dimensional complex Hilbert space. Show
that every continuous map, φ ∈ C(S1,B(V )), gives rise to a bounded multipli-
cation operator, Mφ ∈ B(L2(S1, V )), Mφv := φv. Let H ⊆ L2(S1, V ) denote
the closed subspace spanned by znv, n ∈ N0, v ∈ V , and let P ∈ B(L2(S1, V ))
denote the orthogonal projection onto H. Show that PMφ −MφP is compact,
for all φ ∈ C(S1,B(V )), and conclude that the vector valued Töplitz operator,
Tφ ∈ B(H), Tφ := PMφ, is Fredholm for all φ ∈ C(S1,GL(V )). Show that the in-
dex of Tφ coincides with the negative of the winding number of det(φ) : S1 → C×.

I.7.10. Exercise. Let H be an infinite dimensional separable Hilbert space.
Moreover, let p : E → X be a vector bundle with typical fiber H over a paracom-
pact space X. More precisely, p : E → X is continuous, each fiber p−1(x), x ∈ X,
is equipped with the structure of a vector space, and we have local trivializations,
i.e. fiber wise linear homeomorphisms, E|U ∼= U ×H, for some neighborhood U
of any point in X. Use Kuiper’s theorem to show that E is trivial, that is there
exists a fiber wise linear homeomorphism, E ∼= X ×H.



II. Differential operators

A differential operator of order m ∈ N0 on an open subset U ⊆ Rn, is an
operator of the form

Af =
∑
|α|≤m

aα
∂|α|

∂xα
f

acting on smooth real or complex valued functions, f ∈ C∞(U). Here α =
(α1, . . . , αn) ∈ Nn

0 denotes a multi index, |α| := α1 + · · ·+ αn, and

∂|α|

∂xα
f = ∂

∂xn
· · · ∂

∂xn︸ ︷︷ ︸
αn times

· · · ∂
∂x1
· · · ∂

∂x1︸ ︷︷ ︸
α1 times

f,

and aα ∈ C∞(U) are smooth coefficients. Such an operator can be viewed as a
linear map,

A : C∞(U)→ C∞(U). (II.1)

Indeed, this linear map completely determines the coefficient functions, aα ∈
C∞(U). To see this, we just have to apply the operator to appropriate polyno-
mials, f = xβ, where β ∈ Nn

0 is a multi index.

Suppose χ : V
∼=−→ U is a diffeomorphism, where V ⊆ Rn denotes another open

subset, and consider the induced linear isomorphism,

χ∗ : C∞(U)
∼=−→ C∞(V ), χ∗(f) = f ◦ χ.

It follows from the chain rule and the product rule, that the linear map

B : C∞(V )→ C∞(V ), B = χ∗ ◦ A ◦ (χ∗)−1,

is again of the form

Bg =
∑
|β|≤m

bβ
∂|β|

∂yβ
g, g ∈ C∞(V ), (II.2)

with smooth coefficients bβ ∈ C∞(V ), β ∈ Nn
0 . The concept of a differential

operator is thus of a coordinate independent nature and can be considered on
any smooth manifold. One has to proceed with a little caution, though.

Note the the operator A enjoys the following locality property:

supp(Af) ⊆ supp(f), f ∈ C∞(U).

In particular, the linear map (II.1) restricts to a linear map

A : C∞c (U)→ C∞c (U), (II.3)

in other words, A is acting on compactly supported functions in a natural way.
Note that the linear map (II.3) still determines the coefficient functions aα.

Let M be a smooth manifold. A differential operator of order m on M is a
linear map

A : C∞(M)→ C∞(M)
53



54 II. DIFFERENTIAL OPERATORS

with the following property: For every chart M ⊇ U
x−→ Rn, there exist smooth

coefficient functions aα ∈ C∞(U) such that

(Af)|U =
∑
|α|≤m

aα
∂|α|

∂xα
f, (II.4)

for all f ∈ C∞(M). Here we consider

∂|α|

∂xα
f = ∂

∂xn
· · · ∂

∂xn︸ ︷︷ ︸
αn times

· · · ∂
∂x1
· · · ∂

∂x1︸ ︷︷ ︸
α1 times

f ∈ C∞(U),

as the result of taking iterated derivatives with respect to the coordinate vector
fields, α = (α1, . . . , αn) ∈ Nn

0 . Actually, it suffices to assume that A has the form
(II.4) on every chart of an atlas for M , by locality it will then also have this form
in every other chart of M , see Exercise II.0.13 below. Naturally, the question
arises, if there is more intrinsic characterization of differential operators on M .

Many interesting differential operators of geometric origin do not act on scalar
valued functions, however, but rather act on sections of smooth vector bundles,
a slightly more general class of function spaces which we will discuss in the next
section.

II.0.11. Exercise. Prove (II.2).

II.0.12. Exercise. Show that the linear map (II.3) still determines the coef-
ficient functions aα completely.

II.0.13. Exercise. Let M ⊇ Ui
xi−→ Rn be an atlas,

⋃
i Ui = M , and suppose

A : C∞(M) → C∞(M) is a linear operator such that (II.4) holds on every coor-

dinate patch, Ui, for some smooth coefficients a
(i)
α ∈ C∞(Ui). Show that A is a

differential operator, i.e. show that (II.4) holds for every other chartM ⊇ U
x−→ Rn

too.

II.0.14. Exercise. Show that the composition of differential operators acting
on C∞(M) is again a differential operator, and conclude that the differential
operators form a (non-commutative) algebra.

II.1. Smooth vector bundles. Smooth vector bundles are defined just like
topological vector bundles but one requires smoothness of all maps involved.
Throughout this section K denotes the field R or C.

Let M be a smooth manifold. A smooth vector bundle over M is smooth
map p : E → M together with the structure of a K vector space on every fiber,
Ex := p−1({x}), x ∈M , which is locally trivial in the following sense: Every point
in M admits an open neighborhood U such that there exists a finite dimensional

K vector space E0 and a diffeomorphism ϕ : p−1(U)
∼=−→ U × E0 intertwining

the restriction p|p−1(U) : p−1(U) → U with the projection onto the first factor,
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p1 : U × E0 → U , that is, the following diagram commutes

p−1(U)

p
##FFFFFFFFF

ϕ

∼=
// U × E0

p1{{wwwwwwwww

U

i.e. p|p−1(U) = p1 ◦ ϕ,

and such that the restriction to each fiber, ϕx : Ex → {x} × E0 = E0, x ∈ U , is
linear. Clearly, a smooth vector bundle is also a topological vector bundle.

We will denote the space of all smooth sections by

Γ∞(E) := {s ∈ C∞(M,E) | p ◦ s = idM}.
It is straight forward to verify that the sum of two smooth sections is again a
smooth section, and so is the product of a smooth section with a smooth function.
Consequently, the space of smooth sections, Γ∞(E), is a module over the algebra
of smooth functions, C∞(M) := C∞(M,K).

II.1.1. Example (Trivial bundles). If E0 is a finite dimensional vector space,
then the trivial vector bundle E := M ×E0 is smooth and we have a natural iso-
morphism Γ∞(M ×E0) = C∞(M,E0) of C∞(M)-modules. Particularly, C∞(M)
can be understood as the space of smooth sections of the trivial line bundle ε1. In
this sense, smooth sections of vector bundles can be regarded as a generalization
of smooth (vector valued) functions on M .

II.1.2. Example (Whitney sum). The Whitney sum, E ⊕ F , of two smooth
vector bundles over M , is a smooth vector bundle in a canonical way. We have
an isomorphism of C∞(M)-modules,

Γ∞(E ⊕ F ) = Γ∞(E)⊕ Γ∞(F ).

II.1.3. Example (Subbundles and quotients). A subset F of a smooth vector
bundle E over M is called a smooth subbundle if every point in M admits an open
neighborhood U such that there is a smooth vector bundle chart, E|U ∼= U ×E0,
which maps F |U onto U × F0, where F0 is a subspace of E0. In this case F is a
smooth vector bundle and the quotient bundle, E/F , becomes a smooth bundle
in a canonical way. Moreover, we have a short exact sequence of smooth vector
bundle homomorphisms,

0→ F → E → E/F → 0,

which induces a short exact sequence of C∞(M)-modules,

0→ Γ∞(F )→ Γ∞(E)→ Γ∞(E/F )→ 0.

II.1.4. Example (Pull back bundles). The pull back of a smooth vector bun-
dle p : E → M along a smooth map f : N → M is a smooth vector bundle over
N . Indeed, its total space,

f ∗E = N ×M E = {(n, e) ∈ N ×M : f(n) = p(e)}
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is a closed submanifold of N × E since p is submersive. MORE DETAILS!
UNIVERSAL PROPERTY!

Suppose p : E →M and q : F →M are two vector bundles over M . A smooth
fiberwise linear map, ψ : E → F , is called smooth vector bundle homomorphism.
Clearly, the composition of smooth vector bundle homomorphisms is a again a
smooth vector bundle homomorphism, and so is the identical map, idE : E → E.
A homomorphism of smooth vector bundles, ψ : E → F , is called isomorphism
if there exists a homomorphism of smooth vector bundles, φ : F → E, which is
inverse to ψ, i.e. ψ ◦ φ = idF and φ ◦ ψ = idE. Two smooth vector bundles over
M are called isomorphic if there exists an isomorphism of smooth vector bundles
between them. A smooth vector bundle is called trivializeable if it is isomorphic
to a trivial vector bundle.

II.1.5. Lemma. Suppose ψ : E → F is a homomorphism of smooth vector
bundles over M such that ψx : Ex → Fx is a linear isomorphism, for each x ∈M .
Then ψ is an isomorphism of smooth vector bundles.

Proof. We proceed exactly as in Lemma I.5.7 and use the fact that the
inversion inversion, GLn(K) → GLn(K), A 7→ A−1, is smooth to show that ψ−1

is smooth too. �

A frame of a smooth vector bundle E over M is a collection of smooth sections,
e1, . . . , ek ∈ Γ∞(E) such that e1(x), . . . , ek(x) is a basis of Ex, for every x ∈ M .
It follows from Lemma II.1.5 that a smooth vector bundle is trivializeable if and
only if it admits global frames. Every vector bundle admits local frames, i.e.
every point in M has an open neighborhood U such that E|U admits a frame.
Any local frame e1, . . . , ek ∈ Γ∞(E|U) induces a vector bundle chart, E|U ∼= εk.
Moreover, every s ∈ Γ∞(E) can locally be represented in the form

s|U = s1e1 + · · ·+ skek,

with uniquely determined smooth coefficients, s1, . . . , sk ∈ C∞(U).

II.1.6. Example (Tangent bundle). An important vector bundle of geometric
origin is the tangent bundle, p : TM → M , of a smooth manifold M . A section
of the tangent bundle is just a vector field on M . The space of all smooth vector
fields will be denoted by

X(M) := Γ∞(TM).

Recall that vector fields can be canonically identified with derivations,

X(M) = Der(C∞(M,R)).

The coordinate vector fields associated with a chart M ⊇ U
u−→ Rn provide a

local frame ∂
∂u1
, . . . , ∂

∂un
∈ X(U) = Γ∞(TM |U), whence a vector bundle chart,
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TM |U ∼= U × Rn. For every vector field X ∈ X(M) there exist unique smooth
functions X1, . . . , Xn ∈ C∞(U), such that

X|U = X1 ∂
∂u1

+ · · ·+Xn ∂
∂un

.

II.1.7. Proposition. Every short exact sequence of smooth vector bundles,

0→ F
ι−→ E

π−→ G→ 0,

splits, i.e. there exist smooth vector bundle homomorphisms σ : G → E and
ρ : E → F such that π ◦ σ = idG and ρ ◦ ι = idF . In particular, E ∼= F ⊕ G, as
smooth vector bundles. Moreover, every smooth subbundle admits a complemen-
tary smooth subbundle.

Proof. Similar to the proof in Proposition I.5.16, we use vector bundle charts
to construct local smooth splits σ|U : G|U → E|U . With the help of a smooth
partition of unity we obtain a global split σ. Using Lemma II.1.5, we can proceed
as in the topological setting. �

As in Proposition I.5.12 one shows:

II.1.8. Proposition. If φ : E → F is a smooth vector bundle homomorphism
which has locally constant rank, then ker(φ) and img(φ) are smooth subbundles
of E and F , respectively.

II.1.9. Example (Canonical bundle over Grk(Rn)). The real projective space,
RPn, is a smooth manifold and the canonical line bundle over RPn is a smooth real
line bundle. More generally, the Grassmannian, Grk(Rn), is a smooth manifold
and the canonical k-plane bundle ξkR over Grk(Rn) is a smooth real vector bundle.

II.1.10. Example (Canonical bundle over Grk(Cn)). The complex projec-
tive space, CPn, is a smooth manifold and the canonical line bundle over CPn

is a smooth complex line bundle. More generally, the complex Grassmannian,
Grk(Cn), is a smooth manifold and the canonical k-plane bundle ξkC over Grk(Cn)
is a smooth complex vector bundle.

II.1.11. Remark. Let M be a smooth manifold. Then every topological
vector bundle over M is isomorphic to a smooth vector bundle. Indeed, if E is
a topological vector bundle, then there exists N and a continuous map f : M →
Grk(KN) such that E ∼= f̃ ∗ξkK. Let f̃ : M → Grk(CN) be a smooth approximation

of f such that f and f̃ are homotopic. Whence, E ∼= f̃ ∗ξkK. By construction,
the latter vector bundle is smooth. Suppose E and F are two smooth vector
bundles over M which are isomorphic as topological vector bundles. In other
words, there exists a continuous section φ ∈ Γ(hom(E,F )) which is a fiber wise
isomorphism. Since the latter is a C0-open condition, we can approximate φ by
a smooth section φ̃ ∈ Γ∞(hom(E,F )) which still is a fiber wise isomorphism,

whence φ̃ is a smooth vector bundle isomorphism, E ∼= F . This shows that the
set of isomorphism classes of topological vector bundles over M coincides with
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the set of isomorphism classes of smooth vector bundles over M . In particular,
we can use smooth vector bundles to describe the K-theory of a smooth manifold.

Note that every homomorphism of smooth vector bundles, ψ : E → F , gives
rise to a C∞(M) linear operator, A : Γ∞(E)→ Γ∞(F ), As := ψ ◦ s, s ∈ Γ∞(E).
More explicitly, A(fs) = fAs, for all s ∈ Γ∞(E) and f ∈ C∞(M). In fact, this
algebraic property characterizes vector bundle homomorphisms:

II.1.12. Proposition. Let E and F be two smooth vector bundles over M ,
and suppose A : Γ∞(E) → Γ∞(F ) is C∞(M) linear, i.e. A(fs) = fAs, for all
s ∈ Γ∞(E) and f ∈ C∞(M). Then there exists a unique smooth vector bundle
homomorphism ψ : E → F such that As = ψ ◦ s, for all s ∈ Γ∞(E).

Proof. Let us start by showing that A is local, i.e.

supp(As) ⊆ supp(s), (II.5)

for all s ∈ Γ∞(E). If x /∈ supp(s), then there exists a neighborhood U of x such
that s|U = 0. Moreover, there exists a neighborhood V of x and a bump function
λ ∈ C∞(M) with supp(λ) ⊆ U such that λ|V = 1. By construction, λs = 0. Thus
0 = A(λs) = λAs, hence (As)|V = 0 and therefore x /∈ supp(As). This shows
(II.5). In particular, the value (As)(x) ∈ Fx only depends on the germ of s at x,
i.e. the behavior of s in a neighborhood of x. More explicitly, if s1, s2 ∈ Γ∞(E)
are two sections which agree in a neighborhood of x, then (As1)(x) = (As2)(x).

Actually, (As)(x) ∈ Fx only depends on s(x) ∈ Ex. More precisely, we have

{x ∈M | s(x) = 0} ⊆ {x ∈M | (As)(x) = 0}. (II.6)

To see this we consider a fixed x ∈ M such that s(x) = 0. Choose a chart M ⊇
U

y−→ Rn centered at x, i.e. x ∈ U and y(x) = 0. W.l.o.g. we may assume that E is
trivializeable over U , that is E|U ∼= U×E0, and therefore Γ∞(E|U) ∼= C∞(U,E0).
For y in a (star shaped) open neighborhood of 0, we have

s(y) = s(y)− s(0) =

∫ 1

0

d
dt
s(ty)dt =

∫ 1

0

n∑
i=0

yi ∂s
∂yi

(ty)dt =
n∑
i=0

yi
∫ 1

0

∂s
∂yi

(ty)dt︸ ︷︷ ︸
s̃i(y):=

,

where s̃i is a locally defined smooth sections of E and yi ∈ C∞(U) are the
coordinate projections. With the help of appropriate bump functions we obtain
globally defined sections si ∈ Γ∞(E) and globally defined functions fi ∈ C∞(M)
such that fi(x) = 0 and s =

∑n
i=1 fisi, in a neighborhood of x. By locality,

(As)(x) =
(
A
∑n

i=1 fisi
)
(x) =

(∑n
i=1 fiAsi

)
(x) =

∑n
i=1 fi(x)(Asi)(x) = 0,

whence (II.6).
We conclude that there exist linear maps ψx : Ex → Fx such that (As)(x) =

ψx(s(x)), for every x ∈ M . These provide a fiber wise linear map ψ : E → F
such that q ◦ ψ = p and As = ψ ◦ s. Clearly, ψ is unique with these properties.
One readily shows that ψ is smooth. �
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If E → M is a smooth vector bundle, then the dual bundle, E∗ → M , is a
smooth vector in a canonical way. DETAILS! Note that Γ∞(E∗) can be identified
with the space of smooth vector bundle homomorphisms into the trivial line
bundle, E → ε1. In view of Proposition II.1.12 there is a canonical C∞(M)-
linear identification

Γ∞(E∗) = LC∞(M)(Γ
∞(E), C∞(M)).

In particular, a section of E∗ can be specified by providing C∞(M)-linear (ten-
sorial) map Γ∞(E) → C∞(M). Suppose s1, . . . , sk ∈ Γ∞(E|U) is a local frame,
thus s1(x), . . . , sk(x) is a basis of Ex, for every x ∈ U . Let σ1

x, . . . , σ
k
x ∈ E∗x de-

note the corresponding dual basis of E∗x. It is easy to see that each σi provides
a smooth section of E∗|U , whence σ1, . . . , σk ∈ Γ∞(E∗|U) is a local frame of E∗,
characterized by

σi(sj) = δij.

It can be used to express sections e ∈ Γ∞(E) in terms of the local frame,

e|U = e1s1 + · · ·+ eksk, ei = σi(e) ∈ C∞(U).

Dually, a section φ ∈ Γ∞(E∗) can be written as

φ|U = φ1σ
1 + · · ·+ φkσ

k, φi = φ(si) ∈ C∞(U).

II.1.13. Example (Cotangent bundle). The vector bundle dual to the tangent
bundle, T ∗M := (TM)∗, is called the cotangent bundle of M . Smooth sections
of T ∗M are just 1-forms. We will denote the space of all smooth 1-forms by

Ω1(M) := Γ∞(T ∗M).

In view of of the discussion above, we have an isomorphism of C∞(M,R)-modules,

Ω1(M) = LC∞(M,R)(X(M), C∞(M,R)).

This provides a useful, coordinate independent (algebraic) way to specify 1-forms
on M . For instance, we may define a linear map

d : C∞(M)→ Ω1(M), (df)(X) := X · f,

as the expression X · f is clearly C∞(M) linear in X ∈ X(M). The coordinate 1-

forms associated with a chart M ⊇ U
u−→ Rn provide a local frame du1, . . . , dun ∈

Ω1(U) = Γ∞(T ∗M |U), whence a vector bundle chart, T ∗M |U ∼= U × (Rn)∗. If
ω ∈ Ω1(M) then there exist unique smooth functions ω1, . . . , ωn ∈ C∞(U) such
that

ω|U = ω1du
1 + · · ·+ ωndu

n, ωi = ω( ∂
∂ui

).

df |U = ∂f
∂x1
dx1 + · · ·+ ∂f

∂xn
dxn
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If E and F are two smooth vector bundles over M , then their tensor product,
E ⊗ F , is a smooth vector bundle in a canonical way. DETAILS! If s ∈ Γ∞(E)
and t ∈ Γ∞(F ) are two sections, then their fiber wise tensor product provides
a smooth section s ⊗ t ∈ Γ∞(E ⊗ F ). This provides a canonical C∞(M) linear
identification

Γ(E ⊗ F ) = Γ∞(E)⊗C∞(M) Γ∞(F ).

In particular, if s1, . . . , sk ∈ Γ∞(E|U) is a local frame of E, and t1, . . . , tl ∈
Γ∞(F |U) is a local frame of F , then

si ⊗ tj ∈ Γ∞((E ⊗ F )|U), 1 ≤ i ≤ k, 1 ≤ j ≤ l,

is a local frame of E ⊗ F . Consequently, for every section α ∈ Γ∞(E ⊗ F ) there
exist uniquely determined smooth functions αij ∈ C∞(U) such that

α|U =
∑

1≤i≤k,1≤j≤l

αijsi ⊗ tj.

In a completely analogous fashion one can construct a smooth vector bundle

hom(E,F )→M

whose fiber at x ∈ M is hom(E,F )x = hom(Ex, Fx), the space of linear maps
from Ex to Fx. Note that the space of smooth sections, Γ∞(hom(E,F )) can be
identified with the space of smooth vector bundle homomorphisms, E → F . In
view of Proposition II.1.12 this leads to a canonical identification

Γ∞(hom(E,F )) = LC∞(M)

(
Γ∞(E),Γ∞(F )

)
.

This provides a useful, coordinate free way to specify sections of hom(E,F ). Note
that there is a canonical isomorphism of vector bundles

hom(E,F ) = F ⊗ E∗.
Suppose s1, . . . , sk ∈ Γ∞(E|U) is a local frame of E and t1, . . . , tl ∈ Γ∞(F |U) is a
local frame of F . Let σ1, . . . , σk ∈ Γ∞(E|∗U) denote the dual local coframe. Then

ti ⊗ σj ∈ Γ∞((F ⊗ E∗)|U) = Γ∞(hom(E,F )|U), 1 ≤ i ≤ k, 1 ≤ j ≤ l,

is a local frame of hom(E,F ). Consequently, for every smooth section φ ∈
Γ∞(hom(E,F )) there exist uniquely determined smooth functions φij ∈ C∞(U)
such that

φ|U =
∑

1≤i≤k,1≤j≤l

φijti ⊗ σj.

Using the trivial line bundle, we recover the dual bundle as a special case,

E∗ = ε1 ⊗ E∗ = hom(E, ε1).

The composition of vector bundle homomorphisms corresponds to the C∞(M)
bilinear map Γ∞(hom(F,G)) × Γ∞(hom(E,F )) → Γ∞(hom(E,G)) induced by
the vector bundle homomorphisms

hom(F,G)⊗ hom(E,F )→ hom(E,G)
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given by fiber wise contraction. We will write

end(E) := hom(E,E) = E ⊗ E∗

for the vector bundle of fiber wise endomorphisms. Note that fiber wise compo-
sition (contraction) provides a natural homomorphism of vector bundles,

end(E)⊗ end(E)→ end(E),

which induces a C∞(M) bilinear map

Γ∞(end(E))× Γ∞(end(E))→ Γ∞(end(E)).

This turns Γ∞(end(E)) into an, in general non-commutative, algebra containing
the algebra C∞(M) in its center,

C∞(M)→ Γ∞(end(E)), f 7→ f idE

This algebra can be naturally identified with the algebra of vector bundle homo-
morphisms E → E. Taking the fiber wise trace yields a vector bundle homomor-
phism

tr : end(E)→ ε1,

inducing a C∞(M) linear map

tr : Γ∞(end(E))→ C∞(M).

Note that
tr([φ, ψ]) = 0, φ, ψ ∈ Γ∞(end(E)),

where [φ, ψ] := φψ − ψφ denotes the commutator.
As another important example we have the vector bundle ΛE → M , whose

fiber over x ∈ M is (ΛE)x = ΛEx =
⊕

p ΛpEx, the exterior algebra Ex. The
wedge product induces a vector bundle homomorphism

ΛE ⊗ ΛE
∧−→ ΛE

which gives rise to a C∞(M) bilinear map

Γ∞(ΛE)× Γ∞(ΛE)→ Γ∞(ΛE).

There is a canonical decomposition of vector bundles

ΛE =
⊕
p

ΛpE,

the wedge product restricts to vector bundle homomorphisms

ΛpE ⊗ ΛqE
∧−→ Λp+qE

and induces C∞(M) bilinear maps

Γ∞(ΛpE)× Γ∞(ΛqE)→ Γ∞(Λp+qE).

This turns
Γ∞(ΛE) =

⊕
p

Γ∞(ΛpE)



62 II. DIFFERENTIAL OPERATORS

into a graded commutative algebra, extending the C∞(M) = Γ∞(Λ0E) module
structure. Note that we have a canonical trivialization, Λ0E = ε1 = M × K.
Moreover, Λ1E = E, whence Γ∞(Λ1E) = Γ∞(E). Note that

ΛpE ⊆ E ⊗ · · · ⊗ E
and

Γ∞
(
(ΛpE∗)⊗ F

)
= Lalt

C∞(M)

(
Γ∞(E)p,Γ∞(F )

)
This provides a coordinate free way to specify sections of ΛpE∗⊗F . If s1, . . . , sk ∈
Γ∞(E|U) is a local frame of E, then

si1 ∧ · · · ∧ sip ∈ Γ∞(ΛpE|U), 1 ≤ i1 < · · · < ip ≤ k,

is a local frame of ΛpE. Thus, for every section α ∈ Γ∞(ΛpE) there exist unique
smooth functions αi1···ip ∈ C∞(U) such that

α|U =
∑

1≤i1<···<ip≤n

αi1···ipsi1 ∧ · · · ∧ sip .

II.1.14. Example. The space of q-forms:

Ωq(M) := Γ∞(ΛqT ∗M).

Moreover,

Ω(M) :=
⊕
q

Ωq(M) =
⊕
q

Γ∞(ΛqT ∗M)

is a graded commutative algebra.

II.1.15. Example (Density bundle). To every n-dimensional real vector space
V we consider the 1-dimensional vector space

|ΛnV | :=
{
f : B(V )→ K

∣∣ ∀B ∈ B(V )∀A ∈ GLn(R) : f(BA) = | det(A)|f(B)
}
,

where B(V ) denotes the space of invertible linear maps Rn → V , i.e. the space
ordered bases (frames) of V . Applying this construction fiberwise to the cotan-
gent bundle we obtain a smooth line bundle |ΛM | over M . Sections of |ΛM | are
called densities. The transformation formula for the integral implies that we have
a well defined integration of densities,

Γ∞c (|ΛM |)
∫
M−−→ R,

which does not require the choice of an orientation, and works for non-orientable
manifolds as well. If M is oriented, then this orientation provides an isomorphism
of line bundles |ΛM | = ΛnT ∗M and Γ∞(|ΛM |) = Ωn(M). Up to this identification
the integral above becomes the usual integral of forms on oriented manifolds. In
general, we have a canonical isomorphism of real line bundles, |ΛM | = ΛnT ∗M ⊗
O, where O denotes the orientation bundle of M . The latter can be viewed
as a line bundle which comes with a canonical flat connection and a canonical
fiber wise metric which is parallel. Actually, O is associated to the orientation
covering, a principal O(1)-bundle over M .
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The bundle |ΛM | is trivializeable, but there is no canonical trivialization. A
density µ ∈ Γ∞(|ΛM |) is called volume density if µ > 0. Using a partition of
unity it is easy to construct a volume density. Any volume density provides a
trivialization of the line bundle |ΛM |. Locally, M ⊇ U

x−→ Rn, every density can
be written ni the form µ = fdx for f ∈ C∞(U) and if µ has compact support
contained in U , then ∫

M

µ =

∫
U

f(x)dx1 · · · dxn

with respect to the Lebesgue measure.
For every vector bundle E we let

E∗M := E∗ ⊗ |ΛM |. (II.7)

Then there is a natural pairing

Γ∞c (E∗M)× Γ∞(E)→ K, (φ, s) :=

∫
M

φ(s) (II.8)

where φ(s) = tr(φ ⊗ s). Note that this pairing is weakly non-degenerate in the
following sense: If s ∈ Γ∞(E) and (φ, s) = 0 for all φ ∈ Γ∞c (E∗M), then s = 0.
Similarly, if φ ∈ Γ∞c (E∗M) and (φ, s) = 0 for all s ∈ Γ∞(E), then φ = 0.

