ÜBUNGSAUFGABEN ZU PROSEMINAR ALGEBRAISCHE TOPOLOGIE

ZUSAMMENGESTELLT VON STEFAN HALLER

Exercise 18. Consider $S^3 \subseteq \mathbb{H}$ and $\mathbb{I} := 1^{\perp} = \{x \in \mathbb{H} : \bar{x} = -x\} \cong \mathbb{R}^3$. Show that for $x \in S^3$ and $y \in \mathbb{I}$ the formula $\lambda_x(y) := xy\bar{x}$ defines an \mathbb{R} -linear map $\lambda_x : \mathbb{I} \to \mathbb{I}$. Show that λ_x is an isometry with respect to the restriction of the Euklidean inner produkt on \mathbb{H} . Conclude that we obtain a map $\lambda : S^3 \to SO_3$. Show that $\lambda : S^3 \to SO_3$ is a surjective homomorphism of groups with ker $(\lambda) = \{\pm 1\}$. Show that λ factors to a homeomorphism $\mathbb{R}P^3 \cong SO_3$ and conclude that $S^3 \to SO_3$ is a two-fold covering. Particularly, we have $\pi_1(SO_3) \cong \mathbb{Z}_2$.

Hint: For $x \neq \pm 1 \in S^3$ the isometry λ_x is a rotation with axis spanned by $x - \bar{x}$ about the angle $2 \arccos(\operatorname{Re}(x))$. To see this check that a) the points on the subspace spanned by $x - \bar{x}$ are fixed points of λ_x ; b) for $y \in \mathbb{I}$ with $\langle y, x - \bar{x} \rangle = 0$ we have $\langle y, x \rangle = 0$, hence $y\bar{x} = xy$ and thus $2\langle \lambda_x(y), y \rangle = x^2 y \bar{y} + y \bar{y} \bar{x}^2 = 2(2(\operatorname{Re}(x))^2 - 1)|y|^2$; c) use the relation $\arccos(2t^2 - 1) = 2 \arccos(t), 0 \leq t \leq 1$, to show that the angle between $\lambda_x(y)$ and y is $2 \arccos(\operatorname{Re}(x))$.

Exercise 19. Let $n \geq 2, p \in \mathbb{N}, q_1, \ldots, q_n \in \mathbb{Z}$ such that p is coprime to q_i , for all $i = 1, \ldots, n$. Denote the associated lense space by $L := L(p; q_1, \ldots, q_n)$, and let K denote the Kleinian bottle. Show that [L, K] = 0, i.e. any two continuous maps $L \to K$ are homotopic. Hint: Show that every homomorphism $\pi_1(L) \to \pi_1(K)$ must be trivial, and use the covering $\mathbb{R}^2 \to K$.

Exercise 20. Let $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ be a pointed covering, and suppose (Y, y_0) is a simply connected, locally path connected pointed space. Show that the map $p_* : [(Y, y_0), (\tilde{X}, \tilde{x}_0)] \to [(Y, y_0), (X, x_0)],$ $p_*([\tilde{f}]) := [p \circ \tilde{f}]$, is a bijection.¹ Conclude that the two-fold covering $p: S^k \to \mathbb{R}P^k$ induces a bijection $p_* : [(S^n, y_0), (S^k, x_0)] \xrightarrow{\cong} [(S^n, y_0), (\mathbb{R}P^k, x_0)], k, n \in \mathbb{N}, n \geq 2.$

For further exercises see http://www.mat.univie.ac.at/~stefan/AT.html.

¹Recall that $[(Y, y_0), (X, x_0)]$ denotes the set of homotopy classes relative basepoint of continuous maps $(Y, y_0) \to (X, x_0)$.