ÜBUNGSAUFGABEN ZU PROSEMINAR ALGEBRAISCHE TOPOLOGIE

ZUSAMMENGESTELLT VON STEFAN HALLER

Exercise 31. Construct a fiber bundle $p: S^{15} \to S^8$ with fibers homeomorphic to S^7 in the following way. On the \mathbb{R} -vector space $\mathbb{O} := \mathbb{H} \times \mathbb{H}$ introduce a multiplication $(a_1, b_1) \cdot (a_2, b_2) := (a_1a_2 - \bar{b}_2b_1, b_1\bar{a}_2 + b_2a_1)$. (This is a non-associative algebra called *Cayley octonions*.) For $z = (a, b) \in \mathbb{O}$ set $\bar{z} := (\bar{a}, -b)$ and let $|z| := \sqrt{|a|^2 + |b|^2}$ denote the usual Euclidean norm. We consider $\mathbb{R} \subseteq \mathbb{O}$ via $r \mapsto (r, 0)$. Note that multiplication with $r \in \mathbb{R} \subseteq \mathbb{O}$ is the same as scalar multiplication with r. Verify the following statements, $z, w \in \mathbb{O}, r \in \mathbb{R}$:

(i) rz = zr and r(zw) = (rz)w = z(rw).

(ii)
$$z\bar{z} = \bar{z}z = |z|^2$$
.

- (iii) If $0 \neq z$ then $z^{-1} := \overline{z}/|z|^2$ satisfies $zz^{-1} = z^{-1}z = 1$.
- (iv) $\overline{\overline{z}} = z$, $\overline{rz} = r\overline{z}$ and $(z^{-1})^{-1} = z$.
- (v) $|zw| = |z||w|, \ \overline{zw} = \overline{w}\overline{z} \text{ and } (zw)^{-1} = w^{-1}z^{-1}.$
- (vi) $(zw)\overline{w} = z(w\overline{w})$ and $(zw)w^{-1} = z$.

Let $\mathbb{O}_{\infty} := \mathbb{O} \cup \{\infty\}$ denote the one-point compactification of \mathbb{O} , the open neighbourhoods of ∞ are the complements of compact sets in \mathbb{O} . Show that $\mathbb{O}_{\infty} \cong S^8$ or, more generally, $\mathbb{R}^n \cup \{\infty\} \cong S^n$.¹ Consider $S^{15} \subset \mathbb{O} \times \mathbb{O}$ and define a map

$$p: S^{15} \to \mathbb{O}_{\infty}, \qquad p(z_0, z_1) := \begin{cases} z_0 z_1^{-1} & \text{if } z_1 \neq 0, \text{ and} \\ \infty & \text{if } z_1 = 0. \end{cases}$$

Show that p is continuous. Show that

$$\varphi: p^{-1}(\mathbb{O}) \to \mathbb{O} \times S^7, \qquad \varphi(z_0, z_1) := \left(z_0 z_1^{-1}, z_1/|z_1| \right)$$

is a trivialization of p over $\mathbb{O} \subseteq \mathbb{O}_{\infty}$ with inverse given by

$$\psi : \mathbb{O} \times S^7 \to p^{-1}(\mathbb{O}), \qquad \psi(z, w) := (zw, w) / \sqrt{|zw|^2 + |w|^2}.$$

Show that $\nu : \mathbb{O}_{\infty} \to \mathbb{O}_{\infty}, \ \nu(z) := z^{-1}, \ \nu(0) := \infty, \ \nu(\infty) := 0$ is a homeomorphism $\nu \circ \nu = \mathrm{id}_{\mathbb{O}_{\infty}}$. Verify $p \circ \tau = \nu \circ p$, where $\tau : S^{15} \to C^{15}$

For further exercises see http://www.mat.univie.ac.at/~stefan/AT.html.

¹Hint: The stereographic projection $S^n \setminus \{P\} \to \mathbb{R}^n$ is proper, i.e. preimages of compact sets are compact, and thus extends to a continuous map $S^n \to \mathbb{R}^n \cup \{\infty\}$.

 S^{15} denotes the homoeomorphisms $\tau(z_0, z_1) := (z_1, z_0), \tau \circ \tau = \mathrm{id}_{S^{15}}$. Conclude that $(\nu \times \mathrm{id}_{S^7}) \circ \varphi \circ \tau$ is a trivialization of p over $\mathbb{O}_{\infty} \setminus \{0\}$, hence p indeed is a fiber bundle. Use Exercise 30 to derive isomorphisms

$$\pi_k(S^{15}) \times \pi_{k-1}(S^7) \cong \pi_k(S^8), \qquad k \ge 2.$$

Particularly, $\pi_k(S^8) \cong \pi_{k-1}(S^7)$, for $1 \le k \le 14$.