Similarly, one introduces the symmetric power

SqE ⊆ E ⊗ · · · ⊗ E.

Note that Γ∞(SqE∗) can be naturally identified with the space of smooth func-
tions E → K which are fiber homogeneous polynomials of degree q.

A fiber wise Euclidean metric on a real vector bundle E is a smooth section
h ∈ Γ∞(E∗ ⊗ E∗) such that φx is a positive definite symmetric bilinear form on
Ex, for every x ∈M . Every real vector bundle admits fiber wise Euclidean met-
rics. To construct one we use an atlas of vector bundles charts, E|Ui ∼= Ui × Rk,⋃
i Ui = M , to define fiber wise Euclidean metrics hi on E|Ui . With the help of a

smooth partition of unity, λi, supp(λi) ⊆ Ui,
∑

i λi ≡ 1, we obtain a global fiber
wise Euclidean metric h :=

∑
i λihi. Applying the Gram–Schmidt orthonormal-

ization formula fiber wise to a local frame, we obtain local orthonormal frames,
s1, . . . , sk ∈ Γ∞(E) such that h(si, sj) = δij. Every local orthonormal frame
induces a vector bundles chart, E|U ∼= U × Rk, in which the fiberwise metric
becomes constant.

Similarly, every complex vector bundle admits fiber wise Hermitian metrics,
i.e. sections h ∈ Γ∞(Ē∗ ⊗ E∗) such that hx is a positive definite symmetric
sesquilinear form on Ex. Again such a bundle admits local orthonormal frames
and any local orthonormal frame induces a vector bundle chart in which the fiber
wise Hermitian metric becomes constant.

If F is a smooth subbundle of E, then a fiber wise Euclidean/Hermitian metric
on E can be used to construct a complementary subbundle, F⊥. In fact the fiber
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wise orthogonal projection provides a smooth section P ∈ Γ(end(E)), P 2 = P ,
with img(P ) = F and ker(P ) = F⊥.

Suppose E is equipped with a fiber wise Hermitian metric and let dx be a
volume density on M . These choices permit to define an inner product on Γ∞c (E),

〈〈s1, s2〉〉 :=

∫
M

〈s1, s2〉dx. (II.9)

Using the Hermitian metric and the density to identify Ē ∼= E∗ ⊗ |ΛM | = E∗M
this corresponds to the natural pairing (II.8).

II.2. Differential operators on manifolds. Let E and F be two smooth
vector bundles over a smooth manifold M . A differential operator of order at
most m is a linear map

A : Γ∞(E)→ Γ∞(F )

such that: Around every point in M , there exists a chart M ⊇ U
x−→ Rn, vector

bundle trivializations φE : E|U
∼=−→ U × E0 and φF : F |U

∼=−→ U × F0 and smooth
coefficients Aα ∈ C∞(U, hom(E0, F0)) such that

As|U = φ−1
F

∑
|α|≤m

Aα ∂
|α|

∂xα

(
φEs|U

)
, (II.10)

for all s ∈ Γ∞(E). Here φEs|U ∈ C∞(U,E0), the partial derivatives ∂|α|

∂xα
act

on C∞(U,E0), whence Aα ∂
|α|

∂xα

(
φEs|U

)
∈ C∞(U, F0) and using φ−1

F we end up
in Γ∞(F |U). Recall that α = (α1, . . . , αn) ∈ Nn

0 denotes a multi index, |α| =
α1 + · · ·+ αn and

∂|α|

∂xα
= ∂

∂xn
· · · ∂

∂xn︸ ︷︷ ︸
αn times

· · · ∂
∂x1
· · · ∂

∂x1︸ ︷︷ ︸
α1 times

.

Below we will see that it is irrelevant which charts and what vector bundle trivi-
alization are being used. Moreover, we will show that the highest order terms,

σ(A) := im
∑
|α|=m

(φ−1
F AαφE)∂

|α|

∂xα
∈ Γ
(
SmTM ⊗ hom(E,F )|U

)
, (II.11)

give rise to a global section σ(A) ∈ Γ∞(SmTM ⊗ hom(E,F )), independent of
all choices, and refered to as the principal symbol of A. Here we interpret ∂

∂xi
∈

Γ∞(TM |U), hence ∂|α|

∂xα
∈ Γ∞(SmTM |U) and φ−1

F AαφE ∈ Γ∞(hom(E,F )|U). We
will write DOm(E,F ) for the set of all differential operators, A : Γ∞(E)→ Γ∞(F ),
of order at most m.

Evidently, differential operators are local, i.e.

supp(As) ⊆ supp(s),

for all s ∈ Γ∞(E). Moreover, we can restrict a differential operator to any
open subset V of M . More precisely, there exists a unique differential operator
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A|V : Γ∞(E|V ) → Γ∞(F |V ) such that (As)|V = A|V s|V , for all s ∈ Γ∞(E). This
is an immediate consequence of our definition.

Suppose φ̃E : E|U
∼=−→ U × Ẽ0 and φ̃F : F |U

∼=−→ U × F̃0 is another pair of vec-

tor bundle trivializations. Denote the transition functions by ψE := φEφ̃
−1
E ∈

C∞(U, hom(Ẽ0, E0)) and ψF := φF φ̃
−1
F ∈ C∞(U, hom(F̃0, F0)), respectively. Us-

ing the Leibniz rule, we see that there exist Ãα ∈ C∞(U, hom(Ẽ0, F̃0)) such that

ψ−1
F

∑
|α|≤m

Aα ∂
|α|

∂xα
(ψE f̃) =

∑
|α|≤m

Ãα ∂
|α|

∂xα
f̃ ,

for all f̃ ∈ C∞(U, Ẽ0). Equivalently,

φ−1
F

∑
|α|≤m

Aα ∂
|α|

∂xα
(φEs|U) = φ̃−1

F

∑
|α|≤m

Ãα ∂
|α|

∂xα
(φ̃Es|U),

for all s ∈ Γ∞(E). We conclude that if the operator is of the form (II.10) for
some vector bundle trivializations, then it is of the same form with respect to
every pair of vector bundle trivializations. Moreover, for the highest order terms,
|α| = m, the Leibniz formula gives ψ−1

F AαψE = Ãα, whence

φ−1
F AαφE = φ̃−1

F Ãαφ̃E, |α| = m.

This shows that the principal symbol, see (II.11) does not depend on the vector
bundle trivializations being used.

Suppose M ⊇ U
x̃−→ Rn is another chart. Then ∂

∂xi
=
∑n

j=1
∂x̃j

∂xi
∂
∂xj

. Using the

Leibniz rule we see that there exists Ãα ∈ C∞(U, hom(E0, F0)) such that∑
|α|≤m

Aα ∂
|α|

∂xα
(f) =

∑
|α|≤m

Ãα ∂
|α|

∂x̃α
(f),

for all f ∈ C∞(U,E0). Hence, if the operator has the form (II.10) with respect
to one chart, it also has this form with respect to every other chart. We con-
clude that the principal symbol, see (II.11), does not depend on the chart either.
Consequently, every differential operator, A ∈ DOm(E,F ), gives rise to a global
section

σ(A) ∈ Γ∞(SmTM ⊗ hom(E,F ))

which is called the principal symbol of A. In other words, the coefficients cor-
responding to the highest order derivatives in A have a coordinate independent
interpretation.

For every x ∈M , the principal symbol provides a map

σ(A) : T ∗xM → end(Ex, Fx), σξ(A) := σ(A)(ξm),

which is a homogeneous polynomial of degree m in ξ ∈ T ∗xM . It will be convenient
to have a coordinate independent formula for the principal symbol:
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II.2.1. Lemma. If A ∈ DOm(E,F ), ξ ∈ T ∗xM , s ∈ Γ∞(E) and f ∈ C∞(M)
such that dfx = ξ, then

σξ(A)s(x) = lim
t→∞

t−m
(
e−itfA

(
eitfs

))
(x).

Proof. By the Leibniz rule, we have

e−itf ∂
∂xi

(
eitfs

)
= its ∂f

∂xi
+O(t0).

Via induction we obtain,

e−itf ∂
|α|

∂xα

(
eitfs

)
= (it)|α|s(df)|α|(∂

|α|f
∂xα

) +O(t|α|−1).

Assuming that A is of the form (II.10) in a neighborhood of x we get

t−me−itfA
(
eitfs

)
= im

∑
|α|=m

(φ−1
F AαφEs)(df)m(∂

|α|

∂xα
) +O(t−1).

Passing to the limit we obtain the desired formula. �

II.2.2. Proposition.

(a) If A,B ∈ DOm(E,F ) then A+B ∈ DOm(E,F ) and σ(A+B) = σ(A)+σ(B).

(b) If A ∈ DOm(E,F ) and B ∈ DOm′(F,G), then BA ∈ DOm+m′(E,G) and
σ(BA) = σ(B)σ(A), equivalently, σξ(BA) = σξ(B)σξ(A), for all ξ ∈ T ∗M .

(c) We have a short exact sequence of C∞(M) modules

0→ DOm−1(E,F )→ DOm(E,F )→ Γ∞(SmTM ⊗ hom(E,F ))→ 0.

(d) DO(E) :=
⋃
m DOm(E,F ) is a filtered algebra, and the principal symbol pro-

vides an isomorphism of graded algebras,⊕
m

DOm(E,F )/DOm−1(E,F )
σ−→∼=
⊕
m

Γ∞(SmTM ⊗ hom(E,F )).

Proof. This can be checked in a straight forward way. �

II.2.3. Example. DO0(E,F )) = Γ∞(hom(E,F )) via principal symbol.

II.2.4. Example. Differentiation with respect to a vector field X ∈ X(M)
provides a first order differential operator,

LX : C∞(M)→ C∞(M),

with principal symbol σ(LX) = iX. Indeed, with respect to local coordinates,

M ⊇ U
x−→ Rn, we have X =

∑n
i=1X

i ∂
∂xi

where X i ∈ C∞(U). Thus, LXs =∑n
i=1X

i ∂f
∂xi
s, hence LX is a first order differential operator. By the Leibniz rule,

e−itfLX(eitfs) = itdf(X)s + LXs, and thus σξ(LX) = iξ(X) for ξ ∈ T ∗xM , see
Lemma II.2.1.
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II.2.5. Example. If ∇ is a linear connection on E and X ∈ X(M), then

∇X : Γ(E)→ Γ(E)

is a first order differential operator with principal symbol σ(∇X) = iX ⊗ idE.
Equivalently, σξ(∇X) = iξ(X) idE for ξ ∈ T ∗xM . Indeed, with respect to local

coordinates, M ⊇ U
x−→ Rn, we have X =

∑n
i=1X

i ∂
∂xi

where X i ∈ C∞(U).
Moreover, with respect to a local frame e1, . . . , ek ∈ Γ(E|U), every section s ∈
Γ(E|U) can be written in the form s =

∑k
j=1 s

jej where sj ∈ C∞(U). By the
Leibniz rule,

∇Xs =
n∑
i=1

k∑
j=1

X i∇ ∂

∂xi
(sjej) =

n∑
i=1

k∑
j=1

X isj∇ ∂

∂xi
ej +X i ∂sj

∂xi
ej,

hence ∇X is a first order differential operator. Moreover, e−itf∇X(eitfs) =
itdf(X)s + ∇Xs, hence σξ(∇X)s = iξ(X)s, see Lemma II.2.1. Consequently, if
X1, . . . , Xm ∈ X(M) and A ∈ Γ(hom(E,F )), then A∇X1 · · · ∇Xm ∈ DOm(E,F )
and σ(A∇X1 · · · ∇Xm) = imX1 · · ·Xm ⊗A ∈ Γ(SmTM ⊗ hom(E,F )), see Propo-
sition II.2.2(b).

From the previous example we immediately obtain the following coordinate
independent characterization of differential operators.

II.2.6. Proposition. Let ∇ be a linear connection on E. Then{
A∇X1 · · · ∇Xk

∣∣ k ≤ m, Xi ∈ X(M), A ∈ Γ∞(hom(E,F ))
}

generates the vector space DOm(E,F ).

II.2.7. Example. If ∇ is a linear connection on E, then

∇ : Γ∞(E)→ Γ∞(T ∗M ⊗ E)

is a first order differential operator with principal symbol, σξ(∇) = iξ ⊗ idE.

Indeed, with respect to local coordinates, M ⊇ U
x−→ Rn, and a local frame

e1, . . . , ek ∈ Γ∞(E|U), every section s ∈ Γ(E|U) can be written in the form

s =
∑k

j=1 s
jej where sj ∈ C∞(U) and the Leibniz rule gives:

∇s =
k∑
j=1

∇(sjej) =
k∑
j=1

sj∇ej + dsj ⊗ ej =
k∑
j=1

sj∇ej +
k∑
j=1

n∑
i=1

∂sj

∂xi
dxi ⊗ ej

This shows that ∇ is a first order differential operator. In view of e−itf∇(eitfs) =
itdf ⊗ s+∇s, we have σξ(∇)s = iξ ⊗ s, see Lemma II.2.1. Suppose

Γ∞(E)
∇1

−→ Γ∞(T ∗M ⊗ E)
∇2

−→ Γ∞(⊗2T ∗M ⊗ E)
∇3

−→ · · · ∇
m

−−→ Γ∞(⊗mT ∗M ⊗ E)

are linear connections on ⊗jT ∗M ⊗ E. By the computation above and Proposi-
tion II.2.2(b), their composition, ∇m · · · ∇2∇1 : Γ∞(E) → Γ∞(⊗mT ∗M ⊗ E), is
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a differential operator of order at most m with principal symbol

σξ(∇m · · · ∇2∇1) = im ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
m factors

⊗ idE .

If A ∈ Γ∞(SmTM ⊗ hom(E,F )), then A∇m · · · ∇2∇1 ∈ DOm(E,F ) with prin-
cipal symbol σ(A∇m · · · ∇2∇1) = imA. Consequently, connections ∇i as above
permit to split the short exact sequence in Proposition II.2.2(c).

We will now give an entirely algebraic characterization of differential op-
erators, similar to the fact that vector bundle homomorphisms correspond to
C∞(M)-linear maps and smooth vector fields can be characterized as derivations
of the algebra C∞(M).

II.2.8. Proposition. Let A : Γ∞(E) → Γ∞(B) be a linear map. Then A ∈
DOm(E,F ) if and only if

adm+1
f A = 0,

for all f ∈ C∞(M). Moreover, in this case

σξ(A) =
(−i)m

m!
admf A, (II.12)

where ξ = dfx ∈ T ∗xM . Here adf A := [f, A] = fA − Af , i.e. (adf A)s =
fAs− A(fs).

Proof. Suppose A ∈ DOm(E,F ), f ∈ C∞(M). Then [f, A] ∈ DOm(E,F )
and σ([f, A]) = [f, σ(A)] = 0 ∈ Γ∞(SmTM ⊗ hom(E,F )), whence adf A ∈
DOm−1(E,F ), see Proposition II.2.2(b). Inductively, we get admf A ∈ DO0(E,F )

and thus adm+1
f A = 0. Using ∂

∂t
e−itfAeitf = e−itf (ad−if A)eitf and differentiating

e−itfAeitf = σdf (A)tm +O(tm−1)

m times, we obtain

(−i)m admf A = adm−if A = e−itf (adm−if A)eitf = m!σdf (A).

This shows the formula for the principal symbol. It remains to show that an
operator satisfying adm+1

f A = 0 is actually a differential operator of order at
most m. We proceed by induction on m. The case m = 0 follows from Proposi-
tion II.1.12. For the inductive step we will show below, that the right hand side
of (II.12) defines a tensor field S ∈ Γ∞(SmTM ⊗ hom(E,F )). More precisely,

(−i)m

m!
admf A = S((df)m).

Then there exists D ∈ DOm(E,F ) such that σ(D) = S. By (II.12)

(−i)m

m!
admf D = σdf (D) = S((df)m) =

(−i)m

m!
admf A,
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hence admf (A − D) = 0. By induction, A − D ∈ DOm−1(E,F ), whence A ∈
DOm(E,F ). To construct S as above, note first that

adf0 · · · adfm A = 0,

for all f0, . . . , fm ∈ C∞(M). Indeed, as adf adg = adg adf , the left hand side
is symmetric in the functions fi and the equation follows via polarization from
adm+1

f A = 0. In particular, the operator adf1 · · · adfm A is C∞(M) linear. In
view of Proposition II.1.12, we thus obtain a map

C∞(M)× · · · × C∞(M)→ Γ∞(hom(E,F )), (f1, . . . , fm) 7→ adf1 · · · adfm A.

The relation adfg A = f adg A + adf Ag implies that it is a derivation in each
function fi separately. More explicitly,

adf1f ′1 adf2 · · · adfm A = f1 adf ′1 adf2 · · · adfm A+ adf1 adf2 · · · adfm Af
′
1.

Using the fact that vector fields are precisely the derivations of C∞(M) this
implies the existence of S̃ ∈ Γ∞(⊗mTM ⊗ hom(E,F )) such that

adf1 · · · adfm A = S̃(df1 ⊗ · · · ⊗ dfm).

Normalizing S̃ appropriately, we obtain the desired S. �

II.2.9. Proposition. Suppose A ∈ DOm(E,F ) and is a differential operator.

(a) There exists a unique (transposed) operator At ∈ DOm(F ∗M , E
∗
M) such that

(Atφ, s) = (φ,As), φ ∈ Γ∞c (F ∗M), s ∈ Γ∞(E),

with respect to the natural pairing (II.8). Moreover, (A1 + A2)t = At1 + At2,
(BA)t = AtBt, and

σξ(A
t) = (−1)mσξ(A)t ⊗ id|ΛM | .

(b) If M is equipped with a volume density and E and F are equipped with fiber
wise Hermitian metrics, then there exists a unique (formal adjoint) operator
A∗ ∈ DOm(F,E) such that

〈〈A∗φ, s〉〉 = 〈〈φ,As〉〉, φ ∈ Γ∞c (F ), s ∈ Γ∞(E),

with respect to the inner product (II.9). Moreover, (A1 + A2)∗ = A∗1 + A∗2,
(BA)∗ = A∗B∗, and

σξ(A
∗) = (−1)mσξ(A)∗.

Proof. Clearly, the adjoint and transposed operators are unique in view of
the weak non-degeneracy of the pairings (II.8). Furthermore, the case m = 0 is
trivial. Uniqueness also implies that if A1 and A2 admit transposed then so does
A1+A2 and we have (A1+A2)t = At1+At2. Similar remarks apply to products and
transposed. Hence, w.l.o.g. we may assume M = U ⊆ Rn open and As = ∂

∂xi
s

acting on s ∈ C∞(U,E0). For φ ∈ C∞c (U,E∗0), partial integration gives

(φ,As) =

∫
U

φ( ∂
∂xi
s)dx = −

∫
U

( ∂
∂xi
φ)(s)dx = (Atφ, s)
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where Atφ = − ∂
∂xi
φ. This shows the existence of the transposed operator. Simi-

larly, one can show the existence of the adjoint.16 Since

(e−itfAt(eitfφ), s) = (φ, eitfA(e−itfs))

Lemma II.2.1 gives (
σdf (A

t)φ, s
)

=
(
φ, σ−df (A)s

)
,

whence σξ(A
t) = σ−ξ(A)t = (−1)mσξ(A)t. Similarly,

〈e−itfA∗(eitfφ), s〉E = 〈φ, e−itfA(eitfs)〉F ,

hence

〈〈σdf (A∗)φ, s〉〉E = (−1)m〈〈φ, σdf (A)s〉〉F
and thus σξ(A

∗) = (−1)mσξ(A)∗. �

II.2.10. Example (Transposed of a Lie derivative). Let T be a vector bundle
which is associated to the frame bundle of M , such as TM , ΛqTM , SqTM ,
|ΛM | or any bundle which can be constructed from these using tensor product,
dual or Whitney sums. Sections of these bundles can be pulled back by (local)
diffeomorphisms, which gives rise to a Lie derivative,

LX : Γ∞(T )→ Γ∞(T ), LXs := ∂
∂t
|0(FlXt )∗s.

It is straight forward to see that Lie derivatives satisfy a Leibniz rule,

LX(fs) = (X · f)s+ fLXs,

i.e. adf LX = −df(X)s and thus ad2
f LX = 0, for f ∈ C∞(M). Hence, by

Proposition II.2.8, LX is a first order differential operator with principal symbol
σ(LX) = iX. Note that T ∗M = T ∗ ⊗ |ΛM | is a bundle of the same type and the
Lie derivative satisfies

LX(φ(s)) = (LXφ)(s) + φ(LXs), φ ∈ Γ∞(T ∗ ⊗ |ΛM |), s ∈ Γ∞(T ).

For compactly supported φ integration yields17

0 = (LXφ, s) + (φ, LXs),

whence the transposed operator is

LtX = −LX ,

acting on Γ∞(T ∗ ⊗ |ΛM |).

16Alternatively, we let [E : Γ(Ē) ∼= Γ(E∗M ) and [F : Γ(F̄ ) ∼= Γ(F ∗M ) denote the vector bundle
isomorphisms induced by a volume density on M and fiber wise Hermitian metrics on E and
F . Then 〈s1, s2〉E = ([Es1, s2)F and 〈φ1, φ2〉F = ([Fφ1, φ2)F . Therefore A∗ = [−1E ◦ At ◦ [F ,
whence the existence of the formal adjoint.

17For every compactly supported density µ ∈ Γ∞c (|ΛM |) and any vector field X ∈ X(M),

we have
∫
M
LXµ = 0, since

∫
M

(FlXt )∗µ =
∫
M
µ.
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II.2.11. Example (Adjoint of a Lie derivative). We continue to consider a
Lie derivative as in preceding example. Fix a volume density µ on M and a
fiber metric on T . Recall that the divergence of a vector field X ∈ X(M) with
respect to a volume density µ is the unique function div(X) ∈ C∞(M) such that
LXµ = div(X)µ. Hence,

LX(h(s1, s2)µ) = (LXh)(s1, s2)µ+ div(X)h(s1, s2)µ

+ h(LXs1, s2)µ+ h(s1, LXs2)µ

Integration yields

0 = 〈〈(h−1LXh)s1, s2〉〉+ 〈〈div(X)s1, s2〉〉+ 〈〈LXs1, s2〉〉+ 〈〈s1, LXs2〉〉,

whence the adjoint is:

L∗X = −LX − h−1LXh− div(X).

II.2.12. Example. Let ∇ be a linear connection on E, and suppose X ∈
X(M). We would like to compute the adjoint of the first order operator

∇X : Γ∞(E)→ Γ∞(E)

with respect to a fiber wise Hermitian metric h on E and a volume density µ > 0
on M . Using X ·h(s1, s2) = (∇Xh)(s1, s2) +h(∇Xs1, s2) +h(s1,∇Xs2) we obatin

LX
(
h(s1, s2)µ

)
= h(s1, s2) div(X)µ+ (∇Xh)(s1, s2)µ

+ h(∇Xs1, s2)µ+ h(s1,∇Xs2)µ.

Integration yields

0 = 〈〈div(X)s1, s2〉〉+ 〈〈(h−1∇Xh)s1, s2〉〉+ 〈〈∇Xs1, s2〉〉+ 〈〈s1,∇Xs2〉〉

hence

∇∗X = −∇X − h−1∇Xh− div(X)

If the metric is parallel, ∇Xh = 0, then one term vanishes.

II.2.13. Example (Transposed of a linear connection). Let ∇ be a linear
connection on E and consider its extension

Γ∞(ΛqT ∗M ⊗ E) = Ωq(M ;E)
d∇−→ Ωq+1(M ;E) = Γ∞(Λq+1T ∗M ⊗ E).

The Leibniz formula, d∇(fα) = df ∧ α + fd∇α, gives adf (d
∇) = −edf ⊗ idE,

where eξ : ΛqT ∗M → Λq+1T ∗M denotes the wedge product with ξ. In partic-
ular, ad2

f (d
∇) = 0, hence d∇ is a first order operator with principal symbol

σξ(d
∇) = ieξ ⊗ idE, ξ ∈ T ∗xM . The wedge product provides a canonical non-

degenerate pairing ΛqT ∗M ×Λn−qT ∗M → ΛnT ∗M , and this provides a canonical
isomorphism of vector bundles

(ΛqT ∗M)∗ ⊗ |ΛM | = Λn−qT ∗M ⊗O.
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Here O denotes the orientation bundle of M . This is a flat real line bundle and
there exists a canonical identification |ΛM | = ΛnT ∗M ⊗O. Consequently,

(ΛqT ∗M ⊗ E)∗M = Λn−qT ∗M ⊗ E∗ ⊗O.
Up to this canonical identification, the transposed of d∇ is (−1)n−qd∇. More
precisely, the following diagram commutes:

Γ∞
(
(Λq+1T ∗M ⊗ E)∗M

) (d∇)t
// Γ∞

(
(ΛqT ∗M ⊗ E)∗M

)
Ωn−q−1(M ;E∗ ⊗O)

(−1)n−qd∇
// Ωn−q(M ;E∗ ⊗O)

Here we denote the induced connection on E∗ ⊗ O by ∇ too. To see this, note
first that the canonical pairing is

Ωn−q
c (M ;E∗ ⊗O)× Ωq(M ;E)→ C, (β, α) =

∫
M

tr(β ∧ α).

For α ∈ Ωq(M ;E) and β ∈ Ωn−q−1
c (M ;E∗ ⊗O) we have

d tr(β ∧ α) = tr d∇(β ∧ α) = tr(d∇β ∧ α) + (−1)n−q−1 tr(β ∧ d∇α).

Integrating and using Stokes theorem, we get

0 =

∫
M

tr(d∇β ∧ α)− (−1)n−q
∫
M

tr(β ∧ d∇α),

whence (d∇)t = (−1)n−qd∇.

II.2.14. Example (The formal adjoint of a linear connection). In the situation
of the previous example, we would like to compute the adjoint of d∇. To this
end, we fix a Riemannian metric on M and equip ΛqT ∗M with the induced fiber
wise Euclidean metric. Recall that the Riemannian metric also provides a volume
density µ > 0 on M . Moreover we fix a fiber wise Hermitian metric on E. and
equip ΛqT ∗M ⊗ E with the induced fiber wise Hermitian metric. Then:

Γ∞(Λq+1T ∗M ⊗ E) = Ωq+1(M ;E)
(d∇)∗−−−→ Ωq(M ;E) = Γ∞(ΛqT ∗M ⊗ E).

Recall the Hodge star operator,

? : ΛqT ∗M
∼=−→ Λn−qT ∗M ⊗O.

a vector bundle isomorphism uniquely characterized by

α ∧ ?β = 〈α, β〉µ, α, β ∈ Ωq(M).

