ÜBUNGSAUFGABEN ZU PROSEMINAR ALGEBRAISCHE TOPOLOGIE

ZUSAMMENGESTELLT VON STEFAN HALLER

Exercise 31. Construct a fiber bundle $p: S^{15} \rightarrow S^{8}$ with fibers homeomorphic to S^{7} in the following way. On the \mathbb{R}-vector space $\mathbb{O}:=\mathbb{H} \times \mathbb{H}$ introduce a multiplication $\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right):=\left(a_{1} a_{2}-\bar{b}_{2} b_{1}, b_{1} \bar{a}_{2}+b_{2} a_{1}\right)$. (This is a non-associative algebra called Cayley octonions.) For $z=$ $(a, b) \in \mathbb{O}$ set $\bar{z}:=(\bar{a},-b)$ and let $|z|:=\sqrt{|a|^{2}+|b|^{2}}$ denote the usual Euclidean norm. We consider $\mathbb{R} \subseteq \mathbb{O}$ via $r \mapsto(r, 0)$. Note that multiplication with $r \in \mathbb{R} \subseteq \mathbb{O}$ is the same as scalar multiplication with r. Verify the following statements, $z, w \in \mathbb{O}, r \in \mathbb{R}$:
(i) $r z=z r$ and $r(z w)=(r z) w=z(r w)$.
(ii) $z \bar{z}=\bar{z} z=|z|^{2}$.
(iii) If $0 \neq z$ then $z^{-1}:=\bar{z} /|z|^{2}$ satisfies $z z^{-1}=z^{-1} z=1$.
(iv) $\overline{\bar{z}}=z, \overline{r z}=r \bar{z}$ and $\left(z^{-1}\right)^{-1}=z$.
(v) $|z w|=|z||w|, \overline{z w}=\bar{w} \bar{z}$ and $(z w)^{-1}=w^{-1} z^{-1}$.
(vi) $(z w) \bar{w}=z(w \bar{w})$ and $(z w) w^{-1}=z$.

Let $\mathbb{O}_{\infty}:=\mathbb{O} \cup\{\infty\}$ denote the one-point compactification of \mathbb{O}, the open neighbourhoods of ∞ are the complements of compact sets in \mathbb{O}. Show that $\mathbb{O}_{\infty} \cong S^{8}$ or, more generally, $\mathbb{R}^{n} \cup\{\infty\} \cong S^{n}$. ${ }^{1}$ Consider $S^{15} \subseteq \mathbb{O} \times \mathbb{O}$ and define a map

$$
p: S^{15} \rightarrow \mathbb{O}_{\infty}, \quad p\left(z_{0}, z_{1}\right):= \begin{cases}z_{0} z_{1}^{-1} & \text { if } z_{1} \neq 0, \text { and } \\ \infty & \text { if } z_{1}=0\end{cases}
$$

Show that p is continuous. Show that

$$
\varphi: p^{-1}(\mathbb{O}) \rightarrow \mathbb{O} \times S^{7}, \quad \varphi\left(z_{0}, z_{1}\right):=\left(z_{0} z_{1}^{-1}, z_{1} /\left|z_{1}\right|\right)
$$

is a trivialization of p over $\mathbb{O} \subseteq \mathbb{O}_{\infty}$ with inverse given by

$$
\psi: \mathbb{O} \times S^{7} \rightarrow p^{-1}(\mathbb{O}), \quad \psi(z, w):=(z w, w) / \sqrt{|z w|^{2}+|w|^{2}} .
$$

Show that $\nu: \mathbb{O}_{\infty} \rightarrow \mathbb{O}_{\infty}, \nu(z):=z^{-1}, \nu(0):=\infty, \nu(\infty):=0$ is a homeomorphism $\nu \circ \nu=\mathrm{id}_{\mathbb{D}_{\infty}}$. Verify $p \circ \tau=\nu \circ p$, where $\tau: S^{15} \rightarrow$

[^0]S^{15} denotes the homoeomorphisms $\tau\left(z_{0}, z_{1}\right):=\left(z_{1}, z_{0}\right), \tau \circ \tau=\operatorname{id}_{S^{15}}$. Conclude that $\left(\nu \times \operatorname{id}_{S^{7}}\right) \circ \varphi \circ \tau$ is a trivialization of p over $\mathbb{O}_{\infty} \backslash\{0\}$, hence p indeed is a fiber bundle. Use Exercise 30 to derive isomorphisms
$$
\pi_{k}\left(S^{15}\right) \times \pi_{k-1}\left(S^{7}\right) \cong \pi_{k}\left(S^{8}\right), \quad k \geq 2
$$

Particularly, $\pi_{k}\left(S^{8}\right) \cong \pi_{k-1}\left(S^{7}\right)$, for $1 \leq k \leq 14$.

[^0]: For further exercises see http://www.mat.univie.ac.at/~stefan/AT.html.
 ${ }^{1}$ Hint: The stereographic projection $S^{n} \backslash\{P\} \rightarrow \mathbb{R}^{n}$ is proper, ie. preimages of compact sets are compact, and thus extends to a continuous map $S^{n} \rightarrow \mathbb{R}^{n} \cup\{\infty\}$.

