ÜBUNGSAUFGABEN ZU PROSEMINAR ALGEBRAISCHE TOPOLOGIE

ZUSAMMENGESTELLT VON STEFAN HALLER

Exercise 18. Consider $S^{3} \subseteq \mathbb{H}$ and $\mathbb{I}:=1^{\perp}=\{x \in \mathbb{H}: \bar{x}=-x\} \cong \mathbb{R}^{3}$. Show that for $x \in S^{3}$ and $y \in \mathbb{I}$ the formula $\lambda_{x}(y):=x y \bar{x}$ defines an \mathbb{R}-linear map $\lambda_{x}: \mathbb{I} \rightarrow \mathbb{I}$. Show that λ_{x} is an isometry with respect to the restriction of the Euklidean inner produkt on \mathbb{H}. Conclude that we obtain a map $\lambda: S^{3} \rightarrow \mathrm{SO}_{3}$. Show that $\lambda: S^{3} \rightarrow \mathrm{SO}_{3}$ is a surjective homomorphism of groups with $\operatorname{ker}(\lambda)=\{ \pm 1\}$. Show that λ factors to a homeomorphism $\mathbb{R} \mathrm{P}^{3} \cong \mathrm{SO}_{3}$ and conclude that $S^{3} \rightarrow \mathrm{SO}_{3}$ is a two-fold covering. Particularly, we have $\pi_{1}\left(\mathrm{SO}_{3}\right) \cong \mathbb{Z}_{2}$.

Hint: For $x \neq \pm 1 \in S^{3}$ the isometry λ_{x} is a rotation with axis spanned by $x-\bar{x}$ about the angle $2 \arccos (\operatorname{Re}(x))$. To see this check that a) the points on the subspace spanned by $x-\bar{x}$ are fixed points of $\lambda_{x} ;$ b) for $y \in \mathbb{I}$ with $\langle y, x-\bar{x}\rangle=0$ we have $\langle y, x\rangle=0$, hence $y \bar{x}=x y$ and thus $2\left\langle\lambda_{x}(y), y\right\rangle=x^{2} y \bar{y}+y \bar{y} \bar{x}^{2}=2\left(2(\operatorname{Re}(x))^{2}-1\right)|y|^{2}$; c) use the relation $\arccos \left(2 t^{2}-1\right)=2 \arccos (t), 0 \leq t \leq 1$, to show that the angle between $\lambda_{x}(y)$ and y is $2 \arccos (\operatorname{Re}(x))$.
Exercise 19. Let $n \geq 2, p \in \mathbb{N}, q_{1}, \ldots, q_{n} \in \mathbb{Z}$ such that p is coprime to q_{i}, for all $i=1, \ldots, n$. Denote the associated lense space by $L:=L\left(p ; q_{1}, \ldots, q_{n}\right)$, and let K denote the Kleinian bottle. Show that $[L, K]=0$, ie. any two continuous maps $L \rightarrow K$ are homotopic. Hint: Show that every homomorphism $\pi_{1}(L) \rightarrow \pi_{1}(K)$ must be trivial, and use the covering $\mathbb{R}^{2} \rightarrow K$.

Exercise 20. Let $p:\left(\tilde{X}, \tilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a pointed covering, and suppose $\left(Y, y_{0}\right)$ is a simply connected, locally path connected pointed space. Show that the map $p_{*}:\left[\left(Y, y_{0}\right),\left(\tilde{X}, \tilde{x}_{0}\right)\right] \rightarrow\left[\left(Y, y_{0}\right),\left(X, x_{0}\right)\right]$, $p_{*}([\tilde{f}]):=[p \circ \tilde{f}]$, is a bijection. ${ }^{1}$ Conclude that the two-fold covering $p: S^{k} \rightarrow \mathbb{R P}^{k}$ induces a bijection $p_{*}:\left[\left(S^{n}, y_{0}\right),\left(S^{k}, x_{0}\right)\right] \xrightarrow{\cong}$ $\left[\left(S^{n}, y_{0}\right),\left(\mathbb{R P}^{k}, x_{0}\right)\right], k, n \in \mathbb{N}, n \geq 2$.

[^0]
[^0]: For further exercises see http://www.mat.univie.ac.at/~ stefan/AT.html.
 ${ }^{1}$ Recall that $\left[\left(Y, y_{0}\right),\left(X, x_{0}\right)\right]$ denotes the set of homotopy classes relative basepoint of continuous maps $\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$.