Combining it with h we obtain a vector bundle isomorphism

? : ΛqT ∗M ⊗ Ē
∼=−→ Λn−qT ∗M ⊗ E∗ ⊗O,

characterized by

tr(α ∧ ?β) = 〈α, β〉µ, α, β ∈ Ωq(M ;E).
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Particularly, we have

〈〈α, β〉〉 =

∫
M

tr(α ∧ ?β), α, β ∈ Ωq(M ;E).

As in the previous example we have, for α ∈ Ωq(M ;E) and β ∈ Ωq+1(M ;E)

d tr(α ∧ ?β) = tr d∇(α ∧ ?β) = tr(d∇α ∧ ?β) + (−1)q tr(α ∧ d∇ ? β)

and integration yields

0 = 〈〈d∇α, β〉〉+ (−1)q〈〈α, ?−1d∇ ? β〉〉.

Thus, the formal adjoint of d∇ is

(d∇)∗ = (−1)q+1 ?−1 d∇? : Ωq+1(M ;E)→ Ωq(M ;E),

where the connection appearing on the right hand side is the induced connection
on E∗⊗O. Alternatively, this formula can be obtained directly from the previous
example without further partial integration.

II.2.15. Definition (Laplacians). Let M be a Riemannian manifold. A
second order differential operator ∆: Γ∞(E) → Γ∞(E) is called (generalized)
Laplacian, if σξ(∆) = |ξ|2 idE. This is the case iff [[∆, f ], f ]s = −2|df |2s, for all
f ∈ C∞(M), see Proposition II.2.8.

II.2.16. Example. Let M be a Riemannian manifold, fix linear connections
on E and T ∗M ⊗ E and let ∇2 : Γ∞(E) → Γ∞(T ∗M ⊗ T ∗M ⊗ E) denote their
composition. Then

− trg∇2 : Γ∞(E)→ Γ∞(E),

is a Laplacian. Indeed, σξ(∇2) = −ξ ⊗ ξ ⊗ idE, whence σ(− trg∇2) = |ξ|2 idE.

II.2.17. Example. Let E be a vector bundle over a Riemannian manifold
M and suppose ∇ : Γ∞(E) → Γ∞(T ∗M ⊗ E) is a linear connection. Moreover,
let ∇∗ : Γ∞(T ∗M ⊗ E) → Γ∞(E) denote its formal adjoint, with respect to a
Hermitian metric on E, the induced Hermitian metric on T ∗M⊗E and a volume
density on M . Then

∇∗∇ : Γ∞(E)→ Γ∞(E)

is a Laplacian. Indeed, σξ(∇)s = iξ ⊗ s, hence σξ(∇∗)(α⊗ s) = σξ(∇)∗(α⊗ s) =
−i〈ξ, α〉s whence σξ(∇∗∇) = |ξ|2 idE. Note that ∇∗∇ ≥ 0 and ker(∇∗∇) =
ker(∇).

II.2.18. Lemma. Let M be a Riemannian manifold and let ∇ denote the Levi–
Civita connection on TM . Then, with respect to the Riemannian volume density,

div(X) = tr∇X

for every X ∈ X(M).
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Proof. Let e1, . . . , en be a positive oriented local orthonormal frame of TM ,
and let e1, . . . , en denote the local dual coframe. Then µ = e1 ∧ · · · ∧ en is the
Riemannian volume density. Hence LXµ =

∑n
i=1(LXe

i)(ei)µ and thus

div(X) =
n∑
i=1

(LXe
i)(ei) = −

n∑
i=1

ei(LXei)

= −
n∑
i=1

ei
(
∇Xei −∇eiX

)
= tr∇X −

n∑
i=1

ei(∇Xei) = tr∇X

where we used ei(∇Xei) = g(ei,∇Xei) = 1
2
X · g(ei, ei) = 0. �

II.2.19. Proposition. Let E be a vector bundle over a Riemannian manifold
M and suppose ∇ : Γ∞(E) → Γ∞(T ∗M ⊗ E) is a linear connection. Then its
formal adjoint, ∇∗ : Γ∞(T ∗M⊗E)→ Γ∞(E), with respect to a parallel Hermitian
metric on E, i.e. ∇h = 0, the induced Hermitian metric on T ∗M ⊗ E and the
Riemannian volume density coincides with the composition

∇ : Γ∞(T ∗M ⊗ E)
∇−→ Γ∞(T ∗M ⊗ T ∗M ⊗ E)

− trg−−−→ Γ∞(E),

where ∇ denotes the connection on T ∗M ⊗E induced by the Levi–Civita connec-
tion on TM and the connection on E. In other words,

∇∗ = − trg∇.

Particularly, − trg∇2 = ∇∗∇ ≥ 0 and ker(− trg∇2) = ker(∇).

Proof. Let e1, . . . , en be a local orthonormal frame of TM and let e1, . . . , en

denote the dual local coframe of T ∗M . Then

〈φ,∇s〉 =
n∑

i,j=1

〈ei ⊗ φ(ei), e
j ⊗∇ejs〉 =

n∑
i=1

h(φ(ei),∇eis)

=
n∑
i=1

ei · h(φ(ei), s)− h
(
∇ei(φ(ei)), s

)
=

n∑
i=1

ei · h(φ(ei), s)− h
(
(∇eiφ)(ei), s

)
− h
(
φ(∇eiei), s

)
Using

n∑
i=1

∇T ∗M
ei

ei =
n∑

i,j=1

(∇T ∗M
ei

ei)(ej)e
j

= −
n∑

i,j=1

ei
(
∇TM
ei

ej
)
ej = −

n∑
j=1

tr(∇TMej)e
j = −

n∑
j=1

div(ej)e
j
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we obtain

〈φ,∇s〉 = −h(trg∇φ, s) +
n∑
i=1

ei · h(φ(ei), s) + div(ei)h
(
φ(ei), s

)
whence

〈φ,∇s〉µ = −h(trg∇φ, s)µ+
n∑
i=1

Lei
(
h(φ(ei), s)µ

)
and integration gives 〈〈φ,∇s〉〉 = −〈〈trg∇φ, s〉〉, that is ∇∗ = − trg∇. �

II.2.20. Definition (Dirac operators). Let M be a Riemannian manifold.
A first order differential operator D : Γ∞(E) → Γ∞(E) is called (generalized)
Dirac operator, if D2 is a Laplacian. This is the case iff its symbol satisfies
σξ(D)σξ(D) = |ξ|2 idE, for all ξ ∈ T ∗xM .

If D : Γ∞(E) → Γ∞(E) is a Dirac, then its symbol provides a vector bundle
homomorphism, c := i−1σ(D) : T ∗M → end(E) such that c(ξ)2 = −|ξ|2 idE, for
all ξ ∈ T ∗xM . Equivalently,

c(ξ)c(η) + c(η)c(ξ) = −2g(ξ, η) idE, ξ, η ∈ T ∗xM. (II.13)

A vector bundle E together with a homomorphism c : T ∗M → end(E) satisfying
(II.13) is called a Clifford module, c is refered to as Clifford multiplication.

Let E be a Clifford module with Clifford multiplication c : T ∗M → end(E),
suppose ∇ is a linear connection on E, and denote the composition

Γ∞(E)
∇−→ Γ∞(T ∗M ⊗ E)

c−→ Γ∞(E)

by D : Γ∞(E) → Γ∞(E). Then σξ(D) = ic(ξ), hence σξ(D)2 = |ξ|2 idE and thus
D is a Dirac operator. If e1, . . . , en is a local frame of TM and e1, . . . , en denotes
the dual local coframe of T ∗M , then

Ds =
n∑
i=1

c(ei)∇eis.

II.2.21. Proposition. Let M be a Riemannian manifold. Let E is a Clifford
module with Clifford multiplication c : T ∗M → end(E), suppose ∇ is a linear con-
nection on E and let D : Γ∞(E)→ Γ∞(E) denote the associated Dirac operator.
Let h be a fiber wise Hermitian metric on E such that ∇h = 0, i.e.

X · h(s1, s2) = h(∇Xs1, s2) + h(s1,∇Xs2).

Moreover, suppose ∇c = 0, i.e.

∇X

(
c(ξ)s

)
= c
(
∇T ∗M
X ξ

)
s+ c(ξ)∇Xs

with respect to the Levi–Civita connection on T ∗M . Finally, we moreover assume
h(c(ξ)s1, c(ξ)s2) = h(s1, s2) for all |ξ| = 1, equivalently,

h(c(ξ)s1, s2) + h(s1, c(ξ)s2) = 0.
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Then, with respect to the inner product on Γ∞(E) induced by h and the Riemann-
ian volume density, we have

D∗ = D.

Particularly, D2 ≥ 0 and ker(D) = ker(D2).

Proof. Let e1, . . . , en be a local frame of TM and let e1, . . . , en denote the
dual local frame of T ∗M . Then:

h(s1, Ds2) =
n∑
i=1

h
(
s1, c(e

i)∇eis2

)
= −

n∑
i=1

h
(
c(ei)s1,∇eis2

)
=

n∑
i=1

h
(
∇ei(c(e

i)s1), s2

)
− ei · h

(
c(ei)s1, s2

)
=

n∑
i=1

h
(
c(ei)∇eis1, s2

)
+ h
(
c(∇T ∗M

ei
ei)s1, s2

)
− ei · h

(
c(ei)s1, s2

)
Using

n∑
i=1

∇T ∗M
ei

ei =
n∑

i,j=1

(∇T ∗M
ei

ei)(ej)e
j

= −
n∑

i,j=1

ei
(
∇TM
ei

ej
)
ej = −

n∑
j=1

tr(∇TMej)e
j = −

n∑
j=1

div(ej)e
j

we obtain:

h(s1, Ds2) = h(Ds1, s2)−
n∑
i=1

div(ei)h
(
c(ei)s1, s2

)
+ ei · h

(
c(ei)s1, s2

)
.

Hence

h(s1, Ds2)µ = h(Ds1, s2)µ−
n∑
i=1

Lei
(
h(c(ei)s1, s2)µ

)
,

and integration yields 〈〈s1, Ds2〉〉 = 〈〈Ds1, s2〉〉, that is D∗ = D. �

II.2.22. Proposition (Bochner formula). Let M be a Riemannian mani-
fold and suppose E is a Clifford module with Clifford multiplication c : T ∗M →
end(E). Suppose ∇ is a linear connection on E such that ∇c = 0 with respect to
the Levi–Civita connection T ∗M . Then

D2 = − trg∇2 +R



II.2. DIFFERENTIAL OPERATORS ON MANIFOLDS 77

where R denotes the contraction of R ∈ Ω2(M ; end(E)). More precisely

R =
1

2

n∑
i,j=1

c(ei)c(ej)Rei,ej ∈ Γ(end(E))

if ei is a local frame.

Proof. Let e1, . . . , en be a local frame of TM and let e1, . . . , en denote the
dual local coframe of T ∗M , that is ei(ej) = δij. For s ∈ Γ∞(E) we obtain:

D2s =
n∑

i,j=1

c(ei)∇ei

(
c(ej)∇ejs

)
=

n∑
i,j=1

c(ei)c(ej)∇ei∇ejs+ c(ei)c
(
∇T ∗M
ei

ej
)
∇ejs

=
n∑

i,j=1

c(ei)c(ej)∇ei∇ejs− c(ei)c(ej)∇∇TMei ejs

=
n∑

i,j=1

c(ei)c(ej)∇2
ei,ej

s

=
n∑

i,j=1

1
2

(
c(ei)c(ej) + c(ej)c(ei)

)
∇2
ei,ej

s+ 1
2

(
c(ei)c(ej)− c(ej)c(ei)

)
∇2
ei,ej

s

= −
n∑

i,j=1

g(ei, ej)∇2
ei,ej

s+
1

2

n∑
i,j=1

c(ei)c(ej)
(
∇2
ei,ej

s−∇2
ej ,ei

s
)

= − trg∇2s+
1

2

∑
i,j=1n

c(ei)c(ej)Rei,ejs

= − trg∇2s+Rs,

whence the proposition. �

II.2.23. Definition (Ellipticity). A differential operator A ∈ DOm(E,F )) is
called elliptic if its principal symbol,

σξ : Ex → Fx

is an isomorphism, for all 0 6= ξ ∈ TxM .

II.2.24. Example. Clearly, Laplacians are elliptic, and so are Dirac operators.

If A ∈ DOm(E,F ), then the symbol can be regarded as a section of the bundle
hom(π∗E, π∗F ) over T ∗M ,

σ(A) ∈ Γ∞
(
hom(π∗E, π∗F )

)
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where π : T ∗M →M denotes the vector bundle projection. If M is compact, the
symbol represents a class

σ(A) := [π∗E, π∗F, σ(A)] ∈ Kc(T
∗M).

Will show that elliptic operators on compact manifolds are Fredholm and compute
their index in terms of σ(A) ∈ Kc(T

∗M).

II.3. De Rham cohomology. Recall that

Ω(M) = Γ∞(ΛT ∗M) =
⊕
p

Ωp(M), Ωp(M) = Γ∞(ΛpT ∗M)

is a graded commutative algebra, and

Ωp(M) = Lalt
C∞(M)

(
X(M)p, C∞(M)

)
.

This permits to define linear map

d : Ωp(M)→ Ωp+1(M),

by

(dα)(X0, . . . , Xp) :=
∑
i

(−1)iXi · α(X0, . . . , î, . . . , Xp)

+
∑

0≤i<j≤p

(−1)i+jα
(
[Xi, Xj], X0, . . . , î, . . . , ĵ, . . . , Xp

)
Note that d is natural, that is

f ∗dα = df ∗α,

for every smooth map f : N →M and every α ∈ Ω(M). Moreover, d is a graded
derivation, i.e.

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ, α ∈ Ωp(M), β ∈ Ωq(M).

Furthermore,
d2 = 0,

that is ddα = 0, for all α ∈ Ω(M). The associated graded commutative algebra

H∗(M) =
⊕
p

Ωp(M), Hp(M) :=
ker(d : Ωp(M)→ Ωp+1(M))

img(d : Ωp−1(M)→ Ωp(M))

is called the de Rham cohomology of M . Clearly,

Hq(M) = 0, if p < 0 or p > dim(M).

Note that dimH0(M) coincides with the number of connected components of
M . If M is a non-empty closed oriented n-manifold, then the integral induces a
surjective linear map

Hn(M)→ R, [α] 7→
∫
M

α,
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in particular the top cohomology, Hn(M), is non-trivial. It follows from Stokes’
theorem that the integral does indeed descend to cohomology,

∫
M
dβ = 0, for all

β ∈ Ωn−1(M).

II.3.1. Proposition (de Rham cohomology). De Rham cohomology provides
a contravariant functor from the category of smooth manifolds to the category
of graded commutative algebras. More explicitly, every smooth map f : N → M
induces a homomorphism of graded algebras, f ∗ : H∗(M)→ H∗(N), and we have

g∗ ◦ f ∗ = (f ◦ g)∗, as well as id∗M = idH∗(M),

if g : P → N is another smooth map. This functor has the following properties:

(a) f ∗0 = f ∗1 , whenever f0, f1 : N → M are two homotopic smooth maps, i.e.
there exists a smooth map F : I × N → M , such that F (0, x) = f0(x) and
F (1, x) = f1(x), for all x ∈ N .

(b) If U and V form an open covering, U ∪ V = M , then there exists a natural
long exact Mayer–Vietoris sequence:

· · · → Hq−1(U ∩ V )
∂−→ Hq(M)

(i∗U ,i
∗
V )

−−−−→ Hq(U)⊕Hq(V )
j∗U−j

∗
V−−−−→ Hq(U ∩ V )

∂−→ · · ·

Here iU : U →M , iV : V →M , jU : U ∩V → U , and jV : U ∩V → V , denote
the canonical inclusions.

(c) H∗(
⊔
iMi) =

∏
iH
∗(Mi), for disjoint unions.

(d) H0(pt) = R and Hq(pt) = 0, for all q 6= 0.

Proof. It suffices to show (a) and (b), the other assertions are straight for-
ward. The covering provides a short exact sequence

0→ Ωq(M)
(i∗U ,i

∗
V )

−−−−→ Ωq(U)⊕ Ωq(V )
j∗U−j

∗
V−−−−→ Ωq(U ∩ V )→ 0. (II.14)

If λU + λV = 1 is a partition of unity, supp(λU) ⊆ U , supp(λV ) ⊆ V , then

r : Ωq(U ∩ V )→ Ωq(U)⊕ Ωq(V ), r(α) := (λV α,−λUα)

provides a left inverse of j∗U − j∗V , whence the later is indeed onto. Here the
form λV α ∈ Ωq(U ∩ V ) is understood to be extended by zero to a smooth form
λV α ∈ Ωq(U) which is possible in view of supp(λV α) ⊆ V . Similarly, λUα is
considered in Ωq(V ). Exactness at the other two spaces is obvious. Note that
(II.14) is a short exact sequence of complexes, i.e. each of the maps commutes
with the de Rham differential d. It is a well known fact, that a short exact
sequence induces a long exact sequence in cohomology, whence (b).

To show the homotopy invariance, we let ιt : N → I × N , ιt(x) := (t, x),
denote the inclusion and put ft := F ◦ ιt : N → M , i.e. ft(t, x) = F (t, x). For
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α ∈ Ω∗(M) we have:

f ∗1α− f ∗0α =

∫ 1

0

∂
∂t
f ∗t α dt =

∫ 1

0

∂
∂t
ι∗tF

∗α dt =

∫ 1

0

ι∗tL∂tF
∗α dt

=

∫ 1

0

ι∗t [d, i∂t ]F
∗α dt = d

∫ 1

0

ι∗t i∂tF
∗α dt+

∫ 1

0

ι∗t i∂tF
∗dα dt

Hence the operator

h : Ω∗(M)→ Ω∗−1(M), h(α) :=

∫ 1

0

ι∗t i∂tF
∗α dt,

provides a chain homotopy,

f ∗1 − f ∗0 = d ◦ h+ h ◦ d,
which immediately implies that f0 and f1 induce the same map on cohomology,
whence (a). �

We will write f0 ∼ f1 if the two maps are homotopic. This is easily seen to be
an equivalence relation on the set of smooth maps N → M . Two manifolds are
called (smoothly) homotopy equivalent, if there exist smooth maps f : N → M
and g : M → N , such that f ◦ g ∼ idM and g ◦ f ∼ idN . In this case either
of them is called a homotopy equivalence. Every homotopy equivalence f : N

∼−→
M induces isomorphisms on cohomology, f ∗ : H∗(M)

∼=−→ H∗(N), by homotopy
invariance and functoriality.

II.3.2. Example (Poincaré lemma). For the cohomology of Rn we have

Hq(Rn) ∼=

{
R if q = 0, and

0 if q 6= 0.

Indeed, if ι : pt → Rn denotes the inclusion of a point, and r : Rn → pt denotes
the constant map, then r ◦ ι = idpt and ι ◦ r ∼ idRn via the homotopy F : I ×
Rn → Rn, F (x, t) := tx + (1 − t) pt. Hence the inclusion ι is a homotopy
equivalence, whence it induces an isomorphism on cohomology, H∗(Rn) ∼= H∗(pt).
The statement thus follows from Proposition II.3.1(d). In other words, for q 6= 0
every closed q-form α ∈ Ωq(Rn), dα = 0, is exact, i.e. there exists β ∈ Ωq−1(Rn)
such that dβ = α.

II.3.3. Example. For the cohomology of the spheres Sn we have18

Hq(Sn) ∼=

{
R if q = 0 or q = n, and

0 otherwise.

To see this fix a point N ∈ Sn and consider the open covering Sn = U ∪V where
U := Sn \ {N} and V := Sn \ {−N}. Using stereographic projection, we obtain

18In the case n = 0 this is meant as follows: H0(S0) ∼= R2, and Hq(S0) = 0 for q 6= 0.
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diffeomorphisms U ∼= Rn ∼= V , whence Hq(U) = 0 = Hq(V ), for all q 6= 0, by
Poincaré’s lemma. From the exactness of the Mayer–Vietoris sequence,

Hq−1(U)⊕Hq−1(V )→ Hq−1(U ∩ V )
∂−→ Hq(Sn)→ Hq(U)⊕Hq(V )

we conclude that the connecting homomorphism induces an isomorphism,

∂ : Hq−1(U ∩ V )
∼=−→ Hq(Sn), 0 6= q 6= 1.

Moreover, the inclusion of the equator, ι : Sn−1 → U ∩ V , is a homotopy equiva-
lence, whence induces an isomorphismHq−1(U∩V ) ∼= Hq−1(Sn−1). Consequently,

Hq(Sn) ∼= Hq−1(Sn−1), 0 6= q 6= 1.

As Sn is connected, we have H0(Sn) ∼= K, provided n ≥ 1. A closer look at
the Mayer–Vietoris sequence reveals, that H1(S1) ∼= K and H1(Sn) = 0, for all
n ≥ 2. This permits to compute H∗(Sn) by induction on n.

As a first application of this computation, we give:

II.3.4. Corollary (Brouwer).
a) Sn is not retract of Dn. More precisely, there does not exist a smooth

(continuous) map r : Dn+1 → Sn such that r|Sn = idSn.
b) Every smooth (continuous) map f : Dn → Dn has a fixed point.

Proof. Suppose, conversely, r : Dn+1 → Sn, is a smooth map such that
r ◦ ι = idSn , where ι : Sn → Dn+1 denotes the canonical inclusion. W.l.o.g. we
may assume that r is defined on Rn+1, whence r : Rn+1 → Sn and r ◦ ι = idSn .

Consequently, the composition H∗(Sn)
r∗−→ H∗(Rn+1)

ι∗−→ H∗(Sn) is the identity.
Since dimHn(Sn) > dimHn(Rn+1) this leads to a contradiction. This shows a).

The second part follows via a simple geometric construction. Suppose con-
versely, f(x) 6= x, for all x ∈ Dn. Then there exists a unique ray starting at
f(x) and containing x. Let r(x) denote the unique point in the intersection of
this ray with Sn−1 which is different from f(x). Clearly, r(x) can be expressed
with the help of an explicit formula in terms of f , from which we conclude that
r : Dn → Sn−1 is smooth. By construction, r(x) = x, for all x ∈ Sn−1. Since this
contradicts a) we obtain b). �

II.3.5. Example. As the inclusion ι : Sn → Rn+1 \ {0} is a homotopy equiv-
alence, this computation also yields

Hq
(
Rn+1 \ {0}

) ∼= {R if q = 0 or q = n, and

0 otherwise.

II.3.6. Example. For the complex projective space, CPn, we have

Hq(CPn) ∼=

{
R if q = 0, 2, 4, . . . , 2n, and

0 otherwise.
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Moreover, if 0 6= ω ∈ H2(CPn), then 1, ω, ω2, . . . , ωn constitutes a graded basis of
H∗(CPn), whence H∗(CPn) is a truncated polynomial algebra with one generator
in degree 2, i.e.

H∗(CPn) ∼= R[ω]/ωn+1 = 0,

as commutative algebra. Moreover, for m ≤ n, the canonical inclusion ι : CPm →
CPn induces isomorphisms

ι∗ : Hq(CPn)
∼=−→ Hq(CPm), q ≤ 2m+ 1.

This can be proved by induction on n using the Mayer–Vietoris sequence as-
sociated to the decomposition CPn = (CPn \ {pt}) ∪ Cn, since the inclusions
CPn−1 → CPn \{pt} and S2n−1 → (CPn \{pt})∩Cn are homotopy equivalences.

II.3.7. Proposition. H∗(M) is finite dimensional, for compact M . More
generally, if M admits a finite good covering,19 then H∗(M) is finite dimensional.

Proof. Suppose U1 ∪ · · ·Uk = M is a finite good open covering of M . Note
that U := U1 has finite dimensional cohomology. By induction on k, we may
assume that

V := U2 ∪ · · · ∪ Uk and U ∩ V = (U1 ∩ U2) ∪ · · · ∪ (U1 ∩ Uk)
both have finite dimensional cohomology too. Considering the Mayer–Vietoris
sequence associated with M = U ∪ V ,

· · · → Hq−1(U ∩ V )
∂−→ Hq(M)→ Hq(U)⊕Hq(V )→ · · ·

we conclude that H∗(M) is finite dimensional too. �

The Euler characteristics of M is defined as

χ(M) :=
∑
q

(−1)q dimHq(M),

provided M has finite dimensional cohomology. Clearly, homotopy equivalent
manifolds have the same Euler characteristics. According to the computations
above, we have

χ(Rn) = 1, χ(Sn) = 1 + (−1)n, χ(CPn) = n+ 1.

19A covering Uα of M is called good, if every finite intersections Uα1
∩ · · · ∩ Uαk

is either
empty or contractible, i.e. homotopy equivalent to a point. Every manifold admits a good
cover. To see this fix a Riemannian metric on M . Recall that an open subset of U of M is
called geodesically convex if it has the following property: For any two points x and y in U
there exists a unique geodesic arc of minimal length, connecting x with y and this geodesic
arc is entirely contained in U . Clearly, a finite intersection of geodesically convex subsets is
again geodesically convex or empty. Using the retraction provided by these unique geodesics
one shows that every non-empty geodesically convex subset is contractible. A basic fact from
Riemannian geometry asserts that sufficiently small Riemannian balls are geodesically convex.
This shows that every manifold admits a good covering (by geodesically convex open subsets.)
In fact, this good cover can be chosen to be subordinated to a given open covering of M .
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II.3.8. Proposition. Suppose M = U ∪V is an open covering such that three
of the four spaces H∗(U), H∗(V ), H∗(U ∩V ) and H∗(M) are finite dimensional.
Then so is the fourth, and the following inclusion–exclusion formula holds:

χ(M) = χ(U) + χ(V )− χ(U ∩ V )

Proof. This follows from the associated Mayer–Vietoris sequence,

· · · → Hq−1(U ∩ V )
∂−→ Hq(M)→ Hq(U)⊕Hq(V )→ Hq(U ∩ V )

∂−→ · · ·

as the alternating sum of dimensions in an exact sequence vanishes. �

Compactly supported cohomology is defined by:

Hq
c (M) :=

ker
(
d : Ωq

c(M)→ Ωq+1
c (M)

)
img

(
d : Ωq−1

c (M)→ Ωq
c(M)

)
Every proper smooth map f : M → N induces a linear map f ∗ : H∗c (N)→ H∗c (M)
and this is obviously functorial. Moreover, if ι : U →M denotes the inclusion of
open subset, then we have an induced linear map ι∗ : H

∗
c (U)→ H∗c (M) given by

extending a form with compact in U by zero to all of M . The Mayer–Vietoris
sequence for compactly supported cohomology looks as follows:

· · · → Hq
c (U ∩ V )→ Hq

c (U)⊕Hq
c (V )→ Hq

c (M)
∂−→ Hq+1

c (U ∩ V )→ · · ·

II.3.9. Proposition. There is a canonical isomorphism

Hq
c (M × R) ∼= Hq−1

c (M)

Proof. It is possible to write down explicit maps in both directions + ho-
motopy. Details can be found in [12]. �

II.3.10. Example. From the previous result we obtain:

Hq
c (Rn) ∼=

{
R if q = n

0 otherwise.

II.3.11. Theorem (Poincaré duality). Let M be a oriented closed smooth
manifold of dimension n. Then the pairing,

Hq(M)×Hn−q(M)→ R, (a, b) 7→
∫
M

a ∧ b,

is non-degenerate. In particular, dimHq(M) = dimHn−q(M). More generally,
for every orientable manifold

Hq(M)→ Hn−q
c (M)∗

is an isomorphism.

Proof. See [12]. �
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II.3.12. Corollary. If M is a closed oriented and connected manifold, then∫
M

: Hn(M)
∼=−→ R

is an isomorphism.

II.3.13. Corollary. If M is an odd dimensional oriented closed smooth man-
ifold, then χ(M) = 0.

Proof. By Poincaré duality, dimHq(M) = dimn−q(M). Consequently, the
alternating sum of these dimensions vanishes. �

II.3.14. Corollary. If M is an oriented closed smooth manifold of dimension
4n+ 2, then dimH2n+1(M) is even.

Proof. In view of our assumptions, the bilinear form

H2n+1(M)×H2n+1(M)→ R, (a, b) 7→
∫
M

a ∧ b,

is skew symmetric, for we have a∧ b = −b∧a for all a, b ∈ H2n+1(M). According
to Poincaré dualiy this pairing is non-degenerate. By linear algebra, every finite
dimensional real vector space which admits a non-degenerate skew symmetric
bilinear form, has to be even dimensional. �

Corollary II.3.12 permits to define a mapping degree for smooth maps f : M →
N between smooth closed connected oriented manifolds and of the same dimen-
sion. More precisely, the mapping degree of f is the unique number deg(f) ∈ R
such that the diagram

Hn(N)
f∗ //

∼=
∫
N

��

Hn(M)

∼=
∫
M

��
R

deg(f)
// R

commutes, where dim(M) = n = dim(N). By definition, the mapping degree is
uniquely characterized by: ∫

M

f ∗α = deg(f)

∫
N

α

for all α ∈ Ωn(N). It has the following properties:

II.3.15. Proposition. Let f, g : M → N be smooth maps between closed con-
nected oriented manifolds of dimension n. Then:

(a) deg(f ◦ g) = deg(f) deg(g), and deg(idM) = 1.
(b) deg(f) = deg(g), if f and g are homotopic.
(c) If deg(f) 6= 0 then f is onto.
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(d) Suppose y ∈ N is a regular value of f , i.e. Txf : TxM → TyN is a linear
isomorphism for all x ∈ f−1(y). Then f−1(y) is finite and

deg(f) =
∑
f(x)=y

ε(x),

where ε(x) = ±1 depending on whether Txf : TxM → TyN is orientation
preserving or reversing.

(e) deg(f) ∈ Z.

Proof. TODO �

II.3.16. Proposition. Let f, g : Sn → Sn be smooth, n ≥ 1.

(a) deg(U) = det(U), for every U ∈ On+1 considered as map U : Sn → Sn.
(b) deg(A) = (−1)n+1, where A : Sn → Sn, A(x) := −x, is the anipodal map.
(c) If deg(f) 6= 1, then there exists x ∈ Sn with f(x) = −x.
(d) If deg(f) 6= (−1)n+1, then there exists x ∈ Sn such that f(x) = x.
(e) If n is even, then there exists x ∈ Sn such that f(x) ∈ {x,−x}.
(f) The degree induces an isomorphism deg : [Sn, Sn]

∼=−→ Z, where [Sn, Sn] is the
set of homotopy classes of smooth (continuous) maps from Sn into Sn.

Proof. TODO �

II.3.17. Corollary (Hedgehog theorem). If n is even, then every vector field
on Sn has a zero. More precisely, for every X ∈ X(Sn) = Γ∞(TSn) there exists
x ∈ Sn such that X(x) = 0.

Proof. Suppose conversely, X(x) 6= 0, for all x ∈ Sn. We may consider
the vector field as a smooth map X : Sn → Rn+1 \ {0} such that X(x) ⊥ x,
for all x ∈ Rn. Normalizing, we obtain a smooth map, f : Sn → Sn, f(x) :=
X(x)/|X(x)|, such that f(x) ⊥ x, for all x ∈ Sn. In particular f(x) /∈ {x,−x}.
This contradicts Proposition II.3.16(e), whence the corollary. �

The odd dimensional spheres S2n−1 ⊆ Cn do admit vector fields without zero,
for instance X(z) := iz, z ∈ S2n−1 ⊆ Cn.

II.3.18. Definition (Signature). Let M be an oriented closed smooth mani-
fold of dimension 4n. Then the signature of the non-degenerate symmetric bilin-
ear form,

H2n(M)×H2n(M)→ R, (a, b) 7→
∫
M

a ∧ b,

i.e. the number of positive eigenvalues minus the number of negative eigenvalues,
is called the signature of M and will be denoted by sign(M). Note that this
pairing is non-degenerate by Poincaré duality.

II.3.19. Proposition. The signature has the following properties:

(a) sign(−M) = − sign(M), where −M indicates the opposite orientation on M .
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(b) sign(M1 tM2) = sign(M1) + sign(M2).
(c) sign(M ×N) = sign(M) · sign(N).
(d) sign(∂W ) = 0, for every compact oriented smooth (4n+1)-dimensional man-

ifold W with boundary ∂W .

Proof. TODO �

II.3.20. Example. sign(CP2n) = 1 with respect to the standard orientation.
In particular, CP2n can not be the boundary of a compact oriented manifold.

II.4. Chern–Weil theory and characteristic classes. Let us consider a
linear connection ∇ on a vector bundle E over M ,

Ω0(M ;E) = Γ∞(E)
∇−→ Γ∞(T ∗M ⊗ E) = Ω1(M ;E). (II.15)

There is a unique linear extension

d∇ : Ω∗(M ;E)→ Ω∗+1(M ;E) (II.16)

such that the graded Leibniz rule holds for α ∈ Ωq(M) and s ∈ Ω∗(M ;E),

d∇(α ∧ s) = dα ∧ s+ (−1)qα ∧ d∇s.
In fact we have the following explicit formula for s ∈ Ωq(M ;E):

(d∇s)(X0, . . . , Xp) =

q∑
i=0

(−1)i∇Xi(s(X0, . . . , î, . . . , Xp))∑
0≤i<j≤q

(−1)i+js([Xi, Xj], X0, . . . , î, . . . , ĵ, . . . , Xp)

This expression is easily seen to be skew symmetric and C∞(M) linear in the
vector fields Xi ∈ X(M), whence the formula defines a linear map as in (II.16),
which clearly extends (II.15). LEIBNIZ RULE UNIQUENESS

Recall that the curvature, R ∈ Ω2(M ; end(E)), is defined by

R(X, Y )s = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s.

Note that Ω∗(M ; end(E)) is a graded and associative algebra, the product of φ ∈
Ωp(M ; end(E)) and ψ ∈ Ωq(M ; end(E)) is defined by the canonical contraction
of their wedge product in Ωp+q(M ; end(E) ⊗ end(E)) and will be denoted by
φ ∧ ψ ∈ Ωp+q(M ; end(E)). Note that Ω∗(M ; end(E)) will in general not be
graded commutative because end(E) is not commutative. We equip end(E) with
the induced connection, i.e.

(∇Xφ)(s) = ∇X(φ(s))− φ(∇Xs), (II.17)

for φ ∈ Γ(end(E)) and s ∈ Γ(E). The extension

d∇ : Ω∗(M ; end(E))→ Ω∗+1(M ; end(E))

satisfies the graded Leibniz rule, φ ∈ Ωq(M ; end(E)), ψ ∈ Ω∗(M ; end(E))

d∇(φ ∧ ψ) = (d∇φ) ∧ ψ + (−1)qφ ∧ d∇ψ. (II.18)
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Another important feature of this connection on end(E) is

d trφ = tr(d∇φ), (II.19)

where φ ∈ Ω∗(M ; end(E)) and

tr : Ω∗(M ; end(E))→ Ω∗(M)

is induced by the canonical contraction. For φ ∈ Ω0(M ; end(E)) = Γ(end(E))
this follows immediately from the definition of the induced connection on end(E),
see (II.17). Using the graded Leibniz rules we get

d tr(α ∧ φ) = d(α ∧ trφ) = dα ∧ trφ+ (−1)qα ∧ d trφ

= dα ∧ trφ+ (−1)qα ∧ tr d∇φ

= tr
(
dα ∧ φ+ (−1)qα ∧ d∇φ

)
= tr d∇(α ∧ φ)

for all α ∈ Ωq(M) and φ ∈ Ω0(M ; end(E)), whence (II.19) holds in general. Also
note that

tr(φ ∧ ψ) = (−1)pq tr(ψ ∧ φ),

for all φ ∈ Ωp(M ; end(E)) and ψ ∈ Ωq(M ; end(E)).
Moreover, Ω∗(M ;E) is a module over Ω∗(M ; end(E)). The multiplication of

φ ∈ Ωp(M ; end(E)) and s ∈ Ωq(M ;E) is defined by the canonical contraction
of their wedge product in Ωp+q(M ; end(E) ⊗ E) and will be denoted by φ ∧ s ∈
Ωp+q(M ;E). We also have the graded Leibniz rule

d∇(φ ∧ s) = (d∇φ) ∧ s+ (−1)qφ ∧ d∇s
for φ ∈ Ωq(M ; end(E)) and s ∈ Ω∗(M ;E).

For s ∈ Ω∗(M ;E), the curvature satisfies

d∇d∇s = R ∧ s. (II.20)

Indeed, for s ∈ Ω0(M ;E) = Γ(E) this is immediate from the definition of the
curvature. Moreover, for α ∈ Ωq(M) and s ∈ Ω∗(M ;E) we have

d∇d∇(α ∧ s) = d∇
(
dα ∧ s+ (−1)qα ∧ d∇s

)
= d2α ∧ s+ (−1)q+1dα ∧ d∇s+ (−1)qdα ∧ d∇s+ α ∧ d∇d∇s
= α ∧ d∇d∇s,

whence (II.20) holds in general.
Moreover, we have the Biancchi identity,

d∇R = 0 ∈ Ω3(M ; end(E)). (II.21)

Indeed, for all s ∈ Ω∗(M ;E) we have

R ∧ d∇s = d∇d∇(d∇s) = d∇(d∇d∇s) = d∇(R ∧ s) = (d∇R) ∧ s+R ∧ d∇s,
hence (d∇R) ∧ s = 0, for all s ∈ Ω∗(M ;E), whence (II.21).
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Suppose a(z) =
∑∞

k=0 akz
k is a formal power series. Since R ∈ Ω2(M ; end(E))

is nilpotent, the sum

a(R) :=
∞∑
k=0

akR
k ∈ Ωeven(M ; end(E))

is in fact finite, hence well defined even if the power series does not converge.
Applying the trace we obtain

tr(a(R)) ∈ Ωeven(M).

II.4.1. Proposition. Let E be a complex vector bundle over M and suppose
a(z) =

∑∞
k=0 akz

k is a formal power series, ak ∈ C. Moreover, let ∇ be a linear
connection on E with curvature R ∈ Ω2(M ; end(E)). Then:

(a) The differential form tr(a(R)) ∈ Ωeven(M) is closed.
(b) The represented cohomology class, tr(a(E)) := [tr(a(R))] ∈ Heven(M), does

not dependent on ∇.
(c) tr(a(f ∗E)) = f ∗ tr(a(E)) ∈ Ωeven(N), for every smooth map f : N →M .
(d) tr(E ⊕ F ) = tr(E) + tr(F ), for any two complex vector bundles E and F .

Proof. The Leibniz rule (II.18) and the Biancchi identity (II.21) yield

d∇(Rk) =
k∑
i=0

Ri ∧ d∇R ∧Rk−i−1 = 0.

Combining this with (II.19), we obtain d tr(Rk) = 0 and thus

d(a(R)) = d tr
∞∑
k=0

akR
k =

∞∑
k=0

ak d tr(Rk) = 0,

whence (a). To see (b) consider a smooth family of linear connections ∇t on E.
Then there exists a smooth family At ∈ Ω1(M ; end(E)) such that

∂
∂t
∇t
Xs = At(X)s,

for all s ∈ Γ(E) and X ∈ X(M). For the curvature Rt of ∇t, we obtain

∂
∂t
Rt = d∇

t

At ∈ Ω2(M ; end(E)).

Indeed, for X, Y ∈ X(M) and s ∈ Γ(E),

∂
∂t
Rt
X,Y s = ∂

∂t

(
∇t
X∇t

Y s−∇t
Y∇t

Xs−∇t
[X,Y ]s

)
= At(X)∇t

Y s+∇t
X(At(Y )s)

− At(Y )∇t
Xs−∇t

Y (At(X)s)− At([X, Y ])s

= (∇t
X(At(Y )))s− (∇t

Y (At(X)))s− At([X, Y ])s

= (d∇
t

At)(X, Y )s.
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Consequently,

∂
∂t

(Rt)k =
k−1∑
i=0

(Rt)i ∧ ∂
∂t
Rt ∧ (Rt)k−i−1 =

k−1∑
i=0

(Rt)i ∧ d∇tAt ∧ (Rt)k−i−1

= d∇
t
k−1∑
i=0

(Rt)i ∧ At ∧ (Rt)k−i−1

and thus

∂
∂t

(
tr(Rt)k

)
= d tr

k−1∑
i=0

(Rt)i ∧ At ∧ (Rt)k−i−1 = kd tr
(
At ∧ (Rt)k−1

)
∂
∂t

tr(a(Rt)) =
∞∑
k=0

ak
∂
∂t

(
tr(Rt)k

)
=
∞∑
k=0

kak d tr
(
At ∧ (Rt)k−1

)
= d tr

(
At ∧

∞∑
k=0

kak(R
t)k−1

)
= d tr

(
At ∧ a′(Rt)

)
,

where a′(z) =
∑∞

k=0 kakz
k−1 denotes the derivative of the formal powers series.

Now suppose ∇0 and ∇1 are two linear connections on E, put A := ∇1 −∇0 ∈
Ω1(M ; end(E)) and ∇t := ∇0 + tA. Then

tr(a(R1))− tr(a(R0)) =

∫ 1

0

∂
∂t

tr(a(Rt))dt = d

∫ 1

0

tr
(
A ∧ a′(Rt)

)
dt,

hence tr(a(R1)) and tr(a(R0)) represent the same cohomology class in Heven(M).
This shows (b). If we equip the pull back bundle f ∗E with the pull back con-
nection f ∗∇, then Rf∗∇ = f ∗R∇ ∈ Ω2(N ; end(f ∗E)), whence tr

(
a
(
Rf∗∇)) =

f ∗ tr(a(R∇)) ∈ Ωeven(N), which implies (c). Connections on E and F induce a
linear connection ∇E⊕F on the Whitney sum and we have

RE⊕F = RE ⊕RF ∈ Ω2
(
M ; end(E)⊕ end(F )

)
⊆ Ω2

(
M ; end(E ⊕ F )

)
.

Whence
(
RE⊕F )k = (RE)k ⊕ (RF )k and tr

(
RE⊕F )k = tr

(
(RE)k

)
+ tr

(
(RF )k

)
,

which gives (d). �

Applying this construction to the power series

a(z) = ez =
∞∑
k=0

1

k!
zk

we obtain the Chern character.

II.4.2. Definition (Chern character). The Chern character of a complex
vector bundle E over M is the cohomology class

ch(E) := tr exp(−R/2πi)
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where R denotes the curvature of a linear connection on E, see Proposition II.4.1.

ch(E) = ch0(E) + ch1(E) + ch2(E) + ch 3(E) + · · ·
where chk(E) ∈ H2k(M) denote the homogeneous components,

chk(E) =
(−1)k

(2πi)kk!
tr(Rk).

Note that ch0(E) = rk(E).

II.4.3. Remark. If we use a connection ∇ on E which preserves a fiber wise
Hermitian metric h on E, that is ∇h = 0, then its curvature takes values in the
skew symmetric endomorphisms of E. In other words, (−R/2πi)∗ = −R/2πi.
Clearly,

(φψ)∗ = (−1)pqψ∗φ∗,

for all φ ∈ Ωp(M ; end(E)) and ψ ∈ Ωq(M ; end(E)), so each power, (−R/2πi)k,
will be symmetric too. In particular its trace, tr

(
(−R/2πi)k

)
, will be a real

differential form,

tr
(
(−R/2πi)k

)
∈ Ω2k(M ;R).

Since every complex vector bundle admits fiber wise Hermitian metrics, and con-
nections that preserve a given metric, we conclude that tr

(
(−R/2πi)k

)
represents

a real cohomology class, although the form is not real for general connections.
Consequently, the Chern character takes values in the real deRham cohomology,

ch(E) ∈ H2∗(M ;R).

Actually, ch(E) ∈ H2∗(M ;Q).

II.4.4. Proposition. Let E and F be complex vector bundles over M . Then:

(a) ch(f ∗E) = f ∗ ch(E), for every smooth map f : N →M .
(b) ch(E ⊕ F ) = ch(E) + ch(F )
(c) ch(E ⊗ F ) = ch(E) ∧ ch(F ).

Proof. The first two assertions follow from Proposition II.4.1. To see the
third one, we equip E⊗F with the linear connection induced by linear connections
on E and F . For its curvature we have the formula

RE⊗F = RE ⊗ idF + idE ⊗RF

in Ω2(M ; end(E⊗F )) = Ω2(M ; end(E)⊗ end(F )). Since RE ⊗ idF and idE ⊗RF

commute, we have the relation

exp
(
−RE⊗F/2πi

)
= exp

(
−RE ⊗ idF /2πi

)
∧ exp

(
− idE ⊗RF/2πi

)
in Ω∗(M ; end(E ⊗ F )). Consequently,

tr exp
(
−RE⊗F/2πi

)
= tr exp(−RE/2πi) ∧ tr exp(−RF/2πi)

in Ωeven(M ;C), whence the third assertion. �
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If two vector bundles over M have different Chern character, then they cannot
be isomorphic. The trivial bundle εk admits a flat connection, whence its Chern
character is trivial, more precisely ch(εk) = rank(εk) = k ∈ H0(M ;C). Conse-
quently, a vector bundle with non-trivial Chern character cannot be trivial. If
two complex vector bundles E and F are stably equivalent, i.e. E ⊕ εk ∼= F ⊕ εk,
for some k ∈ N0, then ch(E) = ch(F ). This follows from Proposition II.4.4(b).
Consequently, vector bundles with different Chern character can’t even be stably
equivalent.

The preceding proposition shows that the Chern character induces a natural
ring homomorphism,

ch: K(M)→ Heven(M),

for compact M . According to a result of Atiyah and Hirzebruch, this becomes
an isomorphism after tensorizing with R, that is

ch: K(M)⊗ R
∼=−→ Heven(M),

for every compact M . Actually, the Chern character induces an isomorphism
K(M)⊗Q ∼= Heven(M ;Q).

II.4.5. Example. If L is a line bundle over M then the curvature of a linear
connection on L is an ordinary differential form, R ∈ Ω2(M). Hence it represents
a cohomology class c1(L) := [−R/2πi] ∈ H2(M) which does not depend on the
liner connection. For its Chern character we have

ch(L) = ec1(L) = 1 + c1(L) + 1
2
c1(L)2 + 1

3!
c1(L)3 + · · ·

If ξ denotes the canonical complex line bundle over CPn then c1(ξ) ∈ H2(CPn)
is the unique cohomology class such that∫

CP1

c1(ξ) = −1. (II.22)

By naturality, and since ι∗ : H2(CPn)→ H2(CP1) is injective, it suffices to show
this for the canonical line bundle over CP1. We choose a linear connection ∇ on
ξ. Put U := CP1 \ {[0 : 1]} and V := CP1 \ {[1 : 0]}. Define a non-vanishing
sections sU ∈ Γ(ξ|U) and sV ∈ Γ(ξ|V ) by

sU
(
[z0 : z1]

)
:=
(

1
z1/z0

)
and sV

(
[z0 : z1]

)
:=
(
z0/z1

1

)
.

Hence there exist 1-forms ωU ∈ Ω1(U ;C) and ωV ∈ Ω1(V ;C) such that

∇XsU = ωU(X)sU and ∇XsV = ωV (X)sV .

Differentiating the obious relation sU = z1
z0
sV over U ∩ V , we obtain

ωU − ωV = z0
z1
d z1
z0
∈ Ω1(U ∩ V ;C).

For the curvature R ∈ Ω2(CP1;C) we obtain

R|U = dωU and R|V = dωV .
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Put DU := {[1 : z] : |z| ≤ 1} ⊆ U and DV := {[z : 1] : |z| ≤ 1} ⊆ V .
Then DU and DV are compact submanifolds with boundary in CP1 such that
CP1 = DU ∪DV and ∂DU = −∂DV . Moreover, ι : S1 → ∂DU , ι(z) := [1 : z], is
an orientation preserving diffeomorphism. Hence, by Stokes’ theorem,∫

CP1

R =

∫
DU

R +

∫
DV

R =

∫
∂DU

ωU − ωV =

∫
S1

ι∗(ωU − ωV ) =

∫
S1

dz

z
= 2πi

This shows (II.22). In particular, the canonical line bundle over CPn is non-
trivial.

For a complex vector bundle E, the cohomology class represented by the
closed differential form

c(E) := det
(
1−R/2πi

)
= exp tr log

(
1−R/2πi

)
is called the total Chern class. We have

c(E) = 1 + c1(E) + c2(E) + · · ·+ ck(E),

where cq(E) ∈ H2q(M) is called the q-th Chern class and k = rank(E).

c0(E) = 1

c1(E) =
−1

2πi
tr(R)

c2(E) =
1

8π2

(
tr(R2)− tr(R)2

)
c3(E) =

1

48π2i

(
2 tr(R3)− 3 tr(R) tr(R2)− tr(R3)

)
The Chern character can be expressed in terms of the Chern classes:

ch0(E) = rk(E)

ch1(E) = c1(E)

ch2(E) =
1

2

(
c1(E)2 − 2c2(E)

)
ch3(E) =

1

6

(
c1(E)3 − 3c1(E)c2(E) + 3c3(E)

)
II.4.6. Proposition. The Chern class has the following properties:

(a) c(E ⊕ F ) = c(E) ∧ c(F ) (Whitney formula)
(b) c(f ∗E) = f ∗c(E) (naturality)
(c) ck(E

∗) = ck(Ē) = (−1)kck(E)
(d) If ξ denotes the canonical line bundle over CP1, then c(ξ) = 1 − a, where

a ∈ H2(CP1) denotes the standard generator,
∫
CP1 a = 1.

Proof. TODO �

The Chern classes are uniquely characterized by these properties [32].
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II.4.7. Remark. H∗(Grk(C∞)) = C[c1, . . . , ck]

II.4.8. Example. The Chern class of the tangent bundle of CPn is

c(CPn) := c(TCPn) = (1 + a)n+1,

where a ∈ H2(CPn) denotes the standard generator,
∫
CP1 a = 1. Indeed, ξ⊕ξ⊥ =

εn+1, and TCPn ∼= hom(ξ, ξ⊥), hence

TCPn ⊕ ε1 ∼= hom(ξ, ξ⊥)⊕ hom(ξ, ξ) ∼= hom(ξ, ξ ⊕ ξ⊥) ∼= hom(ξ, εn+1)

and thus

TCPn ⊕ ε1 ∼= ξ∗ ⊕ · · · ⊕ ξ∗︸ ︷︷ ︸
n+ 1 summands

. (II.23)

Consequently,

c(TCPn) = c(ξ∗ ⊕ · · · ⊕ ξ∗) = c(ξ∗)n+1 = (1− c1(ξ))n+1 = (1 + a)n+1.

The Todd class is associated to the formal power series

a(z) =
z

1− e−z
=
∞∑
k=0

Bk

k!
(−z)k = 1 +

1

2
z +

1

6 · 2!
z2 − 1

30 · 4!
z4 +

1

42 · 6!
z6 + · · ·

where Bk denotes the Bernoulli number.20

II.4.9. Definition (Todd class). The Todd class of a complex vector bundle
E is the cohomology class

Td(E) := det
( −R/2πi

1− exp(R/2πi)

)
= exp tr log

( −R/2πi

1− exp(R/2πi)

)
∈ Heven(M),

where R denotes the curvature of a linear connection on E.

Td(E) = 1 + Td1(E) + Td +2(E) + Td3(E) + · · ·

where Tdk(E) ∈ H2k(E) is called the k-th Todd class. For a closed complex
manifold M

Td(M) :=

∫
M

Td(TM)

is called the Todd genus of M .

First few classes in terms of tr(Rk)

20B0 = 1, B1 = − 1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , B5 = 0, B6 = 1

42 , B7 = 0, B8 = − 1
30 .

Note that Bk = 0, for all odd k > 1.
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Todd classes can be expressed in terms of Chern classes:

Td0(E) = 1

Td1(E) =
1

2
c1(E)

Td2(E) =
1

12

(
c2(E)− c1(E)2

)
Td3(E) =

1

24
c1(E)c2(E)

II.4.10. Proposition. The Todd class has the following properties:

(a) Td(E ⊕ F ) = Td(E) ∧ Td(F )
(b) Td(f ∗E) = f ∗Td(E)
(c) For a complex line bundle L with first Chern class a = c1(L) ∈ H2(M),

Td(L) =
a

1− e−a
(d) Td(M ×N) = Td(M) Td(N) for two closed complex manifolds M and N .

Proof. Let p1 : M ×N →M and p2 : M ×N → N denote the two canonical
projections. Then

T (M ×N) ∼= p∗1TM ⊕ p∗2TN.
Hence

Td(T (M ×N)) = p∗1 Td(TM) ∧ p∗2 Td(TN)

and by Fubini,

Td(M ×N) =

∫
Td(T (M ×N)) =

∫
M

Td(TM)

∫
N

Td(TN) = Td(M) Td(N).

As the first Chern class of a complex line bundle is represented by −R/2πi, the
third statement is immediate. �

II.4.11. Example. For the canonical line bundle ξ over CPn we have c1(ξ∗) =
−c1(ξ) = a, where a ∈ H2(CPn) denotes the standard generator,

∫
CP1 a = 1.

Whence,

Td(ξ∗) =
a

1− e−a
.

Using (II.23) this gives

Td(TCPn) =
( a

1− e−a
)n+1

.

Moreover, Tdn(TCPn) = an ∈ H2n(CPn) and thus

Td(CPn) = 1.

Indeed, if ( z

1− e−z
)n+1

=
∞∑
k=0

bkz
k,
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then

bn =
1

2πi

∫
S1

( z

1− e−z
)n+1 dz

zn+1
=

1

2πi

∫
S1

dz

(1− e−z)n+1

=
1

2πi

∫
S1

1 + u+ u2 + · · ·
un+1

du = 1,

where we used the substitution u = 1 − e−z, dz = du
1−u = (1 + u + u2 + · · · )du.

Hence Tdn(TCPn)) = an and Td(CPn) =
∫
CPn

an = 1.

If E is a real vector bundle over M , then c2k+1(E ⊗ C) = 0. The class

pk(E) := (−1)kc2k(E ⊗ C) ∈ H4k(M)

is called the k-th Pontryagin class of E, and

p(E) := 1 + p1(E) + p2(E) + p3(E) + · · · ∈ H4∗(M).

is called the total Pontryagin class of E. Note that pk(E) = 0 if 2k > rk(E).

p(E) = det(1−R/2π) = exp tr log(1−R/2π)

Using tr log(1−R/2π) =
∑∞

k=1
−1

k(2π)k
tr(Rk) =

∑∞
k=1

−1
2k(2π)2k

tr(R2k) we obtain:

p0(E) = 1

p1(E) =
−1

8π2
tr(R2)

p2(E) =
1

128π4

(
tr(R2)2 − 2 tr(R4)

)
p3(E) =

−1

3072π6

(
tr(R2)3 − 6 tr(R2) tr(R4) + 8 tr(R6)

)
If rk(E) = 2k, then the top Pontryagin class is

pk(E) = det(−R/2π) = (2π)−2k det(R) ∈ H4k(M).

II.4.12. Proposition. The Pontryagin class has the following properties:

(a) p(E ⊕ F ) = p(E) ∧ p(F ) (Whitney formula)
(b) p(f ∗E) = f ∗p(E) (naturality)
(c) If L is a complex line bundle, then p(LR) = 1 + c1(L)2.

Proof. Either directly or via Whitney formula for the Chern classes. Let L
be a complex line bundle and let LR denote the underlying real vector bundle of
rank two. Then LR ⊗ C ∼= L⊕ L̄, whence

c(LR ⊗ C) = c(L)c(L̄) = (1 + c1(L))(1− c1(L)) = 1− c1(L)2

Consequently, p(LR) = 1 + p1(LR) = 1 + c1(L)2. �
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II.4.13. Example. For the canonical line bundle ξ over CPn we obtain

p(ξR) = 1 + a2,

where a ∈ H2(CPn) denotes the standard generator,
∫
CP1 a = 1. As complex

vector bundles, TCPn ⊕ ε1 ∼= ξ∗ ⊕ · · · ⊕ ξ∗, hence

p(TCPn) = (1 + a2)n+1,

since ξ∗ ∼= ξ̄, hence ξ∗R
∼= ξ̄R = ξR and thus p(ξ∗R) = p(ξR).

The power series

â(z) =
z/2

sinh(z/2)
=
∞∑
k=0

(1− 22k−1)B2k

22k−1(2k)!
z2k = 1− 1

24
z2 +

7

5760
z4− 31

967680
z6 + · · ·

gives rise to the Â-class:

II.4.14. Definition (Â class). The Â-class of a real vector bundle E over

M is the cohomology class Â(E) ∈ H4∗(M) represented by the closed differential
form

Â(E) = det1/2
( R/4πi

sinh(R/4πi)

)
= exp

1

2
tr log

( R/4πi

sinh(R/4πi)

)
where R denotes the curvature of a linear connection on E, see Proposition II.4.1.
Note that this power series involves only even powers of the curvature, whence

Â(E) = Â0(E) + Â1(E) + Â2(E) + Â3(E) + · · ·

with Âk(E) ∈ H4k(M ;R). The Â-genus of a closed oriented manifold is

Â(M) :=

∫
M

Â(TM).

The first few terms can be written in the form:

Â0(E) = 1

Â1(E) =
1

26 · 3 · π2
tr(R2)

Â2(E) =
1

213 · 32 · 5 · π4

(
5 tr(R2)2 + 4 tr(R4)

)
Â3(E) =

−1

219 · 34 · 5 · 7 · π6

(
35 tr(R2)3 + 84 tr(R2) tr(R4) + 64 tr(R6)

)
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The Â-class can be expressed in terms of the Pontryagin class:

Â0(E) = 1

Â1(E) =
−1

24
p1(E)

Â2(E) =
1

27 · 32 · 5
(
7p1(E)2 − 4p2(E)

)
Â3(E) =

1

210 · 33 · 5 · 7

(
31p1(E)3 − 44p1(E)p2(E) + 16p3(E)

)
II.4.15. Proposition. The Â-class has the following properties:

(a) Â(E ⊕ F ) = Â(E) ∧ Â(F ).

(b) Â(f ∗E) = f ∗Â(E).

(c) Â(E)2 = Td(E ⊗ C).
(d) For a complex line bundle L with first Chern class a = c1(L),

Â(LR) =
a/2

sinh(a/2)
.

For the Â-genus of closed oriented manifolds we have:

(e) Â(M ×N) = Â(M)Â(N)

(f) Â(M1 tM2) = Â(M1) + Â(M2).

(g) Â(∂W ) = 0, where W is a oriented compact manifold with boundary.

Proof.
z

1− e−z
=

z/2

sinh(z/2)
ez/2

whence

log
z

1− e−z
= log

z/2

sinh(z/2)
+ z/2

thus

log
( −R/2πi

1− exp(R/2πi)

)
= log

( R/4πi

sinh(R/4πi)

)
−R/4πi

As tr(R) = 0

exp tr log
( −R/2πi

1− exp(R/2πi)

)
= exp tr log

( R/4πi

sinh(R/4πi)

)
whence Td(E ⊗ C) = Â(E)2.

Suppose E is a complex vector bundle

1

2
trR log

(
R/4πi

sinh(R/4πi)

)
= Re trC log

(
R/4πi

sinh(R/4πi)

)
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Using a Hermitian connection, R/2πi takes values in the self adjoint endomor-
phisms of E, whence trC

(
(R/2πi)k

)
is real. Hence we can skip the real part and

obtain

Â(ER) = detC

(
R/4πi

sinh(R/4πi)

)
.

For a complex line bundle L this simplifies to

Â(LR) =
R/4πi

sinh(R/4πi)
=

c1(L)/2

sinh(c1(L)/2)
,

since c1(L) = −R/2πi.
If ι : ∂W → W denotes the canonical inclusion, then

ι∗TW ∼= T (∂W )⊕ ε1,

whence Â(T∂W ) = ι∗Â(TW ) and via Stokes’ theorem,

Â(∂W ) =

∫
∂W

ι∗Â(TW ) =

∫
W

dÂ(TW ) = 0,

as claimed. �

II.4.16. Example. For the canonical complex line bundle over CPn,

Â(ξR) =
a/2

sinh(a/2)

where a ∈ H2(CPn) denotes the standard generator,
∫
CP1 a = 1. For the tangent

bundle

Â(TCPn) =
( a/2

sinh(a/2)

)n+1

Moreover, Â2n(TCP2n) = (−1)n(2n)!
24nn!n!

a2n ∈ H4n(CP2n) and thus

Â(CP2n) =
(−1)n(2n)!

24nn!n!

Indeed, if ( z/2

sinh(z/2)

)2n+1

=
∑
k

bkz
k,

then

b2n =
1

2πi

∫
S1

( z/2

sinh(z/2)

)2n+1 dz

z2n+1
=

1

2πi

∫
S1

dz

22n+1 sinh2n+1(z/2)

=
1

2πi

∫
S1

du
∑

k

(−1/2
k

)
u2k

22nu2n+1
=

1

22n

(
−1/2

n

)
=

(−1)n

24n

(
2n

n

)
=

(−1)n(2n)!

24nn!n!

u = sinh(z/2), dz = 2(1 + u2)−1/2du = 2du
∑

k

(−1/2
k

)
u2k. Note that the Â-genus

is in general not an integer, e.g. Â(CP2) = −1/8.
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The power series

l(z) =
z

tanh z
=
∞∑
k=0

22kB2k

(2k)!
z2k = 1 +

1

3
z2 − 1

45
z4 +

2

945
z6 + · · ·

gives rise to the Hirzebruch L-class:

II.4.17. Definition (Hirzebruch L class). The L-class of a real vector bundle
E over M is the cohomology class L(E) ∈ H4∗(M) represented by the closed
differential form

L(E) = det1/2
( R/2πi

tanh(R/2πi)

)
= exp

1

2
tr log

( R/2πi

tanh(R/2πi)

)
where R denotes the curvature of a linear connection on E, see Proposition II.4.1.
Note that this power series involves only even powers of the curvature, whence

L(E) = 1 + L1(E) + L2(E) + L3(E) + · · ·
where Lk(E) ∈ H4k(M ;R). The L-genus of an oriented closed manifold is

L(M) :=

∫
M

L(TM).

For the first few classes we obtain:

L0(E) = 1

L1(E) =
−1

23 · 3 · π2
tr(R2)

L2(E) =
1

27 · 32 · 5 · π4

(
5 tr(R2)2 − 24 tr(R4)

)
L3(E) =

−1

210 · 34 · 5 · 7 · π6

(
35 tr(R2)3 − 504 tr(R2) tr(R4) + 1224 tr(R6)

)
Can be expressed in terms of Pontryagin classes:

L0(E) = 1

L1(E) =
1

3
p1(E)

L2(E) =
1

45

(
7p2(E)− p1(E)2

)
L3(E) =

1

33 · 5 · 7

(
62p3(E)− 13p1(E)p2(E) + 2p1(E)3

)
II.4.18. Proposition. The L-class has the following properties:

(a) L(E ⊕ F ) = L(E) ∧ L(F ).
(b) L(f ∗E) = f ∗L(E).
(c) For a complex line bundle L with first Chern class a = c1(L),

L(LR) =
a

tanh a
.
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For the L-genus of closed oriented manifolds we have:

(d) L(M ×N) = L(M)L(N)
(e) L(M1 tM2) = L(M1) + L(M2).
(f) L(∂W ) = 0, where W is a oriented compact manifold with boundary.

Proof. For a complex vector bundle E is a complex vector bundle

1

2
trR log

(
R/2πi

tanh(R/2πi)

)
= trC log

(
R/2πi

tanh(R/2πi)

)
whence

L(ER) = detC

(
R/2πi

tanh(R/2πi)

)
.

For a complex line bundle L this simplifies to

L(LR) =
R/2πi

tanh(R/2πi)
=

c1(L)

tanh(c1(L))
,

since c1(L) = −R/2πi. �

II.4.19. Example. For the canonical complex line bundle ξ over CPn

L(ξR) =
a

tanh a

where a ∈ H2(CPn) denotes the standard generator,
∫
CP1 a = 1. Moreover,

L(TCPn) =
( a

tanh a

)n+1

.

Moreover, L2n(TCP2n) = a2n ∈ H4n(CP2n) and thus

L(CP2n) = 1.

Indeed, if ( z

tanh z

)2n+1

=
∑
k

bkz
k,

then

b2n =
1

2πi

∫
S1

( z

tanh z

)2n+1 dz

z2n+1
=

1

2πi

∫
S1

dz

tanh2n+1 z

=
1

2πi

∫
S1

1 + u2 + u4 + · · ·
u2n+1

du = 1,

where we used the substitution u = tanh z, dz = du
1−u2 = (1 + u2 + u4 + · · · )du.

In particular, CP2n not boundary of a compact manifold. Note that CP1 ∼= S2 is
the boundary of a 3-dimensional ball.
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II.4.20. Remark. From the considerations above, we conclude that the Hirze-
bruch signature theorem

L(M) = sign(M)

holds for M = CP2n1 × · · · × CP2nk . Via Thom’s computation this must remain
true for all closed oriented manifolds M . This is Hirzebruch’s proof of the sig-
nature theorem. Note that the signature is homotopy invariant, whence so is
L(M) by Hirzebruch’s theorem. This is by no means obvious, since the Pontrya-
gin classes are not homotopy invariant in general, only particular combinations
are! (Nabokov conjecture) The rational Portraying classes, however, are homeo-
morphism invariants according to Novikov. Also note that Hirzebruch’s theorem
implies that L(M) is an integer.





III. Pseudodifferential operators

To study differential operators, it is convenient to consider the larger algebra
of pseudo differential operators. While the class of pseudo differential operators
encompasses all differential operators, it also contains the space of operators
with smooth kernels. These, analytically very well behaved operators, will be
discussed in the subsequent section. The main advantage, as we will see, is that
every elliptic (pseudo) differential operator A can be inverted, up to smoothing
operators, i.e. there exists a pseudo differential operator B such that I−AB and
I − BA are both smoothing operators. The existence of such a parametrix B
provides a great deal of information about A. Note that even if A is a differential
operator, it is in general not possible to find a differential operator B with this
property — one really has to pass to a larger class of operators.

III.1. Smoothing operators. Let E and F be two smooth vector bundles
over a manifold M . Consider the following vector bundle over M ×M ,

Hom(E,F ) := p∗1F ⊗ p∗2E∗M ,
and suppose k ∈ Γ∞(Hom(E,F )). Then

(As)(x) =

∫
M

k(x, y)s(y)dy,

s ∈ Γ∞c (E), defines a linear operator,

A : Γ∞c (E)→ Γ∞(F ). (III.1)

The vector space of all such operators will be denoted by SO(E,F ). Its
members are also refered to as smoothing operators. Note that the smooth kernel,
k, is uniquely determined by the corresponding operator (III.1).

A smoothing operator with kernel k is called properly supported, if the fol-
lowing to maps are proper:

M
p1←− supp(k)

p2−→M

A properly supported smoothing operator induces linear operators,

A : Γ∞(E)→ Γ∞(F ) and A : Γ∞c (E)→ Γ∞c (F ).

We will write SOprop(E,F ) for the space of properly supported smoothing oper-
ators.

III.1.1. Proposition. Suppose A ∈ SO(E,F ) and B ∈ SO(F,G) are two
smoothing operators with kernels kA and kB, respectively. If at least one of them
is properly supported, then BA ∈ SO(E,G) is a smoothing operator with kernel

k(x, z) =

∫
M

kB(x, y)kA(y, z)dy

If A and B are both properly supported, then so is BA. In particular, SOprop(E)
is an algebra.

103
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Proof. This follows from Fubini’s theorem:

(BAe)(x) =

∫
M

kB(x, y)

∫
M

kA(y, z)e(z)dzdy

=

∫
M

∫
M

kB(x, y)kA(y, z)dy e(z)dz =

∫
M

k(x, z)e(z)dz.

Switching the order of integration is justified in view of the compactness assump-
tions. The remaining assertions are straight forward. �

III.1.2. Proposition. Let A ∈ SO(E,F ) be a smoothing operator with kernel
k ∈ Γ∞(Hom(E,F )). Then the transposed kernel,

kt ∈ Γ∞(Hom(F ∗M , E
∗
M)), kt(y, x) = k(x, y)t,

defines a smoothing operator

At : Γ∞c (F ∗M)→ Γ∞(E∗M),

which satisfies (and is uniquely characterized by)

(Atφ, s) = (φ,As), φ ∈ Γ∞c (F ∗M), s ∈ Γ∞c (E).

If A is properly supported, then so is At.

Proof. Indeed, by Fubini’s theorem:

(φ,As) =

∫
M

φ(x)

∫
M

k(x, y)s(y)dydx =

∫
M×M

(k(x, y)tφ(x))s(y)dxdy

=

∫
M

∫
M

kt(y, x)φ(x)dx s(y)dy = (Atφ, s).

The remaining assertions are now obvious. �

III.1.3. Proposition. Suppose D ∈ DOm(E,F ).
a) If A ∈ SO(Ẽ, E) is smoothing operator with kernel kA, then the composition

DA ∈ SO(Ẽ, F ) is smoothing operator with kernel

kDA(x, y) = (D1kA)(x, y)

b) If B ∈ SO(F, F̃ ) is smoothing operator with kernel kB, then the composition
BD ∈ SO(E, F̃ ) is a smoothing operator with kernel

kBD(x, y) = (Dt
2kB)(x, y).

Proof. Switch the order of integration and differentiation. �

Pseudodifferential operators correspond to slightly more singular kernels. To
describe these kernels we need some preparations.
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III.2. Schwartz kernel theorem and distributions. It turns out to be
convenient to consider a larger space of singular sections. We will only develop
the theory as far as necessary for our purposes, for a more thorough treatment
we refer to [36, Chapter 6].

Let E be a vector bundle over a manifold M . We equip the vector space of
smooth sections, Γ∞(E), with the coarsest topology such that the semi norms

sup
x∈K
|(Ds)(x)|, s ∈ Γ∞(E),

are continuous, for every compact K ⊆ M , every differential operator D ∈
DOm(E), every m ∈ N0, and every fiber wise norm on E.

III.2.1. Theorem. With the topology introduces above, Γ∞(E) becomes a com-
plete locally convex vector space. Moreover, Γ∞c (E) is dense in Γ∞(E). If M is
separable, then Γ∞(E) is a Fréchet space.

Proof. As the topology is defined in terms of semi norms, the space is clearly
a locally convex one. Since supx∈K |s(x)| is a continuous norm, it is separated
(Hausdorff). To tackle completeness, we will reduce the problem to a local one.
Note that the restriction map, Γ∞(E)→ Γ∞(E|U), is continuous, for every open
subset U of M . To see this consider a compact subset K̃ ⊆ U , a differential
operator D̃ on E|U and a fiber wise norm on E|U . Then, for s ∈ Γ∞(E),

sup
x∈K̃

∣∣(D̃(s|U))(x)
∣∣ = sup

x∈K
|(Ds)(x)|

where K := K̃ is compact in M , D is any globally defined differential operator
on E which coincides with D̃ in a neighborhood of K, and the fiber wise norm
on the right hand side denotes any globally defined fiber wise norm on E. Such
extensions can easily be constructed using compactly supported bump function
λ ∈ C∞c (U) with λ|K = 1.

Let Uα be an open covering of M . This provides us with a continuous map

ι : Γ∞(E)→
∏
α

Γ∞(E|Uα).

The map ι admits a continuous inverse, r, that is,

r ◦ ι = I.

Indeed, with the help of a smooth partition of unity λα, subordinated to Uα, i.e.
supp(λα) ⊆ Uα, we can write down an explicit formula,

r :
∏
α

Γ∞(E|Uα)→ Γ∞(E), r
(
(sα)α

)
:=
∑
α

λαsα.

Since supp(λα) is locally finite, this is indeed well defined and continuous. Any
semi norm on Γ∞(E), can be estimated by finitely many semi norms of the
product, since every compact set will intersect at most finitely many of the Uα.



106 III. PSEUDODIFFERENTIAL OPERATORS

More explicitly, given a compact set K ⊆ M , a differential operator D and a
fiber wise norm on E, we have:

sup
x∈K

∣∣(D(r(sα)))(x)
∣∣ = sup

x∈K

∣∣∣(D∑
α

λαsα

)
(x)
∣∣∣

≤
∑
α

sup
x∈K

∣∣(D(λαsα))(x)
∣∣ =

∑
α

sup
x∈K∩supp(λα)

∣∣((D ◦ λα)(sα))(x)
∣∣

Note that the sums are finite since K intersects only finitely many of the supports
supp(λα). The right hand side consists of semi norms on the spaces Γ∞(E|Uα),
whence r is continuous. This shows that Γ∞(E) is isomorphic to a closed subspace
in the product

∏
α Γ∞(E|Uα).

Consequently, it suffices to show that the spaces Γ∞(E|U) is complete, for
every chart domain U . W.l.o.g. we may, moreover, assume that the vector bundle
is trivial over U , that is E|U = U ×Kr. Consider the standard semi norms,

sup
x∈K

∣∣( ∂|α|
∂uα

s
)
(x)
∣∣, s ∈ C∞(U,Kr) = Γ∞(E|U),

where K ⊆ U is compact and α ∈ Nn
0 is a multi index and the fiber wise norm is

the standard one. These are clearly continuous. Moreover, any other semi norm
can be estimated by

sup
x∈K
|(Ds)(x)|′ = sup

x∈K

∣∣∣( ∑
|α|≤m

Aα
∂|α|

∂uα
s
)

(x)
∣∣∣′

≤
∑
|α|≤m

sup
x∈K

| − |′x
| − |x

sup
x∈K
|Aα(x)| sup

x∈K

∣∣( ∂|α|
∂uα

s)(x)
∣∣

where D =
∑
|α|≤mAα

∂|α|

∂uα
is a differential operator over U with smooth, matrix

valued coefficients Aα ∈ C∞(U,Mr×r(K)), and | − |′ denotes another fiber wise
norm on E|U . This shows that the topology on Γ∞(E|U) is generated by the
standard norms. It is a classical fact that the standard norms turn C∞(U,Kk)
into a Fréchet space. We conclude that Γ∞(E) is complete. One readily checks
that Γ∞c (E) is dense in Γ∞(E) by using a compactly supported bump function to
cut off a section of E without changing a given semi norm, i.e. the bump function
is one in a neighborhood of the compact set involved.

If M is separable then M can be covered by countably many chart domains
Uα. Thus, Γ∞(E) is isomorphic to a subspace of the Fréchet space

∏
α Γ∞(E|Uα),

whence a Fréchet space itself. �

For every compact K ⊆ M , we let Γ∞K (E) ⊆ Γ∞(E) denote the subspace of
sections which are supported in K. Note that this is a closed subspace of Γ∞(E),
because a section s of E has support in K iff ∀x ∈M \K : s(x) = 0, and the latter
are (many) continuous conditions. We equip Γ∞K (E) with the topology introduced
from Γ∞(E). Clearly, Γ∞K (E) is a Fréchet space in view of Theorem III.2.1.
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We equip Γ∞c (E) with the strongest locally convex topology such that the
inclusions Γ∞K (E)→ Γ∞c (E) are continuous, for every compact K. By definition
of this topology, a seminorm on Γ∞c (E) is continuous iff its restriction to Γ∞K (E)
is continuous, for every compact K. In particular, the canonical inclusion

Γ∞c (E)→ Γ∞(E)

is continuous. Clearly, the topology on Γ∞K (E) induced from Γ∞c (E) coincides
with the original one. If M is compact, then Γ∞c (E) = Γ∞(E), as Fréchet spaces.

III.2.2. Proposition ([36, Theorem 6.5]). Every bounded subset of Γ∞c (E)
is contained in Γ∞K (E), for some compact subset K of M . With the topology
introduced above, Γ∞c (E) is (sequentially) complete locally convex vector space.
Furthermore, the natural pairing,

Γ∞c (E∗M)× Γ∞(E)→ K, (φ, s) :=

∫
M

φ(x)s(x)dx, (III.2)

is continuous in each variable separately.

Proof. Let B be a bounded subset of Γ∞c (E), i.e. B is bounded with respect
to every continuous semi norm of Γ∞c (E). Suppose conversely, that B is not
contained in any Γ∞K (E). Then there exists an injective map x : N → M with
discrete image and sn ∈ B such that sn(xn) 6= 0, for all n ∈ N. One readily
constructs a fiber wise norm on E such that |sn(xn)| = n, for all n ∈ N. Note
that p(s) := supx∈M |s(x)| is a continuous semi norm on Γ∞c (E). By construction,
p(sn) ≥ n, for all n ∈ N. Since this contradicts the boundedness of B, we conclude
that there has to be a compact subseteq K of M such that B ⊆ Γ∞K (E).

Let sn ∈ Γ∞c (E) be a Cauchy sequence. Since Cauchy sequences are bounded,
there exists a compact subset K of M such that sn ∈ Γ∞K (E). Since the inclusion
Γ∞c (E) → Γ∞(E) is continuous, sn is a Cauchy sequence in Γ∞(E) too, whence
convergent in Γ∞(E), see Theorem III.2.1. Since Γ∞K (E) is closed in Γ∞(E), the
sequence sn converges in Γ∞K (E). As the inclusion Γ∞K (E)→ Γ∞c (E) is continuous,
we conclude that sn converges in Γ∞c (E). This shows that Γ∞c (E) is sequentially
complete.

To see that the topology on Γ∞K (E) coincides with the one induced from
Γ∞c (E), consider a sequence in Γ∞K (E) which converges in Γ∞c (E). As the inclusion
Γ∞c (E) ⊆ Γ∞(E) is continuous, this sequence will converge in Γ∞(E) too. As
Γ∞K (E) is closed in Γ∞(E), the sequence also converges in Γ∞K (E).

For every compact subset K ⊆ M , every φ ∈ Γ∞K (E), and every s ∈ Γ∞(E),
we have:

|(φ, s)| =
∣∣∣∫
M

φ(x)s(x)dx
∣∣∣ =

∫
K

|φ(x)||s(x)|dx ≤ vol(K) sup
x∈K
|φ(x)| sup

x∈K
|s(x)|.

This shows that the pairing ΓK(E∗M)× Γ∞(E)→ K is continuous, which imme-
diately implies the last assertion. �
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III.2.3. Proposition. a) Every differential operator D ∈ DOm(E,F ) induces
continuous linear maps D : Γ∞(E)→ Γ∞(F ) and D : Γ∞c (E)→ Γ∞c (F ).

b) Every smoothing operator, A ∈ SO(E,F ), induces a continuous linear map
A : Γ∞c (E)→ Γ∞(F ). If A is properly supported, then it induces continuous linear
maps A : Γ∞(E)→ Γ∞(F ) and A : Γ∞c (E)→ Γ∞c (F ).

Proof. Clearly, a differential operator D gives rise to a continuous map
D : Γ∞(E) → Γ∞(F ). With our definitions of the topologies, this is trivial. By
locality it restricts to a map D : Γ∞K (E) → Γ∞K (F ) for every compact K, and,
for trivial reasons, this restriction is continuous. Hence, D : Γ∞c (E)→ Γ∞c (F ), is
continuous, again, by the very definition of the topologies. This shows the first
assertion.

Suppose A ∈ SO(E,F ) is a smoothing operator with kernel k. Let K and L
be two compact subsets of M . Then, for every s ∈ Γ∞L (E),

sup
x∈K

∣∣(As)(x)
∣∣ = sup

x∈K

∣∣∣∫
M

k(x, y)s(y)dy
∣∣∣ ≤ sup

x∈K

∫
L

|k(x, y)|dy sup
y∈L
|s(y)|.

If D ∈ DOm(F ), then DA is an operator with smooth kernel, k̃ = D1k, and the
estimate above leads to

sup
x∈K

∣∣(DAs)(x)
∣∣ ≤ sup

x∈K

∫
L

|k̃(x, y)|dy sup
y∈L
|s(y)|,

for all s ∈ Γ∞L (E). This shows that A : Γ∞L (E)→ Γ∞(F ) is continuous, for every
compact L ⊆ M . Consequently, A : Γ∞c (E) → Γ∞(F ) is continuous. Consider
now a properly supported A. Then, for every compact L ⊆ M there exists a
compact K ⊆ M such that A : Γ∞L (E)→ Γ∞K (F ), and this map is continuous by
the discussion above. This implies that A : Γ∞c (E) → Γ∞c (F ) is continuous. On
the other hand, for every compact K ⊆ M there exists a compact L ⊆ M such
that supp(k̃) ∩ (K ×M) ⊆ K × L. Estimating as above we obtain

sup
x∈K

∣∣(DAs)(x)
∣∣ ≤ sup

x∈K

∫
L

|k̃(x, y)|dy sup
y∈L
|s(y)|,

for all s ∈ Γ∞(E). This shows that A : Γ∞(E)→ Γ∞(F ) is continuous. �

The space of distributional (generalized) sections of E is defined as the dual
of the space of test sections, D(E) := Γ∞c (E∗M),

Γ−∞(E) := D(E)∗

i.e. the vector space of all continuous linear functionals on Γ∞c (E∗M). Elements
of Γ−∞(E) are called distributional or generalized sections of E. We equip the
space of distributions with the weak-∗ topology, i.e. the weakest topology such
that the linear functionals (φ,−) : Γ−∞(E) → K, are continuous, for all φ ∈
Γ∞c (E∗M). Thus, a sequence (net) en ∈ Γ−∞(E) converges to e ∈ Γ−∞(E) iff
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limn→∞(φ, en) = (φ, e), for all φ ∈ Γ∞c (E∗M). Equivalently, this is the coarsest
topology on Γ−∞(E) such that the tautological pairing,

D(E)× Γ−∞(E)→ K,
is continuous in each variable separately.

III.2.4. Proposition. Γ−∞(E) is a complete locally convex vector space. The
pairing (III.2) induces a continuous injective linear map Γ∞(E)→ Γ−∞(E) which
permits to regard

Γ∞(E) ⊆ Γ−∞(E).

Moreover, Γ∞c (E) is dense in Γ−∞(E).

Proof. Suppose sn is a Cauchy net in Γ−∞(E). Hence, for each φ ∈ D(E),
(φ, sn) is a Cauchy net in K, whence convergent. Define s : D(E)→ K by

(φ, s) := lim
n→∞

(φ, sn).

Clearly, s is linear. It remains to show continuity of s. To this end, let K be
compact in M . It suffices to show that the restriction s : Γ∞K (E∗M) → K is con-
tinuous. By assumption, sn is a family of pointwise bounded continuous linear
functionals on Γ∞K (E∗M). Since the latter is a Fréchet space, the uniform bound-
edness principle a.k.a. Banach–Steinhaus theorem [36, Theorem 2.6] implies that
the family sn is uniformly bounded on Γ∞K (E∗M). In other words, there exists a
seminorm p on Γ∞K (E∗M) such that |(φ, sn)| ≤ p(φ), for all φ ∈ Γ∞K (E∗M) and all
n. We conclude |(φ, s)| ≤ p(φ), for all φ ∈ Γ∞K (E∗M), whence s : Γ∞K (E∗M) → K is
continuous. It remains to show that Γ∞(E) is dense in Γ−∞(E), because Γ∞c (E)
is dense in Γ∞(E). This can be accomplished locally, using convolution. �

Note that distributions can be restricted to open subsets. Indeed, if U is
an open subset of M , then extension by zero provides a continuous inclusion
Γ∞c (E|U) → Γ∞c (E). Applying this to the bundle, E∗M , we obtain a continuous
inclusion D(E|U)→ D(E), which, by duality, induces a continuous linear map,

Γ−∞(E)→ Γ−∞(E|U), e 7→ e|U ,
extending the restriction of Γ∞(E)→ Γ∞(E|U). Since Γ∞(E) is dense in Γ−∞(E),
this is in fact the unique continuous extension.

III.2.5. Proposition (Sheave of distributions). If Uα is an open covering of
M , then the following hold true:

a) If s, t ∈ Γ−∞(E) are such that s|Uα = t|Uα for all α, then s = t.
b) If sα ∈ Γ−∞(E|Uα) and sα|Uα∩Uβ = sβ|Uα∩Uβ for all α and β, then there

exists a unique s ∈ Γ−∞(E) such that s|Uα = sα for all α.

Proof. Let λα be a smooth partition of unity such that supp(λα) ⊆ Uα.
Ad a): Suppose φ ∈ D(E). Then φ =

∑
α λαφ is a finite sum, and we

have supp(λαφ) ⊆ Uα. By assumption (λαφ, s) = (λαφ, t), for all α. Hence
(φ, s) = (φ, t), for all φ ∈ D(E). Consequently, s = t.
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Ad b): Define s : D(E) → K by (φ, s) :=
∑

α(λαφ, sα) and note that this is
a finite sum, for each φ. Clearly, s is linear and continuous when restricted to
Γ∞K (E), whence s ∈ Γ−∞(E). If φ ∈ D(E|Uβ) then supp(λαφ) ⊆ Uα ∩ Uβ, hence

(φ, s) =
∑
α

(λαφ, sα) =
∑
α

(λαφ, sβ) =
(∑

α

λαφ, sβ
)

= (φ, sβ)

and thus s|Uβ = sβ. �

If s ∈ Γ−∞(E) is a distribution, then there exists a unique maximal open sub-
set U of M , such that s|U = 0. Indeed, if we consider the collection of all open
subsets on which s vanishes, then s will also vanish on their union, according
to the preceding lemma. The complement of this maximal open subset is called
the support of the distribution s and will be denoted by supp(s). Clearly, this
coincides with the classical notion of support for s ∈ Γ∞(E) ⊆ Γ−∞(E). For
a compact subset K ⊆ M we let Γ−∞K (E) denote the subspace of distributions
which are supported in K, and we let Γ−∞c (E) =

⋃
K Γ−∞K (E) denote the distri-

butions with compact support. Compactly supported distributions can also be
understood as bounded linear functionals on

E(E) := Γ∞(E∗M) = Γ∞(E∗ ⊗ |ΛM |).

More precisely, if s ∈ Γ−∞K (E) and λ : M → R is a compactly supported smooth
function such that λ = 1 on a neighborhood of K, then (λφ, s) is continuous in
φ ∈ E(M), and this functional on E(M) does not depend on the choice of λ. This
provides a natural pairing

E(E)× Γ−∞c (E)→ K.

We equip Γ−∞c (E) with the coarsest topology such that this pairing is continuous
in each variable. Thus a sequence (net) sn ∈ Γ−∞c (E) converges to s ∈ Γ−∞c (E)
iff limn→∞(φ, sn) = (φ, s), for all φ ∈ E(E).

III.2.6. Lemma. Every continuous linear functional on E(M) is of the form
(−, s) for a unique s ∈ Γ−∞c (E). Hence,

Γ−∞c (E) = E(E)∗

with the weak-∗ topology. In particular, Γ−∞c (E) is a complete locally convex
vector space. Furthermore, we have continuous inclusions

Γ∞c (E) ⊆ Γ−∞c (E) ⊆ Γ−∞(E).

Moreover, Γ∞c (E) is dense in Γ−∞c (E).

Proof. TODO �

III.2.7. Example. If S is a closed submanifold of M , then the restrictions

Γ∞c (E)→ Γ∞c (E|S) and Γ∞(E)→ Γ∞(E|S)
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are easily seen to be continuous. Applying this to the dual bundle, we obtain a
continuous linear surjections

D(E)→ D(E|S ⊗ |ΛN |) and E(E)→ E(E|S ⊗ |ΛN |)

where N = TM |S/TS denotes the normal bundle of S in M . These induce
continuous linear injections

Γ−∞(E|S ⊗ |ΛN |)→ Γ−∞(E) and Γ−∞c (E|S ⊗ |ΛN |)→ Γ−∞c (E).

For S = {x} we obtain Dirac distributions.

For every distribution s ∈ Γ−∞(E) there exists a unique maximal open subset
U of M such that s|U is contained in Γ∞(E|U) ⊆ Γ−∞(E). Again, this is just
the union over all open subsets on which s is smooth. The complement of this
unique maximal open subset is called the singular support of the distribution s
and will be denoted by sing-supp(s). For a distribution s ∈ Γ−∞(E) we clearly
have sing-supp(s) = ∅ iff s ∈ Γ∞(E).

III.2.8. Proposition. Suppose D ∈ DOm(E,F ) is a differential operator.
Then D : Γ∞(E)→ Γ∞(F ) extends uniquely to continuous linear maps

D : Γ−∞(E)→ Γ−∞(F ) and D : Γ−∞c (E)→ Γ−∞c (F ).

In particular a distribution can be multiplied with smooth functions. Moreover,

supp(Ds) ⊆ supp(s) and sing-supp(Ds) ⊆ sing-supp(s),

for all distributions s ∈ Γ−∞(E).

Proof. Let Dt ∈ DO(F ∗M , E
∗
M) denote the transposed differential operator.

Since Dt provides a continuous linear map Dt : Γ∞c (F ∗M) → Γ∞c (E∗M), it induces
a continuous linear map D : Γ−∞(E)→ Γ−∞(F ), by duality,

(φ,Ds) := (Dtφ, s), φ ∈ D(F ) = Γ∞c (F ∗M), s ∈ Γ−∞(E).

In fact this is the unique continuous extension of D : Γ∞(E) → Γ∞(F ) be-
cause Γ∞(E) is dense in Γ−∞(E). Moreover, Dt induces a continuous linear
map, Dt : Γ∞(F ∗M) → Γ∞(E∗M), and therefore induces a continuous linear map
D : Γ−∞c (E)→ Γ−∞c (F ), by duality,

(φ,Ds) := (Dtφ, s), φ ∈ E(F ) = Γ∞(F ∗M), s ∈ Γ−∞c (E).

Since differential operators are local, we have supp(Ds) ⊆ supp(s). Since differen-
tial operators map smooth sections to smooth sections, we have sing-supp(Ds) ⊆
sing-supp(s). �

We will now define a very large class of linear operators which can be described
by distributional kernels.

III.2.9. Proposition. Suppose k ∈ Γ−∞(Hom(E,F )).



112 III. PSEUDODIFFERENTIAL OPERATORS

(a) Such a kernel defines a continuous linear operator, A : Γ∞c (E)→ Γ−∞(F ),

(φ,As) = (π∗1φ⊗ π∗2s, k), s ∈ Γ∞c (E), φ ∈ Γ∞c (F ∗M) = D(F ). (III.3)

(b) If k is properly supported, then it induces continuous operators:

A : Γ∞c (E)→ Γ−∞c (F ) and A : Γ∞(E)→ Γ−∞(F )

(c) supp(k) ⊆ ∆ := {(x, x) ∈ M ×M : x ∈ M} if and only if A is local, i.e.
supp(As) ⊆ supp(s), for all s ∈ Γ∞c (E).

Proof. a) To see that the operator A is well defined and continuous, it
suffices to observe that the bilinear map

Γ∞c (F ∗M)× Γ∞c (E)→ Γ∞c (π∗1F
∗
M ⊗ π∗2E) = D(Hom(E,F )), (φ, s) 7→ π∗1φ⊗ π∗2s,

is continuous in each variable separately.
b) Suppose K is compact in M . Since k is properly supported, there exists a

compact subset L of M such that

supp(k) ∩ π−1
2 (K) ⊆ π−1

1 (L).

Thus A : Γ∞K (E) → Γ−∞L (F ) is continuous. Consequently, A : Γ∞c (E) → Γ−∞c (F )
is continuous. For every compact L there exists a compact subset K such that

supp(k) ∩ π−1
1 (L) ⊆ π−1

2 (K),

again because the kernel is properly supported. This leads to a continuous ex-
tension A : Γ∞(E)→ Γ−∞(F ).

c) If supp(φ) ∩ supp(s) = ∅, then supp(π∗1φ ⊗ π∗2s) ∩ ∆ = ∅, and therefore
supp(π∗1φ ⊗ π∗2s) ∩ supp(k) = ∅, thus (π∗1φ ⊗ π∗2s, k) = 0, whence (φ,As) = 0.
This immediately translates to supp(As) ⊆ supp(s). �

III.2.10. Example (Kernel of the identity). The identical operator,

I : Γ∞(E)→ Γ∞(E),

has a distributional kernel, ∆ ∈ Γ−∞(Hom(E,E)), given by

(ψ,∆) :=

∫
M

trψ(x, x)dx,

for all ψ ∈ D(Hom(E,E)) = Γ∞c (Hom(E∗M , E
∗
M)). Indeed,

(φ, Is) =

∫
M

φ(x)s(x)dx =

∫
M

tr(φ(x)⊗ s(x))dx =
(
p∗1φ⊗ p∗2s,∆

)
for all φ ∈ D(E) = Γ∞c (E∗M) and s ∈ Γ∞c (E).

III.2.11. Example. Suppose A : Γ∞c (E) → Γ−∞(F ) is a continuous operator
with Schwartz kernel k ∈ Γ−∞(Hom(E,F )), and let kt ∈ Γ−∞(Hom(F ∗M , E

∗
M))

denotes the transposed kernel, kt(y, x) = k(x, y)t. Then the associated continuous
operator, At : Γ∞c (F ∗M)→ Γ−∞(E∗M), satisfies

(φ,As) = (Atφ, s), φ ∈ Γ∞c (F ∗M), s ∈ Γ∞c (E).



III.3. THE ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS 113

III.2.12. Theorem (Schwartz kernel theorem [41]). Every continuous linear
operator, A : Γ∞c (E)→ Γ−∞(F ) is of the form (III.3) for a unique distributional
kernel k ∈ Γ−∞(Hom(E,F )). The kernel is smooth, k ∈ Γ∞(Hom(E,F )), if and
only if A extends to a continuous operator A : Γ−∞c (E)→ Γ∞(F ).21

Note that operators with Schwartz kernel can in general not be composed.
This reflects the fact that the convolution of distributional kernels in general does
not make sense. As we have seen above, smoothing operators can be composed
and the (smooth) kernel of the composition is the convolution of the kernels.
Moreover, we can always compose with differential operators from either side.
More precisely we have:

III.2.13. Proposition. Suppose D ∈ DOm(E,F ) is a differential operator.
a) If A : Γ∞c (Ẽ) → Γ−∞(E) is a (continuous) operator with Schwartz kernel

kA ∈ Γ−∞(Hom(Ẽ, E)) then the composition DA has Schwartz kernel kDA =
D1kA where the differential operator D1 ∈ DOm(Hom(Ẽ, E),Hom(Ẽ, F )) is as in
Proposition III.1.3.

b) If B : Γ∞c (F ) → Γ−∞(F̃ ) is a (continuous) operator with Schwartz kernel
kB ∈ Γ−∞(Hom(F, F̃ )), then the composition BD has Schwartz kernel kBD =
Dt

2kB, where the differential operator Dt
2 ∈ DOm(Hom(F, F̃ ),Hom(E, F̃ )) is as

in Proposition III.1.3.

Proof. TODO �

III.2.14. Example (Kernel of differential operators). The preceding propo-
sition permits to compute the distributional kernel of a differential operator,
D ∈ DOm(E,F ). In fact, writing D = DI we obtain

kD = D1∆ ∈ Γ−∞(Hom(E,F )),

where ∆ ∈ Γ−∞(Hom(E,E)) denotes the kernel of the identical operator, see
Example III.2.10, and D1 ∈ DOm(Hom(E,E),Hom(E,F )).

To get an idea about how singular distributions might be, let us close this
section with the following result, see [36]:

III.2.15. Theorem. If s ∈ Γ−∞c (E), then there exist D ∈ DOm(F,E) and a
continuous section s̃ ∈ Γ0(F ) such that s = Ds̃.

III.3. The algebra of pseudodifferential operators. A pseudodifferen-
tial operator is an operator whose Schwartz kernel is smooth away from the
diagonal and has a very specific type of singularity along the diagonal. We start
by describing the singularity at the diagonal locally in charts.

Suppose m ∈ R, U ⊆ Rn open and let E0, F0 be two finite dimensional vector
spaces. By Sm(U × U ×Rn; hom(E0, F0)) we will denote the space of all smooth
maps U × U × Rn → hom(E0, F0) with the following property: For all compact

21whence the name smoothing operator.
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subsets K ⊆ U , L ⊆ U and all multi indices α, β, γ ∈ Nn
0 there exists a constant

C = CK,L,α,β,γ ≥ 0 such that

sup
x∈L

sup
y∈K

∣∣∣∂|α|∂xα
∂|β|

∂yβ
∂|γ|

∂ξγ
a(x, y, ξ)

∣∣∣ ≤ C(1 + |ξ|)m−|γ|.

III.3.1. Proposition. Suppose a ∈ Sm(U × U × Rn; hom(E0, F0)). Then:

(a) The integral

k(x, y) = (2π)−n
∫
ei(x−y)ξa(x, y, ξ)dξ

converges weakly, whence k ∈ C−∞(U × U ; hom(E0, F0)).
(b) sing-supp(k) ⊆ ∆ := {(x, x) | x ∈M}, i.e. k is smooth off the diagonal.
(c) The kernel k gives rise to continuous linear operators

A : C∞c (U ;E0)→ C∞(U ;F0) and A : C−∞c (U ;E0)→ C−∞(U ;F0)

where

(As)(x) = (2π)−n
∫∫

ei(x−y)ξa(x, y, ξ)s(y)dy dξ.

Moreover, A is pseudolocal, that is for all s ∈ C−∞c (U ;E0),

sing-supp(As) ⊆ sing-supp(s).

(d) If k vanishes to infinite order along the diagonal, then k is smooth.

Proof. TODO, see [38, Proposition 2.4]. �

III.3.2. Example. Smoothing operators are of the form considered in Propo-
sition III.3.1. Indeed, suppose k ∈ C∞(U × U ; hom(E0, F0)) is a smooth ker-
nel. Choose χ ∈ C∞c (Rn) such that (2π)−n

∫
χ(ξ)dξ = 1. Consider the symbol

a ∈ Sm(U ×U ×Rn; hom(E0, F0)), where a(x, y, ξ) := e−i(x−y)ξk(x, y)χ(ξ). Then

(2π)−n
∫
ei(x−y)ξa(x, y, ξ)dξ = k(x, y),

hence the operator associated with the symbol a(x, y, ξ) is the smoothing operator
with kernel k. This example also shows that different symbols a(x, y, ξ) may give
rise to the same operator.

III.3.3. Example. Differential operators are of the form considered in Propo-

sition III.3.1. Indeed, suppose D =
∑
|α|≤mAα

∂|α|

∂xα
is a differential operator

with smooth coefficients Aα ∈ C∞(U ; hom(E0, F0)), and consider the symbol
a ∈ Sm(U × U × Rn; hom(E0, F0)), where

a(x, y, ξ) =
∑
|α|≤m

Aα(x)(iξ)α.

By the Fourier inversion formula,

s(x) = (2π)−n
∫∫

ei(x−y)ξs(y)dy dξ,
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for all s ∈ C∞c (U ;E0), whence

(Ds)(x) = (2π)−n
∫∫

ei(x−y)ξa(x, y, ξ)s(y)dy dξ.

Thus, the operator associated with the symbol a(x, y, ξ) is D.

III.3.4. Proposition. Let A : C∞c (U,E0) → C∞(U, F0) be an operator as in
Proposition III.3.1.

a) If χ : U → V is a diffeomorphism between open subsets of Rn, then the
operator C∞c (V,E0)→ C∞(V, F0), s 7→ (A(s◦χ))◦χ−1, is again of the form con-
sidered in Proposition III.3.1 for some symbol ã ∈ Sm(V ×V ×Rn; hom(E0, F0)).

b) If ψE : U → GL(E0) and ψF : U → GL(F0) are smooth, then the operator
C∞c (U,E0) → C∞(U, F0), s 7→ ψFA(ψ−1

E s), is again of the form considered in
Proposition III.3.1 for some symbol ã ∈ Sm(U × U × Rn; hom(E0, F0)).

Proof. See [38, Theorem 4.1]. �

III.3.5. Definition (Pseudodifferential operators). Let E and F be two vec-
tor bundles over M . A pseudodifferential operator of order m ∈ R is an operator
with Schwartz kernel k ∈ Γ−∞(Hom(E,F )) such that:

(a) sing-supp(k) ⊆ ∆, i.e. k is smooth off the diagonal, and
(b) along the diagonal the kernel, in charts, has the form considered in Proposi-

tion III.3.1. In view of Proposition III.3.4 this does not depend on the chart
and the vector bundle trivializations being used.

We write ΨDOm(E,F ) for the space of all pseudodifferential operators of order m,
and introduce the notation ΨDOm(E) := ΨDOm(E,E). The space of properly
supported pseudodifferential operators will be denoted by ΨDOm

prop(E,F ).

Clearly, for all m ≤ m′,

SO(E,F ) ⊆ ΨDOm(E,F ) ⊆ ΨDOm′(E,F ).

see Example III.3.2. In view of Example III.3.3, we have

DOm(E,F ) ⊆ ΨDOm(E,F ).

From the preceding results one easily obtains:

III.3.6. Proposition. Every pseudodifferential operator A ∈ ΨDOm(E,F )
induces continuous linear maps

A : Γ∞c (E)→ Γ∞(F ) and Γ−∞c (E)→ Γ−∞(F ).

If A is properly supported, then it induces continuous linear maps

A : Γ∞c (E)→ Γ∞c (F ) and Γ−∞(E)→ Γ−∞(F ).

Moreover, A is pseudolocal, i.e. for all s ∈ Γ−∞c (E),

sing-supp(As) ⊆ sing-supp(s).
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If U is an open subset of Rn and A ∈ ΨDOm
prop(U ×E0, U ×F0), then the map

σA : U × Rn → hom(E0, F0),

σA(x, ξ)s0 := (e−ξA(eξs0))(x),

is called the symbol of A. Here x ∈ U , ξ ∈ Rn, eξ(x) := eiξ(x), and s0 ∈ E0.
Let Sm(U × Rn; hom(E0, F0)) denote the space of all smooth maps σ : U ×

Rn → hom(E0, F0) with the following property: For all compact subsets K ⊆ U
and all multi indices α, β ∈ Nn

0 there exists a constant C = CK,α,β ≥ 0 such that

sup
x∈K

∣∣∣∂|α|∂xα
∂|β|

∂ξβ
σ(x, ξ)

∣∣∣ ≤ C(1 + |ξ|)m−|β|.

Clearly, for m ≤ m′ we have

Sm(U × Rn; hom(E0, F0)) ⊆ Sm
′
(U × Rn; hom(E0, F0)).

III.3.7. Proposition. Suppose A ∈ ΨDOm
prop(U × E0, U × F0),

(As)(x) = (2π)−n
∫∫

eiξ(x−y)a(x, y, ξ)s(y)dy dξ,

where a ∈ Sm(U × U × Rn; hom(E0, F0)). Then σA ∈ Sm(U × Rn; hom(E0, F0)),

k(x, y) = (2π)−n
∫
eiξ(x−y)σA(x, ξ)dξ,

and

(As)(x) = (2π)−n
∫∫

eiξ(x−y)σA(x, ξ)s(y)dydξ.

Moreover, we have an asymptotic expansion

σA(x, ξ) ∼
∑
α

1

i|α|α!
∂|α|

∂ξα
∂|α|

∂yα
a(x, y, ξ)

∣∣
x=y

,

that is, for all N ≥ 0,

σA(x, ξ)−
∑
|α|≤N

1

i|α|α!
∂|α|

∂ξα
∂|α|

∂yα
a(x, y, ξ)

∣∣
x=y
∈ Sm−N−1(U × Rn; hom(E0, F0)).

Proof. see [38, Theorem 3.1]. �

III.3.8. Example. IfD =
∑
|α|≤mAα

∂|α|

∂xα
is a differential operator with smooth

coefficients Aα ∈ C∞(U ; hom(E0, F0)), then

σD(x, ξ) =
∑
|α|≤m

Aα(x)(iξ)α.
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From Proposition III.3.7 we see that the symbol induces an isomorphism

ΨDOm(U × E0, U × F0)

ΨDOm−1(U × E0, U × F0)

=
ΨDOm

prop(U × E0, U × F0)

ΨDOm−1
prop (U × E0, U × F0)

σ−−→∼=
Sm(U × Rn; hom(E0, F0))

Sm−1(U × Rn; hom(E0, F0))

Moreover, A is a smoothing operator if and only if

σA ∈ S−∞(U × Rn; hom(E0, F0)) :=
⋂
m

Sm(U × Rn; hom(E0, F0)).

III.3.9. Proposition. Let A ∈ ΨDOm
prop(U×E0, U×F0), suppose χ : U → V

is a diffeomorphism between open subsets of Rn and Ã ∈ ΨDOm
prop(V ×E0, V ×F0)

denotes the operator Ãs := (A(s ◦ χ)) ◦ χ−1, cf. Proposition III.3.4. Then

σÃ
(
χ(x), ((Dxχ)−1)tξ

)
− σA(x, ξ) ∈ Sm−1(U × Rn; hom(E0, F0)).

Proof. Actually a formula for the full asymptotic expansion of σÃ is avail-
able, see [38, Theorem 4.2]. �

Given two vector bundles E and F over M , we consider the vector bundle
π∗ hom(E,F ) over T ∗M , where π : T ∗M → M denotes the projection. We let
Sm(E,F ) denote the space of all smooth sections of the bundle π∗ hom(E,F )
which locally, with respect to a charts and vector bundle trivializations, are in
Sm(U × Rn; hom(E0, F0)). This is easily seen to be independent of the charts
and vector bundle trivializations being used. Clearly, Sm(E,F ) ⊆ Sm

′
(E,F ),

whenever m ≤ m′. From Proposition III.3.9 we see that the symbol provides an
isomorphism

ΨDOm(E,F )

ΨDOm−1(E,F )
=

ΨDOm
prop(E,F )

ΨDOm−1
prop (E,F )

σ−−→∼=
Sm(E,F )

Sm−1(E,F )
. (III.4)

Moreover, A ∈ ΨDOm(E,F ) is a smoothing operator if and only if

σA ∈ S−∞(E,F ) :=
⋂
m

Sm(E,F ).

Note, however, that without further choices, the symbol of A ∈ ΨDOm
prop(E,F )

does not provide an element in Sm(E,F ), it is only well defined up to symbols
of lower order. Also note that for σ ∈ Sm(E,F ) and σ′ ∈ Sm

′
(F,G) we have

σ′σ ∈ Sm+m′(E,G), σt ∈ Sm(F ∗, E∗) and σ∗ ∈ Sm(F,E), where the last one is
understood with respect to Hermitian metrics on E and F .

III.3.10. Example. For a differential operator D ∈ DOm(E,F ) we have
defined a principal symbol σ(D) ∈ Γ∞(SmTM ⊗ hom(E,F )), see section II.2.
Since sections of SmTM ⊗ hom(E,F ) can be regarded as smooth maps T ∗M →
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hom(E,F ) over the projection π : T ∗M → M which are fiber wise homogeneous
polynomials of degree m, we have

Γ∞(SmTM ⊗ hom(E,F )) ⊆ Sm(E,F )

Sm−1(E,F )
.

Up to this identification, the principal symbol coincides with the symbol in (III.4).

III.3.11. Proposition. Let U be an open subset of Rn, and suppose A ∈
ΨDOm

prop(U × E0, U × F0). Then At ∈ ΨDOm
prop(U × F ∗0 , U × E∗0), and

σAt(x, ξ) ∼
∑
α

1

i|α|α!
∂|α|

∂xα
∂|α|

∂ξα
σA(x,−ξ)t

that is, for all N ≥ 0,

σAt(x, ξ)−
∑
|α|≤N

1

i|α|α!
∂|α|

∂xα
∂|α|

∂ξα
σA(x,−ξ)t ∈ Sm−N−1(U × Rn; hom(E0, F0)).

Proof. See [38, Theorem 3.2]. �

III.3.12. Proposition. Let U be an open subset of Rn, and suppose A ∈
ΨDOm

prop(U × E0, U × F0) and B ∈ ΨDOm′

prop(U × F0, U × G0). Then BA ∈
ΨDOm+m′

prop (U × E0, U ×G0) and

σBA(x, ξ) ∼
∑
α

1

i|α|α!
∂|α|

∂ξα
σB(x, ξ)∂

|α|

∂xα
σA(x, ξ),

that is, for all N ≥ 0,

σBA(x, ξ)−
∑
|α|≤N

1

i|α|α!
∂|α|

∂ξα
σB(x, ξ)∂

|α|

∂xα
σA(x, ξ) ∈ Sm+m′−N−1(U×Rn; hom(E0, F0)).

Proof. See [38, Theorem 3.4]. �

From the preceding two results we immediately obtain:

III.3.13. Proposition. Let E, F , G be vector bundles over a manifold M .
a) If A ∈ ΨDOm(E,F ), B ∈ ΨDOm′(F,G) and at least one of them is prop-

erly supported, then BA ∈ ΨDOm+m′(E,G) and

σBA(x, ξ) = σB(x, ξ)σA(x, ξ) ∈ Sm+m′(E,G)

Sm+m′−1(E,G)

b) If A ∈ ΨDOm(E,F ), then At ∈ ΨDOm(F ∗M , E
∗
M) and

σAt(x, ξ) = σA(x,−ξ)t ⊗ id|ΛM | ∈
Sm(F ∗M , E

∗
M)

Sm−1(F ∗M , E
∗
M)

.
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Moreover, with respect to a volume density on M and Hermitian metrics on E
and F we have A∗ ∈ ΨDOm(F,E) and

σA∗(x, ξ) = σA(x,−ξ)∗ ∈ Sm(F,E)

Sm−1(F,E)
.

A symbol σ ∈ Sm(E,F ) is called elliptic if, locally, with respect to charts and
vector bundle trivializations, the symbol σ(x, ξ) ∈ Sm(U × Rn; hom(E0, F0)) has
the following property: for every compact K ⊆ U there exist constants R ≥ 0
and C ≥ 0 such that for all x ∈ K and |ξ| ≥ R the inverse σ(x, ξ)−1 exists and

|σ(x, ξ)−1| ≤ C|ξ|−m.
It is not hard to verify that this concept does not depend on the charts and
vector bundle trivializations being used. We will write Smell(E,F ) for the space
of elliptic symbols. If σ ∈ Smell(E,F ) and σ′ ∈ Sm

′
(E,F ) with m′ < m, then

σ + σ′ ∈ Smell(E,F ), whence Smell(E,F )/Sm
′
(E,F ) makes sense.

III.3.14. Definition (Ellipticity). Let E and F be vector bundles over a
manifold M . A pseudodifferential operator A ∈ ΨDOm(E,F ) is called elliptic if
σ(A) ∈ Smell(E,F )/Sm−1(E,F ), cf. (III.4). We will write ΨDOm

ell(E,F ) for the set
of elliptic pseudodifferential operators of order m.

III.3.15. Example. A differential operator is elliptic in the sense of Defi-
nition III.3.14 if and only if it is elliptic in the sense of Definition II.2.23, cf.
Example III.3.10.

III.3.16. Proposition. a) If A ∈ ΨDOm
ell(E,F ), B ∈ ΨDOm′

ell (F,G), and at

least one of them is properly supported, then BA ∈ ΨDOm+m′

ell (E,G).
b) If A ∈ ΨDOm

ell(E,F ), then At ∈ ΨDOm
ell(F

∗
M , E

∗
M) and A∗ ∈ ΨDOm

ell(F,E).

The following fundamental result asserts that elliptic pseudodifferential oper-
ators are invertible module smoothing operators.

III.3.17. Theorem (Parametrix). Let E and F be two vector bundles over
M and suppose A ∈ ΨDOm

ell(E,F ) is an elliptic pseudodifferential operator of
order m. Then there exists a properly supported pseudodifferential operator B ∈
ΨDO−mprop(F,E) of order −m such that

I −BA ∈ SO(E) and I − AB ∈ SO(F ).

Moreover, B is unique, up to smoothing operators.

Proof. We only give a rough sketch, for more details see [38, Theorem 5.1].
By ellipticity, σA(x, ξ)−1 gives rise to σ0 ∈ S−m(F,E) such that

σ0σA = 1 ∈ S0(E)/S−1(E).

By (III.4) there exists B0 ∈ ΨDO−mprop(F,E) such that

σB0 = σ0 ∈ S−m(F,E)/S−m−1(F,E).
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Putting R0 := I −B0A ∈ ΨDO0(E), Proposition III.3.13(a) yields

σR0 = σI−B0A = 1− σB0σA = 1− σ0σA = 0 ∈ S0(E)/S−1(E),

whence R0 ∈ ΨDO−1(E), again by (III.4). So far we have inverted A modulo

operators of order −1. For N ∈ N0 put CN :=
∑N

j=0R
j
0 ∈ ΨDO0(E).22 Then

CN(I −R0) = I −RN+1
0 .

Putting BN := CNB0 ∈ ΨDO−m(F,E), we get BNA = CNB0A = CN(I − R0) =
I −RN+1

0 , where RN+1
0 ∈ ΨDO−N−1(E), whence

I −BNA ∈ ΨDO−N−1(E).

Adding a smoothing operator to BN , we may w.l.o.g. assume that BN is properly
supported. Thus, we have inverted A modulo operators of arbitrary small order.
To actually construct B ∈ ΨDO−mprop(F,E) such that

R := I −BA ∈ SO(E) (III.5)

we refer to [38, Theorem 5.1]. Analogously one constructs B′ ∈ ΨDO−mprop(F,E)
such that

R′ := I − AB′ ∈ SO(F ). (III.6)

From (III.5) we get RB′ = B′ − BAB′ and (III.6) gives BR′ = B − BAB′.
Subtracting these equations from one another, we get B′ − B = BR′ − RB′ ∈
SO(F,E). This shows that B = B′ has the desired property, and that it is unique
up to smoothing operators. �

III.3.18. Definition (Parametrix). An operator B as in the preceding the-
orem is called a parametrix of A. The theorem thus asserts that every elliptic
pseudodifferential operator has a parametrix.

III.3.19. Corollary (Rough regularity). Let E and F be two vector bundles
over M and suppose A ∈ ΨDOm

ell(E,F ) is an elliptic pseudodifferential operator
of order m. Then, for every s ∈ Γ−∞c (E) we have

sing-supp(As) = sing-supp(s).

If A is properly supported, then this remains true for s ∈ Γ−∞(E). Whence, for
every open subset U of M we have (As)|U ∈ Γ∞(F |U) iff s|U ∈ Γ∞(E|U).

Proof. By pseudolocality of A, we have sing-supp(As) ⊆ sing-supp(s). To
show the converse inclusion, let B ∈ ΨDO−mprop(F,E) be a parametrix of A and put
R := I − BA ∈ SO(E). Then, s = BAs+ Rs and sing-supp(Rs) = ∅, since R is
a smoothing operator. Hence, sing-supp(s) = sing-supp(BAs) ⊆ sing-supp(As),
by pseudolocality of B. �

22Note that the powers Rj0 = B0AB0A · · ·B0A make sense, although R0 need not be
properly supported.
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III.3.20. Example (Eigenvectors are smooth). Let A ∈ ΨDOm
ell(E) be an el-

liptic pseudodifferential operator of orderm > 0 on a closed manifoldM . Suppose
s ∈ Γ−∞(E) is an eigenvector, As = λs, λ ∈ K. Then s is smooth, s ∈ Γ∞(E).
Actually, this remains true for generalized eigenvectors, for which there exists
N ∈ N such that (A − λ)Ns = 0. Indeed, A − λ is elliptic of order m, since we
assumed m > 0. Hence (A − λ)N is elliptic of order Nm. From the preceding
corollary, we conclude s ∈ Γ∞(E).

III.4. The Hilbert space of L2-sections. For simplicity we assume M to
be a closed manifold throughout this section. Let E be a vector bundle over M .
Fix a fiber wise Hermitian metric on E and a volume density on M . Then

〈〈s1, s2〉〉 :=

∫
M

〈s1(x), s2(x)〉dx, s1, s2 ∈ Γ0(E),

defines a positive definite in inner product on Γ0(E). We let L2(E) denote the
Hilbert space completion with associated norm,

‖s‖2
L2 =

∫
M

|s(x)|2dx.

If we change the fiber wise Hermitian metric or the volume density, we obtain
different inner products and different, but equivalent norms. Thus, the underlying
topological vector space does not depend on the fiberwise Hermitian metric or
the volume density. Note that the inclusion

Γ0(E) ⊆ L2(E)

is continuous. Indeed, for s ∈ Γ0(E) we have:

‖s‖L2 =
(∫

M

|s(x)|2dx
)1/2

≤ sup
x∈M
|s(x)|

(∫
M

1dx
)1/2

=
√

vol(M)‖s‖C0 .

Consequently, L2(E) is a separable Hilbert space, for Γ0(E) is separable. Also
note that Γ∞(E) is dense in L2(E), since Γ0(E) is.

The canonical pairing D(E)× Γ∞(E)→ K extends to a continuous pairing

L2(E∗M)× L2(E)→ K. (III.7)

Indeed, for φ ∈ D(E) = Γ∞(E∗M) and s ∈ Γ0(E) we have:

|(φ, s)| =
∣∣∣∫
M

φ(x)s(x)dx
∣∣∣ ≤ ∫

M

|φ(x)||s(x)|dx

≤
(∫

M

|φ(x)|2dx
)1/2(∫

M

|s(x)|2dx
)1/2

= ‖φ‖L2‖s‖L2 .

In particular, the restriction D(E) × Γ0(E) → K is continuous in each variable,
whence the inclusion Γ0(E)→ Γ−∞(E) extends to an injective continuous linear
map L2(E)→ Γ−∞(E) which permits to regard

L2(E) ⊆ Γ−∞(E).
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III.4.1. Proposition (Duality). The continuous pairing (III.7) induces a
canonical isomorphism of Hilbert spaces,

L2(E)∗ = L2(E∗M).

In particular, every linear functional on L2(E) can be written in the form (φ,−)
for a unique φ ∈ L2(E∗M).

Proof. Since the pairing (III.7) is jointly continuous, it induces a continuous
linear map, L2(E∗M)→ L2(E)∗. The fiber wise Hermitian metric and the volume
density provide an isomorphism of vector bundles, Ē ∼= E∗M , which induces an

isomorphism of Hilbert spaces, L2(E) = L2(Ē) ∼= L2(E∗M). The composition of

these two maps, L2(E) → L2(E)∗, is the one induced by the inner product on
L2(E), whence an isomorphism of Hilbert spaces. Consequently, the third one,
L2(E∗M)→ L2(E)∗, has to be an isomorphism too. �

III.4.2. Proposition ([38, Appendix A.3]). Suppose k ∈ L2(Hom(E,F ))
is an L2-kernel. Then (As)(x) =

∫
M
k(x, y)s(y)dy defines a Hilbert–Schmidt

operator A : L2(E)→ L2(F ) with Hilbert–Schmidt norm23

‖A‖2
HS = ‖k‖2

L2 =

∫
M×M

|k(x, y)|2dxdy.

In particular A : L2(E)→ L2(F ) is compact and bounded, ‖A‖L2 ≤ ‖A‖HS.

Proof. Choose orthonormal bases ei of L2(E) and fj of L2(F ). Let e∗i denote
the dual base of L2(E∗M) and let f ∗j denote the dual base of L2(F ∗M). Recall that

π∗1fj ⊗ π∗2e
∗
i is an orthonormal base of L2(Hom(E,F )), provided Hom(E,F ) is

23In fact, the Hilbert–Schmidt operators are precisely those which can be represented by an
L2-kernel. A Hilbert–Schmidt operator is one for which the Hilbert–Schmidt norm ‖A‖2HS :=∑
i ‖Aei‖2 is finite. Here ei is an orthonormal basis, but the norm does not depend on this

choice. Every Hilbert–Schmidt operator is bounded, ‖A‖L2 ≤ ‖A‖HS, where the first norm
denotes the operator norm. Indeed, if ei is an Orthonormal base, then every element of the
Hilbert space can be expanded in the form s =

∑
i〈〈ei, s〉〉ei. Therefore, As =

∑
i〈〈ei, s〉〉Aei,

hence ‖As‖ ≤
∑
i |〈〈ei, s〉〉| ‖Aei‖, and

‖As‖ ≤
(∑

i

|〈〈ei, s〉〉|2
)1/2(∑

i

‖Aei‖2
)1/2

= ‖s‖‖A‖HS,

whence ‖A‖L2 ≤ ‖A‖HS. Actually, every Hilbert-Schmidt operator is compact. To see that,
we approximate with (compact) operators of finite rank, AN : L2(E) → L2(F ), ANs :=∑
i≤N 〈〈ei, s〉〉Aei. Then

‖A−AN‖2L2 ≤ ‖A−AN‖2HS =
∑
i>N

‖Aei‖2

which tends to zero as N → ∞. Since the space of compact operators is closed, we conclude
that A is compact. If A is a compact selfadjoint operator, then ‖A‖2HS =

∑
i λ

2
i , where λi

denote the eigenvalues of A. More details can be found in Appendix A.3 in [38].
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equipped with the Hermitian metric induced by the Hermitian metrics on E and
F . Expanding the kernel in this basis, we may write

k =
∑
i,j

ki,j π
∗
1fj ⊗ π∗2e∗i .

Moreover,

〈〈fj, Aei〉〉 = (f ∗j , Aei) =
(
π∗1f

∗
j ⊗ π∗2ei, k

)
= 〈〈π∗1fj ⊗ π∗2e∗i , k〉〉 = ki,j

and therefore
‖Aei‖2 =

∑
j

|〈〈fj, Aei〉〉|2 =
∑
j

|ki,j|2.

Thus

‖A‖2
HS =

∑
i

‖Aei‖2 =
∑
i,j

|kj,i|2 = ‖k‖2
L2 =

∫
M×M

|k(x, y)|2dxdy,

as claimed. �

III.4.3. Example. Every smoothing operator A ∈ SO(E,F ) extends to a
compact operator A : L2(E)→ L2(F ). This follows from Proposition III.4.2.

III.4.4. Proposition. If k ∈ Γ0(Hom(E,E)) is a continuous kernel, then
A : L2(E)→ L2(E), (As)(x) =

∫
M
k(x, y)s(y)dy, is a trace class operator, and

tr(A) =

∫
M

tr k(x, x)dx.

A proof of the preceding result is sketched in appendix A.3.5 in [38].

III.4.5. Theorem ([38, §6]). Let E and F be two vector bundles over a closed
manifold M of dimension n, and suppose A ∈ ΨDOm(E,F ).

(a) If m ≤ 0, then A extends to a bounded linear operator

A : L2(E)→ L2(F ). (III.8)

(b) If m < 0, then the operator in (III.8) is compact.
(c) If m < −n, then A has a continuous kernel, k ∈ Γ0(Hom(E,F )), and the

operator in (III.8) is of trace class with

tr(A) =

∫
M

tr k(x, x)dx.

Proof. We begin with (c): Recall that for x and y in a chart domain U ,

k(x, y) = (2π)−n
∫
ei(x−y)ξσ(x, ξ)dξ. (III.9)

By assumption, for every compact subset K of U there exists ε > 0 and C ≥ 0
such that supx∈K |σ(x, ξ)| ≤ C(1 + |ξ|)−n−ε. Since

∫
Rn(1 + |ξ|)−n−εdξ < ∞,

the integral (III.9) converges absolutely and uniformly on K × U , whence k is
continuous. The statement now follows from Proposition III.4.4.
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Let us now turn to rough sketch of part (a). As explained in [38, §6], one
constructs a constant C ≥ 0 and B ∈ ΨDO0(E) such that

R := C2 − A∗A−B∗B ∈ SO(E).

Once this is accomplished, we obtain:

‖As‖2 = 〈〈As,As〉〉 = 〈〈s, A∗As〉〉 = 〈〈s, (C2 −B∗B −R)s〉〉
= C2 〈〈s, s〉〉︸ ︷︷ ︸

‖s‖2

−〈〈s, B∗Bs〉〉︸ ︷︷ ︸
≥0

−〈〈s, Rs〉〉 ≤ C2‖s‖2 + ‖R‖L2‖s‖2,

where we used Cauchy–Schwarz inequality to estimate |〈〈s, Rs〉〉| ≤ ‖R‖L2‖s‖2.
Note that the operator norm ‖R‖L2 is finite according to Proposition III.4.2.
Consequently, ‖A‖L2 ≤ C2 + ‖R‖L2 , whence A is bounded.

For part (b) we refer to [38, §6.3]. �

III.4.6. Corollary. If A ∈ ΨDO0
ell(E,F ) is an elliptic pseudo differential

operator of order zero, then A : L2(E)→ L2(F ) is Fredholm.

Proof. By Theorem III.3.17 there exists a parametrix B ∈ ΨDO0(F,E) such
that BA− I and AB− I are smoothing operators, whence compact according to
Proposition III.4.2. Moreover, A : L2(E) → L2(F ) and B : L2(F ) → L2(E) are
bounded, see Theorem III.4.5(a). Using Atkinson’s Theorem I.3.1, we conclude
that A is Fredholm. �

III.5. The Sobolev scale. We continue to consider a vector bundle E over
a closed manifold M . For any s ∈ R we define the Sobolev space

Hs(E) :=
{
u ∈ Γ−∞(E)

∣∣ ∀A ∈ ΨDOs(E) : Au ∈ L2(E)
}
.

We equip this vector space with the coarsest topology such that the semi norms
‖Au‖L2 are continuous, for all A ∈ ΨDOs(E). Note that this topology does not
depend on the choices entering the norm ‖ − ‖L2 on L2(E).

III.5.1. Proposition. There exist A1, A2 ∈ ΨDOs(E) such that

〈〈u, v〉〉Hs := 〈〈A1u,A1v〉〉+ 〈〈A2u,A2v〉〉,
is an inner product on Hs(E) and the associated norm

‖u‖2
Hs := ‖A1u‖2

L2 + ‖A2u‖2
L2

generates the topology on Hs(E). Moreover, Hs(E) is a separable Hilbert space
and Γ∞(E) is dense in Hs(E). In particular, Hs(E) is canonically isomorphic
to the completion of Γ∞(E) with respect to the norm ‖ − ‖Hs. Moreover,

L2(E) = H0(E).

If s > s̃, then the inclusion

Hs(E) ⊆ H s̃(E)
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is continuous and compact. The canonical pairing Γ∞(E∗M) × Γ∞(E) → K, ex-
tends to a continuous pairing

H−s(E∗M)×Hs(E)→ K
which induces a canonical isomorphism of Hilbert spaces

Hs(E)∗ = H−s(E∗M).

In particular, any linear functional on Hs(E) can be written in the form (φ,−)
for a unique φ ∈ H−s(E∗M). Moreover, both of the inclusions

Γ∞(E) ⊆ Hs(E) ⊆ Γ−∞(E).

are continuous.

Proof. Let Λs ∈ ΨDOs
ell(E) be an elliptic pseudodifferential operator of

order s and let Λ−s ∈ ΨDO−sell (E) be a parametrix, i.e. R := I −Λ−sΛs ∈ SO(E),
see Theorem III.3.17. Put A1 := Λs ∈ ΨDOs(E) and A2 := R ∈ SO(E) ⊆
ΨDOs(E). If A ∈ ΨDOs(E) and u ∈ Hs(E), then:

‖Au‖L2 = ‖A(Λ−sΛsu+R)u‖L2

≤ ‖AΛ−sΛsu‖L2 + ‖ARu‖L2

≤ ‖AΛ−s‖L2‖Λsu‖L2 + ‖AR(Λ−sΛs +R)u‖L2

≤ ‖AΛ−s‖L2‖Λsu‖L2 + ‖ARΛ−sΛsu‖L2 + ‖ARRu‖L2

≤ ‖AΛ−s‖L2‖Λsu‖L2 + ‖ARΛ−s‖L2‖Λsu‖L2 + ‖AR‖L2‖Ru‖L2

=
(
‖AΛ−s‖L2 + ‖ARΛ−s‖L2

)
‖A1u‖L2 + ‖AR‖L2‖A2u‖L2

Note that the operators AΛ−s, ARΛ−s, and AR are all pseudodifferential oper-
ators of order zero, and thus have finite L2-operator norm according to Theo-
rem III.4.5(a). Hence, for every A ∈ ΨDOs(E) there exist constants C1, C2 ≥ 0
such that

‖Au‖L2 ≤ C1‖A1u‖L2 + C2‖A2u‖L2 .

This shows that the topology on Hs(E) is generated by the two norms ‖A1u‖L2

and ‖A2u‖L2 .
Let us next show that Hs(E) is complete, whence a Hilbert space. To this

end suppose un is a Cauchy sequence in Hs(E). We decompose

un = Λ−sΛsun +Run, (III.10)

and will show that each summand converges in Hs(E). Note first that Λsun is a
Cauchy sequence in L2(E), whence convergent:

v := lim
n→∞

Λsun ∈ L2(E).

Moreover, for any A ∈ ΨDOs(E), the operator AΛ−s : L2(E)→ L2(E) is bounded
in view of Theorem III.4.5(a), whence

AΛ−sv = lim
n→∞

AΛ−sΛsun ∈ L2(E).
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Since this is true for every A ∈ ΨDOs(E), we conclude

lim
n→∞

Λ−sΛsun = Λ−sv ∈ Hs(E).

In view of (III.10) it therefore remains to show that Run converges in Hs(E).
Observe, that Run is a Cauchy sequence in L2(E), hence convergent

w := lim
n→∞

Run ∈ L2(E).

Since the inclusion L2(E) ⊆ Γ−∞(E) is continuous, we also have limn→∞Run = w
in Γ−∞(E). Since A : Γ−∞(E)→ Γ−∞(E) is continuous, we conclude

Aw = lim
n→∞

ARun ∈ Γ−∞(E),

for every A ∈ ΨDOs(E). However, ARun is Cauchy in L2(E) too, thus

lim
n→∞

ARun = Aw ∈ L2(E).

Since this is true for every A ∈ ΨDOs(E), we conclude

lim
n→∞

Run = w ∈ Hs(E).

This shows that Hs(E) is complete.
TODO: SHOW THAT Γ∞(E) IS DENSE IN Hs(E). This then implies that

Hs(E) is separable.
Let us next show L2(E) = H0(E). Since the identical operator I ∈ ΨDO0(E)

we have H0(E) ⊆ L2(E), and this inclusion is continuous. Conversely, for ev-
ery A ∈ ΨDO0(E), the operator A : L2(E) → L2(E) is bounded, see Theo-
rem III.4.5(a), hence L2(E) ⊆ H0(E), and this inclusion is continuous too. Con-
sequently, H0(E) = L2(E) as Hilbert spaces.

Clearly, Hs(E) ⊆ H s̃(E), is a continuous inclusion, for all s > s̃. To see that
this inclusion is compact, let un ∈ Hs(E) be a bounded sequence, and suppose
A ∈ ΨDOs̃(E). It suffices to show that Aun has a subsequence which converges
in L2(E). Clearly,

Aun = AΛ−sΛsun + ARun.

By assumption, Λsun is bounded in L2(E). Moreover, by Theorem III.4.5(b) the
operator AΛ−s : L2(E) → L2(E) is compact, hence AΛ−sΛsun has a convergent
subsequence. Moreover, AR is a smoothing operator, hence compact, and thus
ARun admits a convergent subsequence too.

The inclusion, Γ∞(E) ⊆ Hs(E), is continuous, since Γ∞(E)
A−→ Γ∞(E) ⊆

L2(E) is continuous, for every A ∈ ΨDOs(E). This also implies that the re-
striction of the canonical pairing, Γ∞(E∗M) ×Hs(E) → K, is continuous in each
variable, whence the inclusion Hs(E) ⊆ Γ−∞(E) is continuous too. �

Let us mention two more results without proof, which will not be useed below:
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III.5.2. Theorem (Sobolev embedding, [38, Theorem 7.6]). Let E be a vector
bundle over a closed manifold M of dimension n, and suppose s ∈ R, k ∈ N0 are
such that

s > k + n/2.

Then
Hs(E) ⊆ Γk(E),

and this inclusion is continuous and compact.

III.5.3. Corollary ([38, Corollay 7.4]). As topological vector spaces,

Γ∞(E) =
⋂
s∈R

Hs(E).

In other words, the C∞ topology on Γ∞(E) coincides with the topology generated
by all the Sobolev norms ‖ − ‖Hs combined, s ∈ R.

III.5.4. Corollary. As ???topological??? vector spaces

Γ−∞(E) =
⋃
s∈R

Hs(E).

III.5.5. Theorem ([38, Problem 7.1.]). Let E be a vector bundle over a closed
manifold M and suppose S is a closed submanifold of codimension d in M . Then
the restriction map, Γ∞(E)→ Γ∞(E|S), u 7→ u|S, extends to a continuous linear
operator,

Hs(E)→ Hs−d/2(E|S),

for every s > d/2.

III.5.6. Proposition. Let E and F be two vector bundles over a closed man-
ifold M , and suppose A ∈ ΨDOm(E,F ) is a pseudodifferential operator of order
m. Then A restricts to a bounded linear operator

A : Hs(E)→ Hs−m(F ).

for every s. If At ∈ ΨDOm(F ∗M , E
∗
M) denotes the transposed operator, then

(Atφ, u) = (φ,Au), φ ∈ Hm−s(F ∗M), u ∈ Hs(E), (III.11)

with respect to the pairing Proposition III.5.1.

Proof. The fact that A maps Hs(E) into Hs−m(F ) in a continuous manner
follows immediately from Theorem III.4.5. Since both sides of (III.11) depend
continuously on φ ∈ Hm−s(F ∗M) and u ∈ Hs(E), it remains to observe that this
equation holds true for smooth φ and u, and that the smooth sections are dense
in the Sobolev spaces, see Proposition III.5.1. �

III.5.7. Corollary (Regularity, [38, Theorem 7.2]). Let E and F be two
vector bundles over a closed manifold M , and suppose A ∈ ΨDOm

ell(E,F ) is an
elliptic pseudodifferential operator of order m. If u ∈ Γ−∞(E) and Au ∈ Hs(F )
then u ∈ Hs+m(E).
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Proof. By Theorem III.3.17, there exists a parametrix B ∈ ΨDO−m(F,E)
for A, that is R := I −BA ∈ SO(E) is a smoothing operator. Then

u = BAu+Ru

with Ru ∈ Γ∞(E) ⊆ Hs+m(E), and BAu ∈ Hs+m(E) since B maps Hs(F ) into
Hs+m(E) in view of Proposition III.5.6. Consequently, u ∈ Hs+m(E). �

III.5.8. Corollary (Fredholm property). Let E and F be two vector bundles
over a closed manifold M , and suppose A ∈ ΨDOm

ell(E,F ) is an elliptic pseudo-
differential operator of order m. Then A : Hs(E) → Hs−m(F ) is a Fredholm
operator whose index does not dependent on s. Moreover, for every s̃ ≤ s, there
exists a constant C ≥ 0, depending on A, s, s̃ and the particular Sobolev norms,
such that the following elliptic estimate holds for all u ∈ Hs(E):

‖u‖Hs ≤ C
(
‖Au‖Hs−m + ‖u‖H s̃

)
. (III.12)

If At ∈ ΨDOm
ell(F

∗
M , E

∗
M) denotes the transposed operator, then

ind(At) = − ind(A).

If A∗ ∈ ΨDOm
ell(F,E) denotes the adjoint of A with respect to a volume density

on M and Hermitian fiber metrics on E and F , then

ind(A∗) = − ind(A).

Proof. By Theorem III.3.17, there exists a parametrix B ∈ ΨDO−m(F,E)
for A, that is R := I − BA ∈ SO(E) is a smoothing operator. By Proposi-
tion III.5.6, the operators A : Hs(E) → Hs−m(F ) and B : Hs−m(F ) → Hs(E)
are bounded. Moreover, R : Hs(E) → Γ∞(E) ⊆ Hs(E) is compact, see Propo-
sition III.5.1. Consequently, A : Hs(E) → Hs−m(F ) is Fredholm according to
Atkinson’s Theorem I.3.1. Since B is bounded, there exists a constant C1 ≥ 0
such that ‖Bu‖Hs ≤ C1‖u‖Hs−m . Furthermore, since R : H s̃(E) → Γ∞(E) ⊆
Hs(E) is continuous, there exists a constant C2 ≥ 0 such that ‖Ru‖Hs ≤
C2‖Ru‖H s̃ . Combining these, we obtain

‖u‖Hs = ‖BAu+Ru‖Hs ≤ ‖BAu‖Hs + ‖Ru‖Hs ≤ C1‖Au‖Hs−m + C2‖u‖H s̃ ,

whence (III.12). By Corollary III.3.19,

ker
(
Hs(E)

A−→ Hs−m(F )
)

= ker
(
Γ∞(E)

A−→ Γ∞(F )
)
,

whence (the dimension) of ker(A) does not depend on s. By ... the transposed
operator At ∈ ΨDOm(F ∗M , E

∗
M) is elliptic too, whence

ker
(
Hm−s(F ∗M)

At−→ H−s(E∗M)
)

= ker
(
Γ∞(F ∗M)

At−→ Γ∞(E∗M)
)
,

does not depend on s either. Up to the canonical isomorphisms of Hilbert spaces
Hs(E)∗ = H−s(E∗M) and Hs−m(F )∗ = Hm−s(F ∗M), see Proposition III.5.1, the op-
erator At : Hm−s(F ∗M) → H−s(E∗M) is the transposed of A : Hs(E) → Hs−m(F ),
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see (III.11), whence ind(At) = − ind(A) in view of Proposition I.2.8. Moreover,
using Corollary I.1.5, we obtain a canonical isomorphism

coker
(
Hs(E)

A−→ Hs−m(F )
)∗

= ker
(
Hm−s(F ∗M)

At−→ H−s(E∗M)
)
,

hence the dimension of coker(A) does not depend on s either. Consequently,
ind(A) is independent of s. Finally, recall that a volume density on M and
Hermitian fiber metrics on E and F provide isomorphisms of vector bundles
E∗M = Ē and F ∗M = F̄ . Moreover, via these identifications, the adjoint A∗

corresponds to the transposed At, whence ind(A∗) = ind(At). �

III.5.9. Example. Suppose A ∈ ΨDOm
ell(E) is an elliptic pseudo differential

operator of order m > 0. Then the eigenspaces, ker(A−λI), are finite dimensional
and contain smooth sections only. This follows from Corollary III.5.8 since A−λI
is an elliptic pseudodifferential operator too.

III.5.10. Corollary. The index of an elliptic pseudodifferential operator on
a closed manifold only depends on its principal symbol. More precisely, if A ∈
ΨDOm

ell(E,F ) and B ∈ ΨDOm
ell(E,F ) are two elliptic pseudodifferential operators

such that σA = σB ∈ Sm(E,F )/Sm−1(E,F ), then ind(A) = ind(B).

Proof. By assumption, K := B−A ∈ ΨDOm−1(E,F ). Hence, K : Hs(E)→
Hs−m+1(F ) ⊆ Hs−m(F ) is compact, see Proposition III.5.1. Therefore, the Fred-
holm operators A : Hs(E) → Hs−m(F ) and B : Hs(E) → Hs−m(F ) differ by a
compact operator, whence ind(A) = ind(B), see Corollary I.3.3. �

III.5.11. Corollary. Let M be a closed manifold and suppose D∗ = D ∈
DOm

ell(E) is a formally self adjoint (w.r. to a Hermitian fiber metric on E and
a volume density on M) elliptic differential operator. Then we have an L2-
orthogonal decomposition

Γ∞(E) = ker(D)⊕ img(D),

where ker(D) = {s ∈ Γ∞(E) : Ds = 0} and img(D) = {Ds : s ∈ Γ∞(E)}.
Proof. We have an L2-orthogonal decomposition:

L2(E) = ker
(
L2(E)

D−→ H−m(E)
)︸ ︷︷ ︸

=ker
(

Γ∞(E)
D−→Γ∞(E)

) ⊕ ker
(
L2(E)

D−→ H−m(E)
)⊥︸ ︷︷ ︸

=img
(
Hm(E)

D∗−→L2(E)
)

Here we used regularity, see Corollary III.3.19, and the fact that Hs(E)
D−→

Hs−m(E) is Fredholm. Intersecting with the space of smooth sections, and using
regularity, we obtain

Γ∞(E) = ker(D)⊕
(

img
(
Hm(E)

D∗−→ L2(E)
)
∩ Γ∞(E)

)
︸ ︷︷ ︸

=img
(

Γ∞(E)
D∗−→Γ∞(E)

) .

Since D∗ = D, we obtain the result. �
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As a special case we obtain:

III.5.12. Theorem (Hodge decomposition). Let M be a closed oriented Rie-
mannian manifold. Consider the Dirac operator

D∗ = D = d+ d∗ : Ω(M)→ Ω(M)

and the Laplacian

∆ = D∗D = D2 = dd∗ + d∗d : Ω(M)→ Ω(M).

Then we have an L2-orthogonal decomposition

Ω(M) = ker(∆)⊕ img(∆). (III.13)

Moreover, for the space of harmonic forms:

H(M) := ker(∆) = ker(D) = ker(d) ∩ ker(d∗), (III.14)

and

img(∆) = img(D) = img(d)⊕ img(d∗). (III.15)

Moreover,

Hq(M ;R) = Hq(M),

i.e. every deRham cohomology class admits a unique harmonic representative.24

Proof. Since ∆ is a selfadjoint elliptic operator, the decomposition (III.13)
follows from Corollary III.5.11. The inclusions ker(∆) ⊇ ker(D) ⊇ ker(d)∩ker(d∗)
are obvious. Moreover, if α ∈ ker(∆), then

0 = 〈〈α,∆α〉〉 = 〈〈α, (d∗d+ dd∗)α〉〉 = 〈〈dα, dα〉〉︸ ︷︷ ︸
≥0

+ 〈〈d∗α, d∗α〉〉︸ ︷︷ ︸
≥0

,

whence dα = 0 = d∗α. This shows ker(∆) ⊆ ker(d) ∩ ker(d∗), hence (III.14).
Next, note that img(d) ⊆ ker(d) ⊥ img(d∗), hence img(d)⊕ img(d∗) is indeed an
orthogonal direct sum. Similarly, ker(d∗) ⊥ img(d), whence

img(d)⊕ img(d∗) ⊆
(
ker(d) ∩ ker(d∗)

)⊥
= ker(∆)⊥ = img(∆),

in view of (III.13) and (III.14). As the inclusions img(∆) ⊆ img(D) ⊆ img(d)⊕
img(d∗) are obvious, we obtain (III.15). Since the deRahm differential commutes
with the Laplacian, d∆ = ∆d, the decomposition (III.13) is invariant with respect
to d. Moreover, d vanishes on ker(∆), see (III.14). Finally, since ∆ = d∗d +

dd∗ : img(∆)
∼=−→ img(∆) is bijective, we conclude that every closed differential

form α ∈ img(∆) is exact, dd∗∆−1α = α. Thus, the inclusion H(M) → Ω(M)
induces an isomorphism in cohomology, Hq(M) = Hq(M ;R). �

24Since Hq(M) is finite dimensional, this gives an analytic explanation for the fact that the
deRham cohomology of closed manifolds is finite dimensional. Since the Hodge star operator

commutes with the Laplacian, ?∆ = ±∆?, it induces an isomorphism ? : Hq(M)
∼=−→ Hn−q(M),

and this gives an analytic explanation for Poincaré duality, n = dim(M).
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III.5.13. Example. Let M be a closed oriented Riemannian manifold. Then
the Euler characteristics can be expressed as the index of an elliptic differential
operator:

χ(M) = ind
(

Ωeven(M)
D=d+d∗−−−−−→ Ωodd(M)

)
(III.16)

Indeed, using Hodge decomposition in Theorem III.5.12 we obtain

χ(M) =
∑
q

(−1)q dim(Hq(M))

= dim
(
Heven(M)

)
− dim

(
Hodd(M)

)
= dim

(
Heven(M)

)
− dim

(
Hodd(M)

)
= dim

(
ker(D)

)
− dim

(
coker(D

)
)

= ind(D),

where D denotes the operator Ωeven(M)
D=d+d∗−−−−−→ Ωodd(M).

III.5.14. Example. Let M be a closed oriented Riemannian manifold of di-
mension dim(M) = 4k = n. Multiplying the Hodge star operator with a sign
(−1)q we obtain ? : Ωq(M) → Ωn−q(M) such that ?2 = 1. Hence the space of
differential forms decomposes as Ω(M) = Ω+(M)⊕ Ω−(M), where:25

Ω+(M) :=
{
α ∈ Ω(M) : ?α = α

}
Ω−(M) :=

{
α ∈ Ω(M) : ?α = −α

}
Since ?D = −D?, the operator D : Ω(M)→ Ω(M) restricts to an elliptic operator

Ω+(M)
D−→ Ω−(M). The signature of M can be expressed as the index of this

operator:

sign(M) = ind
(

Ω+(M)
D=d+d∗−−−−−→ Ω−(M)

)
. (III.17)

To see this note that ?∆ = ∆?, hence the harmonic forms decompose accordingly,

H(M) = H+(M)⊕H−(M),

where

H+(M) :=
{
α ∈ ker(∆) : ?α = α

}
= ker(D)

H−(M) :=
{
α ∈ ker(∆) : ?α = −α

}
= img(D)⊥ ∼= coker(D)

Consequently,

ind
(

Ω+(M)
D=d+d∗−−−−−→ Ω−(M)

)
= dim

(
H+(M)

)
− dim

(
H−(M)

)
. (III.18)

If q < n/2, then Hq(M)⊕Hn−q(M) is invariant under ? and decomposes as

Hq(M)⊕Hn−q(M) =
{
α + ?α

∣∣ α ∈ Hq(M)
}︸ ︷︷ ︸

⊆H+(M)

⊕
{
α− ?α

∣∣ α ∈ Hq(M)
}︸ ︷︷ ︸

⊆H−(M)

,

25this corresponds to a decomposition of vector bundles, ΛT ∗M = Λ+T
∗M ⊕ Λ−T

∗M .
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where the self dual and antiself dual parts have the same dimension. Moreover,
the middle part, Hn/2(M) is invariant under ?, whence decomposes as

Hn/2(M) = Hn/2
+ (M)⊕Hn/2

− (M),

where Hn/2
± (M) := {α ∈ Hn/2(M) | ?α = ±α}. We conclude that

dim
(
H+(M)

)
− dim

(
H−(M)

)
= dim

(
Hn/2

+ (M)
)
− dim

(
Hn/2
− (M)

)
. (III.19)

If 0 6= α ∈ Hn/2
+ (M), then

∫
M
α ∧ α =

∫
M
α ∧ ?α = 〈〈α, α〉〉 > 0. Similarly, for

0 6= α ∈ Hn/2
− (M), we have

∫
M
α ∧ α = −

∫
M
α ∧ ?α = −〈〈α, α〉〉 < 0. This shows

that the cup product pairing Hn/2(M) × Hn/2(M) → R is positive definite on

Hn/2
+ (M) and negative definite on Hn/2

− (M), whence

sign(M) = sign
(
Hn/2(M)×Hn/2(M)→ R

)
= dim

(
H2/n

+ (M)
)
− dim

(
Hn/2
− (M)

)
. (III.20)

Combining (III.18), (III.19), and (III.20), we obtain (III.17).

III.6. The Atiyah–Singer index theorem. In the previous sections, we
have seen that the index of an elliptic pseudodifferential operator only depends
on its principal symbol, see Corollary III.5.10. In fact, the index only depends
on the homotopy class of its principal symbol:

III.6.1. Corollary. The index of an elliptic pseudodifferential operator only
depends on the regular homotopy class of its principal symbol. More precisely,
suppose A,B ∈ ΨDOm

ell(E,F ) and σ̃0, σ̃1 ∈ Smell(E,F ) so that σA = σ̃0 and σB =
σ̃1 in Smell(E,F )/Sm−1(E,F ), and so that σ̃0 is homotopic to σ̃1 within Smell(E,F ).
Then

ind(A) = ind(B).

Proof. By assumption, there exists a continuous family of elliptic symbols
σ̃t ∈ Smell(E,F ) connecting σ̃0 with σ̃1. This permits to construct a continu-
ous family of elliptic pseudodifferential operators, At ∈ ΨDOm

ell(E,F ), such that
σAt = σ̃t ∈ Smell(E,F )/Sm−1(E,F ). Consequently, At ∈ F(Hs(E), Hs−m(F )) is
a continuous family of Fredholm operators, whence ind(A0) = ind(A1) according
to Proposition I.2.10. Since σA = σ̃0 = σ̃A0 ∈ Smell(E,F )/Sm−1(E,F ) we have
ind(A) = ind(A0), see Corollary III.5.10, and similarly, ind(B) = ind(A1). �

We assume from now on that E and F are two complex vector bundles over
a closed manifold M . Suppose A ∈ ΨDOm

ell(E,F ) be an elliptic pseudodifferen-
tial operator. Let π : T ∗M → M denote the projection, and consider the vector
bundles π∗E and π∗F over T ∗M . The principal symbol of A provides a vec-
tor bundle homomorphism, σA ∈ hom(π∗E, π∗F ), which is invertible outside a
compact subset of T ∗M . Consequently, an elliptic operator represents an element

σ(A) := [π∗E, π∗F, σA] ∈ Kc(T
∗M).
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The index of A only depends on this element in K-theory. More precisely:

III.6.2. Proposition (Analytic index). The index of elliptic pseudodifferen-
tial operators induces a homomorphism

a-ind: Kc(T
∗M)→ Z.

Proof. It is not hard to show that every element in Kc(T
∗M) can be rep-

resented in the form [π∗E, π∗F, σA], where A is an elliptic pseudodifferential op-
erator of given order, see [27, Lemma 13.3]. Moreover, if A ∈ ΨDOm

ell(E,F ) and
Ã ∈ ΨDOm

ell(Ẽ, F̃ ), then A⊕ Ã ∈ ΨDOm
ell(E ⊕ Ẽ, F ⊕ F̃ ) and

ind(A⊕ Ã) = ind(A) + ind(Ã).

Combining this with Corollary III.6.1 we obtain the statement. �

We will construct a topological index, t-ind: Kc(T
∗M)→ Z, and compare it

with the analytic index. We follow the presentations in [5, 6] and [27, §13].
Suppose π : E → M is a complex vector bundle over a closed manifold M .

Then the complex vector bundles ΛevenE and ΛoddE over M represent an element

λ(E) := ΛevenE − ΛoddE ∈ K(M).

Fix a Hermitian metric on E and consider the vector bundle homomorphism

c : E → end(E), c(e)α = e ∧ α− ie∗α,

where e ∈ Γ(E), α ∈ Γ(ΛE) and e∗ = 〈e,−〉 ∈ Γ(E∗) denotes the dual with
respect to the Hermitian metric. Note that

c(e)2 = |e|2 idΛE,

hence the corresponding vector bundle homomorphism

π∗ΛevenE
c−→ π∗ΛoddE (III.21)

is invertible outside the zero section. Thus, it represents an element

Λ(E) = [π∗Λeven, π∗ΛoddE, c] ∈ Kc(E),

which is independent of the Hermitian metric because different Hermitian metrics
give rise to regularly homotopic maps (III.21).

III.6.3. Proposition (Thom isomorphism in K-theory). Let π : E → M be
a complex vector bundle over a closed manifold M , and denote the zero section
by ι : M → E. Then

ι! : K(M)
∼=−→ Kc(E), ι!(ξ) := Λ(E) · π∗ξ

is an isomorphism. Moreover, for all ξ ∈ K(M), we have

ι∗ι!(ξ) = λ(E) · ξ.
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For non-compact M we still have a Thom isomorphism ι! : Kc(M)
∼=−→ Kc(E),

given by the same formula.26

Proof. If E is a trivial vector bundle, this is a consequence of Bott period-
icity. A proof for the general statement can be found in [27, Theorem C.8]. The
second formula is a triviality, it follows from the obvious relations ι∗Λ(E) = λ(E)
and ι∗π∗ξ = (π ◦ ι)∗ξ = id∗M ξ = ξ. �

Suppose f : M → M ′ is a proper embedding. Then Tf : TM → TM ′ is
a proper embedding whose normal bundle N → TM comes with a canonical
complex structure. Choose a tubular neighborhood for the submanifold f(TM)
in TM ′, that is an open neighborhood U ⊆ TM ′ of f(TM) and a diffeomorphism
N ∼= U extending Tf . Combining the homomorphism

Kc(N)
∼=−→ Kc(U)→ Kc(TM

′) = Kc(T
∗M ′)

induced by the inclusion N ∼= U ⊆ TM ′ with the Thom isomorphism

Kc(T
∗M) = Kc(TM)

ι!−→ Kc(N)

from Proposition III.6.3, we obtain a homomorphism

f! : Kc(T
∗M)→ Kc(T

∗M ′). (III.22)

which is easily seen to be independent of the tubular neighborhood.
Choose embeddings f : M → RN and j : pt→ RN and consider

Kc(T
∗M)

f!−→ Kc(T
∗RN)

j!←−∼= K(pt) = Z. (III.23)

Note that the Thom isomorphism j! just expresses Bott periodicity.

III.6.4. Proposition (Topological index). The composition (III.23),

t-ind: Kc(T
∗M)→ Z, t-ind(ξ) := j−1

! f!ξ,

does not depend on the embeddings f or j.

Proof. This follows from the fact that the tubular neighborhood, N ∼= U ,
is essentially unique, up to diffeotopy. Details can be found in [27, §13]. �

A fundamental result by Atiyah and Singer asserts that the analytic index
coincides with the topological index, see [5, Theorem 6.7] or [27, Theorem 13.2].

III.6.5. Theorem (Atiyah–Singer index theorem). Let M be a closed mani-
fold. Then the analytic index and the topological index coincide,

a-ind = t-ind: Kc(T
∗M)→ Z.

In other words, if E and F are two complex vector bundles over M , and A ∈
ΨDOm

ell(E,F ) is an elliptic pseudodifferential operator, then

ind(A) = t-ind(σ(A)).

26which, however, requires further justification.
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Proof. Atiyah and Singer’s proof in [5] proceeds by establishing the follow-
ing two properties of the analytic index:

(a) If M = pt = T ∗M , then a-ind(ξ) = ξ, for all ξ ∈ K(pt) = Z.
(b) If f : M →M ′ is an embedding of closed manifolds, then

a-ind(f!ξ) = a-ind(ξ),

for all ξ ∈ Kc(T
∗M), where f! denotes the homomorphism (III.22).

The first one is a triviality, it boils down to a basic fact in linear algebra, namely
ker(ϕ)− coker(ϕ) = dim(E)− dim(F ), for every linear map ϕ : E → F between
finite dimensional vector spaces. The second one is the core of the index theorem
and requires quite some work, see [5] or [27, §13].

From this, one easily deduces the index theorem as follows: Choose embed-
dings f : M → RN ⊆ SN and j : pt→ RN ⊆ SN . These give rise to a commuta-
tive diagram:

Kc(T
∗RN)

��
Kc(T

∗M)
f! //

a-ind ''OOOOOOOOOOOOO

f!
88ppppppppppp

Kc(T
∗SN)

a-ind
��

K(pt) = Z
j!oo

a-ind=idwwoooooooooooooo

∼=

j!
ggOOOOOOOOOOO

Z
One immediately obtains a-ind(ξ) = j−1

! f!ξ = t-ind(ξ), for all ξ ∈ Kc(T
∗M). �

Using Poincaré duality we define a wrong way map

f! : H
even
c (T ∗M)→ Heven

c (T ∗M ′),

for every proper embedding f : M → M ′. MORE DETAILS! Note that integra-
tion has properties analogous to the properties of the index:

(a) If M = pt = T ∗M , then
∫
T ∗M

α = α, for all α ∈ H∗(pt) = R.
(b) If f : M →M ′ is a proper embedding, and α ∈ H∗c (T ∗M), then∫

T ∗M ′
f!α =

∫
T ∗M

α.

III.6.6. Proposition (Chern character defect). If f : M → M ′ is a proper
embedding of codimension k = dim(M ′)− dim(M), then the diagram

Kc(T
∗M)

f! //

ch
��

Kc(T
∗M ′)

ch
��

Heven
c (T ∗M)

f! // Heven
c (T ∗M ′)

does not commute, in general. Rather, for ξ ∈ Kc(T
∗M),

ch(f!ξ) = (−1)kf!

(
ch(ξ)Â(ν)−2

)
∈ Heven

c (T ∗M ′),
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where ν := f ∗TM ′/TM denotes the normal bundle over M of the embedding f ,

and Â(ν) ∈ H4k(M) is pulled back to Heven(T ∗M) by the projection T ∗M →M .

Proof. TODO �

The last result leads to a cohomological formula for the topological index:

III.6.7. Proposition. For all ξ ∈ Kc(T
∗M), we have

t-ind(ξ) = (−1)n
∫
T ∗M

ch(ξ)Â(M)2,

where n = dim(M), and Â(M) ∈ H4k(M) is pulled back to H4k(T ∗M) by the
projection T ∗M →M .

Proof. Choose embeddings f : M → RN and j : pt→ RN and consider the
following diagram:

Kc(T
∗M)

t-ind

''
f! //

ch
��

Kc(T
∗RN)

ch
��

K(pt) = Z∼=

j!oo

ch=id
��

Heven
c (T ∗M)

∫
T∗M

77

f! // Heven
c (T ∗RN) Heven(pt) = R∼=

j!oo

Note that the normal bundle associated with the embedding j is trivial, whence
the square on the right hand side commutes up to a sign (−1)N by Proposi-
tion III.6.6. The upper part of the diagram commutes by definition of the topo-
logical index. The lower part commutes in view of (a) and (b) just above Propo-
sition III.6.6. If ν := f ∗TRN/TM denotes the normal bundle associated with the

embedding f , then ch(f!ξ) = (−1)N−nf!(ch(ξ)Â(ν)−2), for all ξ ∈ Kc(T
∗M), by

Proposition III.6.6. Combining this with the preceding considerations, we get

t-ind(ξ) = (−1)n
∫
T ∗M

ch(ξ)Â(ν)−2.

In view of the short exact sequence of vector bundles,

0→ TM
Tf−→ f ∗TRN → ν → 0,

there is an isomorphism of vector bundles TM ⊕ ν ∼= f ∗TRN . Since the right
hand side is a trivial vector bundle, Proposition II.4.15(a) gives

Â(TM)Â(ν) = 1,

thus Â(ν)−2 = Â(M)2, whence the statement. �
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III.6.8. Corollary (Atiyah–Singer, [6]). Let E and F be two complex vector
bundles over a closed manifold M of dimension n, and suppose A ∈ ΨDOm

ell(E,F )
is an elliptic pseudodifferential operator. Then

ind(A) = (−1)n
∫
T ∗M

ch(σ(A))Â(M)2.

If, moreover, M is oriented, then

ind(A) = (−1)n(n+1)/2

∫
M

π!(ch(σ(A)))Â(M)2,

where π! denotes integration along the fiber.

Proof. The first formula follows immediately from Theorem III.6.5 and
Proposition III.6.7. Using a basic fact for integration along the fiber, namely∫

T ∗M

β ∧ π∗α = ±
∫
M

(π!β) ∧ α,

for β ∈ Ω∗c(T
∗M) and α ∈ Ω∗(M), see [12], the second formula follows too. �

III.6.9. Proposition. If π : E →M is an oriented real vector bundle of even
rank, then

π! ch(Λ(EC)) = (−1)ne(E)Â(E)−2 ∈ Heven(M).

III.6.10. Corollary (Gauß–Bonnet–Chern). Let M be a closed oriented
manifold of even dimension. Then

χ(M) =

∫
M

e(M).

Proof. In (III.16) we have shown

χ(M) = ind
(

Ωeven(M ;C)
D=d+d∗−−−−−→ Ωodd(M ;C)

)
.

Clearly,
σ(D) = Λ(T ∗M ⊗ C) ∈ Kc(T

∗M).

By Proposition III.6.9

π! ch(σ(D)) = e(T ∗M)Â(T ∗M)−2 = e(M)Â(M)−2 ∈ Heven(M).

Consequently,

ind(D) =

∫
M

e(TM),

according to Corollary III.6.8. �

Suppose π : E →M is an oriented real vector bundle of even rank. With the
help of a fiber wise Euclidean metric on E one can introduce a vector bundle
homomorphism ? : ΛEC → ΛEC with ?2 = 1, which leads to an element

Λ+EC − Λ−EC ∈ K(M).
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Moreover, Clifford multiplication c : π∗Λ+EC → π∗Λ−EC is invertible outside the
zero section, and leads to an element

δ(E) = [π∗Λ+EC, π
∗Λ−EC, c] ∈ Kc(E).

III.6.11. Proposition ([27, Proposition III.12.4]). If π : E → M is an ori-
ented real vector bundle of even rank, then

π! ch(δ(E)) = (−1)nL(E)Â(E)−2 ∈ H4∗(M).

III.6.12. Corollary (Hirzebruch signature theorem). Let M be a closed ori-
ented manifold of dimension n = 4k. Then

sign(M) = L(M) =

∫
M

L(TM).

Proof. In (III.17) we have shown

sign(M) = ind
(

Ω+(M ;C)
D=d+d∗−−−−−→ Ω−(M ;C)

)
.

Clearly,
σ(D) = δ(T ∗M) ∈ Kc(T

∗M).

By Proposition III.6.11,

π! ch(σ(D)) = L(T ∗M)Â(T ∗M)−2 = L(M)Â(M)−2 ∈ H4∗(M).

Consequently,

ind(D) =

∫
M

L(TM) = L(M),

according to Corollary III.6.8. �

III.6.13. Corollary ([27, Theorem 13.12]). On an odd dimensional closed
manifold, the index of every elliptic differential operator is zero.27

Proof. Let ν : T ∗M → T ∗M denote the vector bundle isomorphism, ν(ξ) :=
−ξ. In view of the assumption on the dimension, this is an orientation reversing
diffeomorphism. Let A ∈ ΨDOm

ell(E,F ) be an elliptic differential operator with
principal symbol σ. Then σ(−ξ) = (−1)mσ(ξ), for all ξ ∈ T ∗M , whence ν∗σ =
(−1)mσ. Note that σ and −σ are regularly homotopic via eπtiσ, t ∈ [0, 1], hence

ν∗(σ(A)) = σ(A) ∈ Kc(T
∗M).

By naturality of the Chern character, and since ν∗Â(M) = Â(M), we obtain

ν∗
(
ch(σ(A))Â(M)2

)
= ch(σ(A))Â(M)2 ∈ Heven

c (T ∗M).

Since ν is orientation reversing, this implies

−
∫
T ∗M

ch(σ(A))Â(M)2 =

∫
T ∗M

ch(σ(A))Â(M)2 = 0.

Hence, ind(A) = 0 according to Corollary III.6.8. �

27This does not remain true for pseudodifferential operators.



III.7. Concluding remarks. We did not have the time to introduce the
Atiyah–Singer operator, a Dirac operator D : Γ(S+) → Γ(S−) of fundamental
importance which exists on spin manifolds of dimension 4k. For this operator
the index theorem takes the simple form [27, Theorem 13.10]

ind(D) = Â(M) =

∫
M

Â(M). (III.24)

Since the index is an integer this implies:

III.7.1. Theorem (Atiyah–Hirzebruch). If M is a compact spin manifold of

dimension 4k, then Â(M) is an integer. If, moreover, dim(M) = 4 + 8k, then

Â(M) is an even integer.

To see the second part of the theorem, note that in these dimensions the bun-
dles S± are actually quaternionic, and D is linear over the quaternions. Hence
kernel and cokernel of D are modules over the quaternions, whence of even com-
plex dimension.

Combining this with ...

III.7.2. Theorem (Rochlin). The signature of a closed smooth spin 4-manifold
is a multiple of 16.

Topological spin 4-manifold with signature 8 do exist. According to Rochlin’s
theorem these do not admit smooth structures.

Combining (III.24) with the Weitzenböck formula, see , this leads to a striking
vanishing theorem, see [27, Theorem IV.4.1]:

III.7.3. Theorem (Atiyah–Hitchin–Lichnerowicz–Singer). If M is a closed

spin manifold with positive scalar curvature, then Â(M) = 0.

The language ofK-theory is very well suited for problems revolving around the
index theorem. In particular, everything above generalizes in a straight forward
and permits to show:

(a) Equivariant index theorem: In this case a compact Lie group G acts on M
and all bundles in a way compatible with the operator. Then kernel and cok-
ernel are finite dimensional representations of G, and the index is a formal dif-
ference of representations, hence an element of R(G), the Grothendieck group
of virtual representations, which coincides with the equivariant K-theory of
a point. The equivariant index theorem computes this virtual representation,
not just its dimension. This leads to interesting fixed point theorems. More
information can be found in [5] or [27].

(b) Family index theorem: In this situation, one considers a family of elliptic
operators, parametrized by a compact space B. Then kernel and cokernel
depend on the parameter in B too, and the index is an element in K(B).
The family index theorem computes this K-theory class. See [7] or [27].
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A totally different proof of the (local) index theorem based on the heat trace
and Getzler’s scaling can be found in [16] or [10]. In this approach the charac-
teristic forms in the integral appear naturally from the asymptotic expansion of
the heat kernel.
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